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ABSTRACT

The majority of current multivariate time series (MTS) classification algorithms
aim to improve the predictive accuracy. However, when it comes to large-scale
(either high-dimensional or long-sequential) time series (TS) datasets, it is crucial
to design an efficient network architecture to reduce computational costs. In this
work, we propose a mixing framework based on Transformer and Fourier trans-
form. By pruning each module of the network separately and sequentially, we
investigate the impact of each module on the predictive accuracy. We conduct
comprehensive experiments on 18 benchmark MTS datasets. Ablation studies are
used to evaluate the impact of each module. Through module-by-module prun-
ing, our results demonstrate the trade-offs between efficiency and effectiveness,
as well as efficiency and complexity of the network. Finally, we evaluate, via
Pareto analysis, the trade-off between network efficiency and performance.

1 INTRODUCTION

Time series (TS) data is ubiquitous, occurring in healthcare (Li-wei et al., 2014), stock market (Liu
& Long, 2020), astronomy (Fu, 2011), and many other areas (Gao et al., 2017; Hu et al., 2020).
With the advance of sensing techniques, TS classification across wide-ranging domains has gained
much interest during the past decade (Fawaz et al., 2019; Ruiz et al., 2021).

The availability of the UCR/UEA time series benchmark datasets (Ruiz et al., 2021) has led to an
abundance of TS classification algorithms (Hüsken & Stagge, 2003; Zhao et al., 2017; Lines et al.,
2018; Dempster et al., 2020; Zerveas et al., 2021). The classification accuracy has been the key
metric used to evaluate existing methods (Lines & Bagnall, 2015). However, the high accuracy
of these algorithms often comes with the cost of high computational complexity (Schäfer, 2016).
From common preconceptions in natural language processing (NLP) and computer vision (CV),
in order to achieve high accuracy, training top performing models with billions of parameters is a
computationally intensive task, requiring days or weeks on many parallel GPUs or TPUs. However,
such intensive training makes the model difficult to retrain for further improvement on performance.
Likewise, for large-scale time series data with high dimensionality or long sequence length, it is
challenging to maintain the balance between the predictive accuracy and training efficiency.

In this work, we propose a computationally-efficient network for MTS classification based on Trans-
former and Fourier transform. We use 18 benchmark MTS datasets for evaluation. Comprehensive
experiments are conducted on all datasets, including ablation study of each module of the network
and module-by-module pruning in terms of accuracy, training speed, and model size. Experimen-
tal results demonstrate the competitive performance of our proposed architecture compared with
current state-of-the-art methods. Ablation studies identify the main contributors to the predictive
performance, such as multi-head self-attention and Fourier transform. In addition, module-wise
pruning of the network reveals the trade-off between model efficiency and effectiveness, as well as
model efficiency and complexity. Finally, we use Pareto analysis to investigate and visualize the
trade-off between efficiency and performance.

The main contributions of this paper are highlighted as follows:

(1) To the best of our knowledge, we develop the first mixing model architecture based on
attention and Fourier transform for processing MTS data.
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(2) Through module-by-module pruning, experimental results indicate an evident trade-off be-
tween model efficiency and its effectiveness, as well as its complexity.

(3) We propose to investigate the trade-off between efficiency and performance using Pareto
analysis, which provides general guidance for researchers on how to select efficient model
configurations.

The remainder of this paper is organized as follows. Section 2 describes related work of Transformer
and Fourier transform on time series analysis and existing methods on model efficiency improve-
ment. The proposed network architecture is outlined in Section 3. Section 4 discusses datasets,
experiments on 18 benchmark datasets, including ablation studies, module-wise pruning and Pareto
efficiency visualization. Finally, our conclusions are presented in Section 5.

2 RELATED WORK

Neural Networks for Time Series Classification. Currently, most TS classification algorithms can
be divided into three categories: feature-based (Fulcher & Jones, 2014), distance-based (Abanda
et al., 2019), and neural network based methods (Fawaz et al., 2019). Here, we focus only on neural
network based methods. Since the advancements of deep learning, two popular frameworks, CNN
and RNN, are widely applied in TS classification tasks. (Wang et al., 2017) combined Fully Convo-
lutional Networks (FCN) and Residual Networks (ResNet) for univariate time series classification.
(Lin & Runger, 2017) developed a group-constrained method, which combines a CNN with an
RNN. More recent works such as InceptionTime (Fawaz et al., 2020), TapNet (Zhang et al., 2020),
and TST (Zerveas et al., 2021) are proposed for TS classification. For additional deep learning
methods, we refer readers to (Fawaz et al., 2019).

Fourier Transform in Time Series. The Fourier transform (FT) has been an important tool in
time series analysis for decades (Bloomfield, 2004), and is widely used for applications such as
anomaly detection (Ren et al., 2019), periodicity detection (Puech et al., 2019), and similarity mea-
sures (Janacek et al., 2005). The FT converts a TS from time domain to frequency domain, and
uses Fourier coefficients to represent the original data. For the TS classification task, FTs have been
used indirectly in disparate applications. For instance, (Geerken et al., 2005) utilizes the FT to
filter noisy data for vegetation type classification, and (Samiee et al., 2014) uses the FT as a feature
extraction technique to classify electroencephalography (EEG) data. However, none of the above
methods apply the FT directly for TS classification, particularly in the context of neural networks.
In contrast, we aim to apply the discrete FT and its inverse as modules of a deep learning framework.
The unparameterized FT can reduce the computational cost of the network to some extent.

Transformer Networks for Time Series Classification. With the exemplary performance of the
Transformer architecture (Vaswani et al., 2017) in NLP and CV, researchers in the time series com-
munity began exploring Transformers in TS classification in specific domains (Oh et al., 2018; Zhao
et al., 2021). More recent works have generalized Transformer frameworks for MTS classification.
(Zerveas et al., 2021) adopts a Transformer encoder architecture for unsupervised representation
learning of MTS. (Liu et al., 2021) explored an extension of the current Transformer architecture
by gating, which merges two towers for MTS classification. In contrast, we propose to general-
ize a mixing framework which utilizes both Transformer and FT. By replacing some self-attention
sublayers with FT, the computational complexity can be reduced.

Model Training Efficiency. Due to the increasing size of both models and training data, many
works have focused on improving model training efficiency through parameter reduction, such as
DenseNet (Huang et al., 2017) and EfficientNet (Tan & Le, 2019), training speed improvement
including NFNets (Brock et al., 2021) and BotNet (Srinivas et al., 2021), or both (Tan & Le, 2021).
One of the most common techniques to improve network efficiency is model pruning. Early works
focused on non-structured methods. For instance, (LeCun et al., 1990; Han et al., 2015) proposed
to remove individual weight values. Recent works focused more on structured methods, such as
channel weight pruning based on l1 norm (Li et al., 2016).
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3 METHODOLOGY

In this section, we present our network architecture, which contains all of the modules for potential
model pruning. The overall model structure is illustrated in Figure 1.

Figure 1: An overview of the full model framework. Our architecture is based on Transformer
and Fourier transform. Following the sequence embedding, we apply a 2D discrete Fourier trans-
form (particularly Fast Fourier transform) to convert the TS features from the time domain to the
frequency domain, a 2D inverse discrete Fourier transform to map the features back to the time do-
main, and a multi-head self-attention layer. Then we employ a Global Average Pooling (GAP) layer
to average the output of the MTS over the entire time dimension. Finally, a Softmax layer is used
for the multi-class MTS classification task.

Input Embeddings. Input embeddings are commonly used in NLP models, which map relatively
low-dimensional vectors to high-dimensional vectors to facilitate sequence modeling (Kim, 2014).
Correspondingly, an embedding for TS sequence is required to capture the dependencies among
different features without considering the temporal information (Song et al., 2018). Our framework
employs a 1D convolutional layer to obtain the K-dimensional embeddings at each time step.

Discrete Fourier Transform. The Fourier transform decomposes a function of time into its con-
stituent frequencies. For clarity, we first consider the 1D Discrete Fourier transform (DFT). Given a
sequence of complex numbers x(n) with 0 ≤ n ≤ N − 1, the 1D DFT is defined by

X(k) =

N−1∑
n=0

x(n) · e− 2πi
N kn :=

N−1∑
n=0

x(n) ·W kn
N , 0 ≤ k ≤ N − 1,

where WN = e−
2πi
N . Given the DFT Xk, the original sequence can be recovered by the inverse

DFT (IDFT)

x(n) =
1

N

N−1∑
k=0

X(k) · e 2πi
N kn, 0 ≤ n ≤ N − 1.

The 2D DFT is a direct extension of the 1D DFT, obtained by alternately performing the 1D DFT on
the row and column dimensions. Given a 2D signal x(m,n) with 0 ≤ m ≤M −1, 0 ≤ n ≤ N −1,
the 2D DFT is given by

X(k, l) =

M−1∑
m=0

N−1∑
n=0

x(m,n) · e−2πj( kmM + ln
N ).

Similar to the 1D IDFT, the 2D DFT is invertible via the 2D IDFT,

x(m,n) =
1

MN

M−1∑
k=0

N−1∑
l=0

X(k, l) · e2πj( kmM + ln
N ).

To compute the DFT efficiently, the Fast Fourier Transform (FFT) algorithm takes advantage of the
periodicity and symmetry properties of W kn

N such that the computational complexity of the DFT
reduces from O(N2) to O(NlogN), regardless of dimension.
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Multi-head Attention. The multi-head attention (MHA) mechanism, the major component of the
Transformer architecture (Vaswani et al., 2017), allows the model to jointly attend to information
from different representation subspaces at different positions. MHA is defined as:

MultiHead(Q,K, V ) = Concat(head1,head2, · · · ,headh)WO,

where Q,K, V ∈ Rn×dmodel are input embedding matrices, n is the sequence length, dmodel is the
embedding dimension, and h is the number of heads. Each head i is defined as:

headi = Attention(QWQ
i ,KWK

i , V WV
i ) = softmax

(
QWQ

i (KWK
i )T√

dk

)
VWV

i ,

where WQ
i ∈ Rdmodel×dk ,WK

i ∈ Rdmodel×dk ,WV
i ∈ Rdmodel×dv ,WO

i ∈ Rhdv×dmodel are param-
eter matrices to be learned.

Global Average Pooling. Global average pooling involves calculating the average value of all of
the elements in a feature map. It is mainly used to reduce the amount of learnable parameters.

Batch Normalization. Instead of using layer normalization in Transformer-related architectures in
NLP, we consider the necessity of applying batch normalization to each yellow module shown in
Figure 1. Compared to layer normalization, batch normalization can mitigate the effect of outlier
values in time series data, which does not appear in text representations.

Activation Function. Using the same activation function as the Transformer architecture, we con-
sider the necessity of applying the activation function gelu for each module shown in Figure 1.

Feedforward Neural Network. A position-wise feedforward neural network (FNN) is applied with
two 1D convolutional layers with kernel size 1, and a gelu activation function in between.

4 EXPERIMENTS

In this section, we describe benchmark MTS datasets (Ruiz et al., 2021) used for experimental
evaluation, the experimental setup, and corresponding results.

4.1 DATASETS

We select a set of 18 publicly available benchmark datasets from the UCR/UEA classifica-
tion archive: AtrialFibrillation (AF), BasicMotions (BM), Cricket (CR), DuckDuckGeese (DDG),
Epilepsy (EP), EthanolConcentration (EC), ERing (ER), FingerMovements (FM), HandMovement-
Direction (HMD), Handwriting (HW), Heartbeat (HB), Libras (LIB), NATOPS (NATO), PEMS-
SF (PEMS), RacketSports (RS), SelfRegulationSCP1 (SRS1), SelfRegulationSCP2 (SRS2), and
UWaveGestureLibrary (UW). The main characteristics of each dataset are summarised in Appendix
Table 3. All of the datasets have been split into training and testing sets by default. Thus, there
are no preprocessing steps for these data. The predictive performance on all datasets is evaluated in
terms of accuracy.

4.2 SETUP

We set aside 20% of the default training set for the validation set, which we used to select the
best collection of hyperparameters. All experiments were implemented in Pytorch (Paszke et al.,
2019) on one GTX 1080 Ti GPU. We minimized the cross entropy loss with the Adam (Kingma
& Ba, 2014) optimizer for training. The hyperparameter search space for each dataset is listed in
Appendix Table 4. Note that the batch size choice is limited by the available GPU memory.

4.3 MODULE SETTINGS

Based on Section 3, we define the following eight modules of the network for further analysis:
input embedding (EMBED), fast Fourier transform (FFT), inverse fast Fourier transform (IFFT),
multi-head attention (MHA), feedforward neural network (FFN), global average pooling (GAP),
batch normalization (BN), and activation function (ACT). The corresponding abbreviations of each
module are shown in parentheses.
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4.4 ABLATION STUDY

First, we conduct ablation studies to analyze the contributions of each module on the predictive
performance. The contribution of each module is obtained when a module was removed from the full
network while other modules remained. The fine-tuned results on 18 datasets are shown in Table 1.
Starting from Column 4, the smaller the accuracy is, the larger the module’s contribution is, and
vice versa. The accuracy of each dataset for the unpruned model (Table 1 Column 3) is competitive
with current state-of-the-art methods (Ruiz et al., 2021). Among eight modules, it can be seen that
MHA and FFT contribute most to the predictive performance on 10 out of the 18 datasets and 9
out of the 18 datasets, respectively. For MTS data, the correlations between different dimensions
across all time steps are important to consider. Hence, the MHA is able to catch different feature
correlations, and influence the accuracy to a large extent. The FFT, as the core of signal processing
and more generalized time series, extracts frequency information embedded in data, which provides
a more straightforward representation compared to the original data in the time-domain. In contrast,
we observe that EMBED, BN, and ACT contribute least to the predictive performance on 11 out of
the 18 datasets, 5 out of the 18 datasets, and 13 out of the 18 datasets, respectively. Although these
operations are important for the training of the model, they influence the testing accuracy marginally
compared with MHA and FFT.

To clearly demonstrate the influence of each module on the predictive performance and efficiency of
the network, the averaged testing accuracy loss and the corresponding efficiency improvement for
each module (compared with the unpruned model) over all datasets are presented in Figure 2. Here,
efficiency is defined as the product of training time per epoch and the amount of learnable parame-
ters. The higher the product, the lower the efficiency is. In consideration of highly diversed datasets
with respect to sequence length, number of samples, and dimensionality, the average loss in accu-
racy for each module demonstrates a high variance from Figure 2(a) as the performance loss extent
can vary depending on dataset characteristics. The modules MHA, FFT, and IFFT demonstrate a
notable influence on the model performance on average (21.9%, 20.1%, and 17.7% loss in accuracy
respectively). For modules like BN, EMBED and ACT, removing them bring about minimal accu-
racy loss compared to other modules (3.6%, 2.7%, and 1.6% respectively). Meanwhile, comparing
Figure 2(a) and Figure 2(b), the module which has larger impact on the predictive performance does
not indicate that removing it can bring about more efficiency improvement. For instance, the com-
putationally inexpensive FFT influences the predictive performance to a large extent. In contrast,
although the computational cost of BN is high, its contribution to the performance is marginal.
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Figure 2: (a) represents the average testing accuracy loss across all datasets while removing one
module at a time and other modules remain in the network. Modules MHA, FFT, and IFFT bring
about larger influence on the predictive performance due to the high percentage of accuracy loss
when removing them. In comparison, BN, EMBED, and ACT bring about marginal influence on
the predictive performance compared with other modules. (b) represents the corresponding average
efficiency improvement across all datasets when one module is removed from the network while
other modules keep intact.
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Dataset Acc. Unpruned EMBED FFT IFFT MHA FFN GAP BN ACT

AF Mean 0.667 0.600 0.400 0.467 0.400 0.667 0.533 0.600 0.667
Std. 0.003 0.005 0.005 0.004 0.003 0.006 0.006 0.004 0.003

BM Mean 0.975 0.950 0.725 0.775 0.750 0.900 0.925 0.900 0.950
Std. 0.008 0.010 0.012 0.009 0.012 0.010 0.014 0.009 0.011

CR Mean 0.987 0.958 0.875 0.861 0.833 0.889 0.944 0.972 0.944
Std. 0.007 0.009 0.012 0.008 0.012 0.006 0.009 0.012 0.008

DDG Mean 0.580 0.580 0.440 0.420 0.380 0.520 0.560 0.560 0.580
Std. 0.016 0.017 0.020 0.016 0.014 0.016 0.016 0.014 0.016

EP Mean 0.986 0.978 0.891 0.913 0.899 0.949 0.971 0.956 0.971
Std. 0.014 0.013 0.016 0.014 0.014 0.012 0.014 0.013 0.015

EC Mean 0.456 0.445 0.376 0.395 0.365 0.418 0.441 0.445 0.452
Std. 0.003 0.002 0.003 0.003 0.004 0.002 0.004 0.003 0.002

ER Mean 0.963 0.956 0.896 0.889 0.885 0.892 0.948 0.952 0.956
Std. 0.006 0.007 0.006 0.006 0.008 0.005 0.006 0.007 0.005

FM Mean 0.640 0.620 0.490 0.520 0.500 0.600 0.590 0.610 0.620
Std. 0.009 0.008 0.007 0.008 0.010 0.008 0.009 0.010 0.011

HMD Mean 0.486 0.446 0.365 0.351 0.338 0.406 0.459 0.432 0.473
Std. 0.018 0.016 0.020 0.017 0.018 0.019 0.018 0.016 0.020

HW Mean 0.529 0.514 0.471 0.473 0.468 0.506 0.506 0.512 0.514
Std. 0.006 0.007 0.006 0.005 0.007 0.007 0.008 0.007 0.006

HB Mean 0.771 0.766 0.683 0.707 0.688 0.751 0.756 0.766 0.756
Std. 0.014 0.015 0.014 0.017 0.015 0.016 0.014 0.015 0.016

LIB Mean 0.917 0.906 0.822 0.827 0.839 0.889 0.894 0.906 0.911
Std. 0.009 0.011 0.012 0.010 0.012 0.013 0.011 0.009 0.010

NATO Mean 0.844 0.833 0.728 0.739 0.750 0.772 0.811 0.833 0.833
Std. 0.005 0.004 0.005 0.007 0.006 0.005 0.006 0.004 0.006

PEMS Mean 0.908 0.884 0.815 0.809 0.803 0.867 0.879 0.896 0.896
Std. 0.013 0.012 0.014 0.016 0.014 0.013 0.013 0.014 0.012

RS Mean 0.914 0.901 0.796 0.816 0.803 0.855 0.908 0.901 0.908
Std. 0.021 0.020 0.020 0.018 0.019 0.021 0.020 0.021 0.019

SRS1 Mean 0.915 0.894 0.836 0.823 0.819 0.853 0.887 0.894 0.901
Std. 0.005 0.007 0.006 0.006 0.005 0.007 0.006 0.005 0.005

SRS2 Mean 0.600 0.594 0.522 0.533 0.516 0.578 0.583 0.588 0.594
Std. 0.002 0.003 0.002 0.001 0.004 0.002 0.003 0.003 0.002

UW Mean 0.922 0.906 0.844 0.850 0.841 0.875 0.894 0.897 0.903
Std. 0.006 0.008 0.009 0.006 0.007 0.008 0.006 0.007 0.007

Table 1: Ablation study in the testing accuracy loss on 18 datasets by removing each module at a
time while leaving others the same. Each experiment is conducted 5 times with different random
seeds. The results are shown in the format of mean and standard deviation. Column 2 shows the
accuracy of the full model with all modules included. Columns 3 to 10 represent the accuracy when
the module in that column is removed from the model. The order of modules follow the network
architecture in Figure 1. Bold indicates that the module contributes most to the loss in accuracy and
underlining indicates that the module contributes least to the loss in accuracy when the module is
removed.

4.5 MODULE-BY-MODULE PRUNING

Next, we explore the relationship between efficiency (defined the same as Section 4.4) and effective-
ness (predictive performance). Based on the contribution of each module on the performance loss
shown in Figure 2(a), we perform module-by-module pruning by following the order of modules
from the most significant contributor to the least significant contributor (MHA, FFT, IFFT, FFN,
GAP, BN, EMBED, ACT) to accuracy. We evaluate such pruning effect in two aspects: (1) effec-
tiveness: testing accuracy; (2) efficiency: average training time per epoch in seconds and the number
of learnable parameters. The results of the testing accuracy are shown in Table 2. Due to limited
space, we only show some datasets’ efficiency results in Figure 3. See Appendix Table 5 for details
regarding the training time and parameters of the module-wise pruned model over all datasets. We
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observe that after removing the entire MHA module, the number of learnable parameters shrinks
drastically, so as the accuracy (Table 2 Column 4). The representation capability of the pruned net-
work, which has fewer parameters, is damaged since the amount of parameters is a key aspect to the
network representation. Furthermore, the pace of accuracy loss and parameter reduction removal
of subsequent modules slows down as FFT/IFFT has no learnable parameters. For the remaining
modules, the number of parameters they carry is much fewer than the MHA module. Based on Fig-
ure 2(a), their effects on the predictive performance are moderate. Hence, the curves in Figure 3 are
relatively flat following MHA. We further investigate extent of change in accuracy of module-wise
pruning on all datasets, as shown in Figure 4. We notice that the performance variation in different
datasets vary widely. For datasets such as AF, BM, and DDG, the model pruning has a great impact
on their performance. This may be due to very limit amount of training samples. Conversely, for
datasets like HB, LIB, and SRS1, the model pruning brings little effect after removing the MHA
module (within 1%).

Dataset Acc. Unpruned MHA FFT IFFT FFN GAP BN IE AF

AF Mean 0.667 0.400 0.333 0.333 0.300 0.300 0.300 0.300 0.300
Std. 0.003 0.003 0.004 0.002 0.003 0.003 0.002 0.003 0.003

BM Mean 0.975 0.750 0.675 0.650 0.638 0.625 0.625 0.613 0.613
Std. 0.008 0.012 0.010 0.012 0.009 0.010 0.012 0.012 0.009

CR Mean 0.987 0.833 0.819 0.819 0.806 0.806 0.806 0.806 0.806
Std. 0.007 0.012 0.009 0.010 0.010 0.009 0.007 0.008 0.010

DDG Mean 0.580 0.380 0.370 0.350 0.345 0.340 0.340 0.340 0.340
Std. 0.016 0.014 0.014 0.015 0.012 0.013 0.012 0.014 0.016

EP Mean 0.986 0.899 0.892 0.884 0.870 0.862 0.848 0.848 0.848
Std. 0.014 0.014 0.011 0.012 0.014 0.013 0.012 0.010 0.009

EC Mean 0.456 0.365 0.363 0.363 0.361 0.358 0.354 0.354 0.354
Std. 0.003 0.004 0.004 0.002 0.004 0.003 0.003 0.003 0.003

ER Mean 0.963 0.885 0.878 0.874 0.870 0.859 0.859 0.856 0.856
Std. 0.006 0.008 0.006 0.007 0.007 0.008 0.007 0.008 0.008

FM Mean 0.640 0.500 0.495 0.495 0.493 0.493 0.490 0.490 0.490
Std. 0.009 0.010 0.011 0.010 0.008 0.009 0.011 0.010 0.011

HMD Mean 0.486 0.338 0.331 0.331 0.324 0.324 0.324 0.324 0.324
Std. 0.018 0.018 0.016 0.016 0.017 0.017 0.016 0.016 0.017

HW Mean 0.529 0.468 0.468 0.460 0.455 0.455 0.453 0.453 0.453
Std. 0.006 0.007 0.005 0.006 0.005 0.005 0.006 0.006 0.006

HB Mean 0.771 0.688 0.686 0.686 0.683 0.683 0.683 0.683 0.683
Std. 0.014 0.015 0.014 0.012 0.016 0.015 0.015 0.016 0.016

LIB Mean 0.917 0.839 0.836 0.836 0.835 0.833 0.833 0.833 0.833
Std. 0.009 0.012 0.011 0.012 0.008 0.009 0.010 0.009 0.010

NATO Mean 0.844 0.750 0.750 0.744 0.739 0.733 0.733 0.728 0.728
Std. 0.005 0.006 0.003 0.004 0.006 0.005 0.006 0.004 0.005

PEMS Mean 0.908 0.809 0.806 0.798 0.798 0.798 0.792 0.792 0.792
Std. 0.013 0.014 0.013 0.012 0.013 0.014 0.013 0.014 0.012

RS Mean 0.914 0.803 0.800 0.800 0.798 0.796 0.789 0.789 0.789
Std. 0.021 0.019 0.018 0.019 0.017 0.020 0.018 0.019 0.020

SRS1 Mean 0.915 0.819 0.817 0.816 0.814 0.814 0.812 0.812 0.812
Std. 0.005 0.005 0.003 0.003 0.0.004 0.006 0.003 0.004 0.005

SRS2 Mean 0.600 0.516 0.516 0.511 0.500 0.500 0.500 0.497 0.494
Std. 0.002 0.004 0.001 0.002 0.002 0.003 0.002 0.003 0.001

UW Mean 0.922 0.841 0.840 0.840 0.838 0.831 0.831 0.830 0.829
Std. 0.006 0.007 0.007 0.007 0.005 0.006 0.006 0.007 0.006

Table 2: Module-wise pruning results over all datasets. The results from Column 3 (MHA) to Col-
umn 10 (AF) with regard to accuracy represent that the module in that column is removed from the
model architecture. Experiments are conducted 5 times with different random seeds. The accuracy
results are shown in the format of mean and standard deviation. Bold represents that the module
brings about much accuracy loss compared to the unpruned model. Following MHA, the accuracy
decreasing trend remains stable.
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Figure 3: Module-wise results for changes in terms of number of parameters and training time per
epoch on four datasets: EC, NATO, FM, SRS1.
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Figure 4: Change in accuracy (%) from module-by-module pruning across all datasets. The order of
datasets shown from (a) to (c) correspond to Table 1.

Overall, based on the above module-by-module pruning scheme, we observe that as the effectiveness
(predictive performance) of the network increases, the corresponding efficiency (training speed and
model size) generally decreases. The evident cost–benefit trade-off between efficiency and effective-
ness provides a key question to researchers on how to find efficient model settings while maintaining
the “equilibrium” between these two aspects. This problem will be discussed in Section 4.7.

4.6 EFFICIENCY VS. COMPLEXITY

Here, we explore the relationship between network efficiency and complexity. In general, the more
complex a model is, the less efficient it is. The network’s efficiency is defined in the same way
as previous sections, in terms of the training time and the number of parameters. Meanwhile, we
define the complexity of the model as the stacking of modules. Contrary to model pruning, we
stack each module based on their influence on the predictive performance, from the least significant
contributor to the most significant contributor (ACT, EMBED, BN, GAP, FFN, IFFT, FFT, MHA)
to accuracy. Our empirical results in Figure 5 shed light on the trade-off between model efficiency
and complexity. As can be seen in the Figure, as more modules are stacked over the network, the
corresponding computational efficiency decreases. All datasets illustrate similar trends.

4.7 PARETO ANALYSIS FOR TRADE-OFF EXPLORATION BETWEEN
EFFICIENCY AND PERFORMANCE/EFFECTIVENESS

We define the model efficiency in terms of the reciprocal of the product between training time per
epoch and the number of parameters. Thus, the higher the reciprocal, the higher the efficiency.
To explore the relationship between model efficiency and performance, we employ Pareto analy-
sis (Censor, 1977). Pareto efficiency represents a state for which improving the performance as
measured by one criterion would worsen the performance as measured by another criterion. We
choose the FingerMovements and Heartbeat datasets to obtain the Pareto frontiers, where the set
of points on the front correspond to Pareto-efficient solutions. We have two objectives: (1) maxi-
mize the efficiency; (2) maximize the accuracy. Figure 6 shows the result of Pareto fronts for both
datasets in blue, where the red points are Pareto-efficient solutions. The scattered cyan points are
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Figure 5: Trade-off between network efficiency and complexity across all datasets. Due to the
notable differences of dataset sizes, the computation of efficiency is normalized for each dataset.
The order of datasets shown from (a) to (c) correspond to Table 1.

randomly sampled experimental data from all different configurations. The Pareto analysis provides
us with a principled approach for choosing efficient network settings, while exploring the trade-off
between efficiency and performance. Specifically, we can recognize that how many computational
resources are required in order for a model to achieve a certain performance. Conversely, we know
that how well can a model perform given a certain amount of resources.
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Figure 6: Pareto efficiency visualization of the FingerMovements and Heartbeat datasets. The scat-
tered cyan points, the marked red points, and the blue curve represent randomly sampled experimen-
tal data, Pareto-efficient solutions, and Pareto efficient frontiers.

5 DISCUSSION

In this work, we propose an efficient mixing network based on Transformer and Fourier transform
for MTS classification. Extensive experiments are conducted on 18 MTS datasets, including abla-
tion studies on different modules of the network, module-by-module pruning evaluated in terms of
the predictive performance, training speed, and the number of learnable parameters. The network
achieves competitive performance compared to current best-performing methods. Ablation stud-
ies indicate that self-attention and Fourier transform are the largest contributors that influence the
model performance across all datasets. Furthermore, through sequential pruning of each module,
we observed the efficiency–effectiveness and the efficiency–complexity trade-offs of the network.
Through Pareto analysis, we show how to choose efficient settings of the network, while investi-
gating the performance–efficiency trade-off through visualization of the Pareto fronts. We note that
for far more complex models applied on large-scale data, due to finite computational resources, it is
not practical to consider all possible configurations of the model and perform experiments. In these
cases, given a reasonable number of experiments, techniques like regression can be used to generate
massive random model settings and corresponding model performance. Pareto analysis can then be
performed to evaluate the efficiency-performance trade-off and guide researchers to adjust model
settings to improve the efficiency and effectivenness.
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A APPENDIX

A.1 DATA CHARACTERISTICS

Dataset Code Train Size Test Size Dimensions Length Classes
AtrialFibrillation AF 15 15 2 640 3

BasicMotions BM 40 40 6 100 4
Cricket CR 108 72 6 1197 12

DuckDuckGeese DDG 50 50 1345 270 5
Epilepsy EP 137 138 3 206 4

EthanolConcentration EC 261 263 3 1751 4
ERing ER 30 270 4 65 6

FingerMovements FM 316 100 28 50 2
HandMovementDirection HMD 160 74 10 400 4

Handwriting HW 150 850 3 152 26
Heartbeat HB 204 205 61 405 2

Libras LIB 180 180 2 45 15
NATOPS NATO 180 180 24 51 6
PEMS-SF PEMS 267 173 963 144 7

RacketSports RS 151 152 6 30 4
SelfRegulationSCP1 SRS1 268 293 6 896 2
SelfRegulationSCP2 SRS2 200 180 7 1152 2

UWaveGestureLibrary UW 120 320 3 315 8

Table 3: Summary of the 18 UCR/UEA datasets used in experimentation.
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A.2 HYPERPARAMETERS

Hyperparameters Search Space
learning rate [1e-3, 5e-3, 1e-4, 5e-4, 1e-5, 5e-5]
dropout rate [0.1, 0.2, 0.3]
batch size [8, 16, 32]
] of heads [4, 8, 16]

] of FFT layers [0, 1, 2, 3, 4]
] of IFFT layers [0, 1, 2, 3, 4]
] of MHA layers [0, 1, 2, 3, 4]

] of Feedforward layers [0, 1, 2, 3, 4]

Table 4: Hyperparameter search space of the model on each dataset. If the number of layers of a
module is equal to 0, then this module is removed in the pruned model.

A.3 MODULE-WISE PRUNING RESULTS (TRAINING TIME AND NUMBER OF PARAMETERS)

Dataset Unpruned MHA FFT IFFT FFN GAP BN EMBED ACT

AF ] Param. (K) 7.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9
Time (s) 0.035 0.026 0.021 0.020 0.019 0.019 0.017 0.016 0.016

BM ] Param. (K) 3.8 2.8 2.8 2.8 2.6 2.6 2.6 2.6 2.6
Time (s) 0.068 0.049 0.035 0.033 0.032 0.029 0.028 0.027 0.027

CR ] Param. (K) 115.6 86.6 86.6 86.6 86.4 86.4 86.4 86.4 86.4
Time (s) 0.501 0.356 0.326 0.315 0.310 0.299 0.287 0.286 0.285

DDG ] Param. (K) 18111.8 10870.3 10870.3 10870.3 10856.8 10856.8 10856.8 10856.8 10856.8
Time (s) 0.733 0.632 0.547 0.530 0.445 0.438 0.427 0.402 0.397

EP ] Param. (K) 7.2 2.6 2.6 2.6 2.5 2.5 2.5 2.5 2.5
Time (s) 0.169 0.137 0.121 0.118 0.117 0.116 0.116 0.115 0.113

EC ] Param. (K) 28.2 21.1 21.1 21.1 21.0 21.0 21.0 21.0 21.0
Time (s) 2.178 1.863 1.661 1.497 1.421 1.379 1.318 1.290 1.252

ER ] Param. (K) 3.7 1.8 1.8 1.8 1.7 1.7 1.7 1.7 1.7
Time (s) 0.037 0.029 0.027 0.026 0.026 0.024 0.023 0.023 0.022

FM ] Param. (K) 12.6 8.4 8.4 8.4 6.9 6.9 6.9 6.9 6.9
Time (s) 0.396 0.329 0.276 0.259 0.234 0.232 0.228 0.227 0.225

HMD ] Param. (K) 20.6 17.0 17.0 17.0 16.6 16.6 16.6 16.6 16.6
Time (s) 0.258 0.208 0.205 0.203 0.197 0.186 0.148 0.146 0.142

HW ] Param. (K) 16.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0
Time (s) 0.194 0.133 0.130 0.126 0.122 0.111 0.106 0.103 0.103

HB ] Param. (K) 83.6 68.4 68.4 68.4 67.2 67.2 67.2 67.2 67.2
Time (s) 0.456 0.376 0.357 0.343 0.325 0.307 0.304 0.301 0.294

LIB ] Param. (K) 2.8 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
Time (s) 0.206 0.147 0.143 0.142 0.140 0.135 0.134 0.128 0.126

NATO ] Param. (K) 19.1 14.9 14.9 14.9 13.8 13.8 13.8 13.8 13.8
Time (s) 0.249 0.197 0.164 0.155 0.153 0.152 0.150 0.148 0.146

PEMS ] Param. (K) 9327.6 5662.8 5662.8 5662.8 5614.3 5614.3 5614.3 5614.3 5614.3
Time (s) 2.99 2.25 2.13 1.94 1.79 1.74 1.65 1.59 1.47

RS ] Param. (K) 1.6 1.1 1.1 1.1 0.9 0.9 0.9 0.9 0.9
Time (s) 0.174 0.138 0.118 0.115 0.112 0.108 0.108 0.106 0.105

SRS1 ] Param. (K) 15.0 11.1 11,1 11.1 10.9 10.9 10.9 10.9 10.9
Time (s) 0.738 0.536 0.512 0.493 0.488 0.478 0.472 0.467 0.466

SRS2 ] Param. (K) 19.1 16.6 16.6 16.6 16.4 16.4 16.4 16.4 16.4
Time (s) 0.828 0.557 0.526 0.518 0.514 0.507 0.501 0.498 0.487

UW ] Param. (K) 10.2 7.7 7.7 7.7 7.6 7.6 7.6 7.6 7.6
Time (s) 0.198 0.145 0.144 0.136 0.123 0.117 0.114 0.112 0.108

Table 5: Module-by-module pruning results over all datasets. The results from Column 4 (MHA) to
Column 11 (AF) with regard to number of parameters, and the average training time per epoch rep-
resent that the module in that column is removed from the model architecture. For fair comparison,
the training time and the amount of parameters are reported when each module has only one layer
(if exists).
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