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ABSTRACT

A new particle-based sampling and approximate inference method, based on elec-
trostatics and Newton mechanics principles, is introduced with theoretical ground,
algorithm design and experimental validation. This method simulates an interact-
ing particle system (IPS) where particles, i.e. the freely-moving negative charges
and spatially-fixed positive charges with magnitudes proportional to the target
distribution, interact with each other via attraction and repulsion induced by the
resulting electric fields described by Poisson’s equation. The IPS evolves towards
a steady-state where the distribution of negative charges conforms to the target
distribution. This physics-inspired method offers deterministic, gradient-free sam-
pling and inference, achieving comparable performance as other particle-based and
MCMC methods in benchmark tasks of inferring complex densities, Bayesian logis-
tic regression and dynamical system identification. A discrete-time, discrete-space
algorithmic design, readily extendable to continuous time and space, is provided
for usage in more general inference problems occurring in probabilistic machine
learning scenarios such as Bayesian inference, generative modelling, and beyond.

1 INTRODUCTION

Probabilistic approaches Ghahramani (2015); Jordan et al. (1999) are used in many learning and
decision-making tasks, e.g. Bayesian inference Winkler (1972); Gelman et al. (2013) and generative
modelling Murphy (2022); Bis (2023), and many of them involve estimating the distribution of some
quantities of interest. For example, generative adversarial network (GAN) Goodfellow et al. (2014),
variational autoencoder (VAE) Kingma & Welling (2013), and more recently diffusion models Song
et al. (2020); Ho et al. (2020), either explicitly or implicitly learn some distributions of underlying
data or variables. However, in many cases the target density is not straightforwardly approachable,
e.g. the posterior in a Bayesian model can be analytically intractable Murray et al. (2006) due to e.g.
complex, high-dimensional integration. Bayesian neural networks (BNNs) Ghahramani (2016), for
example, issue high-dimensional parameters whose posterior distributions are in general intractable.
In such cases, one may resort to approximate inference methods such as Markov chain Monte Carlo
(MCMC) MacKay (1998; 2002) or variational inference (VI) methods Blei et al. (2016); Fox &
Roberts (2012). These methods perform inference via sampling or optimisation routines.

Sampling from a prescribed distribution, either fully or partially known, is not easy. If we know the
full pdf, several statistical methods are available, varying in the resulting sample quality though, for
producing (quasi) samples. These include inverse transform sampling Devroye (1986), Box-Muller
transform Box & Muller (1958), Latin hypercube sampling (LHS) McKay et al. (1979), rejection
sampling von Neumann (1951), importance sampling Kahn & Harris (1949), Quasi-Monte Carlo
Methods (QMC) Niederreiter (1992), etc. The most flexible approaches, particularly for sampling
from partially known densities, are based on Markov chains Fitzgerald (1996). For example, MCMC
methods such as Metropolis–Hastings (MH) sampling Metropolis et al. (1953), Gibbs sampling
Geman & Geman (1984), Langevin Monte Carlo (LMC) Roberts & Tweedie (1996), Hamiltonian
Monte Carlo (HMC) Duane et al. (1987), slice sampling Neal (2003), etc. VI methods such as
mean-field VI Jordan et al. (1999), stochastic VI Hoffman et al. (2013), black-box VI Ranganath
et al. (2014), variational autoencoders (VAEs) Kingma & Welling (2013), VI with normalizing flow
Rezende & Mohamed (2015), by its nature are designed for inference and widely used in many
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applications Jordan et al. (1999); Roberts & Penny (2002); some particle-based VI (ParVI) methods
such as Stein variational gradient descent (SVGD) Liu & Wang (2016), Sequential Monte Carlo
(SMC) Doucet et al. (2001), particle-based energetic VI (EVI) Wang et al. (2021), etc, also generate
samples for inference. MCMC and VI methods together form the paradigm of approximate inference
in the Bayesian context; they differ in that, MCMC draws and uses samples for inference while
VI in general casts the inference problem into optimisation. Of these sampling algorithms, some
utilise the original pdf or up to a constant (i.e. gradient-free), e.g. slice sampling and the MH
method, while others, e.g. HMC, LMC and most VI methods, utilise the gradient information to
guide sampling (i.e. gradient-based). Using only gradients enables sampling and inference from an
un-normalised, intractable densities which are frequently encountered in Bayesian inference; however,
it also increases computational burden.

While MCMC is flexible, can handle multi-modal distributions and provides exact samples in the
limit, it is computationally intensive and converge slowly due to undesirable autocorrelation between
samples Liu et al. (2019b), they may also require careful tuning and can suffer from convergence
issues. It is often impractical for very large datasets or models with complex structures. VI is
deterministic, faster and more scalable, but it can struggle with optimization challenges and introduces
approximation bias, and may be limited by the expressiveness of the variational family. Both methods,
if not all, require estimating the gradients for sampling or optimisation, which can be expensive.
Stochastic gradient estimation can be used but extra care should be taken to reduce variance.

ParVI methods enjoy the key strengths of sampling and VI methods: being fast, accurate, determinis-
tic1, capable of handling multi-modal and sequential inference. ParVI methods evolve a finite set
of particles whose terminal configuration upon convergence approximates the target distribution.
The particles are deterministically updated using gradients of an explicit or implicit variational
objective (e.g. KL-divergence, ELBO, kernelised Stein discrepancy), yielding flexible and accurate
approximation Liu et al. (2019b). Compared to MCMC and other VI methods, ParVI offers appeal-
ing time-accuracy trade-off Saeedi et al. (2017): the non-parametric nature of ParVI gives greater
flexibility than classical VIs, while the interaction between finite particles, along with deterministic
optimisation, makes them more efficient than MCMC methods. While most currently available ParVI
methods require use of gradients, gradient-free ParVI methods have not been explored much.

Here we introduce a physics-based ParVI method, EParVI, which simulates an electrostatics-based
interacting particle system (IPS) for sampling and approximate inference. It is deterministic and
gradient-free, and has traits of non-parametric flexibility, expressiveness, and approximation accuracy,
as well as simplicity. Unlike classic VI methods, it only requires the target density to be queryable
up to a constant. As such, the paper is presented as follows: Section.2 illustrates the methodology,
experimental verification follows in Section.3; , conclusion and future work in Section.4. Readers are
referred to Appendices for more details, e.g. related work and further discussions.

2 ELECTROSTATICS-BASED SAMPLING

The basic idea is simple and rooted in elementary electrostatics: if we place a electric charge, either
negative or positive, in a free space without friction 2, it generates an electric field which induces
attracting or repulsive forces on other charges. If a set of charges of equal value and same sign, all
negative for example, are placed, at steady-state these charges will distribute homogeneously and
pairwise distances are maximized by repulsion. This uniform density generation motivates the design
of MC-style integration algorithms Hanson (2005), and forms a basic assumption for electrostatic
halftoning Schmaltz et al. (2010). If we further place a set of positive charges at fixed locations
(e.g. evenly-spaced grids), with pre-assigned magnitudes specified (e.g. proportional to) by a desired
distribution (e.g. distribution of grey values in an image) over the space, the initial steady state breaks
and a new equilibrium will be established due to repulsion and attraction. Distribution of the negative
charges at the new equilibrium, as we shall see later, is exactly the desired distribution. Based on this
mechanism, we can assign a set of positive charges at fixed locations with density proportional to a
target distribution, and evolve a set of free, negative charges to form the target geometry. The new
steady-state distribution of the negative charges is termed the energetically ideal particle distribution

1Stochastic gradients can be introduced though, see e.g. Yang et al. (2023).
2We restrict the discussion within a free space (i.e. a vacuum), which simplifies the physics without losing

generality.
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Schmaltz et al. (2010). At the new equilibrium, these negative charges serve as samples drawn from
the target distribution and can be used to produce, e.g. summary statistics and predictive uncertainties.
See Fig.1 for an illustration.

Figure 1: Illustrative diagram of particle distributions. Red darkness indicates the density value of
two-Gaussian mixture, arrows denote example forces. Positive charges are fixed at grid points with
magnitude proportional to density value, negative charges can move freely.

The central concept used in our electrostatics-based particle sampling and inference algorithm is the
interaction between charges (particles) which is governed by the interactive forces. In the following,
we first describe the design principles for particle interactions, i.e. the designation of repulsive
and attracting forces. Based on these design, we devise an algorithm for simulating this evolving
particle system towards the target distribution. Some background knowledge, along with the detailed
derivations and results, e.g. 1D, 2D and 3D electric fields and forces, are presented in Appendix.C.

Repulsion To mathematically formalise this idea, we first define the set of negative charges 3

(interchangeably used with particles) {qi|i = 1, 2, ...,Mneg}, where Mneg it the cardinality of this
set, in d-dimensional space, and each is associated with position xi. Consider a single point charge qi,
let Eqi be the electric field induced by qi. In electrostatics, a electric field E is proportional to the
electric displacement field and equals the negative gradient of the electric potential φ; the divergence
of E, which implies the infinitesimal electric flux, is linked to the distribution of a source via the
Poisson’s equation for electrostatics (see Eq.10, Eq.14, Eq.15 in Appendix.C). We assume no external
source or sink in this charge particle system, which simplifies the Poisson’s equation to Laplace’s
equation; solving Laplace’s equation gives the potential field φ, and therefore the electric field E and
force F induced by a point charge (see Appendix.C and Appendix.D for details). The repulsive force
between two negative point charges qi and qj , locating at a distance of ri,j , as per Coulomb’s law, is:

Frep
i→j(ri,j) = qjEi(ri,j) =

qiqjΓ(
d
2 )

2πd/2ε0r
d−1
i,j

ei→j (cc.Eq49)

where Ei(ri,j) is the electric field at a distance of ri,j from a inducing point charge qi. The unit
vector ei→j = (xj − xi)/ri,j gives the out-pointing direction. According to Newton’s third law, if we
treat qj as a source point and qi a field point, qi experiences the same amount of force with reverse
direction ej→i = −ei→j .

Now we look at the particle set {qi|i = 1, 2, ...,Mneg}, and consider the combined repulsive force
that particle j receives from all other particles, which can be calculated as:

Frep
j (xj) =

Mneg∑
i=1,i̸=j

qiqjΓ(
d
2 )

2πd/2ε0r
d−1
i,j

ei→j =

Mneg∑
i=1,i̸=j

qiqjΓ(
d
2 )

2πd/2ε0

xj − xi

∥xj − xi∥d/22

(Eq49b)

where ∥·∥2 denotes the L2-norm of a vector. When charges (particles) achieve steady-state with
uniform distribution, for each particle j ∈ {1, 2, ...,Mneg}, the combined repulsive force Frep

j (xj)
becomes zero, as all induced electric fields acting on the particle cancel.

One can conveniently re-write the first half of Eq49b in matrix form, by denoting the row
vector qj = [qj , qj , · · · , qj ]T , column vector q1:Mneg = [q1, q2, · · · , qMneg ], diagonal matrix
Λ = diag[1/rd−1

1,j , 1/rd−1
2,j , ..., 1/rd−1

i,j ], as follows:

Frep
j (xj) =

Γ(d2 )

2πd/2ε0
qjΛq1:Mneg (Eq49c)

3Negative charges are implied by the superscript neg, while positive charges by pos.
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in which Λ can be viewed as some kind of isotropic covariance matrix produced by a kernel (similar
to a RBF kernel but not exactly), with each diagonal element measuring a pairwise correlation or
inverse-distance between the two point charges qj and qi.

Attraction The overall attracting force, resulted from a positive point charge and acting on a
negative charge qj , is Schmaltz et al. (2010):

Fattr
j (xj) = −

Mpos∑
i′=1,i′ ̸=j

qp(xi′)qjΓ(
d
2 )

2πd/2ε0r
d−1
i′,j

ei′→j = −
Mpos∑

i′=1,i′ ̸=j

qp(xi′)qjΓ(
d
2 )

2πd/2ε0

xj − xi′

∥xj − xi′∥d/22

(Eq49d)

where we have set the positive charge qj = qp(xj) with q being a constant scaling factor specifying
the relative strength of attracting forces. A negative sign implies attracting force.

If we ignore the contributing forces from those located far away, in regions with constant probability
(and therefore uniform positive charge magnitudes), the attracting forces cancel and repulsion still
yields the energetically ideal positions which maximize pairwise distances. In regions with uneven
probability distribution, attracting force dominates and binds particles onto locations with higher
probability. If mesh grid is set to be infinitely small, Mpos grows to infinitely large and the distribution
of positive charge magnitude becomes continuous, Eq49d becomes an integral.

Evolving the particle system Summation of the repulsive and attracting forces gives the overall
force Fj = Frep

j + Fattr
j , acting on a single free-moving negative charge j; this combined force

drives the negative charge to move as per Newton’s second law. At equilibrium (steady-state), the
repulsive force equals the attractive force (in magnitude) and Fj vanishes. As we intend to evolve the
particle system over time, we introduce the time dimension and denote the time-dependent quantities
with superscript t. Further, avoiding complex physics, we assume variation of particle displacement
stqj is proportional to the corresponding overall acting force Ft

j , i.e. δstj ∝ Ft
j , which gives the Euler

position updating rule Schmaltz et al. (2010) for particle j:

xt+1
j = xtj+τFt

j = xtj+τ
[ Mneg∑
i=1,i̸=j

qiqjΓ(
d
2 )

2πd/2ε0

xj − xi

∥xj − xi∥d/22

−
Mpos∑

i′=1,i′ ̸=j

qp(xi′)qjΓ(d2 )
2πd/2ε0

xj − xi′

∥xj − xi′∥d/22

]
(1)

where Ft
j is the combined force (Eq.54) acting on charge j at time t. τ is a small constant (i.e.

step size). Note the index i ∈ {1, 2, ...Mneg} indexes the negative charge group, while i′ ∈
{1, 2, ...Mpos} is for the positive charge group, and if computation allows, the positive charge group
can be made continuous over the space.

Assuming a linear relation between force and displacement violates Newton’s second law F = ma
where F is the overall acting force, m the mass and a the acceleration; however, this linearisation sim-
plifies and accelerates calculation. Theoretically, to recover Newton’s second law, the proportionality
constant τ should be non-linear and time-variant. Here we take another approach (see Appendix.D)
to (approximately) preserve this physical law using finite difference (we drop the index j for now):

a =
d2x
dt2

≈ xt+1 − 2xt + xt−1

∆t2
(2)

with unity mass m = 1, we obtain F = a, leading to the Verlet position updating rule:

xt+1
j ≈ Ft

j∆t2 + 2xtj − xt−1
j = xtj + Ft

j∆t2 +∆xtj (1b)

with ∆xtj = xt
j − xt−1

j . We can also design a damped version with a discount factor τ ′:

xt+1
j = xtj + τ ′∆xt

j = xtj + τ ′[Ft
j∆t2 +∆xtj ] (1c)

where Ft
j remains the same as in Eq.1. Both Eq.1b and Eq.1c require ∆t2 to be sufficiently small

to be accurate. The newly introduced hyper-parameter ∆t2 balances the relative importance of
the contribution from current step force Ft

j and the historical displacement ∆xtj carried over from
previous step. This momentum-like updates, hopefully, will give higher fidelity in suggesting next
particle position. Note the time discretisation size ∆t, along with the step size τ ′, may impact
accuracy and speed of convergence.
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Now we have 3 rules, i.e. Eq.1, Eq.1b and Eq.1c, for updating the negative charge positions in any
iteration. Simple Euler method may require very small time steps to converge accurately, which
leads to slow simulation. The Verlet integration method is commonly used in molecular dynamics.
It takes into account the previous position, potentially leading to smoother trajectories; however, it
requires more storage as well. The damped Verlet integration provides additional damping but also
has more parameter to tune. Eq.1s define a set of discrete-time, discrete-space formulas for updating
particle positions. In order to estimate next particle position, we only need to record the historical
positions {xt, t = 1, 2, ..., k} and calculate the current time overall force Ft

j . We keep updating
particles’ positions until converge (indicated by either static or small movements). When attaining
equilibrium, we have Ft

j = 0 and ∆xtj = 0 for all j ∈ {1, 2, ...,Mneg}. The charge system then
becomes electrically neutral. As the number of negative particles attracted to a region is proportional
to the magnitudes of nearby positive charges, particle clustering at the steady state shall align with
the distribution of the magnitudes and therefore the target distribution. A vanilla implementation of
the EParVI algorithm is described in Algo.1.

The EParVI algorithm is particularly advantageous for sampling and inferring a partially known
density p(x) = p′(x)/Z, e.g. an energy model p(x) = e−f(x)/Z where the normalising constant Z is
unknown due to high-dimensional integral: we can use this algorithm to effectively draw samples
from p(x) and make inference about its statistics (e.g. multi-modal means and variances), once the
numerator is queryable; we only need to set the positive charge magnitudes qp(x) proportional to the
queryable term and possibly normalise them. Therefore, in this context we don’t distinguish the case
where the target density is known up to a constant - we use the same, overloaded notation p(x) for
denoting either the queryable term p′(x) or the full density.

In our experiments, for simplicity, we use equally-charged unit negative charges, and make the
maximum magnitude for positive charges to be unity as well, i.e. qi = q = 1. Note in this setting,
the absolute value of qi or q is not relevant; they are absorbed into the hyper-parameters τ and/or
∆t2. However, one does have the option to set the positive charge constant q to be multiples of the
negative charge magnitude qi to address the relative importance of attracting force. Also, if the force
is too large, the negative charge can jump to and get trapped in a low-density region (as discussed in
Section.K), this can be avoided by normalising the force in each iteration. Besides, extra force terms
can be added to Ft

j , e.g. a dragging force controlling the negative charge to move within certain grids
Schmaltz et al. (2010), which is similar to regularisation used in many objectives. Also, the move
xt+1
j = xtj + τ∆xt

j can be made probabilistically, i.e. we can insert an MH step to assess if this move
is worthwhile. These extensions are discussed in Section.K.

Computational complexity In each iteration, computing the pairwise forces takes order
O(m(Mneg + Mpos)2) FLOPs, where the number of positive charges Mpos = Mm, with M
being the number of equi-distance grid points in each dimension, grows exponentially with the
dimension m. The overall computational cost over T iterations is therefore O(Tm(Mneg +Mpos)2).
Major computational efforts can be saved by a wise routine, as proposed in Gwosdek et al. (2014),
which reduces the efforts for computing the pairwise forces to (Mneg +Mpos) log(Mneg +Mpos).
Of course, one can reduces the total number of positive charges Mpos by designing an irregular grid
for assigning the positive charges. As discussed in Appendix.E, some computational efforts can be
saved by performing neighbourhood search which identifies near-field particle sets via e.g. k-d-tree
search, drops contributions from distant particles and reduces the computation, as well as using neural
approximation of the force field.

3 EXPERIMENTS

3.1 TOY EXAMPLES VIA EPARVI

Gaussian densities Two examples, a unimodal Gaussian and a bimodal Gaussian mixture (mixing
proportions 0.7/0.3), are presented in Fig.2. Fig.2(a) starts from a uniform prior which partially
overlaps with the target, converges fast and the inferred shape (third from left) aligns well with ground
truth (pink contours). Fig.2(b) identifies the two modes and their mixing proportions very well.
Unlike many MCMC algorithms which encourage particles to move from low to high density regions
(either following the steepest gradient direction or an MH step), we observe that, the interacting
particles following the deterministic EParVI algorithm don’t restrict themselves to follow the gradient.
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Algorithm 1 EParVI: Electrostatics-based ParVI
Inputs: a queryable target density p(x), particle dimension m, initial proposal distribution p0(x),
total number of iterations T , total number of negative Mneg and positive Mpos = Mm charges
(where M is the number of positive charges along each dimension), Euler constant τ , max positive
charge magnitude q.
Outputs: particles {xi ∈ Rm}Mneg

i=1 whose empirical distribution approximates the target p(x).

1. Initialise particles.
(1) Mesh the space into Mpos = Mm equi-distance grids. Query (and optionally normalise) the
density values p(xi) at all grid points xi, i ∈ {1, 2, ...,Mpos}.
(2) Assign a positive charge with magnitude qp(xi) to each grid point xi.
(3) Draw Mneg m-dimensional negative charges x0 = {x0j}M

neg

j=1 from the initial proposal
distribution p0(x).

2. Update negative charge positions.
For t = 0, 1, 2, ..., T − 1, repeat until converge:
(1) Calculate the overall force acting on each negative charge j (see Eq.Eq49b and Eq.Eq49d):
Ft
j = Frep,t

j + Fattr,t
j

(2) Update negative charge positions (Eq.1 as an example): xt+1
j = xtj + τFt

j

3. Return the final configuration of negative charges {xT
j }M

neg

j=1 and their empirical distribution.

Other densities We also test the EParVI algorithm on three other toy densities, i.e. a moon-shaped
density, double-banana, a wave density, which are commonly used in other VI benchmark tests Haario
et al. (1999); Chen et al. (2018); Liu et al. (2019a); Wang et al. (2021). The results are shown in Fig.3.
With different initialisation, the EParVI algorithm is able to transport particles to the target regions
while maintaining diversity. Dispersion of particles is secured by the repulsive forces, which helps
prevent model collapse.

Figure 2: Two toy 2D Gaussian densities. Upper:
unimodal, lower: bimodal. Left to right: iteration
0, 5, 60 and selected particle trajectories (dot: start,
square: end). Pink contours are ground truth den-
sity; blue dots denote negative charges, red dots
denote positive charges. Appendix F for details.

Figure 3: Three other toy 2D densities. Left to
right: iteration 0, 40, 60. Appendix F for details.

3.2 NEAL’S FUNNEL

Neal’s funnel distribution, as written in Eq.3, has been challenging to infer due to its highly anisotropic
shape and exponentially increasing variance - the funnel’s neck is particularly sharp, making it a
benchmark for testing many MCMC and VI methods Neal (2003). Neal’s funnel specifies p(x2) =
N (x2|0, σ2), and p(x1|x2) = N

(
x1|0, exp(x2/2)

)
, and their joint pdf

p(x1, x2) = p(x1|x2)p(x2) =
1√
2πσ2

exp

(
− x2

2

2σ2

)
· 1√

2π exp(x2/2)
exp

(
− x2

1

2 exp(x2/2)

)
(3)
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We test 6 methods, i.e. MH, HMC, LMC, SVGD EVI and EParVI, on the 2D differentiable geometry
with σ = 3, compare their inference quality, as measured by two metrics, i.e. the squared maximum
mean discrepancy MMD2 Arbel et al. (2019); Wang et al. (2021) and the average negative log-
likelihood (avg NLL), as well as their runtimes in each iteration. While MH and HMC produce
samples sequentially, Langevin, SVGD, EVI and EParVI generate samples iteratively and are started
with the same initialisation.

Results presented in Fig.4 show that, with a medium number of particles (i.e. 400), MH and LMC
are the fastest in terms of speed, SVGD and EParVI are among the slowest due to large number
of iterations between particles. EVI is fastest among these particle methods. HMC, being fast and
accurate, is considered as the golden method for sampling complex geometriesHoffman & Gelman
(2014); we therefore use the HMC samples as a reference for evaluating MMD2. Key observations
are: while all samples show some similarity to the HMC samples, EParVI samples notably yield the
smallest average NLL, which implies they are better quasi samples following the target distribution,
as also evidenced by the upper row figures.

Figure 4: Inference of the Neal’s funnel using six methods. Upper left to right: LMC, SVGD, EVI,
EParVI, and MH samples. Lower left to right: corresponding MMD2, NLL values over runtime
and HMC samples. MH and HMC take seconds to run. See Appendix.G for details.

3.3 BAYESIAN LOGISTIC REGRESSION

We also apply the proposed EParVI, along with other 4 counterparts, i.e. logistic regression via
maximum likelihood (MLE-LR), HMC, SVGD and EVI, to infer the coefficients of a low-dimensional
Bayesian logistic regression (BLR) model, using the Iris dataset {(xi, yi)}Ni=1 which has N = 150
observations with binary labels yi, and each instance xi consists of 4 features. The logistic regression
model is p(yi = 1|xi,ω) = 1

1+exp(−ωT xi) . We use standard Gaussian prior for regression coefficients,
i.e. ω ∼ N (0, I). The posterior distribution of coefficients ω is then (details please refer to
Appendix.H):

p(ω|y,X) ∝
N∏
i=1

[
1

1 + exp(−ωT xi)

]yi

·
[
1− 1

1 + exp(−ωT xi)

]1−yi

exp

(
− 1

2α
ωTω

)
(4)

which is used as the target for our sampling methods.

The initial and final samples are visualised for the two dimensions (ω1,ω2) in Fig.5 in Appendix.H.
All 4 methods yield reasonably well inference quality - all terminal particles cluster around the ground
truth point with some dispersion representing uncertainties. The EParVI particles, in particular, have
reduced uncertainty as compared to other methods. A comparison of the statistics are made in Table.1,
in which we observe HMC yields results closest to the MLE-LR estimates. Particle methods give less
accurate estimates yet fast speeds such as SVGD and EVI. EParVI achieves smallest NLL but less
impressive mean estimates; it also differs from the HMC samples due to less iterations and the coarse
granularity used in meshing.
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Method ω̂1 ω̂2 ω̂3 ω̂4 NLL/MMD2 Runtime

MLE-LR -0.64 1.89 -1.75 -1.67 NA < 1 second
HMC -0.69 1.98 -1.84 -1.86 NA < 30 seconds
SVGD -0.76 1.87 -1.74 -1.67 12.83 / 2.41 < 100 seconds
EVI -0.78 1.81 -1.63 -1.56 11.39 / 10.14 < 100 seconds
EParVI -0.64 1.62 -1.50 -1.42 11.32 / 23.25 > 103 seconds

Table 1: Comparison of inference methods for the Bayesian Logistic Regression (BLR) problem.
Sample mean estimates of coefficients are presented for all but LR. With these inferred coefficients,
the test accuracy for all cases is 100%. Runtimes are tested on Colab TPU v2.

Figure 5: Inference of BLR model. Upper left to right: HMC and SVGD samples. Lower left to right:
EVI and EParVI samples. MH and HMC take seconds to run. See Appendix.H for details.

3.4 INFERENCE OF A DYNAMICAL SYSTEM

We also compared the performance of MAP, HMC, LMC, SVGD and EParVI methods on inferring
the posterior distributions of the parameters in the Lotka-Volterra dynamical system, results are
presented in Appendix.I.

4 CONCLUSION AND FUTURE WORK

Conclusion We propose a variational sampling and inference method, EParVI, which adheres to
physical laws and exhibits superior performance in inferring low-dimensional, complex geometries;
it also achieves comparable performance as other MCMC and VI methods in a real-world Bayesian
logistic regression problem. EParVI simulates an interacting particle system in which positive particles
are fixed at grid points and negative particles are free to move. With positive charge magnitudes
proportional to the target distribution, negative particles evolve towards a steady-state approximating
the target distribution; particles repositioning follows a discretised Newton’s second law, and the
force acts in accordance with the electric fields described by the Poisson’s equation. It features
gradient-free, deterministic dynamics sampling, with traits of simplicity, non-parametric flexibility,
expressiveness and high approximation accuracy; it also suffers from curse of dimensionality.

Future work There are theoretical aspects which can be explored. For example, the convergence of
the IPS towards equilibrium with theoretical guarantees. This can be routed to using the variational
potential energy objective. Also, improving the computational efficiency is significant. Further, this
technique can be potentially used for optimisation. However, sampling differs from optimisation in
that, we can query the target function (i.e. the density, possibly partially known) as many times as
we want; in optimisation, however, one typically avoids to perform functional evaluations too many
times as it’s expensive.
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A ELECTROSTATIC HALFTONING

In physics, electrostatics studies the electromagnetic phenomena and properties of stationary or
slow-moving electric charges, i.e. when a static equilibrium 4 has been established. Digital image
halftoning, on the other hand, concerns about the distribution of colors Furht (2008). Image halftoning
algorithms have been developed for sampling problems which often occur in rendering, relighting,
printing, object placement, and image visualisation Schmaltz et al. (2010). Electrostatics-based
methods are first introduced to image processing Schmaltz et al. (2010); Gwosdek et al. (2014) in
which electrostatic halftoning, a similar approach to ours, was devised to sample image pixels based
on its grey values. Digital images are represented by discrete pixels on a computer (though may not
be visually visible) and rendered to finite resolution in tasks such as display and printing Hanson
(2005). This requires (re)creating the illusion of e.g. a grey-scale image by distributing the black dots
on a white background (i.e. digital halftoning 5 Hanson (2005)), or resampling the image to adapt
to machine resolution, whilst yielding either energetically or visually optimal results Schmaltz et al.
(2010). To accurately and flexibly represent the original image, Schmaltz et al. Schmaltz et al. (2010)
proposed the electrostatic halftoning method which follows the physical principles of electrostatics to
assign and move negative charges, by interacting with positive charges representing image intensities,
to form the distribution of grey values. This method is based on the intuitive assumption that, in a
region of constant intensity, black points (represented by negative charges) in the sampled images
should be equally distributed, while in other regions, through a process of particle interaction and
evolution, their distribution will be proportional to the image grey values.

We therefore note the similarity between (standard and quasi) Monte Carlo sampling and digital
halftoning: while both methods aim to resemble a target geometry 6, they also share the same problem
of sample clumpiness Hanson (2005) and empty spots Ohbuchi & Aono (1996), i.e. undesirable
clumping of samples (dots in an image) which degrades sampling efficiency or image quality (uneven
dot placement that accompanies random dot distributions introduces undesirable texture).

B RELATED WORK

Using electrostatics principles to model interactions in a particle system is less exposed but not new.
In classic Newton mechanics, the interactions between M bodies is described the Newton’s third law

4When there are no moving charges, the particle system is said to have achieved a static equilibrium, i.e. the
vector sum of all forces acting upon the particle is zero.

5We only discuss in the context of digital halftoning which renders gray-scale images (i.e. putting black dots
on a white surface), and mainly concern about rendering speed and quality.

6In an inference task, MC methods try to infer the target density; digital halftoning creates a pattern of black
dots to replicate the distribution of image intensity.
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Fi = −Fj , i ̸= j, i, j ∈ {1, 2, ...,M}, and each individual force follows the Newton’s second law
F = ma where m is mass and a acceleration. Gravitational force, for example, can be specified as
per the inverse-square law: F = Gm1m2

r2 where r is the distance between the two interacting objects,
and G the gravitational constant. These laws can be derived in a variational form via the energy
perspective, i.e. the Maxwell equations (a set of coupled PDEs describing electromagnetic laws),
or the Gauss law (which in electrostatics relates the distribution of electric charge to the resulting
electric field), the Laplace equation (see Appendix.C) and the Poisson’s equation (generalisation of
Laplace’s equation) in more specific domains such as mathematics and physics. Regarding a set of
charges as particles and modelling their interactions using already-known electrostatic principles
requires an alignment between the the behaviors of the particle system we aim to model and that of the
charges. In particle-based variational inference (ParVI), the SVGD method Liu & Wang (2016) for
example, particles interact and dynamically move towards forming the target geometry; in the charge
system, positive and negative charges attract and repel each other and achieve certain distribution at
equilibrium. Although we don’t intend to binarily classify particles in ParVI (which is essential in
electrostatics), the similarity between both inspires the design of new algorithms at their intersection,
by taking advantages of both worlds.

A straightforward application of the interacting electrostatic particle system emerged in digital image
processing Ohbuchi & Aono (1996); Hanson (2005); Schmaltz et al. (2010). Inspired by principles of
electrostatics, Schmaltz et al. Schmaltz et al. (2010) proposed the electrostatic halftoning method
for image dithering, stippling, screening and sampling (more details see Appendix.A). This physics-
based image processing method is simple, intuitive and flexible: inkblots are modelled as small,
massless particles with negative unit charge, while the underlying image is modelled as a positive
charge density, the attracting forces attract negative charges move proportionally towards dark image
regions. Eventually, the particle system reaches an equilibrium state that forms an accurate halftone
representation of the original image. However, their vanilla implementation has a runtime complexity
of O(M2) in the number of particles M , making it impractical for real-world applications (e.g.
high-resolution image halftoning). Gwosdek et al. Gwosdek et al. (2014) proposed a GPU-parallel
algorithm to improve the computational efficiency of the electrostatic halftoning method. They
simplified the pairwise force calculation by evaluating the near-field and far-field interactions using
different strategies, e.g. a novel nearest-neighbour identification scheme was designed, as well
as a GPU-based, non-equispaced fast Fourier transform (NFFT) algorithm devised for evaluating
interactions between distant particles, which reduces the runtime complexity to O(M logM).

Albeit similarities exist between MC sampling and halftoning patterns, the intersection between
MC and halftoning techniques has not received much attention in the past Ohbuchi & Aono (1996);
Hanson (2005). Ohbuchi et al. Ohbuchi & Aono (1996) applied the QMC method, which employs
deterministic low-discrepancy sequences (LDSs, a screen pixel sampling method), to solve the global
illumination problem in 3D computer graphics. They used QMC sequences to improve rendering
of surfaces and shadows in a 3D scene, and showed that, QMC integral with LDSs converges
significantly faster than MC integral and yielded more accurate results. This QMC-LDS method also
allows for incremental sampling. Inspired by halftoning, Hanson Hanson (2005) designed a Quasi-
Monte Carlo (QMC) method for generating random points sets for evaluating 2D integrals, which
reduces the number of function evaluations and yields more accurate estimates than standard QMC
methods. Although computation is cheap, however, this method is inapplicable to dimensions larger
than four or five as it relies on the calculation of the dimension-restricted mean-squared error. This
haltoning-inspired QMC method can also be applicable to sensitivity analysis of computer models.
They also proposed a potential-field approach, which considers the repulsion between particles as
well as between particles and the boundaries, to obtain 2D random, quasi-uniform integration points.

Our contributions We re-invent the idea of electrostatic halftoning Schmaltz et al. (2010) for
modelling the interacting particle system (IPS), and apply it to sample and infer probability densities.
Although the physics is simple, and the idea of modelling IPS using electrostatics already exists,
this work is novel in following three aspects: (1) it is for the first time principles of electrostatics
and Newton mechanics are introduced to variational inference; (2) simplified IPS modelling; (3) we
extend its theoretical applicability into arbitrary dimensions. The repulsion-attraction framework is
different from previous work e.g. Schmaltz et al. (2010) in that, we generalise the detailed physics to
any dimension, and it is more flexible to set the parameters, e.g. charge magnitudes with an annealing
scheme, by relaxing the equilibrium condition for accelerating convergence. We also introduce two
new particle updating rules, rather than assuming linear relation between force and displacement, for
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yielding more accurate approximation. Other tricks such as particle filtering, noise perturbation and
probabilistic move are also introduced.

C A HYPOTHETICAL TREATMENT OF COULOMB’S LAW IN d-DIMENSION

Here we aim to derive the forces between two charges in low and high dimensions. We first present
the well-known force formula in 3D (Section.C.1), then move to general d dimensions (Section.C.2),
solve the 3D Poisson’s equation (Section.C.3), and solve the Poisson’s equation in d dimensions
(Section.C.4).

C.1 ELECTRIC FORCES IN 3D

In three-dimensions, the electric force between two charges qi and qj is calculated as per Coulomb’s
law:

F = k
qiqj
r2

e (5)

where r is the distance between the two charges, k = 10−7c2 = 1
4πε0

is the Coulomb constant (also
called the electric force constant or electrostatic constant), with c being the light speed in a vacuum,
ε0 the vacuum permittivity introduced later. The unit vector e implies the direction of the forces - they
point in inverse directions as per Newton’s third law. The force is repulsive for like and the attracting
for unlike electric charges. Note that, Eq.5 only holds for three dimensions in which both Coulomb’s
law and Newton’s law of gravity takes the form of distance inverse-squared.

The electric field, e.g. induced by the charge qi, is defined as:

Ei = k
qi
r2

e (6)

which conveniently simplifies Eq.5 to F = q1E2.

Superposition principle applies to the electromagnetic field. The overall electric field and force acting
on a particle, induced by others, can be calculated by summing over all the contributions due to
individual source particles. Consider a collection of M particles each with charge qi and distribute in
a 3D space. The electric field at arbitrary point (other than the point itself) can be expressed as:

E(r) =
1

4πε0

M∑
i=1

qi
r2i

ei (7)

where ri is the distance between a source point and the point of consideration. ei is a unit vector
indicating the direction of the electric field.

The electric field generated by a distribution of charges, as given by the charge density ρ(r), can be
obtained by replacing the sum by integral:

E(r) =
1

4πε0

∫∫∫
ρ(ri)
r2i

eid3r (8)

which accounts for all contributions from the small charges ρ(ri)d3r contained in the infinitesimally
small volume element d3r ≈ dxdydz.

All these equations are only valid for three dimensions; ideally, we would like to generalize Coulomb’s
law for d-dimension. In the following, we use Poisson’s equation (and Laplace’s equation) for deriving
the electric force in d dimensions.

C.2 THE POISSON AND LAPLACE EQUATIONS FOR ELECTROSTATICS

We start with the Gauss’s law for electricity in differential form:

∇ · D = ρ (9)
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where ∇· is the divergence operator 7. D is the electric displacement field, ρ is the free-charge density
(charges from outside). Gauss’s law is one of Maxwell’s equations; it relates the distribution of
electric charge to the resulting electric field.

Assuming linear, isotropic and homogeneous medium, the following constitutive equation holds:

D = εE (10)

where E is the electric field. ε is the absolute permittivity 8 of the medium. Often, the relative
permittivity, which is the ratio of the absolute permittivity ε and the vacuum permittivity ε0, i.e.
εr = ε/ε0, is used. The vacuum permittivity 9 is the absolute dielectric permittivity of classical
vacuum; it is referred to as the permittivity of free space or the electric constant whose value
ε0 ≈ 8.8541878128× 10−12F/m (farads per meter).

The electrostatic force F on a charge q′, induced by the electric field E, is the product:

F = q′E (11)

Substituting Eq.10 into Gauss’s law in Eq.9, and assume constant permittivity ε of the medium, we
have:

∇ · E =
ρ

ε
(12)

In the presence of constant magnetic field or no magnetic field (i.e. if the field is irrotational), we
have:

∇× E = 0 (13)

where ∇× is the curl operator. As the curl of any gradient is zero, we can write the electric field E as
the gradient of a scalar function φ (the electric potential):

E = −∇φ (14)

where ∇ here denotes gradient, and φ is a real or complex-valued function on a manifold. Eq.14
states that, the gradient of the electric potential gives the electric field. The negative sign reflects that
the φ is the electric potential energy per unit charge.

Substituting Eq.14 into Eq.12 gives:

∇ · E = −∇2φ =
ρ

ε
(15)

where ∇ · ∇ = ∇2 = ∆ is the Laplace operator 10. Eq.15 relates the divergence of the electric field
∇ · E to the charge density ρ through the negative Laplacian of the potential φ, which further leads to
the Poisson’s equation for electrostatics:

∆φ = ∇2φ = −ρ

ε
(16)

Solving the Poisson’s equation Eq.16 gives the electric potential φ, given the mass density distribution
of charges ρ(x); however, in order to solve the Poisson’s equation, we need to know the charge density
distribution ρ. Different configurations of ρ gives different solutions. For example, if the charge

7In three-dimensional Cartesian coordinates, for example, the divergence of a continuously differentiable
vector field D = Dxi +Dyj +Dzk is defined as the scalar-valued function: divD = ∇ · D = ( ∂

∂x
, ∂
∂y

, ∂
∂z

) ·
(Dx, Dy, Dz) =

∂Dx
∂x

+
∂Dy

∂y
+ ∂Dz

∂z
. The divergence operator in cylindrical and spherical coordinates can be

similarly derived.
8In electromagnetism, the absolute permittivity ε is a measure of the electric polarizability of a dielectric

material. A material with high permittivity polarizes more in response to an applied electric field than a material
with low permittivity, thereby storing more energy in the material.

9It measures how dense of an electric field is ”permitted” to form in response to electric charges, and relates
the units for electric charge to mechanical quantities such as force given by Coulomb’s law.

10Laplace operator is a second-order differential operator in the n-dimensional Euclidean space, defined as the
divergence (∇·) of the gradient (∇φ), where φ is a twice-differentiable function. Under Cartesian coordinates,
the Laplacian of φ is thus the sum of all unmixed second partial derivatives: ∆φ(x) =

∑d
i=1

∂2φ(x)
∂x2

i
. Similar

expressions can be derived in other coordinates (e.g. cylindrical and spherical coordinates).

15



Published as a conference paper in Frontiers in Probabilistic Inference @ ICLR 2025

density ρ = 0 (i.e. in a region where there are no charges or currents), which gives the Laplace’s
equation (the homogeneous Poisson’s equation):

∇2φ = 0 (17)

a function satisfying the Laplace equation is called harmonic Cristofaro-Gardiner (2017).

A side note on Poisson’s and Laplace equations. Poisson’s equation, in its general form as in
Eq.19, can be used to describe the diffusion process of a chemical solute or heat transfer, i.e.
∂φ(x, t)/∂t = κ∇2φ = κf(x,t), where κ is termed the diffusivity. The RHS f(x, t) represents
external sources (for example, in Eq.16 we have f(x, t) = −ρ/ε) which inject inputs into the system
(e.g. solute generated by a chemical reaction, or heat provided by external sources). The Laplace
equation, as a special case of the Poisson’s equation, can be derived as a steady-state condition for
the diffusion process (e.g. concentration of chemical solute, heat transfer). The Poisson’s equation
doesn’t have a unique solution, unless extra boundary condition is imposed. For example, if the
electrostatic potential φ(x) is specified on the boundary of a region, then its solution is uniquely
determined. Some application scenarios of the Poisson’s equation, solutions, as well as uniqueness
proofs, can be found in e.g. Hunt (2002).

We formerly define φ : Rd → R, and its Laplacian, ∆φ : Rd → R, i.e.

∆φ(x) :=
d∑

i=1

∂2
xixi

φ(x) (18)

where xi is the ith coordinate of x ∈ Rd. In crafting Eq.18, we have assumed that the Laplacian
extends the same form into d-dimension.

C.3 THE 3D POISSON’S EQUATION

Without losing generality 11, we start with solving a 3D Poisson’s equation generalised from Eq.16:

∆φ(x) = ∇2φ(x) = f(x) (19)

where φ : R3 → R and f : R3 → R (the support can be restricted to subset of R3 though). The
RHS f(x) is called the source and it is often zero either everywhere or everywhere but some specific
region or points. For example, f(x) = c0δ

3(x), where c0 is a constant, represents a point source.

We shall apply Fourier transform to Eq.19; before that, we re-cap the 3D Fourier transform:

φ̂(k) =
∫

φ(x)e−ikxd3x (20)

where d3x = dx1dx2dx3, k = kx1
i + kx2

j + kx3
k is a three dimensional wavenumber. The inverse

Fourier transform is

φ(x) =
1

(2π)3

∫
φ̂(k)eikxd3k (21)

where d3k = dkx1dkx2dkx3 .

Assuming that φ(x) and its gradients vanish for large x, we apply Fourier transform to the generalised
3D Poisson’s equation (Eq.19):

F [∇2φ(x)] = −(k2x1
+ k2x2

+ k2x3
)φ̂(k) = F [f(x)] = f̂(k) (22)

by defining k2 = k2x1
+ k2x2

+ k2x3
, we have:

k2φ̂(k) = f̂(k) (23)

which gives

φ̂(k) =
1

k2
f̂(k) (24)

11This subsection mainly follows Herman (2020).
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The solution to the generalised 3D Poisson’s equation (Eq.19) can be obtained by performing inverse
Fourier transform:

φ(x) =
1

(2π)3

∫
f̂(k)

eikx

k2
d3k (25)

As a side note, one can also apply inverse Fourier transform to Eq.22, as a pathway for evaluating the
Laplacian ∇2φ(x), which falls into the method of spectral derivative.

As an example demonstrating the use of Eq.25 to calculate the potential φ(x), we set f(x) = − q
εδ(x),

which represents a single point charge q in free space (i.e. a vacuum). The Fourier transform of f(x)
is:

f̂(k) =
∫
R3

[−q

ε
δ(x)]e−ikxd3x = −q

ε
(26)

as the Fourier transform of the delta function δ(x) is 1 over all space.

Substituting f̂(k) into Eq.25, we obtain:

φ(x) = − q

(2π)3ε

∫
1

k2
eikxd3k (27)

We shall focus on evaluating this term
∫

1
k2 e

ikxd3k. It is more convenient to switch to the spherical
coordinates with dk = k2sinθdkdθdϕ. As such, we have:∫

eikx

k2
d3k =

∫ +∞

0

∫ π

0

∫ 2π

0

eikrcosθ

k2
k2sinθdkdθdϕ (28)

where r = |x| is the radius. We re-arrange the integration sequence in Eq.28 as:∫
eikx

k2
d3k =

∫ +∞

0

∫ 2π

0

dϕ

∫ π

0

eikrcosθsinθdθdk = 2π

∫ +∞

0

2sin(kr)
kr

dk =
2π2

r
(29)

where we have made use of the integral of sinc function over a real line:
∫ +∞
−∞ sinc(x)dx = π.

Finally, substituting this result into Eq.27 gives:

φ(x) = − q

(2π)3ε

2π2

r
= − q

4πεr
(30)

which gives the electric field E(r) = −∇rφ(r) =
q

4πεr2 , and the resulting force F(r) = q′E(r) =
qq′

4πεr2 , which is consistent with the result derived later by integration (Eq.52).

C.4 SOLUTION TO THE d-DIMENSIONAL POISSON’S EQUATION

Here we look at the generalised Poisson’s equation in d-dimensional space. We can repeat the
direct and inverse Fourier transforms process as in the 3D case, which gives the solution to the
d-dimensional, generalised Poisson’s equation:

φ(x) =
1

(2π)d

∫
f̂(k)

eikx

k2
ddk (31)

where k is a d-dimensional wavenumber, k2 =
∑d

i=1 k
2
xi

, and ddk = dkx1
dkx2

...dkxd
.

We can also obtain the derivative:

∇xφ(x) =
1

(2π)d

∫
(ik)f̂(k)

eikx

k2
ddk (32)

The problem with Eq.31 (as well as Eq.32) is the intractability of the inverse Fourier integration
(which involves multiple integral in spherical coordinates), particularly when f̂(k) is complex. Here
we take another approach, i.e. using direct integration to solve the Poisson’s equation in a general
d-dimensional space with a point charge. Similar to the 3D example, a single point charge at x can be
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represented by ρ(x) = qδ(x), where q is the total charge. The Poisson’s equation for electrostatics
(Eq.16), correspondingly, can be written as:

∆φ = ∇2φ = −q

ε
δ(x) (33)

the solution to this single point charge Poisson’s equation is the potential field φ(x), and therefore
the electric field E(x) as per their relation Eq.14 (and further the force), caused by the given electric
charge qδ(x).

In Cartesian coordinates (x1, x2, ..., xd), Eq.33 becomes:

d∑
i=1

∂2

∂x2
i

φ(x) = −q

ε
δ(x) (34)

Due to the problem’s spherical symmetry in d dimensions, it is natural to switch to hyper-spherical
coordinates. The Laplacian for a radially symmetric function φ(r) in hyper-spherical coordinates
reduces to:

L[φ(r)] = 1

rd−1

d

dr
(rd−1 dφ

dr
) (35)

substituting the Laplacian L(φ(r) into the RHS of the Poisson’s equation (Eq.34) in in hyper-spherical
coordinates, we have:

1

rd−1

d

dr
(rd−1 dφ

dr
) = −q

ε
δ(r) (36)

Away from the origin (i.e. r ̸= 0), we have δ(r) = 0, which simplifies Eq.36 to:

d

dr
(rd−1 dφ

dr
) = 0 (37)

integrating it gives:

rd−1 dφ

dr
= C (38)

where C is an integration constant. Solving for φ, we get:

φ(r) =
C

(2− d)rd−2
+D (39)

again D is another integration constant. We set D = 0, assuming the potential vanishes at infinity. To
determine the constant C, we can integrate Eq.33. First, we integrate the LHS and use the divergence
theorem 12: ∫

V

∇ · (∇φ)dV =

∫
S

∇φr̂ · dS (40)

which converts the volume integral into a surface integral, with S being the closed surface surrounding
the volume V and r̂ a unit vector pointing outward normal to S. The quantity on the RHS, i.e.∫
S
∇φr̂ · dS =

∫
S

Er̂dS is the electric flux over the surface S (the negative sign from Eq.14 has
been indicated by the outward pointing unit vector). Due to the spherical symmetry, the integral in
Eq.40 is the product of the surface area of the d− 1 dimensional hypersphere 13 and ∇φ, i.e.∫

S

∇φr̂ · dS = Sd−1r
d−1 ×∇φ (41)

12The divergence theorem states that the surface integral of a vector field over a closed surface (’the flux
through the surface) equals the volume integral of the divergence over the region enclosed by the surface, i.e.∫
V
∇ · FdV =

∫
S
F · n̂dS, where S is the closed surface surrounding the volume V , and n̂ is a unit vector

directed along the outward normal to S. It converts between the surface integral and the volume integral, and
generalises to arbitrary dimension. Physically, it means the sum of all sources in a region gives the net flux out
of the region.

13A sphere in a d-dimensional space, enclosing a d-dimensional ball (called d-ball, the d-1-sphere is the
boundary of the d-ball), has dimension d-1 because it has d-1 degrees of freedom due to the fixed radius. For
example, the sphere defined by x2

1 + x2
2 + x2

3 + x2
4+ = r2 in 4-dimensional space is called a 3-sphere (S3).
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in which Sd−1 is the the surface area of the d− 1 dimensional unit hypersphere, and the surface area
of the d− 1-sphere with radius r is scaled by rd−1. Sd−1 can be obtained 14 by using the trick of a
d-dimensional Gaussian integral, which relates this surface area to a known quantity. We know the
following: ∫ +∞

−∞
e−x2ddx = [

∫ +∞

−∞
e−x2

dx]d = πd/2 (42)

where we have made use of the known Euler–Poisson integral
∫ +∞
−∞ e−x2

dx =
√
π. This integral can

also be related to the surface area of the d− 1 dimensional unit sphere. Writing the LHS of Eq.42 in
spherical coordinates: ∫ +∞

−∞
e−x2ddx = Sd−1

∫ +∞

0

rd−1e−r2dr (43)

the integral
∫ +∞
0

rd−1e−r2dr can be evaluated 15 using change of variable, i.e. substituting
u = r2 and du = 2rdr, dr = du/2r = du/(2

√
u) into it, which yields

∫ +∞
0

rd−1e−r2dr =∫ +∞
0

(
√
u)d−1e−u 1

2
√
u
du = 1

2

∫ +∞
0

u
d
2−1e−udu, which is in the form of the Gamma function Γ(d2 ).

Therefore, we have Eq.43 reduces to:∫ +∞

−∞
e−x2ddx =

1

2
Sd−1Γ(

d

2
) (44)

Equating Eq.42 and Eq.44, we arrive at:

1

2
Sd−1Γ(

d

2
) = πd/2 (45)

which gives:

Sd−1 =
2πd/2

Γ(d2 )
(46)

Now we go back to Eq.41. We have now
∫
S
∇φr̂ · dS = Sd−1r

d−1 × ∇φ = 2πd/2

Γ( d
2 )

× φ′ =

2πd/2

Γ( d
2 )

rd−1×Cr1−d = 2πd/2

Γ( d
2 )

×C as per Eq.38 (or Eq.39). The integration of the RHS of Eq.33 is just

−q/ε due to the delta function. Therefore, we have the integration constant C = −qΓ(d2 )/(2π
d/2ε).

Finally, the solution to the single point charge Poisson’s equation (i.e. Eq.39) becomes:

φ(r) =
−qΓ(d2 )/(2π

d/2ε)

(2− d)rd−2
=

qΓ(d2 )

2(d− 2)πd/2εrd−2
(47)

After obtaining the potential φ, we can get the electric field E as per Eq.14

Eq = −dφ

dr
=

qΓ(d2 )

2πd/2εrd−1
(48)

and the electric force 16 exerted on another charge q′, by the single point charge q at a distance r from
the point charge q:

Fq→q′ = q′Eq =
qq′Γ(d2 )

2πd/2εrd−1
(49)

14Alternatively, one can derive the surface area by noting that, the volume of a d-ball with radius r is:
Vd(r) = rdVd(1) = rd πd/2

Γ(d/2+1)
(one can simply verify this in 2D and 3D. NB: if r is fixed, its volume

converges to zero as dimension increases, i.e. the volume of a high-dimensional unit ball is concentrated near its
surface due to curse of dimensionality), then the surface area of the d-ball can be derived as the derivative of
the volume w.r.t. the radius r: Sd−1(r) =

d
dr
Vd(r) = drd−1 πd/2

Γ(d/2+1)
. Therefore, the surface area of the d-ball

with unit radius is: Sd−1 = d πd/2

Γ(d/2+1)
= 2πd/2

Γ(d/2)
, which is the same as Eq.46.

15Note that, as we are evaluating a definite integral, when d− 1 is an odd integer, this integral is zero. We can
relax this by replacing it with indefinite integral, which gives the same result.

16If we are only concerning about the electric force, there is no need to calculate the potential - all we need is
the potential derivative ∇xφ(x).
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As we are concerning free space, ε = ε0 which is the vacuum permittivity.

Note that, for notational simplicity, we have dropped all direction notations in our electric potential
(Eq.47), field (Eq.48), force (Eq.49) expressions and their derivations, and focus on their magnitudes.
The mindful can add a unit vector eq,q′ , which points away from a positive charge and points to
a negative charge, to these formula to indicate the directions of these quantities. In a Cartesian
coordinate, for example, if q is at position xq , and q′ at position xq′ , the directional unit vector is then
eq→q′ := (xq′ − xq)/∥xq′ − xq)∥d = (xq′ − xq))/rq,q′ where ri,j = ∥xq′ − xq)∥d, and ∥·∥d is the
distance measure in d-dimensional space. By defining the direction of eq→q′ , we have by default
assumed repulsive to be positive. Substituting the expression of r into e.g. the force formula gives:

Fq→q′(xi, xj) =
qq′Γ(d2 )

2πd/2εrd−1
eq→q′ =

qq′Γ(d2 )

2πd/2εrd−1

xq′ − xq

r

=
qq′Γ(d2 )

2πd/2ε

xq′ − xq
rd

=
qq′Γ(d2 )

2πd/2ε

xq′ − xq
∥xq′ − xq∥d/22

(49b)

where ∥·∥2 denotes the L2 norm. A 2D diagram for illustrating the repulsive force and the distance is
presented Fig.6.

Figure 6: Diagram of repulsive force and distance in a 2D Cartesion coordinate.

Eq.49 extends the Coulomb’s law for any dimensions. For example, in 1D we have:

Fq,q′ =
qq′

√
π

2π1/2ε0rd−1
=

qq′

2ε0
(50)

and for 2D:

Fq,q′ = q′Eq =
qq′

2πε0r
(51)

and for 3D:

Fq,q′ = q′Eq =
qq′

√
π/2

2π3/2ε0r2
=

qq′

4πε0r2
(52)

which is the same as Eq.5 and Eq.30 given:

k =
1

4πε0
(53)

D REPULSION AND ATTRACTION

This section provides more details about the derivation of repulsive and attracting forces.

Repulsion To mathematically formalise this idea, we first define the set of charges (interchange-
ably used with particles) {qi|i = 1, 2, ...,Mneg}, where Mneg it the cardinality of this set, in
d-dimensional space, and each is associated with position xi. Consider a single point charge qi, let
Eqi be the electric field induced by qi. In electrostatics, a electric field E is proportional to the electric
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displacement field and equals the negative gradient of the electric potential φ; the divergence of E,
which implies the infinitesimal electric flux, is linked to the distribution of a source via the Poisson’s
equation for electrostatics (see Eq.10, Eq.14, Eq.15 in Appendix.C). We assume no external source
or sink in this charge particle system, which simplifies the Poisson’s equation to Laplace’s equation;
solving Laplace’s equation gives the potential field φ, and therefore the electric field E and force F
induced by a point charge (see Appendix.C for details). In d-dimensional space, the electric field
Eqi(r), at a distance of r from a inducing point charge qi , is derived as:

Ei(r) =
qiΓ(

d
2 )

2πd/2ε0rd−1
e (cc.Eq48)

in which r is the distance from the point charge qi, ε0 is the the vacuum permittivity constant, Γ(·)
the Gamma function. e is an unit vector indicating the direction of the field.

Imagine we have another negative, point charge qj locating at a distance of ri,j from qi. To distinguish,
we call qi the source point and qj the field point. The electric force exerted by qi on qj , as per
Coulomb’s law, is:

Frep
i→j(ri,j) = qjEi(ri,j) =

qiqjΓ(
d
2 )

2πd/2ε0r
d−1
i,j

ei→j (cc.Eq49)

where the unit vector ei→j = (xj − xi)/ri,j gives the out-pointing direction. The arrow sign above
implies ’exerting effect on’, read from the left object to the right object. According to Newton’s third
law, if we treat qj as a source point and qi a field point, qi experiences the same amount of force with
reverse direction ej→i = −ei→j .

Now we look at the particle set {qi|i = 1, 2, ...,Mneg}, and consider the combined repulsive force
that particle j receives from all other particles, which can be calculated as:

Frep
j (xj) =

Mneg∑
i=1,i̸=j

qiqjΓ(
d
2 )

2πd/2ε0r
d−1
i,j

ei→j =

Mneg∑
i=1,i̸=j

qiqjΓ(
d
2 )

2πd/2ε0

xj − xi

∥xj − xi∥d/22

(Eq49b)

where ∥·∥2 denotes the L2-norm of a vector. When charges (particles) achieve steady-state with
uniform distribution, for each particle j ∈ {1, 2, ...,Mneg}, the combined repulsive force Frep

j (xj)
becomes zero, as all induced electric fields acting on the particle cancel.

One can conveniently re-write the first half of Eq.Eq49b in matrix form, by denoting the row
vector qj = [qj , qj , · · · , qj ]T , column vector q1:Mneg = [q1, q2, · · · , qMneg ], diagonal matrix Λ =

diag[1/rd−1
1,j , 1/rd−1

2,j , ..., 1/rd−1
i,j ], as follows:

Frep
j (xj) =

Γ(d2 )

2πd/2ε0
qjΛq1:Mneg (Eq49c)

in which Λ can be viewed as some kind of isotropic covariance matrix produced by a kernel (similar
to a RBF kernel but not exactly), with each diagonal element measuring a pairwise correlation or
inverse-distance between the two point charges qj and qi.

Attraction We have devised the repulsive forces between particles of the same sign (specifically, all
negative in our settings), which, under arbitrary initial positions, should generate a uniform distribution
of the particles over the free space at equilibrium. To produce an uneven target distribution p(x), we
need to pull particles towards (neighbourhood) high density region using attracting forces. This can
be achieved by introducing a continuous field of positive charges whose magnitudes distribute as,
or proportional to, the target density. The induced new electric fields shall attract negative charges
towards high probability (indicated by large positive charge magnitudes) regions. Representing a
continuous density over the space requires an infinite number of positive charges to be allocated;
realistically, we can mesh the space into equal-distance grids, and place large Mpos positive charges
fixed at these grid points. As one can imagine, the number of positive charges, therefore the mesh
granularity, shall impact the smoothness of the inferred density.

As such, the overall attracting force, acting on a negative charge qj , is designed as Schmaltz et al.
(2010):

Fattr
j (xj) = −

Mpos∑
i′=1,i′ ̸=j

qp(xi′)qjΓ(
d
2 )

2πd/2ε0r
d−1
i′,j

ei′→j = −
Mpos∑

i′=1,i′ ̸=j

qp(xi′)qjΓ(
d
2 )

2πd/2ε0

xj − xi′

∥xj − xi′∥d/22

(Eq49d)
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where we have set the positive charge qj = qp(xj) with q being a constant scaling factor specifying
the relative strength of attracting forces. A negative sign is put ahead as it’s attracting force.

If we ignore the contributing forces from those located far away, in regions with constant probability
(and therefore uniform positive charge magnitudes), the attracting forces cancel and repulsion still
yields the energetically ideal positions which maximize pairwise distances. In regions with uneven
probability distribution, attracting force dominates and binds particles onto locations with higher
probability. If mesh grid is set to be infinitely small, Mpos grows to infinitely large and the distribution
of positive charge magnitude becomes continuous, Eq.Eq49d then becomes an integral.

The combined force Summation of the repulsive and attracting forces gives the overall force
Fj = Frep

j + Fattr
j , acting on a single free-moving negative charge j:

Ft
j =

[ Mneg∑
i=1,i̸=j

qiqjΓ(
d
2 )

2πd/2ε0

xj − xi
∥xj − xi∥d/22

−
Mpos∑

i′=1,i′ ̸=j

qp(xi′)qjΓ(d2 )
2πd/2ε0

xj − xi′

∥xj − xi′∥d/22

]
(54)

E A NOTE ON COMPLEXITY

Most computational efforts lie in computing the interacting force between particles. At each iteration,
in order to calculate the two forces for a single negative particle j, we have to calculate all the pairwise
distances 1/rd−1

i,j and 1/rd−1
i′,j where i ∈ {1, 2, ...,Mneg} and i′ ∈ {1, 2, ...,Mpos}, as shown in

Figure.7. That is, we have to evaluate the following distance matrix in each iteration:

R(Mneg+Mpos)×(Mneg+Mpos) =

0 r1,2 · · · r1,Mneg · · · r1,Mpos

r2,1 0 · · · r2,Mneg · · · r2,Mpos

...
...

. . .
...

. . .
...

rMneg,1 rMneg,2 · · · 0 · · · rMneg,Mpos

...
...

. . .
...

. . .
...

rMpos,1 rMpos,2 · · · rMpos,Mneg · · · 0





q1

q2

· · ·

qMneg

· · ·

qMpos

q1 q2 · · · qMneg · · · qMpos

(55)

which can be pre-calculated or calculated when needed. Calculating the whole matrix R takes order
O((Mneg +Mpos)2). The computational efforts will be huge if either Mneg or Mpos is large. Of
course, half of the computation can be saved by making use of the symmetry ri,j = rj,i.

Figure 7: Pairwise distances.
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Let’s take a closer look at the repulsive force in Eq.Eq49c by expanding it in matrix form:

Frep
j (xj) =

Γ(d2 )

2πd/2ε0
qjΛq1:Mneg

=
Γ(d2 )

2πd/2ε0
(qj qj · · · qj)


1/rd−1

1,j 0 · · · 0

0 1/rd−1
2,j · · · 0

...
...

. . .
...

0 0 · · · 1/rd−1
i,j




q1
q2
...

qMneg


(cc.Eq49c)

similar matrix expansion can be written with the attracting force in Eq.Eq49d for particle j.

When calculating Frep
j (xj) and Fattr

j (xj) for the particle j, we need to retrieve the relevant pairwise
distance vector, i.e. the row rj,· or column r·,j , from the distance matrix R in Eq.55. However,
if necessary (i.e. if either Mneg or Mpos is large), we can take a neighbourhood search to iden-
tify a neighbourhood set and calculate only the pairwise distances between particles within the
neighbourhood set. This shrinks the distance vector for particle j.

F TOY EXAMPLES: MORE DETAILS

Gaussian densities The two target Gaussian densities are as follows:
Unimodal:

p(x) = N (µ,Σ)

with µ = (0.5, 0.5) and Σ = 0.05I.
Bimodal:

p(x) = 0.7N (µ1,Σ1) + 0.3N (µ2,Σ2)

with µ1 = (0, 0), Σ1 =

[
1 −0.5

−0.5 1

]
, µ2 = (4, 4), Σ2 =

[
1 0.5
0.5 1

]
.

In inferring the unimodal Gaussian, we draw negative charges from the uniform prior: p0(x) =
U(0, 0.5)×U(0, 0.5); In inferring the bimodal Gaussian, we draw negative charges from the uniform
prior: p0(x) = U(−3, 7)× U(−3, 7).

Other three densities The other 4 un-normalised target densities used are:
Moon-shared Haario et al. (1999); Wang et al. (2021):

ρ(x) ∝ exp

{
−x2

1

2
− 1

2

(
10x2 + 3x2

1 − 3
)2}

Double-banana Rezende & Mohamed (2016b); Liu et al. (2019a):

ρ(x) ∝ exp
{
−2

(
(x2

1 + x2
2 − 3)2

)
+ log

(
e−2(x1−2)2 + e−2(x2+2)2

)}
Wave density Rezende & Mohamed (2016b); Chen et al. (2018); Wang et al. (2021):

ρ(x) ∝ exp

−1

2

[
x2 − sin

(
πx1

2

)
0.4

]2


Implementation The mesh grid for all 3 other densities is within [−3, 3]× [−3, 3]; for the bi-modal
Gaussian it is [−3, 7]× [−3, 7]; for uni-modal Gaussian it is [0, 1]× [0, 1]. The 400 negative charges
are initialised with 2D standard Gaussian for the moon-shaped case, and uniformly for all other cases
(uniform within the whole mesh grid, except for the uni-modal Gaussian case where the initialisation
area is [0, 0.5]× [0, 0.5]).

Euler updating rule (Eq.1) is used and Mpos = 50×50,Mneg = 400, σnoise = 0 applied. The overall
forces across negative charges are normalised in each iteration before calculating the displacement.
The charge magnitudes qneg = q = 1.0. Permittivity of free space ε0 = 8.854e − 12. Euler
proportionality constant τ = 0.1. Particles are evolved for T = 100 iterations. For all three densities,
at equilibrium, we discard the particles outside the grid area.
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G NEAL’S FUNNEL: IMPLEMENTATION DETAILS

The MMD2 metric is defined as Arbel et al. (2019); Wang et al. (2021):

MMD2 =
1

N2

N∑
i,j=1

k(xi, xj) +
1

M2

M∑
i,j=1

k(yi, yj)−
2

NM

N∑
i=1

M∑
j=1

k(xi, yj) (56)

with the polynomial kernel k(x, y) =
(

x⊤y
3 + 1

)3

.

HMC The PyMC Python API Oriol et al. (2023) is used to implement the HMC method. In total, 1
chain with 4000 samples is drawn, with 1000 burn-up samples discarded. These 4000 samples are
then thinned evenly to produce 400 samples.

MH Initialised from near zero, we use a standard normal distribution as the proposal distribution,
the simplified acceptance probability is defined as the ratio of the new sample to current position.

LMC We initialise 400 samples uniformly within [−7, 3]× [−7, 3], and evolve them through 10000
iterations; in each iteration, each particle is evolved through the Langevin dynamics Wang et al.
(2019):

xt+1 = xt + ϵt∇ log p(xt) +
√
2ϵtzt

ϵt = a(b+ t)−c

zt ∼ N (0, I)

with a = 0.01, b = 1, c = 0.55 and 10000 iterations for each sample. t is the iteration number.

We also records the step time, mean negative log-likelihood (NLL), and squared maximum mean
discrepancy squared (MMD2) in each iteration.

SVGD SVGD inference updates particle positions as per Liu & Wang (2016):

xl+1
i = xli + ϵϕ∗

q,p(x
l
i)

and

ϕ∗(xli) =
1

M

M∑
j=1

[k(xli, xlj)∇x log p(xlj) +∇xjk(x
l
i, xlj)]

We referred to the implementation by Wang et al. (2021), in which a RBF kernel exp(∥x− x′∥/2h2)
is used with the hyper-parameter length-scale h=median pairwise distance. The step size used is
0.01. The same 400 uniformly initialised samples (as used in LMC) are evolved, with total number of
iterations 100,000. We also records the step time, mean NLL, and MMD2 in each iteration.

EVI We refer to the implementation by Wang et al. (2021), in which the RBF kernel with length-
scale h = 0.1 is used. The step size used is 1.0× 10−7. The same 400 uniformly initialised samples
(as used in LMC) are evolved, with total number of iterations 2,500,000. We also records the step
time, mean NLL, and MMD2 in each iteration.

EParVI The 400 negative charges are initialised uniformly, the same as that of LMC, SVGD and
EVI. Euler updating rule (Eq.1) is used and Mpos = 10, 000,Mneg = 400, σnoise = 0 applied.
The overall forces across negative charges are normalised in each iteration before calculating the
displacement. The charge magnitudes qneg = q = 1.0. Permittivity of free space ε0 = 8.854e− 12.
Euler proportionality constant τ = 0.1. Particles are evolved for T = 100 iterations. The MMD2

and NLL metrics are evaluated based on particles within the mesh grid.
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H BAYESIAN LOGISTIC REGRESSION: MORE DETAILS

Posterior The likelihood can be written as:

p(y|x,ω) =

N∏
i=1

[
1

1 + exp(−ωT xi)

]yi
[
1− 1

1 + exp(−ωT xi)

]1−yi

combining with the prior:

p(ω) = N (ω;0, αI) =
1

(2πα)d/2
exp

(
− 1

2α
ωTω

)
where d = 4 is the number of features (not considering intercept), we obtain the coefficients ω
posterior:

p(ω|y, x) ∝
N∏
i=1

[
1

1 + exp(−ωT xi)

]yi
[
1− 1

1 + exp(−ωT xi)

]1−yi

· exp
(
− 1

2α
ωTω

)
Taking log we have:

log p(ω|y, x) =
N∑
i=1

[
yi log σ(ω

T xi) + (1− yi) log(1− σ(ωT xi))
]
− 1

2α
ωTω + constant

where σ(x) = 1
1+exp(−x) is the logistic function. One can then conveniently take gradient w.r.t ω to

use gradient-based sampling algorithms such as HMC.

Gradient of posterior The gradient of log σ(ωT xi) w.r.t. ω is:

∇ω log σ(ωT xi) = (1− σ(ωT xi))xi

The gradient of log(1− σ(ωT xi)) w.r.t. ω is:

∇ω log(1− σ(ωT xi)) = −σ(ωT xi)xi

Combining these, the gradient of the likelihood term is:
N∑
i=1

[
yi(1− σ(ωT xi))xi − (1− yi)σ(ω

T xi)xi

]
which simplifies to:

N∑
i=1

[
(yi − σ(ωT xi))xi

]
On the other hand, the gradient of the prior term w.r.t. ω is:

− 1

α
ω

Combining the gradients of the likelihood and the prior, we get:

∇ω log p(ω|y,X) =

N∑
i=1

[
(yi − σ(ωT xi))xi

]
− 1

α
ω

In matrix form, this can be written as:

∇ω log p(ω|y,X) = XT (y − σ(Xω))− 1

α
ω

where σ(Xω) is the vector of sigmoid values for each row of X.
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Implementation The Iris dataset contains 150 observations, each instance with 4 features. The
whole dataset is 70%:30% split into training and test sets, with training contains 105 instances and
test has 45 instances. Each observation is represented by the feature-label pair (xi, yi). Features are
normalised before being used.

The SVGD, EVI and EParVI methods use the same number of particles (i.e. 400), and share the same
initialisation. Specifically:

HMC In total, 1 chain with 2000 samples is drawn. After discarding the 1000 burn-up samples, the
first 400 samples are used.

SVGD A RBF kernel exp(∥x− x′∥/2h2) is used with the hyper-parameter length-scale h=median
pairwise distance. The step size used is 0.01. Total number of iterations is 200,000.

EVI A RBF kernel with length-scale h = 0.1 is used. The step size used is 1× 10−7. Total number
of iterations is 2.5× 108.

EParVI Euler updating rule (Eq.1) is used and Mpos = 124,Mneg = 400, σnoise = 0 applied.
Note the region spans [−3, 3] × [−3, 3], and the granularity (i.e. resolution) is therefore 0.5. The
overall forces across negative charges are normalised in each iteration before calculating the dis-
placement. The charge magnitudes qneg = 1.0 and q = 1.0× 107. The relatively large value of q
is due to small chain product of the un-normalised likelihood in Eq.4; to make it on the same scale
as the repulsive force, by trial and error we need to set a large value for q. a strategy to avoid small
(absolute) values of the likelihood is to take log, as we did in inferring the LV dynamical system
parameters in Section.I. Euler proportionality constant τ = 0.1. Particles are evolved for T = 60
iterations.

Implementation tricks For complex geometries, more steps and more charges are required. Up-
dating the particle positions using different rules may lead to different results. Interestingly, in our
experiments we find that, if we update the negative positions according to Eq.1c, in the limit all
negative charges are absorbed to high probability grid points. Also, if the ∆t used in the Verlet or
damped Verlet methods is too large, then the particle system is unstable and cannot converge to a
steady-state.

One can add random noise to perturb the negative charge positions to avoid overlapping at grid
points and to avoid getting trapped in local optima. One can choose to discard particles falling out of
the grids (e.g. those get trapped in low-density regions) at the end or sequentially. This also saves
computational efforts. Without an MH step, charges can take large, risky steps and jump outside
the region. Hanson (2005) also addressed that, appropriate conditions need to be specified at the
boundary of the region. In our experiments, we designed an annealing scheme for reducing qpos over
iterations to promote within-mode diversity.

It is generally suggested to pre-evaluate the relative magnitudes of repulsive and attracting forces and
scale qpos properly to ensure they are on the same scale; otherwise, e.g. when repulsive forces is of
order larger than attracting force, the density center will never attract the particles. Effect of the ratio
q/qi is important: a small ratio can make the repulsive force dominate and lead to explosion; a large
value can accelerate convergence, but also be too restrictive - the final positions of negative charges
overlap and diversity reduces.

I INFERENCE OF THE LOTKA-VOLTERRA DYNAMICAL SYSTEM

Here we look at the Lotka-Volterra (LV) ecological system whose dynamics can be represented by
the following two ODEs:

dx

dt
= ax− bxy

dy

dt
= cxy − dy

(57)
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Figure 8: Temporal evolution of the LV system.

where x and y are the numbers of hare and lynx pelts. We are interested in inferring the for inferring
the 4-dimensional parameter θ = (a, b, c, d) based on 21 observed real-world data as plotted in Fig.8.
This can be formulated as a Bayesian inference problem with the posterior:

p(θ|X ′, Y ′) = p(a, b, c, d|X ′, Y ′) =
p(X ′, Y ′|a, b, c, d)p(a)p(b)p(c)p(d)

Z
(58)

where Z is the normalising constant. The observed trajectories (X ′, Y ′) = {(x′
i, y

′
i)}21i=1, and

independence of parameters is assumed. The priors are specified as:

a, d ∼ U(0.001, 1.0), b, c ∼ U(0.001, 0.05) (59)

and likelihood:

log x′(ti) ∼ N (log x(ti), 0.25
2), log y′(ti) ∼ N (log y(ti), 0.25

2) (60)

where we have for simplicity assumed known 17, homogeneous state noise level σ = 0.25, and known
initial conditions x0 = 33.956, y0 = 5.933. Assuming independence between the states writes the
likelihood as:

p(X ′, Y ′|a, b, c, d) = p(X ′|a, b, c, d)p(Y ′|a, b, c, d) =
N∏
i=1

p(x′
i|a, b, c, d)

N∏
i=1

p(y′i|a, b, c, d)

=

N∏
i=1

1√
2πσ

1

x′
i

exp[− (log x′
i − log xi)

2

2σ2
]

1√
2πσ

1

y′i
exp[− (log y′i − log yi)

2

2σ2
] (61)

where x(ti) and y(ti) are the solutions to Eq.57, x′(ti) and y′(ti) are the observed data in Fig.8.

Substituting the priors (Eq.59) and likelihood (Eq.61) into the posterior (Eq.58), we obtain the
probabilistic model p(θ|X ′, Y ′), which is the target of our inference practice. Normally, logarithm of
the posterior is preferred. The logarithm of the posterior (Eq.58), with priors written in Eq.59 and
likelihood in Eq.61, is:

log p(θ|X ′, Y ′) = log p(a, b, c, d|X ′, Y ′) = log p(a)+log p(b)+log p(c)+log p(d)+log p(X ′, Y ′|a, b, c, d) =∑
i=a,b,c,d

log(
1

maxi −mini
)−2N log(

√
2πσ)−

N∑
i=1

(log x′
i+log y′i)−

1

2σ2

N∑
i=1

[(log x′
i−log xi)

2+(log y′i−log yi)
2]

(62)

17These known values are referenced from Carpenter (2022)
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where mina = minb = minc = mind = 0.001,maxa = maxb = maxc = maxd = 1 as
specified by Eq.59, and noise level σ = 0.25. Note that, though not explicitly shown, the ODE
solutions (xi, yi) are functions of θ = (a, b, c, d).

As the score ∇θ log p(θ|X ′, Y ′) is used in gradient-based samplers such as LMC and HMC, we
derive it as follows 18:

∂ log p(a, b, c, d|X ′, Y ′)

∂a
=

1

σ2
[(
logX ′ − logX

X
)T

∂X

∂a
+ (

log Y ′ − log Y

Y
)T

∂Y

∂a
]

∂ log p(a, b, c, d|X ′, Y ′)

∂b
=

1

σ2
[(
logX ′ − logX

X
)T

∂X

∂b
+ (

log Y ′ − log Y

Y
)T

∂Y

∂b
]

∂ log p(a, b, c, d|X ′, Y ′)

∂c
=

1

σ2
[(
logX ′ − logX

X
)T

∂X

∂c
+ (

log Y ′ − log Y

Y
)T

∂Y

∂c
]

∂ log p(a, b, c, d|X ′, Y ′)

∂d
=

1

σ2
[(
logX ′ − logX

X
)T

∂X

∂d
+ (

log Y ′ − log Y

Y
)T

∂Y

∂d
]

(63)

where the posterior with uniform priors in Eq.62 is used. The parameter sensitivities
(∂X∂a ,

∂X
∂b ,

∂X
∂c ,

∂X
∂d ) can be solved by differentiating the LV dynamics in Eq.57.

To make all log posteriors positive, we use the following offset log posterior as target for EParVI:

log p(θ|X ′, Y ′)− log p(θ0|X ′, Y ′) = log
p(θ|X ′, Y ′)

p(θ0|X ′, Y ′)

where p(θ0|X ′, Y ′) = minθ∈G log p(θ|X ′, Y ′), G is the set of all grid points (locations of positive
charges). Alternatively, p(θ0|X ′, Y ′) can be chosen to be a value smaller than the log posterior
evaluated at any point in the space of consideration.

To make the learning more numerically stable 19, we set the positive charge magnitudes 20 qj =
q log p(θj |X ′, Y ′) where q is a scaling factor which specifies the maximum magnitude, as shown in
Eq.62.

Before applying EParVI, we do a quick check of the probabilistic model. We evaluate p(θ|X ′, Y ′)
over all mesh grid points, and compare its maximum, i.e. the maximum a posterior (MAP) estimate,
with reference values. The MAP estimate is

θ̂MAP = argmaxjp(θj |X ′, Y ′) ≡ argmaxj log p(θj |X ′, Y ′) = [
a

0.539,
b

0.027,
c

0.024,
d

0.795]

which is very close to the ground truth value from literature Carpenter (2022). This confirms that,
with the current meshing granularity, the peak of the positive charge magnitude aligns with ground
truth.

By querying the log posterior formula, we obtain the log posterior values at 810000 equidistant
points (30 along each dimension). Marginalising out two dimensions, we arrive at the theoretical,
2D marginal log posteriors as presented in Fig.9. The whole approximate landscape of p(θ|X ′, Y ′)
is visualised in Fig.10. We observe that, the log posterior surface is relatively flat, which could
potentially impact the identifiability of modes.

Then we run 5 methods, i.e. MAP, HMC, LMC, SVGD and EParVI, to infer the posterior p(θ|X ′, Y ′),
using similar model settings 21, and compare their performances. For EParVI, we first simulate the LV

18More details can be found in the author’s coming book ”Some empirical observations on Stein variational
gradient descent”.

19The chain product in the posterior Eq.58 leads to small absolute values of the target, and thus requires large
positive magnitude q.

20Note that, it is crucial for the charge magnitudes qi, where i ∈ {1, 2, ...Mneg}, and qi′ , where i′ ∈
{1, 2, ...Mpos}, to remain positive. While we use qi=1.0 in all experiments; the magnitudes of positive
charges qi′ , however, can be negative in scenarios e.g. qi′ = log p(xi′). Therefore, an offset is made, i.e.
qi′ = log p(xi′)−min[log p(xi′)] to ensure positivity. Further, at grid points which results in negative values
of (x(t), y(t)), we set qi′=0.

21The same priors are used in all six methods; HMC, however, for convenience of implementation (mainly
due to the negativity of some trajectory values at impossible θ locations, which results in error when taking log),
a different likelihood is used: x′(ti) ∼ N (x(ti), σ

2) and y′(ti) ∼ N (y(ti), σ
2).
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(a) Marginalising out c and d. (b) Marginalising out a and b.

Figure 9: Marginal log posterior distributions. The left figure marginalises out parameters c and d,
while the right figure marginalises out a and b.

(a) Snapshot at c = 0.024, d = 0.8. (b) Snapshot at a = 0.55, b = 0.028.

Figure 10: Log posterior contour plots. Left: snapshot at c = 0.024, d = 0.8; right: snapshot at
a = 0.55, b = 0.028.

system at a grid of mesh points (Fig.10), obtaining (X,Y ) and substituting (X,Y ) and (X ′, Y ′) into
the log posterior to obtain the positive charge magnitudes at these mesh points. These magnitudes
are cached for later query. Then we randomly initialise θ = (a, b, c, d), i.e. the coordinates of
negative charges, and calculate the pairwise distances between each negative charge and all other
charges, further the repulsive and attracting forces (by querying the positive charge magnitudes)
acting on each negative charge. The overall force is then substituted into the updating rule to give the
displacement for each negative charge. We run the EParVI algorithm till stability using 400 negative
and 640000 positive particles, the initial and final configurations of the particles, along with their
empirical marginal distributions, are presented in Fig.11 (more details see Fig.13 in Appendix.??).
It is seen that, the inferred geometries for b, c are narrow and peaky, while those for a, d are flat
and widely distributed; final particles sit in the high probability regions of the posterior, which is
consistent with the posterior snapshots in Fig.10 - particles along the dimensions b and c are moer
concentrated than in dimensions a and d. The relatively wide spread of the posterior distributions of
a and d may be due to the fact that Ročková (2021), realizations of the LV system are more sensitive
to the interaction parameters b and c, while less sensitive to a and b. The posterior-based predictions
are presented in Fig.12, from which we observe loosely good match between the empirical posterior
mode-based predictions and real trajectories, with some lifts and shifts. The predictions made using
all final particles, which represent uncertainties, exhibit large variations.

(a) Empirical marginal distribution of a and b.(b) Empirical marginal distribution of c and d.

Figure 11: EPaVI: initial and final particle distributions, showing the empirical marginal distributions
of key variables.

A comparison of the inference results is made in Table.2. We observe that, the EParVI estimations
are close to the reference values, particularly in dimensions b and c. It, however, also occupies the
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Figure 12: EParVI posterior-based trajectory predictions. Left: predictions made using mean posterior,
right: predictions made using posterior mode. In both figures, light blue and pink lines represent the
predictions for hare and lynx, respectively, made by all final particles.

longest runtime. EParVI outperforms SVGD and LMC; the optimal choice, balancing accuracy and
efficiency, however is HMC.

Method\Quantity a b c d runtime(s)1

EParVI (mean/mode) 0.487/0.549 0.026/0.026 0.024/0.025 0.529/0.645 221400
SVGD (mean/mode) 1.017/1.029 0.076/0.073 0.045/0.032 1.025/0.978 8662
LMC (mean/mode) 0.482/0.556 0.028/0.019 0.021/0.021 0.555/0.651 24178
HMC (mean/mode) 0.566/0.570 0.028/0.027 0.023/0.023 0.763/0.759 366
MAP (EParVI mesh) 0.539 0.027 0.024 0.795 -
Reference2 0.55 0.028 0.024 0.80 -
1 These methods can differ in numbers of samples and iterations, see Appendix.??.

Table 2: Inference results of the LV system coefficients θ = [a, b, c, d] using six methods.

Implementation details and results Implementation details and supplementary results are listed
as follows:

EParVI The uniform prior space spans [0.001, 1]× [0.001, 0.05]× [0.001, 0.05]× [0.001, 1]. Each
dimension has 40,20,20,40 grid points, respectively. Total number of positive charges Mpos =
40 × 20 × 20 × 40 = 640000. Total number of negative charges Mneg = 400. Positive charge
magnitudes qj = q log p(θj |X ′, Y ′) are pre-calculated before all iterations, with maximum magnitude
q = 10−5. Noise level σnoise = 0. Euler proportionality constant τ = 0.01. Particles are evolved for
T = 82 iterations. Each iteration takes ∼ 2700 seconds to run. Overall forces across negative charges
are normalised in each iteration before Euler updates. Total runtime for 82 iterations is ∼ 221400
seconds. Particle positions marginally change after 50 iterations. The empirical, marginal distribution
for each dimension, calculated from the 400 particles, is pictured in Fig.13.

LMC We use similar LMC implementation as described in Appendix.G, with a = 1e − 8, b =
1, c = 0.55. 400 x0 are initialised uniformly (same initial samples used in EParVI), and use Langevin
dynamics to trace each sample through 10000 steps. Total runtime is 24178 seconds. The final
positions of the 400 samples are presented in Fig.14. The final shapes are somewhat consistent with
the theoretical snapshots in Fig.10, with much dispersion.

HMC The No-U-Turn sampler (NUTS) Homan & Gelman (2014), an advanced HMC implemen-
tation, is used with PyMC3 library Oriol et al. (2023). The author crafted the specific ODEOp and
solver. Two chains, each with 1900 samples, are drawn with target acceptance rate 0.8. Total runtime
is 366 seconds. The first chain is used, with 1500 burn-in samples discarded. Initial conditions used
are x0 = 33.956, y0 = 5.933. Note that, the likelihood used for HMC is x′(ti) ∼ N (x(ti), (e

0.25)2)
and y′(ti) ∼ N (y(ti), (e

0.25)2), which is different from that of EParVI specified in Eq.60.

The two chains are presented in Fig.15, with left showing the sample histogram based KDE density
and on the right sample trajectories. We observe that the two chains agree on the estimations, and
the samples, although small numbers, concentrate around the the means and modes. We extract one
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(a) Distribution of a. (b) Distribution of b.

(c) Distribution of c. (d) Distribution of d.

Figure 13: Empirical marginal distributions for a, b, c, and d.

(a) Particle distributions for a and b.(b) Particle distributions for c and d.

Figure 14: EPaVI: Initial and final particle distributions.

chain (yellow one in Fig.15) and take a closer look in Fig.16 at the sample estimates, we observe that,
given our HMC model, the results are very close to the reference values (note the small horizontal
scales). These empirically estimated values are summarised in the third row of Table.2. We then
make predictions using the empirically estimated posterior means and MAPs based on this single
chain, as shown in Fig.17. Again, we observe good match with the real world recorded data.

Figure 15: HMC samples. In the figure, α = a, β = b, δ = c, γ = d.

SVGD Total number of initial particles: M=2000, overall number of iterations: L = 100, ker-
nel: RBF (2h2=med2/ logM where med is the median distance between particles), learning rate:
ϵ=0.001/∥ϕ∗(zl

i)∥2, where i is the particle index, l = 1, 2, ..., L is the iteration number. Total runtime
time: 8662 seconds. Valid number of particles after 100 iterations: 1454.
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(a) Parameter a.

(b) Parameter b.

(c) Parameter c.

(d) Parameter d.

Figure 16: Lotka-Volterra system identification: HMC inference of θ = [a, b, c, d] using the real-
world data shown in Fig. 8. The red dashed vertical line represents the reference value from Carpenter
(2022).

Figure 17: HMC inferred posterior predictives. Left: MAP-based predictions. Right: mean-based
predictions.

EVI EVI is not used due to our intractability of negative states encountered in simulating the LV
dynamics when calculating the gradients.

J MAPPING CONCEPTS IN ELECTROSTATICS AND PROBABILITY

Quantities in electrostatics can be mapped to the concepts in probability distributions as follows:

Output Type Electrostatics Probability Used in this work

Scalar-valued φ(x) log p(x) -

Vector-valued
∇φ(x)

E = −∇φ(x)
F = q′E = −q′∇φ(x)

∇ log p(x) F ∝ p(x) or log p(x)

Scalar-valued ∆φ(x) = ∇ · ∇φ(x) tr(∇2 log p(x)) -

Table 3: Correspondence of concepts in electrostatics and probability.

For example, if we assume φ(x) = k∇ log p(x), then F = −qE = −q∇φ(x) = −qk∇ log p(x),
which is similar to the driving force term k(·, ·)∇ log p(x) in SVGD. Therefore, in order to calculate
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the force F, we only need to gain knowledge about ∇φ(x), which says, equivalently in probability,
that we only need to know ∇ log p(x), the gradient field can be conveniently estimated by techniques
such as score matching Hyvärinen (2005).

K DISCUSSIONS

EParVI is built on the principles that charges repel and attract each other, in regions of uniform
density, charges are distributed uniformly; in regions where density varies, the clustering of negative
charges follows the density distribution. The repulsive forces between negative charges ensure
particle diversity and avoid mode collapse. These principles ensure the correctness and diversity
of the inferred geometry. From an optimisation point of view, each update reduces global force
imbalance by repositioning the particles in accordance with the force field Schmaltz et al. (2010);
from an energy perspective, we are implicitly minimizing the overall electric potential which serves
as the variational objective. Energy is minimized when forces are in equilibrium (i.e. system is
electrically neutral)Teuber et al. (2011).

Computation in high-dimensions EParVI suffers from curse of dimensionality. The quality of
sampling and inference results relies on the granularity of meshing. Finer mesh grid is needed for
complex geometries (e.g. with large curvature). However, the computational complexity increases
exponentially with dimension m. Efforts can be saved by, e.g. pre-calculating the probability matrix
at grid points, as well as pairwise forces between cells, and storing them for later query. Fast Fourier
transform techniques Gwosdek et al. (2014) have also been developed. It would be beneficial to
leverage the fast inference capability of a trained neural network to approximate the force field as
well.

Local optima This can lead to ambiguous distribution of the negative charges; adding perturbations
to the particle in each iteration may help, e.g. projecting the particle onto the closest horizontal or
vertical line connecting the grid points Schmaltz et al. (2010). We propose injecting some random
noise to the move proposal, e.g. every k steps, to avoid getting stuck in local optima:

xt+1
j = xtj + τ ′∆xt

j + ϵt, every k steps (64)

where ϵtj ∼ N (0, σ2). This is equivalent to saying xt+1
j ∼ N (xtj + τ ′∆xtj , ϵtj). The proposed move

τ ′∆xt
j = τFt

j for the Euler scheme, and ∆xtj = Fj∆t2 + ∆xtj for the Verlet and damped Verlet
schemes.

Probabilistic move If, in an iteration, the particle takes a large step and jumps to a low density
region, it may get trapped in that region due to small drag force (e.g. the extra regularisation forces
outweighing the attracting force Schmaltz et al. (2010)). We thus suggest taking a probabilistic move
to avoid occasionally large move, and assess the quality of each move via an MH step to decide if
this move is to be executed:

xt+1
j =

{
xt
j + τ∆xtj , with probability paccept

xt
j , else

(65)

where

paccept = min{1,
p(xtj + τ∆xtj)

p(xt
j)

} (66)

in which the ratio doesn’t require a fully know density. Using this acceptance-rejection criteria, we
can then decide if a move proposal τ∆xtj should be accepted or not. The use of an MH step, however,
is two-side: while it prevents the particle of consideration from taking dangerous move in the current
iteration, it may break the strategy for promoting global force equilibrium. It also induces extra cost.

EParVI diagnostics First, we need to ensure positivity of the charge magnitudes qi, where i ∈
{1, 2, ...Mneg}, and qi′ , where i′ ∈ {1, 2, ...Mpos}. Negative magnitudes can result, e.g. in scenarios
where qi′ = log p(xi′) (e.g. the LV dynamical system inference problem). Therefore, adjustment
(offset) is needed. Further, there may be other constraints imposed by the problem itself, e.g. positive
trajectories in the LV dynamical system inference problem, which requires special treatment (e.g.
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qi′=0) of the positive charge magnitudes at grid points yielding negative (x(t), y(t)) values. In each
step, we monitor the number of free-moving negative charges which are sitting within the initialisation
regime; large number of negative charges falling out of this region may indicate potentially wrong
specification of the probabilistic model, or erroneous calculation of the positive charge magnitudes
(e.g. negative values appear in magnitudes), or simply the repulsive forces is way bigger than the
attracting force (i.e. too small positive charge magnitudes). Correctness of the probabilistic model
can be checked via other sampling methods such as MCMC, or by comparing the MAP estimate with
point ground truth values (if ground truth values are available). The imbalance between repulsive and
attracting forces can be checked by running the simulation for one step, monitoring both values and
increasing/decreasing the charge magnitudes accordingly.

Hyperparameters Hyper-parameters used in the SPH method include: number of positive charges
(number of mesh grid points) Mpos, number of negative charges Mneg, negative charge magnitude
(normally set to be 1.0), maximum positive charge magnitude q, total number of iterations T , position
updating parameters τ , τ ′ and ∆t, noise level σ, and others (e.g. annealing parameters).

EParVI doesn’t have many parameters to tune - most of them can be empirically specified. Number
of positive charges Mpos depends on the granularity to be achieved, it relies on dimension of the
problem m, and it has great impact on the inference accuracy. It is set to be Mpos = Mm if regular,
equidistant mesh grid is used. Mneg can impact the inference quality as well, in general it can be
much smaller than Mpos, and there is no hard requirement on it. the maximum positive charge
magnitude q can be conveniently chosen by trial and error, one can choose it to make repulsive and
attracting forces are on the same order in a trial step. T should be large enough to ensure a transient
or steady state which is close to the target (one can monitor some metrics such as iteration-wise
density or clustering metric to decide when to terminate). Small values for ∆t, τ and τ ′ are required;
adaptive schemes can be designated, i.e. in regions where the attracting force is large (i.e. high
density regimes), smaller move is expected. One can also use different values for different dimensions
(otherwise one dimension may converge fast while other dimensions not). For example, if the
parameters to be inferred are of different scales, e.g. a, d ∈ [0, 1] while b, c ∈ [0, 0.05] in the LV
system, we can use different Euler proportionality constant τ and different step sizes ∆t and damping
constant τ ′ for a, d and b, c. The noise level σ can perturb particle positions to avoid getting trapped
in local optimal configuration (Eq.64); it is normally set to be small as compared to the move. There
are other implementation tricks, as listed in Appendix.H, to facilitate the inference procedure.

Effect of mesh grid It is reported by Schmaltz et al. (2010) that, hexagonal structure is the optimal
structure in 2D for achieving equilibrium; however, this cannot be well represented on the rectangular
grid. If the rectangular grid is to be used, unpleasant artefacts such as multiple particles cluster at the
same grid position can be resulted. This can be solved by constraining the particles to concentrate
on moving towards nearest grid point, which can be realised by adding an extra, distance-inverse
force component to the force acting on each particle (Eq.1s) which regularizes large movement from
nearby grid points.

A temporal graph network perspective Dynamic movement of a group of interacting particles
can be viewed as the evolution of a connected graph network over time. One can use network analysis
techniques to identify the important contributing edges for each node at at any cross-section of time.

Insights from molecular dynamics Highly accurate and efficient first-principle based molecular
simulations provide insights as well as a wealth of training data for modelling IPS Duignan (0).
For example, accurate quantum chemistry algorithms, e.g. density functional theory (DFT), have
made it possible to build fast and highly accurate models of water Bore & Paesani (2023). Neural
network potentials (NNPsDuignan (0)), for example, learn the interaction between molecules based
on quantum chemistry data and is capable of predicting the atomic potential field in a molecular
system. It can capture the complex interaction patterns between molecules with high computational
efficiency (O(M)) and accuracy. These insights can be brought to create analogy when devising a
particle system.

Sample clustering for multi-modal inference In the post-sampling stage, one may be interested in
empirically estimating the statistics of p(x) for use of e.g. posterior predictive in Bayesian modelling.
Summarising the statistics of a distribution is not easy, particularly when it’s high-dimensional and
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multi-modal. With the (quasi) samples drawn, we can perform e.g. clustering to group the samples
and summarise the statistics in each cluster. This can be achieved using available clustering and
partition algorithms such as k-d-tree.

Learning p(x) or log p(x) In some cases, directly learning p(x) can be numerically unstable,
especially when p(x) is very small or large (e.g. chain products of likelihoods). Working with
log p(x) helps to mitigate these issues because the log-transformation compresses the range of values,
leading to more stable numerical computation. Also, the gradients of the log-probability ∇ log p(x)
are more stable and easier to handle numerically than the gradients of p(x) itself, and therefore used
commonly in ParVI (e.g. SVGD). However, for ParVI methods, if one decide to perform inference
on log p(x), then a density estimator is needed to recover p(x) = elog p(x). This is the case with
Section.I.

Change of variables For vector-valued random variable x′ and x who live in the same dimension
Rm, the change of variables principle applies:

p(x) = p′(x′)/|detJ(x′)| = p′(x′)/|det( ∂x
∂x′ )| = p′(x′)/|det[∂fθ(x

′)

∂x′ ]| with x = f(x′) (67)

where |det[∂fθ(x
′)

∂x′ ]| is the absolute value of the determinant of the Jacobian matrix Jfθ(xi), i =
1, 2, ...M . If a density is transformed multiple times, the chain rule of product can be used to arrive at
the final transformed pdf, yielding a normalizing flow 22. The EParVI inference algorithm for change
of variables is presented in Algo.2. Note that, It requires computing the determinant of the Jacobian
matrix of the transform, which can be computationally expensive for high dimensions.

Algorithm 2 EParVI inference for change of variables
• Inputs: target probability density function p(x) with x ∈ Rm; probability density function
p′(x′) with x′ ∈ Rm. Number of particles M .

• Outputs: Particles {xi ∈ Rm}Mi=1 whose empirical distribution approximates the target
density p(x).

1. Generate samples in low dimensions. Use EParVI to generate sample particles x′
i ∼ p′(x′),

i = 1, 2, ...M .

2. Neural normalizing flow training. Initialize a neural network fθ: Rm → Rm which
accepts x′ and outputs x. (1) For each particle i, compute xi = fθ(x

′
i) and individual loss

Li = − log p(xi)− log |det Jfθ(x′
i)|.

(2) Compute mean loss 1
M

∑M
i=1 Li. Back-propagating the error to update network weights.

2. Inference and original sample reconstruction. Mapping x′
i to xi. (1) For each particle

x′
i, i = 1, 2, ...,M , project it using the trained neural network: xi = fθ(x

′
i).

(2) Perform density estimation (e.g. KDE) to obtain p̂′(x′
i).

(3) Estimate target density p̂(xi) = p̂′(x′
i)/|detJfθ(x′

i)|.

3. Return xi, i = 1, 2, ...,M and the estimated density p̂(x).

Generalise to high dimensions Eq.67 requires a bijective and differentiable map x = fθ(x
′).

If we have the low dimensional samples x′
i ∈ Rm′

, e.g. produced by EParVI, and we want to
project them into higher dimensional samples xi ∈ Rm, with m′ < m, i = 1, 2, ...M . That is, we
first generate samples x′ ∼ p′(x′) in low dimensions, which is feasible using EParVI, and then
project the low-dimensional samples into high dimensions via x = fθ(x

′), obtaining x ∼ p(x) and
preserving the probability structure. The change of variables principle can no longer be applied in

22Normalizing flows Rezende & Mohamed (2016a) allow for learning a complex transformation between
probability distributions.
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this case (the Jacobian matrix is non-square). Instead, we employ a neural network to represent this
non-linear mapping x = fθ(x

′), with the training objective 23 L(x′
i) = − log p(xi)− L′

i, where L′
i

is a measure of the contribution of the projected sample xi to the diversity of p(x) in the projected
space Rm, ensuring the mapping properly captures the structure of the target pdf p(x). The algorithm
is presented in Algo.3.

Algorithm 3 Projected EParVI inference
• Inputs: target probability density function p(x) with x ∈ Rm; probability density function
p′(x′) with x′ ∈ Rm′

. Number of particles M .
• Outputs: Particles {xi ∈ Rm}Mi=1 whose empirical distribution approximates the target

density p(x).

1. Generate samples in low dimensions. Use EParVI to generate sample particles x′
i ∼ p′(x′),

i = 1, 2, ...M .

2. Neural network training. Initialize a neural network fθ: Rm′ → Rm which accepts x′ and outputs
x. (1) For each particle i, compute xi = fθ(x

′
i) and individual loss Li = − log p(xi)− L′

i.
(2) Compute mean loss 1

M

∑M
i=1 Li. Back-propagating the error to update network weights.

2. Inference and original sample reconstruction. Mapping x′
i ∈ Rm′

to xi ∈ Rm. (1) For each
particle x′

i, i = 1, 2, ...,M , project it using the trained neural network: xi = fθ(x
′
i).

(2) Perform density estimation (e.g. KDE) to obtain p̂(x).

3. Return xi, i = 1, 2, ...,M and the estimated density p̂(x).

Algo.3 provides a way to estimate high-dimensional distributions by working in a lower-dimensional
space, which can be more computationally efficient. Quality of the final estimation depends on
the expressiveness of the neural network, design of the loss function and the training process.
The diversity loss L′

i can be designed using strategies for example: (1) Product of singular val-
ues of the Jacobian. This gives a measure of the ’volume change’: L′

i =
∑m′

j=1 log σj [Jfθ(x
′
i)],

where σj are the singular values of the Jacobian Jfθ. This approach accounts for expansion in
all directions, and it is computationally expensive (routinely, SVD is performed to obtain the
sigular values). One can use only the largest singular value which gives an upper bound on the
expansion. (2) Project the Jacobian onto an orthonormal basis in the higher-dimensional space:
L′
i = log |det[Jfθ(x′i)TJfθ(x

′
i)]|1/2. (3) Use the trace of the Gram matrix of the Jacobian as a mea-

sure of magnitude: L′
i = logTr[Jfθ(x′i)TJfθ(x

′
i)]. (4) Use the Frobenius norm of the Jacobian as a

simple scalar measure: L′
i = log |Jfθ(x′

i)|F . Each of these loss designs provides a way to capture
the transformation’s properties, by quantifying the ’expansion’ or ’contraction’ of the transformation
without requiring a square Jacobian.

23Note that, regularization term can be added to promote sample diversity and smooth mapping.

36


	Introduction
	Electrostatics-based sampling
	Experiments
	Toy examples via EParVI
	Neal's funnel
	Bayesian Logistic Regression
	Inference of a dynamical system

	Conclusion and future work
	Electrostatic halftoning
	Related work
	A hypothetical treatment of Coulomb's law in d-dimension
	Electric forces in 3D
	The Poisson and Laplace equations for electrostatics
	The 3D Poisson's equation
	Solution to the d-dimensional Poisson's equation

	Repulsion and attraction
	A note on complexity
	Toy examples: more details
	Neal's funnel: implementation details
	Bayesian logistic regression: more details
	Inference of the Lotka-Volterra dynamical system
	Mapping concepts in electrostatics and probability
	Discussions

