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Abstract

The question of how and why the phenomenon of mode connectivity occurs in
training deep neural networks has gained remarkable attention in the research
community. From a theoretical perspective, two possible explanations have been
proposed: (i) the loss function has connected sublevel sets, and (ii) the solutions
found by stochastic gradient descent are dropout stable. While these explanations
provide insights into the phenomenon, their assumptions are not always satisfied in
practice. In particular, the first approach requires the network to have one layer with
order of N neurons (N being the number of training samples), while the second
one requires the loss to be almost invariant after removing half of the neurons at
each layer (up to some rescaling of the remaining ones). In this work, we improve
both conditions by exploiting the quality of the features at every intermediate layer
together with a milder over-parameterization requirement. More specifically, we
show that: (i) under generic assumptions on the features of intermediate layers,
it suffices that the last two hidden layers have order of

√
N neurons, and (ii)

if subsets of features at each layer are linearly separable, then almost no over-
parameterization is needed to show the connectivity. Our experiments confirm that
the proposed condition ensures the connectivity of solutions found by stochastic
gradient descent, even in settings where the previous requirements do not hold.

1 Introduction

The aim of this work is to provide further theoretical insights into the mode connectivity phenomenon
which has recently attracted some considerable attention from the research community (i.e. training
a neural network via stochastic gradient descent (SGD) from different random initializations often
leads to solutions that could be connected by a path of low loss) [2, 9, 11, 12, 15]. Existing theoretical
insights from optimization landscape analysis suggest that, for over-parameterized networks, the
loss function has connected sublevel sets, and hence the solutions found by SGD are also connected
[32, 37, 43]. However, in order for such a result to hold, the network needs to have one wide layer
with at least N + 1 neurons (N being the number of training samples) [33]. This bound is also
known to be tight for 2-layer networks. Here, we would like to understand the above phenomenon
for deep and mildly over-parameterized networks (i.e. we aim to prove weaker guarantees under
milder conditions). The idea is that, even when the sublevel sets are disconnected, SGD may only
concentrate in a (large) region with connected minima, see e.g. Figure 1. This leads to the question
that whether one can characterize the properties of the solutions found by SGD which capture the
mode connectivity phenomenon, for mildly over-parameterized networks. Along this line, a recent
work [24] proposed the so-called “dropout stability” condition, that is, removing half the neurons
from every hidden layer leads to almost no change in the value of the loss. As shown in the prior
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Figure 1: A function with disconnected sublevel sets and two connected sets of minima.

works (also in our experiments in Section 6), this condition holds for very wide networks or when
dropout is used as a regularizer during training, but it does not hold under other practical settings.

The aim of this work is to provide a new characterization of SGD solutions which capture their
connectivity property, and to improve the previous assumptions (width Ω(N), and dropout stability)
for networks of practical sizes, learned without the support of dropout training. As a remark, although
our work is motivated by the original phenomenon concerning mainly the solutions found by SGD,
all the theoretical results are still valid for other pairs of solutions in parameter space.

Main contributions. Our main Theorem 4.1 provides an upper bound of the loss along a path
connecting two given solutions in parameter space. This bound is characterized by the loss of L
optimized and sparse subnetworks, L being the network depth. These L subnetworks connect subsets
of at least half the neurons at each layer to the output (see Figure 2), and their weights can be
optimized independently of the weights of the original network, which leads to a significant reduction
of the loss. This is the key difference to the previously proposed dropout stability property [24]. Next,
we specialize our theorem to different settings to demonstrate the improvement over prior works:

• Corollary 4.2 shows that our condition is provably milder than dropout stability [24]. In fact,
dropout stability implies that the loss does not change much when we remove at least half of
the neurons at each layer and rescale the remaining ones. Here, we allow to optimize again
all the weights of the subnetworks connecting the subsets of features to the output.

• As the weights of the subnetworks can be optimized, we establish a formal connection
between mode connectivity and memorization capacity of neural nets. In particular, Corol-
lary 4.3 proves that, if the last two hidden layers have Ω(

√
N) neurons, then under some

additional mild conditions on the features of intermediate layers, any two given solutions
can be connected by a path of low loss. This improves the width condition of prior works
[32, 33, 43] from Ω(N) to Ω(

√
N) at the cost of ensuring a weaker guarantee (i.e. the

connectivity of sublevel sets proved in prior works implies the connectivity of any two pairs
of solutions, but in this paper we only show the connectivity for certain pairs).

• Corollary 4.4 proves that, for a classification task, if subsets of features at each layer are
linearly separable, then no over-parameterization is required to prove the connectivity.

The message of this paper is that, in order to ensure the connectivity, a smooth trade-off between
feature quality and over-parameterization suffices. The two extremes of this trade-off are captured
by Corollary 4.3 and 4.4 mentioned above. More generally, at each layer l, we pick a subset Il
containing at least half the neurons. If the features indexed by Il are good enough, in the sense that
there exists a small subnetwork ξl achieving small loss when trained on these features as inputs, then
all layers k > l in the original network do not need to be larger than twice the widths of the subnet ξl.
Hence, the better the features at lower layers, the less over-parameterized the higher layers need to be.

Finally, our numerical results show that, if the learning task is sufficiently simple (e.g. MNIST) and
the network is sufficiently over-parameterized, then dropout stability holds and the SGD solutions
can be connected as in [24]. However, when the learning task is more difficult (e.g. CIFAR-10), or
for networks of moderate sizes, dropout stability does not hold and the path of [24] exhibits high loss.
In this challenging setting, we are still able to find low-loss paths connecting the SGD solutions.

Proof techniques. We remark that, while previous work [32, 33, 43] focused on the connectivity
of all the sublevel sets (i.e. a property of the global landscape), here we are only interested in the
connectivity of a particular subset of solutions, especially those that are discovered by SGD. This
leads to several differences in the proofs. First, previous analysis relies on the fact that the first hidden
layer has at least N + 1 neurons [33], and thus the training inputs can essentially be mapped to a
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(a) Original net θ′ (b) Subnet ξ0 (c) Subnet ξ1 (d) Subnet ξ2

Figure 2: An illustration of the sub-networks appearing in our main Theorem 4.1. The blue neurons
correspond to the subset Il in the theorem, and its cardinality is at least half the layer width. Each
sub-network ξl receives as inputs the blue neurons from layer l, and pass it through the red ones at the
higher layers, all the way to the output of the network. All the weights of the sub-networks (in green)
can be re-optimized to minimize the upper bound in the theorem. This is shown via the infimum
taken over ξl on the RHS of Equation (4).

feature space where they become linearly independent. This property allows the network to realize
arbitrary outputs at each layer, which leads to the connectivity of sublevel sets. This property is no
longer true for the networks considered here, where the layer widths are allowed to be sublinear in
N . Second, the analysis of sublevel sets often do not take into account the bias of SGD, whereas here
we focus more on understanding the properties of these solutions which lead to their connectivity.
More closely related is the work by [24], with which we provide a detailed discussion in Section 4.

2 Further Related Work

Theoretical research on the loss surface of neural networks can be divided into two main categories:
one that studies the global optimality of local minima, see e.g. [7, 13, 14, 17, 18, 19, 21, 22, 25, 27,
28, 29, 30, 34, 38, 42, 45, 46, 47, 48, 50, 51], and the other that studies landscape connectivity. This
work falls into the latter category. Specifically, the works of [12, 37] suggest that the loss function
of a two-layer network becomes more and more connected as the number of neurons increases. In
[43] and [32], it is proved that networks with one sufficiently wide layer have no spurious valleys
and connected sublevel sets, respectively. All these works require networks with at least one layer of
order N neurons, whereas Corollary 4.3 requires widths of order

√
N neurons. In [5], the authors

study the connectivity of equivalent minima (i.e. representing the same network function) which
arise by permuting neurons from the same layer. A similar property is investigated in [20] for all
local minima lying in a cell or activation region (i.e. those sharing the same activation patterns across
all the hidden neurons and training samples). In contrast, here we consider a more general setting:
Theorem 4.1 provides upper bounds on the loss when connecting two arbitrary points in parameter
space. In particular, these points need not be local minima, nor share the same activation patterns,
or even represent the same function. This allows us to study the mode connectivity phenomenon
of SGD solutions [24], which are typically not captured by the previous assumptions. Other works
discuss lower bounds on over-parameterization to ensure the existence of descent paths in shallow
nets [39], the satisfiability of the dropout stability condition in the mean field regime [40].

Memorization capacity is an old and well-studied topic [4, 8]. Networks with Ω(N) parameters are
known to memorize N arbitrary samples, and this type of results has been studied for a variety of
settings, see [3, 6, 16, 31, 44, 49]. Nevertheless, how memorization capacity is related to the mode
connectivity phenomenon remains unclear, especially in the absence of a layer of width Ω(N). Our
work draws a formal connection between the two, which opens up new directions for future works.

3 Preliminaries

Given two nonnegative integers i, j, let [i, j] = {i, . . . , j} and [i] = {1, 2, . . . , i}. Given a set
I, we denote by |I| its cardinality. We consider an L-layer neural network with weight matrices
Wl ∈ Rnl−1×nl for l ∈ [L], and bias vectors bl ∈ Rnl for l ∈ [L−1]. Here, n0 is the input dimension,
nL the output dimension, and n1, . . . , nL−1 the widths of all the hidden layers. Let θ be the set of all
the network parameters. Given an input x ∈ Rn0 , the feature vector fl ∈ Rnl at layer l is defined as
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fl(θ, x) =


x, l = 0,

σ(WT
l fl−1(θ, x) + bl), l ∈ [L− 1],

WT
L fL−1(θ, x), l = L,

(1)

where σ : R→ R is some activation function. Let Ω be the parameter space of the network. For a
data distribution (x, y) ∼ D, the population loss Φ : Ω→ R is defined as

Φ(θ) = ED[Ψ(fL(θ, x), y)], (2)

where Ψ(ŷ, y) is assumed to be convex with respect to the first argument. Typical examples of Ψ
which satisfy this assumption include the standard square loss and cross-entropy loss. By letting D
be the uniform distribution over a fixed set of N samples, the loss Φ reduces to the empirical loss.

In the following, we frequently encounter situations where we are given a layer l ∈ [0, L− 1], and
we want to study a subnetwork from layer l to the output layer L. The widths and the inputs to this
subnet are defined as follows. Let Ip ⊆ [np] be a subset of neurons at layer p, for p ∈ [l, L− 1]. By
convention, let I0 = [n0]. Let fp,Ip ∈ R|Ip| be obtained from fp by taking the neurons indexed by
Ip. The layer widths of this subnet (associated to l) are given by m(l)

l = |Il| , m(l)
p = np − |Ip| for

p ∈ [l + 1, L− 1], and m(l)
L = nL. The associated weight matrices and bias vectors are {U (l)

p }Lp=l+1

and {v(l)p }L−1p=l+1, where U (l)
p ∈ Rm

(l)
p−1×m

(l)
p and v(l)p ∈ Rm

(l)
p . Let ξl = ((U

(l)
p )Lp=l+1, (v

(l)
p )L−1p=l+1),

see Figure 2 for an illustration. Given an input z ∈ Rm
(l)
l to this subnetwork, the corresponding

output, denoted by hL(ξl, z) ∈ RnL , is recursively defined for p ∈ [l, L] as

hp(ξl, z) =


z, p = l,

σ
(

(U
(l)
p )Thp−1(ξl, z) + v

(l)
p

)
, p ∈ [l + 1, L− 1],

(U
(l)
L )ThL−1(ξl, z), p = L.

(3)

4 Main Result: Statement and Discussion

We now state our main result, which is proved in Section 5.

Theorem 4.1 Fix any θ0, θ1 ∈ Ω and any ε > 0. Then, there exists a continuous piecewise linear
(PWL) path θ : [0, 1]→ Ω such that θ(0) = θ0, θ(1) = θ1, and the following holds:

max
t∈[0,1]

Φ(θ(t))≤ max
θ′∈{θ0,θ1}

max

(
Φ(θ′), min
I1⊆[n1], ..., IL−1⊆[nL−1]

s.t. |I1|≥n1
2 , ..., |IL−1|≥

nL−1
2

max
l∈[0,L−1]

inf
ξl

ED[Ψ (hL (ξl, fl,Il(θ
′, x)) , y)]+ε

)
(4)

where hL (ξl, fl,Il(θ
′, x)) is the output of the subnetwork from layer l to layer L as defined in (3),

fed with input fl,Il(θ
′, x), and ξl contains the parameters of this subnetwork.

We remark that the second maximum on the RHS of (4) is intended to be taken between the two
components in the open bracket (i.e., Φ(θ′) and the min max inf).

An illustration of the subnets ξl’s appearing in the theorem can be found in Figure 2. In words, for
layer l ∈ [L− 1], we pick a subset Il containing at least half the hidden neurons in that layer. Then,
the loss over the PWL path is upper bounded by the loss at L points that are formed by connecting
the subset of features (indexed by Il) at layer l to the output via the subnetwork defined in (3). The
key idea is that we can construct low-loss paths connecting these sparse points, and the subnetworks
guarantee a sufficient amount of sparsity: they have |Il| neurons at layer l, and np − |Ip| neurons at
layer p ∈ [l + 1, L− 1]. The additive factor ε in the RHS of (4) serves to deal with the case in which
the inf is not attained (as for the cross-entropy loss). We note that Theorem 4.1 also holds for deep
nets without biases, which can be proved by following the same argument as in Section 5.

Equivalent formulation. Before discussing the implications of Theorem 4.1, we provide an equiva-
lent way to write the “min max inf” on the RHS of (4). This characterization will be useful when
evaluating numerically our bound in Section 6. First, note that the subnetwork ξl in (4) is fully
determined by Il and the cardinalities of Il+1, . . . , IL−1. To this end, let Kl = |Il|, l ∈ [L− 1], and

Ql = inf
ξl

ED[Ψ (hL (ξl, fl,Il(θ
′, x)) , y)], l ∈ [0, L− 1]. (5)
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Then, clearly Ql is fully determined by the variables {θ′, Il,Kl+1, . . . ,KL−1}, and thus it does not
depend on the actual content of Ik’s for k 6= l. Based on this observation, one can easily argue that

min
I1⊆[n1], ..., IL−1⊆[nL−1]

s.t. |I1|≥n1
2 , ..., |IL−1|≥

nL−1
2

max
l∈[0,L−1]

Ql = min
n1
2 ≤K1≤n1, ...,

nL−1
2 ≤KL−1≤nL−1

max
l∈[0,L−1]

min
Il⊆[nl]
|Il|=Kl

Ql.
(6)

To see why (6) holds, we first write the minimum over the sets {Il}l∈[L−1] on the LHS as a minimum
over their cardinalities {Kl}l∈[L−1] followed by a minimum over all the possible choices of subsets
with fixed cardinalities. From the above discussion, once Kl+1, . . . ,KL−1 are fixed, the quantity Ql
is entirely independent of Ik for all k 6= l. Thus, one can swap the maximum over l ∈ [0, L− 1] with
the minimum over the sets, and the result readily follows.

A condition milder than dropout stability. Theorem 1 of [24] can be deduced as a corollary of
Theorem 4.1 stated for networks without biases. Let us first recall the definition of ε-dropout stability
from [24]. We say that some point θ ∈ Ω is ε-dropout stable if, for all l ∈ [L − 1], there exists
a subset of at most bnp/2c hidden neurons in each of the layers p ∈ [l, L − 1] with the following
property: after rescaling the outputs of these hidden units by some factor r and setting the outputs of
the remaining units to zero, we obtain a parameter θl,d such that Φ(θl,d) ≤ Φ(θ) + ε. The proof of
the following corollary is postponed to Appendix A.1.

Corollary 4.2 Fix any θ0, θ1 ∈ Ω and any ε > 0. Assume that θ0 and θ1 are ε-dropout stable. Then,
there exists a continuous PWL path θ : [0, 1]→ Ω such that θ(0) = θ0, θ(1) = θ1, and it holds:

max
t∈[0,1]

Φ(θ(t)) ≤ max (Φ(θ0), Φ(θ1)) + ε+ ε. (7)

We highlight that requiring dropout stability to ensure the connectivity of solutions is a much stronger
assumption than what is needed in Theorem 4.1. In fact, in order to have that the loss along the path
connecting θ0 and θ1 is ε-close to the loss at the extremes, Theorem 1 of [24] requires that θ0 and θ1
are ε-dropout stable. On the contrary, our main result requires that, for θ′ ∈ {θ0, θ1},

inf
ξl

ED[Ψ (hL (ξl, fl,Il(θ
′, x)) , y)] (8)

is no bigger than Φ(θ′). The key difference with respect to [24] is that in (8) we are not restricted
to rescaling the weights of the original network (as in the dropout stability assumption), but we are
allowed to optimize the weights of the subnetwork. This makes a significant difference in practical
settings. In Section 6, we provide examples of networks trained on MNIST and CIFAR-10 such that
dropout stability is not satisfied, but our mild condition still holds. Thus, even if the path provided by
[24] leads to a large loss, we are still able to connect the SGD solutions via a low-loss path.

Connections with memorization capacity. The fact that we can choose arbitrary weights to ap-
proach the inf in (8) provides a link between the connectivity of solutions and the memorization
capacity of neural nets. Consider a setting in which there are N data samples {(xj , yj)}j∈[N ] and we
wish to minimize the empirical training loss, i.e. D is the uniform distribution over these samples. By
exploiting recent progress on the finite-sample expressivity of neural networks [6, 49], one deduces
the corollary below, whose proof is deferred to Appendix A.2. We recall that a set of points {xi}i∈[N ]

in Rd is said to be in generic position if any hyperplane in Rd contains at most d points.

Corollary 4.3 Fix any θ0, θ1 ∈ Ω and any ε > 0, and let σ be ReLU. Let {(xj , yj)}j∈[N ] be N data
samples, where yj ∈ [−1, 1]nL for j ∈ [N ] and the vectors {xj}j∈[N ] are distinct. Let D be the
uniform distribution over these samples. For i ∈ {0, 1}, assume that there exist subsets of neurons
{I(i)l }l∈[L−1] such that the following holds:

(A1) |I(i)L−1|≥
nL−1

2 and 4

⌊
nL−2

8

⌋⌊
nL−1 − |I(i)L−1|

4nL

⌋
≥N .

(A1-b) For some ε ≥ 0,
inf

W∈R|I
(i)
L−1|×nL

ED[Ψ(WT f
L−1,I(i)L−1

(θi, x), y)] ≤ Φ(θi) + ε. (9)

(A2) |I(i)L−2| = d
nL−2

2 e, and the feature vectors {f
L−2,I(i)L−2

(θi, xj)}j∈[N ] are in generic position.
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(A3) For all l ∈ [L− 3]: |I(i)l | = nl − 1, and the feature vectors {f
l,I(i)l

(θi, xj)}j∈[N ] are distinct.

Then, there exists a continuous PWL path θ : [0, 1]→ Ω s.t. θ(0) = θ0, θ(1) = θ1, and it holds:

max
t∈[0,1]

Φ(θ(t)) ≤ max (Φ(θ0), Φ(θ1)) + ε+ ε. (10)

This result should be regarded as a proof of concept. Improved bounds on memorization capacity1

would immediately lead to stronger results about connectivity. Let us now discuss in more detail
the assumptions needed in Corollary 4.3. Assumption (A2) ensures sufficient “diversity” among
the features at the second last hidden layer: the vectors {f

L−2,I(i)L−2

(θi, xj)}j∈[N ] need to be in
generic position, which is rather standard in the literature about the memorization capacity of neural
networks, see e.g. [4]. Assumption (A3) requires a minimal condition that the feature vectors
{f
l,I(i)l

(θi, xj)}j∈[N ] are distinct for l ∈ [L − 3]. Assumption (A1-b) involves the quality of the

features at the last hidden layer: it requires that, by removing nL−1 − |I(i)L−1| neurons and picking
suitable new outcoming weights for the remaining ones, we do not increase the loss by more than ε.
Assumption (A1) involves the over-parameterization of the last two hidden layers of the network:
it requires that nL−2(nL−1 − |I(i)L−1|) is at least roughly 8NnL. Pick |I(i)L−1| = (1− δ)nL−1, and
assume that nL is a constant independent of N . Then, assumption (A1-b) holds if the loss remains
stable after removing a δ-fraction of the neurons, and assumption (A1) holds if nL−2nL−1 = Ω(N).
We remark that there is no requirement on the widths of the remaining layers.

It is shown in [33] that, for deep nets, if the first hidden layer has N + 1 neurons then one gets
connected sublevel sets. This bound is tight as a 2-layer network of width N can have disconnected
sublevel sets. Here, we use properties of the features of the solutions we wish to connect in order to
relax the requirement on the over-parameterization. In particular, if the features at the last two hidden
layers are good enough (i.e. removing a small number of neurons at layer L− 1 does not increase the
loss much, and a subset of features at layer L− 2 are in generic position), then Ω(

√
N) neurons in

each of these two layers are sufficient to ensure the connectivity. More generally, the fact that we are
free to choose the sizes of the sets I1, . . . , IL−1 in the RHS of (4) allows one to trade-off between the
quality of the features at a given layer and the amount of over-parameterization in the layers above it.

Linearly separable features. One extreme example of this trade-off is when the features are linearly
separable (i.e. the features are highly representative of the labels). More formally, consider a
classification task where one is given the labels yj ∈ {0, 1}nL , and the data samples are linearly
separable. Recall that, a set of data samples {(xj , yj)}j∈[N ] is called “linearly separable” if there exist
nL hyperplanes, each separating the samples of one class from the other classes perfectly. Pick two
points such that, by removing nL neurons per layer, their features remain linearly separable at each
layer. Then, these points can be connected by a low-loss path (without any extra over-parameterization
requirement). This is formalized in the following corollary, whose proof appears in Appendix A.3.

Corollary 4.4 Fix any θ0, θ1 ∈ Ω and any ε > 0. Assume that nl ≥ 2nL for l ∈ [L − 1] and
that there exists an interval [α, β] s.t. σ is strictly monotonic on [α, β]. Let {(xj , yj)}j∈[N ] be
N linearly separable data samples, where yj ∈ {0, 1}nL for j ∈ [N ]. Let D be the uniform
distribution over these samples, and let Ψ be the standard cross-entropy loss. Assume that, for
i ∈ {0, 1}, there exists subsets {I(i)l }l∈[L−1] such that nl

2 ≤ |I
(i)
l | ≤ nl − nL and the set of features

{f
l,I(i)l

(θi, xj), yj}j∈[N ] is linearly separable, for all l ∈ [0, L− 1]. Then, there exists a continuous
PWL path θ : [0, 1]→ Ω such that θ(0) = θ0, θ(1) = θ1, and the following holds:

max
t∈[0,1]

Φ(θ(t)) ≤ max (Φ(θ0), Φ(θ1)) + ε. (11)

We remark that the result of Corollary 4.4 is not restricted to the cross-entropy loss, but it holds
for any loss function Ψ whose infimum is 0 when the input is linearly separable. Furthermore, the
assumption on the activation function being monotonic in an interval is very mild, and it serves to
avoid degenerate cases (e.g. constant activation function).

1E.g., less parameters in the interpolating network or less assumptions on the input data.
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5 Proof of Theorem 4.1

In the following, the “incoming weights” of a neuron refer to both the incoming weight vector and
the bias of that neuron, and the “outcoming weights” of a neuron simply refer to its outcoming weight
vector. We call a neuron “inactive” if its incoming weights are zero, and we call a neuron “pure
zero” if both its incoming and outcoming weights are zero. Clearly, a pure zero neuron is inactive.
Whenever we say “set some parameter w from a to b”, we simply mean to change the current value
of w from a to b by following a direct line segment: w(λ) = (1− λ)a+ λb, where λ ∈ [0, 1]. First,
we state and prove a useful claim. Then, we present the proof of Theorem 4.1.

Claim 5.1 Consider two distinct hidden neurons p and q on the same layer, and assume that p is a
pure zero neuron. Then, one can swap p and q by a continuous PWL path along which the network
output is invariant.

Proof of Claim 5.1: Let pin and pout denote the incoming resp. outcoming weights of p. Similarly,
we denote by qin and qout the incoming and outcoming weights of q. We change p and q continuously
by applying the following paths sequentially (after each step, we reset the value of p and q to the
ending point of the path): (i) pin(λ) = (1− λ)pin + λqin, (ii) [pout(λ), qout(λ)] = [λqout, (1− λ)qout],
and (iii) qin(λ) = (1 − λ)qin. For all these paths, λ goes from 0 to 1. Note that path (i) does not
change the network output, since the outcoming weights of p are zero. At the end of the first path, p
and q have the same incoming weights (i.e. they are identical neurons). Furthermore, path (ii) does
not change the network output, since the total contribution of p and q to the next layer is constant
along the path. Finally, also path (iii) does not change the network output, since the outcoming
weights of q are zero at the end of path (ii). After performing these three steps, p and q are swapped,
i.e. q becomes pure zero while p has the original weights of q. �

Proof of Theorem 4.1: Fix the subsets {Il}l∈[L−1], where Il ⊆ [nl], |Il| ≥ nl/2, and let Īl be the
complement of Il. We show that there is a continuous PWL path from θ0 to some other point for
which all the neurons in

{
Īl
}
l∈[L−1] are pure zero, and the loss along the path is at most

max

(
Φ(θ0), max

l∈[0,L−1]
inf
ξl

ED[Ψ (hL (ξl, fl,Il(θ0, x)) , y)] + ε

)
. (12)

To prove the claim, we start from θ0 and apply a sparsification procedure that makes the neurons
in ĪL−1, . . . , Ī1 become pure zero, one layer at a time from layer L− 1 down to layer 1. First, we
construct a path that makes the outcoming weights of the neurons in ĪL−1 become zero by changing
only the weights in the last layer. Note that Ψ is convex in the weights of the last layer, hence Φ is
also convex in those weights. Therefore, the loss along this path is at most

max

(
Φ(θ0), inf

ξL−1

ED[Ψ
(
hL
(
ξL−1, fL−1,IL−1

(θ0, x)
)
, y
)
] + ε

)
.

Once the outcoming weights of a neuron are all zero, the incoming weights can also be set to zero
without changing the loss. Thus, the neurons in ĪL−1 can be made pure zero.

Now, we assume via induction that we have already made all the neurons in
{
Īl+1, . . . , ĪL−1

}
pure

zero, and we want to make the neurons in Īl pure zero. It suffices to make all the inter-connections
between Īl and Il+1 become zero, because the connections between Īl and Īl+1 are already zero
due to the inactivity of Īl+1. To do this, one first observes that the pure-zero state of the neurons in{
Īl+1, . . . , ĪL−1

}
separates the original network from layer l + 1 to layer L− 1 into two parallel

subnetworks: one with neurons in {Ip}L−1p=l+1, and the other with pure zero neurons. Now, set the
incoming weights of the neurons in

{
Īl+1, . . . , ĪL−1

}
to the corresponding values given by the

subnetwork ξ∗, where ξ∗ satisfies the following

ED[Ψ (hL (ξ∗, fl,Il(θ0, x)) , y)] ≤ inf
ξl

ED[Ψ (hL (ξl, fl,Il(θ0, x)) , y)] + ε. (13)

Note that a subnetwork ξ∗ which satisfies (13) always exists: if the infimum on the RHS of (13)
is actually a minimum, then we can pick ξ∗ to be one of the minimizers. Otherwise, there exists
a ξ∗ whose loss approaches the infimum with arbitrarily small error. In the above step, only the
incoming weights that are relevant to the subnetwork ξ∗ are reset, while the other ones are kept
unchanged. In particular, this step does not affect the outputs of the neurons in the other subsets
{Il+1, . . . , IL−1} as well as the output of the network. Next, let us set all the outcoming weights
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in ĪL−1 to the corresponding value given by ξ∗, and all the outcoming weights in IL−1 to zero (in
one step). By the convexity of Ψ w.r.t. the output weights, we have that the loss along this path is
upper bounded by the loss at the extremes of the path, which is in turn upper bounded by (12). Now,
since the outcoming weights of IL−1 are zero, it follows that the parallel subnetwork associated to
{Il+1, . . . , IL−1} does not contribute to the network output. Thus, we can change the incoming
weights of all the neurons in this subnetwork to any arbitrary values without affecting the loss. Hence,
we turn all these neurons into inactive and then pure zero, without changing the loss. As a result, all
the inter-connections between Īl and Il+1 will become zero, as wanted from above. At this point,
note that the weights of the neurons in

{
Īl+1, . . . , ĪL−1

}
are those of ξ∗. Thus, in order to finish the

induction proof, we need to make them become pure zero again. This can be done by swapping, at
each layer p ∈ [l+1, L−1], one pure zero neuron in Ip with one neuron in Īp. As |Ip| ≥ np

2 ≥
∣∣Īp∣∣,

this is always possible, and the network output is invariant by Claim 5.1.

The sparsification procedure described above can be performed for any subsets {Il}l∈[L−1] s.t.
|Il| ≥ nl

2 for l ∈ [L− 1]. Thus, we can take the minimum in (12) over such subsets. Let {I∗l }l∈[L−1]
be the optimal subsets for θ0. Let us apply the same sparsification procedure to θ1. We can assume
w.l.o.g. that the optimal subsets for θ1 and θ0 are the same. In fact, if this is not the case, we use
Claim 5.1 and swap the pure zero neurons with other ones on the same layer in order to satisfy this
property. At this point, both θ0 and θ1 have been sparsified, and they have the same set of pure zero
neurons at each layer, indexed by

{
Ī∗l
}
l∈[L−1] .

Finally, we connect the sparsified versions of θ0 and θ1. Let A be the subnetwork consisting of all the
hidden neurons in

{
Ī∗l
}
l∈[L−1], and B the subnetwork consisting of all the remaining neurons. Both

A and B share the same input and output layers as the original network. Note also that the hidden
layers of B have larger widths than the corresponding layers of A. Since A and B are decoupled, one
can turn one on and the other off by setting the appropriate output weights to zero, and then update
the incoming weights of the other subnetwork to any desired value without affecting the loss. In this
way, one can make all the incoming weights (restricted to each parallel subnetwork) of θ0 equal to
the corresponding values of θ1. Finally, one uses the convexity of the loss Ψ again to equalize the
output weights of both θ0 and θ1. Hence, the loss incurred to connect the sparsified versions of θ0
and θ1 is no bigger than

maxθ′∈{θ0,θ1} inf
ξ0

ED[Ψ (hL (ξ0, f0(θ′, x)) , y)] + ε.

By taking the maximum of the loss along the paths considered in this proof, we get the bound (4). �

6 Numerical Experiments

We compare the losses along the path of Theorem 4.1 and the one in [24] which our theoretical
analysis has improved upon. Implementation details and a link to the code are given in Appendix C.

Datasets and architectures. We consider MNIST [26] and CIFAR-10 [23] datasets. As a pre-
processing stage, we perform a scaling into [−1, 1] for MNIST, and data whitening for CIFAR-10. For
MNIST, we consider a fully connected network (FCN) with 10 hidden layers (L = 11), each of width
245. For CIFAR-10, we consider two architectures: (i) an FCN with 5 hidden layers (L = 6), each
of width 500, and (ii) the VGG-11 network [41]. All architectures have ReLU activations. We train
each network by standard SGD with cross-entropy loss, batch size 100 and no explicit regularizers.
All the networks are trained beyond the point where the dataset is perfectly separated, and no early
stopping mechanism is used. For each trained network, we perform the following two experiments.

Experiment (A): we evaluate the RHS of (4), with θ′ being the trained model, by using the equivalent
characterization (6). First, we fix the integersKl = dnl/2e. Then, for each l ∈ [0, L−1], we compute
the quantity Q̃l, defined as:

Q̃l := min
Il⊆[nl]
|Il|=Kl

Ql = min
Il⊆[nl]
|Il|=Kl

inf
ξl

ED[Ψ (hL (ξl, fl,Il(θ
′, x)) , y)]. (14)

We upper bound the inf in (14) by running an independent SGD routine, and upper bound the min
there by sampling the subsets Il uniformly at random for TA = 20 times and by picking the best
training loss resulting from the inf . The resulting bounds on Q̃l are shown by the blue curves in
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Figure 3: (a)–(c): Training loss for Experiments (A) and (B). The dotted green line is the originally
trained model θ′, used as a reference. Mean and 95% confidence interval are shown for 10 different
trained networks θ′ in (a)-(b), and for 5 different θ′ in (c). The plot (d) shows the loss along the paths
of Experiments (A) and (B) between a fixed pair of solutions for the FCN trained on CIFAR-10.

Figure 3. Note that by taking the maximum of these values for l ∈ [0, L− 1], one obtains an upper
bound on (6), which is exactly the min max inf term in Theorem 4.1. As Theorem 4.1 requires
at least two different points θ′ to connect, in Figure 3 we run our experiments multiple times (i.e.
by training multiple network θ′ above), and we report the mean together with the 95% confidence
interval. The performance of these original models θ′’s is shown by the horizontal dotted green line
in Figure 3 (used as a reference). As one can see, the blue curve is always close to the reference curve,
which means that our upper bound as given in Theorem 4.1 for connecting these θ′ solutions is always
close to their original training losses, and thus all these solutions are approximately connected.

Experiment (B): we test the dropout stability of the trained model as defined in [24]. For each
l ∈ [L − 1], we proceed as follows: (i) randomly remove half of the neurons at all layers p ∈
[l, L− 1], and (ii) optimize the scaling factor of the output of the remaining network by minimizing
the training loss. This last optimization is performed in our experiments via the Scipy method
minimize_scalar(method="brent"). For each l ∈ [L− 1], this procedure (i.e. do (i), and then
(ii)) is repeated TB = 200 times, and we pick the best result based on the training loss. We have
chosen the value TB = 200 by observing that, if we increase TB from 100 to 200, the change in
the minimum loss is negligible. The results here are shown by the orange curves in Figure 3. One
observes that dropout stability tends to be satisfied at the layers near the output of the network, while
dropping the neurons from the first few layers increases the loss significantly. This is consistent with
the findings of [24], where it is reported that dropout stability does not hold for the first few layers
of the VGG-11 architecture without dropout training. If one instead uses dropout during training,
[24] show that the trained model satisfies the dropout stability property. In Experiment (A), we have
shown that, even when dropout is not used as an explicit regularizer during training (and consequently
dropout stability may not hold), we can still ensure the existence of low-loss connecting paths. This
is because our bound in Theorem 4.1 allows the optimization of the weights of the subnetwork ξl.

Figure 3(d) illustrates the paths between two SGD solutions obtained from Experiment (A) and (B)
for the FCN with L = 6 trained on CIFAR-10. While the path (A) constructed via Theorem 4.1 has
loss close to zero (and close to the loss of the reference model), the path of [24] experiences a large
loss. Additional results in Appendix B show similar patterns for the test error (see Figure 6) and for
different dropout ratios (see Figures 7-8). Furthermore, the log-scale plot in Figure 5 of Appendix B
allows one to zoom into the detailed difference between our bound and the reference.

In Figure 4, we perform Experiments (A)-(B) for an FCN with 2 hidden layers of equal width, trained
on MNIST and CIFAR-10. Here, we vary the width, and report the maximum of the bounds over all
the layers. As expected, the loss gets smaller as width increases. However, the bound provided by
Theorem 4.1 is close to 0 already for networks of moderate sizes: about 200 neurons for MNIST, and
500 for CIFAR-10. These networks widths roughly correspond to

√
N , as predicted by Corollary 4.3.

On the contrary, much larger widths are necessary for dropout stability to hold: 2000 neurons for
MNIST, and for CIFAR-10, networks with 3000 neurons are still quite far from being dropout stable.

Taking all these experimental results together, we have demonstrated that, for simple datasets (e.g.
MNIST) and for large enough widths, dropout stability holds. However, for more difficult learning
tasks (e.g. CIFAR-10), and for networks of moderate widths or larger depths, there is a strong
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Figure 4: Training loss (maximum over all layers) for Experiments (A) and (B) for an FCN with two
hidden layers of equal albeit varying widths. The dotted line is the originally trained model. Mean
and 95% confidence interval are shown for 3 different solutions θ′.

evidence that dropout stability is not satisfied. Yet, our main theorem provides connecting paths with
low loss, even when the over-parameterization of the trained networks is moderate.

7 Concluding Remarks

We provide a new characterization for SGD solutions (or more generally, for any two points in
parameter space) to be connected by low-loss paths. Numerical experiments demonstrate that the
proposed sufficient condition is satisfied by trained networks, also in settings where the requirements
of the previous works do not hold. Our results and analysis lead directly to the following open
question: Is having (more than two) hidden layers with Ω(

√
N) neurons in general sufficient to

guarantee the connectivity of all the sublevel sets? Although width N is both necessary and sufficient
for two-layer nets [33], our Corollary 4.3 gives hope that this bound may be not tight for deeper nets,
and sublinear widths there might suffice. Answering this question would help us better understand
the role of depth on shaping the geometry of neural net loss function. It is also interesting to study: (i)
Why does SGD converge to solutions fulfilling the trade-off we describe here between feature quality
and over-parameterization? (ii) Does SGD provably converge to a global optimum for such networks?
This last question was studied, e.g. in [1, 10, 35, 36, 52] for regression tasks, but the current results
still require at least one layer with Ω(N) neurons. The analysis here suggests that SGD may explore
a well-behaved region of the loss landscape even for networks with sublinear layer widths.
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