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Abstract

With the development of large language models (LLMs), efficient inference through
Key-Value (KV) cache compression has attracted considerable attention, especially
for long-context generation. To compress the KV cache, recent methods identify
critical KV tokens through static modeling of attention scores. However, these
methods often struggle to accurately determine critical tokens as they neglect the
temporal patterns in attention scores, resulting in a noticeable degradation in LLM
performance. To address this challenge, we propose AttentionPredictor, which
is the first learning-based method to directly predict attention patterns for
KV cache compression and critical token identification. Specifically, Attention-
Predictor learns a lightweight, unified convolution model to dynamically capture
spatiotemporal patterns and predict the next-token attention scores. An appealing
feature of AttentionPredictor is that it accurately predicts the attention score and
shares the unified prediction model, which consumes negligible memory, among
all transformer layers. Moreover, we propose a cross-token critical cache prefetch-
ing framework that hides the token estimation time overhead to accelerate the
decoding stage. By retaining most of the attention information, AttentionPredictor
achieves 13× KV cache compression and 5.6× speedup in a cache offloading
scenario with comparable LLM performance, significantly outperforming the state-
of-the-arts. The code is available at https://github.com/MIRALab-USTC/LLM-
AttentionPredictor.

1 Introduction

Large language models (LLM) like OpenAI o1 [1] have shown impressive scalability and effectiveness
in tackling complex tasks through long chain-of-thought (CoT) reasoning and multi-turn conversa-
tions [2–5]. However, these long-context tasks require LLMs to handle extremely lengthy contexts,
presenting computational and memory challenges for LLMs [6]. Specifically, the key-value cache
(KV cache), which holds the attention keys and values during generation to prevent re-computations,
consumes huge GPU memory [7]. For example, for a model with 7 billion parameters, the parameters
consume only 14 GB of memory whereas the KV cache requires around 72 GB with the 128K prompt
length [8]. As the decoding latency and memory footprint scale with the KV cache, it is important to
compress the KV cache as the prompt expands.
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Figure 1: A comparison of H2O, Quest, SeerAttention, and AttentionPredictor for identifying critical
tokens in the next step with history attention score. Our learning-based spatiotemporal predictor
captures the dynamic attention patterns and accurately predicts next-step attention scores.

Many attention sparsity-based methods have been proposed to compress the KV cache in the sequence
dimension. Previous works have shown that a small portion of tokens dominate the attention distribu-
tion, substantially determining token generation precision [9–11]. Therefore, we can dramatically
reduce the cache size by computing attention sparsely with only the critical tokens, while maintaining
LLM performance. Cache eviction methods [11–13] use heuristic ranking with attention scores to
identify critical keys and evict the less relevant ones. However, heuristic scoring methods can only
model fixed patterns and struggle to identify critical tokens accurately, causing these methods to
suffer from LLM performance degradation. Recently, SeerAttention [14] and Attention-Gate [15]
use learnable modules to model dynamic patterns and retrieve critical tokens. However, they only
represent keys or hidden states, rather than directly modeling the attention score distribution. As a
result, they often exhibit limited accuracy after compressing KV cache (Table 8 for details). This
motivates the need for a more effective solution that directly targets the prediction of attention scores
for enhanced KV cache compression.

In our paper, we thus explore the importance of temporal patterns in attention scores for identifying
critical KV cache. Previous research indicates that attention scores exhibit repetitive patterns intrinsic
to LLMs [10, 16–18]. We further observe that attention patterns have temporal characteristics, such as
re-access, sequential, and seasonal, as illustrated in Figure 2. Our theoretical analysis in Section 3.3
shows these patterns originate from intrinsic model properties such as query similarity and position
encoding. These patterns are both stable and predictable across time, forming a two-dimensional
(2D) temporal map with local continuity and translation-invariant characteristics.

KV cache compression with critical token identification can be formulated to attention score prediction
which is a 2D time series prediction problem. Inspired by the theoretical understanding of attention
mechanisms, we introduce AttentionPredictor, a time-series prediction approach to predict attention
scores for critical token identification, as shown in Figure 1. Since temporal attention patterns are
dynamic and difficult to capture with existing heuristic methods, we learn lightweight but accurate
prediction models to address this challenge. Specifically, we design a convolutional module to capture
2D patterns in the input attention scores, allowing a single predictor to be shared across all transformer
layers. These choices shrink our unified prediction model to roughly one millionth the size of the
LLM (LLaMA-3.1-8B), resulting in negligible memory consumption. In contrast, SeerAttention’s
per-layer prediction model amounts to 101MB in total, whereas ours is only 21KB—just 0.02%
of its size. Additionally, we employ distribution error calibration by periodically computing dense
attention, and apply block-wise attention compression to further improve the efficiency of prediction.
By accurately identifying critical tokens, AttentionPredictor retains most of the attention information
after KV cache compression. To further accelerate LLM decoding, we apply AttentionPredictor to
our proposed KV cache management framework, a cross-token KV cache prefetching system. In
contrast to the existing cross-layer approach [19], our cross-token method can capitalize on longer
transfer times, and adapt to more sophisticated and accurate methods for identifying critical tokens.

Our contributions: 1) Based on our observation of the temporal patterns in the attention score, we
propose AttentionPredictor. To the best of our knowledge, it is the first learning-based method
to directly predict attention patterns for KV cache compression and attention sparsity. 2) We
propose the first cross-token prefetching framework, which effectively mitigates prediction delays and
KV cache transfer latency in the LLM decoding stage. 3) Experiments demonstrate that our approach
achieves 13× KV cache compression with comparable LLM performance and 5.6× speedup to full
cache offloading.
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2 Related works

2.1 Efficient LLM Inference

Several efforts have optimized pre-trained model inference efficiency from different perspectives.
Speculative decoding methods [20–24] use smaller draft models to predict multiple future tokens
for parallel validation by a target LLM. In contrast, our approach instead predicts the next token’s
attention scores to estimate KV cache compression. Inference systems [25–29] accelerate the
prefilling stage with techniques like prefix cache. AttentionPredictor is compatible with them, for it
is applied to the decoding stage. At the same time, our block-based sparsification can also be applied
to paged attention [25] and other computational accelerations.

2.2 KV Cache Compression

Many methods compress the KV cache by leveraging the finding that attention scores are sparse,
which allows for estimated sparse computation on high-score positions.

Cache eviction. These methods use heuristic approaches to identify key-value pairs of high im-
portance and evict the less relevant ones. StreamingLLM [12] observes that the earliest tokens
have high attention scores during inference, so it only retains the initial and the recent few tokens.
H2O [11] accumulates all historical attention scores as an estimation, but suffers from the accu-
mulation error of scores from the first few tokens being too frequent. SnapKV [13] accumulates
attention scores within a recent window as an estimate and performs one-time filtering during the
prefill stage. MInference [16] and FlexPrefill [30] inductively define several attention patterns and
determine the compression strategy for each head to accelerate the prefilling stage. All these methods
are heuristic-based and statistically model attention patterns. They struggle to capture the dynamic
temporal patterns within attention scores accurately.

Cache retrieval. These methods, such as Quest [31], InfLLM [32], and PQCache [33], retrieve
critical tokens by estimating attention weights over compressed key representations. However, such
compression can degrade fidelity and introduce retrieval errors. In particular, Quest is sensitive to the
page size, and the accuracy significantly drops with large page sizes and small budgets, as shown in
Figure 8. Instead, our method employs a lightweight temporal predictor to estimate attention weights
directly, yielding higher retrieval accuracy. Other methods involving KV cache quantization [18, 34–
36] and KV cache budget allocation [37, 8, 38, 39] are orthogonal to our token scoring approach and
can be combined with our AttentionPredictor.

Training-based Approaches. Recently, a number of training-based cache compression approaches
have been proposed. MoBA [40] extends the cache retrieval method by integrating sparse attention
during training. Similarly, SeerAttention [14] and NSA [41] both train linear models to encode and
retrieve key blocks more accurately. However, these approaches typically require training a separate
model for each layer, which limits their scalability and generalization. In contrast, our framework
employs a single plug-and-play module that can be applied uniformly to all layers and heads within
the same LLM. Our model is only 0.02% the size of SeerAttention. Moreover, whereas NSA relies on
the fine-tuning of LLMs to achieve optimal results, our method achieves comparable improvements
without any additional fine-tuning, making it both more efficient and broadly applicable.

KV cache cross-layer prefetching. These methods hide part of the cache transfer time based on
offloading the cache to the CPU. However, as the sequence length increases, the transfer time is too
long to be hidden. InfiniGen [19] combines cache retrieval and prefetching by approximating the
attention score for the next layer to load the critical cache. However, the estimation time increases
significantly as the sequence grows, and the inference time for a single layer is insufficient to cover
this. In contrast, our cross-token prefetching framework can hide longer estimation and transfer time
within the per-token inference time.

3 Method

In this section, we introduce AttentionPredictor, the first learning-based method to directly predict
attention patterns for KV cache compression and attention sparsity., along with the cross-token
prefetch framework for improved cache management. We begin with the problem formulation for
attention prediction in Section 3.2, followed by the observation and theoretical analysis of temporal
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attention patterns in Section 3.3. Then we introduce our novel AttentionPredictor in Section 3.4.
Finally, Section 3.5 presents a cross-token prefetch framework that efficiently hides both evaluation
and cache loading latencies.

3.1 Preliminary

In the language model decoding stage, we denote Qt ∈ R1×d, K ∈ Rt×d as the query tensor
and key tensor used for generate token t, respectively. Specifically, we denote Ki ∈ R1×d, where
i ∈ {1, 2, . . . , t}, as the key tensor for token i, and K = K1:t as the complete key tensor. The
attention score at step t is calculated as: At = Softmax

(
1√
d
QtK

⊤
)
= [at,1, at,2, . . . , at,t] ∈ R1×t.

The sparsity-based KV cache compression seeks to find a subset of keys with budget B that preserves
the most important attention values. Specifically, the subset of key indices is S = {s1, s2, ..., sB},
where each sj is an index within the total t tokens. We define the attention recovery rate as:

Rrec =

∑B
j=1 at,sj

||At||1
, (1)

which reflects the amount of information preserved after compression. A higher recovery rate Rrec

indicates less information loss caused by KV cache compression. Therefore, the goal of KV cache
compression can be formulated as finding the index set S that maximizes Rrec.

3.2 Problem Formulation

Accurate next-step attention score modeling is critical to maintain high attention recovery rate with
limited KV tokens and improve final LLM generation performance with KV cache compression.
Therefore, KV Cache compression with token selection can be formulated as attention score pre-
diction, which is a two-dimensional (2D) time series prediction problem. Specifically, we predict
the attention in step t+1 as Ât+1 and select the critical token positions with S = TopB(Ât+1). Since
stacking attention vectors over time yields a 2D spatiotemporal attention map At = ⟨Ai⟩ti=1, where
the temporal axis corresponds to decoding steps and the spatial axis corresponds to token positions in
context as Figure 1. We can thus frame attention score prediction as a time series prediction problem.
The input to our predictor is a 2D spatiotemporal sequenceAH = ⟨Acomp

i ⟩ti=t−H+1, representing the
H most recent block-wise compressed attention scores, where Acomp

i is generated via max-pooling
on the original attention score Ai (detailed in Sec. 3.4). We then train a lightweight model to predict
the attention scores for step t+ 1 as Ât+1 = F(AH), where F(·) denotes the model function.

3.3 Attention Temporal Patterns

Figure 2: Visualization of three predictable tempo-
ral attention patterns. Re-access shows repeated
attention to specific tokens. Sequential shows at-
tention progresses toward the next tokens. Sea-
sonal exhibits periodic recurrence as alternating
bands of high and uniform attention scores.

Observation. We observe that attention exhibits
consistent and structured temporal behaviors,
which we term attention patterns. At a local
level, these patterns are remarkably stable. We
have identified three fundamental patterns that
reflect strong invariances under spatiotemporal
shifts. However, these patterns reveal a complex
dynamic globally, exhibiting long-term evolu-
tion. To fully understand this dynamic, we will
first provide an analysis of the stable patterns.

Three Attention Patterns. Our work is moti-
vated by the observation that attention exhibits
three distinct temporal patterns—re-access, se-
quential, and seasonal, as shown in Figure 2. These patterns collectively suggest that attention
evolves with both temporal continuity and structural regularity across tokens. We unify the three
local spatiotemporal attention patterns to the following approximate invariance under joint temporal
and spatial shifts:

at,i ≈ at+δt,i+δi , (2)
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where and δt and δi represent temporal and spatial offsets, respectively. (1) The re-access pattern
corresponds to (δt = 1, δi = 0), where the model repeatedly attends to the same tokens. (2) The se-
quential pattern corresponds to (δt = 1, δi = 1), reflecting progressive token-wise attention. (3) The
seasonal pattern corresponds to (δt > 1, δi = 0), indicating periodic recurrence of attention to fixed
positions. While our re-access and sequential patterns resemble shapes defined in MInference [16],
our time-series analysis also reveals a novel seasonal pattern, and our dynamic predictor improves
prediction accuracy by 5% over fixed-template approaches (see Appendix C.10).

To better understand why attention follows spatiotemporal patterns, we investigate the underlying
theoretical mechanisms. We find out that the high continuity between queries and position embedding
plays a central role in shaping attention behavior.

High Query Self-similarity. We observe that the query embedding sequence {qi}ti=1 exhibits strong
temporal self-similarity, which is consistent with prior findings in [19]. Specifically, the one-step
cosine autocorrelation is 0.87 as detailed in Appendix A.1, indicating a high degree of alignment
between queries. As only the most recent KV cache is updated, high query self-similarity indicates
high stability of the attention score over consecutive time steps, which is highly predictable.

For theoretical clarity, we define the raw attention scores as Ãt = qtk
⊤
1:t omitting both the 1/

√
d

factor and the softmax. This allows us to focus on the underlying structure of attention logits, as
softmax is a monotonic function and does not alter the relative ranking of attention weights. For step
t+ 1, supposing the query vector evolves as qt+1 = qt +∆q , the attention at step t+ 1 is:

Ãt+1 = qt+1k
⊤
1:t+1 = (qt +∆q)[k1:t | kt+1]

⊤ = qtk
⊤
1:t +∆qk⊤1:t + (qt +∆q)k⊤t+1 (3)

Focusing on the first t entries of Ãt+1, we obtain:

Ãt+1[1 : t] = qtk
⊤
1:t +∆qk⊤1:t = Ãt +∆Ã, (4)

where ∆Ã = ∆qk⊤1:t. Noting that ∥∆q∥ is small due to the high autocorrelation, and the key matrix
k1:t remains relatively stable, the term ∆Ã is of small magnitude in norm:

∥∆Ã∥ ≤ ∥∆q∥ · ∥Ki∥

Therefore, Ãt ≈ Ãt+1 holds pointwise to a good approximation when the query exhibits high
self-similarity. This implies that the relative ranking and distribution of attention weights over past
tokens change slowly across decoding steps. In other words, attention exhibits temporal smoothness
and inter-step consistency, which form the basis of the observed re-access and sequential patterns.

Position Embedding. The attention patterns are closely related to position embedding, particularly
Rotary Positional Embedding (RoPE), which applies position-dependent rotations to queries and
keys. In RoPE, the query and key vectors are partitioned into d/2 groups along dimensions and apply
rotational matrices with different frequencies θ to each group. The attention weights are calculated
with RoPE encoding as [17, 42]:

RoPE(qi)⊤RoPE(kj) =
d/2∑
m=1

⟨q(m)
i , R((j − i)θm) k

(m)
j ⟩

=

d/2∑
m=1

∥q(m)
i ∥ ∥k(m)

j ∥ cos
(
ϕ(m) + (j − i)θm

)
,

(5)

where q
(m)
i , k

(m)
j ∈ R2 denote the components of qi and kj in the m-th group, θm is the frequency

parameter, and ϕ(m) is the angle between q
(m)
i and k

(m)
j . For the query and key are stable across

steps, the formulation reveals that the inner product depends primarily on the relative position
j − i. When j − i = ∆ is fixed, the cosine terms remain stable across decoding steps, producing
consistent attention along diagonals, showing as the sequential pattern. Furthermore, the periodicity
of the cosine function explains the periodic slashes of sequential patterns observed in Figure 2.

Dynamic Patterns. These foundational patterns are not static and exhibit dynamic evolution even
within a single generation sequence. As the decoding process progresses, patterns can shift, appear,
or fade as illustrated in Figure 2. This dynamism is driven by the decay of query-key similarity from
inherent query shifting, and is especially evident in long-output tasks like reasoning.
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Figure 3: Overview of AttentionPredictor and cross-token prefetching framework. (a) Attention-
Predictor formulates the history attention scores as a spatiotemporal sequence, and predicts the
attention at the next step with a pre-trained model. To enhance efficiency, the attention history is
updated in a compressed form at each decoding step. (b) The cross-token prefetching framework
asynchronously evaluates critical tokens and fetches KV for the next token during the LLM inference,
thereby accelerating the decoding stage.

Predict Attention with Time Series Methods. Since the query similarity and position embedding
are inherent features of LLMs and independent of input, the resulting attention pattern is also inherent
to LLMs. This allows a single shared predictor that can generalize across heads and datasets. For the
pattern also changes as the sequence grows, this dynamic requires the predictor not only to recover
the stable structures but also to adapt to shifts. Building on theoretical insights into attention, we
propose that the pattern can be treated as a two dimensional spatiotemporal process suited to time
series methods. In the next section, we introduce an architecture that uses this view to capture and
forecast the evolution of attention over time.

3.4 AttentionPredictor: A Spatiotemporal Predictor

Overall Process. As shown in Figure 3 and Algorithm 1, AttentionPredictor prepares an attention
history sequence AH in the prefilling stage, and predicts attention during the decoding stage. First,
the At from the LLM is compressed to Acomp

t using block-wise attention compression. Next,
AH is updated with Acomp

t . The next step attention Ât+1 is then predicted with the pretrained
model F . From Ât+1, the top-K positions are selected with a budget of B/b, since Ât+1 is in
compressed form. Finally, the indices are expanded with b to obtain the final critical token indices S.

Algorithm 1 Identify Critical Tokens
Input: Attention scores At, Attention history se-
ries AH , Block size b, KV budget B
Output: Critical KV token indices set S

1: Pad At to the nearest multiple of b with zero
2: Acomp

t ← MaxPooling(At, b)
3: AH ← Concat(AH [−H + 1 :], Acomp

t )

4: Ât+1 ← F(AH)

5: Scomp ← Top-K(Ât+1, B/b)
6: S ←

⋃
i∈Scomp

{i·b, i·b+1, . . . , i·b+(b−1)}
Return KV cache indices set S

Model Design. To capture spatiotemporal fea-
tures, we introduce a convolutional neural net-
work (CNN) composed of two 2D convolution
layers followed by a 1D convolution layer. The
2D convolutions capture spatiotemporal features
at multiple scales, while the 1D convolution fo-
cuses on the time dimension, extracting tem-
poral patterns across time steps. By replacing
the fully connected layer with a 1D convolu-
tion kernel, the model adapts to the increasing
spatial dimension, without data segmentation
or training multiple models. Compared to an
auto-regressive LSTM [43], the CNN is more
lightweight and offers faster predictions, main-
taining a prediction time shorter than the single-token inference latency. Additionally, when compared
to a MLP [44] on time-series dimension, the CNN is more effective at capturing spatial features,
which improves prediction accuracy.

Training Data and Strategy. Our model is both data-efficient and generalizable. We train the model
only on a small subset of attention data, specifically approximately 3% extracted from the dataset.
The model performance on the entire dataset shows our model effectively captures the patterns (see
Section 4.2). Additionally, the temporal patterns of attention are inherent in LLMs, a single model can
generalize well across various datasets. For example, our model trained on LongBench also performs
well on the GSM8K dataset, highlighting the generalization capability of AttentionPredictor.
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Block-wise Attention Compression. To speed up prediction, we apply attention compression before
computation. By taking advantage of the attention’s locality, AttentionPredictor predict attention and
identify critical tokens in blocks. Inspired by Quest [31], we use the maximum attention value in
each block as its representative. Specifically, max-pooling is applied on At with a kernel size equal
to the block size b, as Acomp

t = Maxpooling(At, b), reducing prediction computation to roughly 1/b.

Distribution Error Calibration. Due to the sparsity of attention computation, the distribution of
attention history AH used for prediction may deviate from the distribution of dense attention. This
deviation tends to accumulate over decoding, particularly as the output length increases. To mitigate
this issue and enhance prediction accuracy, we introduce a distribution error calibration technique
to correct these deviations. Specifically, we store the full attention score every M steps, effectively
balancing accuracy with computational efficiency. Note that the full attention is only used to update
the history. During LLM decoding, we still use the sparse KV cache, strictly adhere to the budget.
Additionally, we predict and update the position S every several steps for efficiency.

3.5 KV Cache Cross-token Prefetching

To address the increased memory cost of longer contexts, current LLM systems offload the KV
cache to the CPU, but I/O transfer latency becomes a significant bottleneck in inference. KV cache
prefetching offers a solution by asynchronously loading the sparse cache in advance. We introduce
the cross-token KV cache prefetching framework, which differs from the cross-layer method [19]
by leveraging longer transfer time budgets and enhancing data integration. They are helpful for
improving prediction accuracy with larger models and improving transfering efficiency. Specifically,
our implementation involves a prefetching process for each layer. As illustrated in Figure 3, during
the decoding phase, AttentionPredictor forecasts the critical token indices S for the next step. The
framework then prefetches the sparse KV cache with S for the next step from the full cache to the
GPU. At the same time, LLM inference of other layers is also ongoing. Subsequently, the prefetched
sparse KV cache is used to calculate the sparse attention of the next token. The timeline of cross-token
prefetching can be seen in Figure 10 in Appendix B.1.

4 Experimental Results

4.1 Settings

Tasks. 1) We use the LongBench [45], InfiniteBench [46] and RULER QA [47] dataset for long
context evaluation. LongBench is a widely used benchmark for long-context LLM inference. It
consists of 16 datasets covering 6 tasks, including single- and multi-document QA (SQA and MQA),
summarization, few-shot learning, synthetic tasks, and code completion. The metrics for each task
are in Appendix B.3. InfiniteBench has up to extreme 124K average context length. 2) We employ
the AIME [48] dataset, a tough mathematics dataset, for evaluating the performance of our method
with the long-reasoning output scenario. 3) We use GSM8K math dataset to evaluate the long n-shot
CoT task. 4) We use MMLU [49] and GPQA [50] dataset to evaluate the multi-choice task. 5) We
use the Needle In A Haystack [51] experiment to evaluate the in-context retrieval capabilities.

Baselines and LLMs. We select four sparse attention approaches as our baselines. These include four
cache eviction methods, StreamingLLM [12] and its advanced method Cascading [52], accumulative
approaches H2O [11] and SnapKV [13], and two cache retrieval method Quest [31] and learning-
based SeerAttention [14]. We use the official implementations of all baseline experiments. A
detailed description of each baseline is provided in Appendix B.2. We choose two widely used
long-context models for our evaluation: LongChat-v1.5-7b-32k [53] with 32K context length and
LLaMA-3.1-8B-Instruct [54] with 128K context length.

Implementation details. We set the history step H to 64, the block size b to 16, and the calibration
step M to 5. Performance analysis of these hyperparameters is discussed in Section 4.6. Follow
Quest [31], we did not apply our method or any other algorithms to the first two layers of the LLM.
Following the settings of H2O and StreamingLLM, We allocated the budget equally to the prefix and
local tokens, assigning 64 tokens each. The remaining KV budget is allocated to intermediate tokens,
determined by the prediction model. We conducted experiments on NVIDIA A800 (80GB) GPUs.
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Table 1: The evaluation results on the LongBench dataset across 1K, 2K, and 4K KV cache budgets.

Budget Method SQA MQA Summary Few-shot Synthetic Code Average↑ SQA MQA Summary Few-shot Synthetic Code Average↑
Longchat-v1.5-7b-32k LLaMA-3.1-8B-Instruct

Full Full cache 31.07 23.95 24.70 63.80 15.25 54.86 36.06 43.59 46.00 26.14 68.78 52.29 52.51 48.17

StreamingLLM 22.89 19.84 21.94 60.65 3.75 53.23 30.84 31.73 37.51 21.98 64.69 51.25 51.26 42.35
Cascade 22.66 21.10 19.91 59.84 6.00 9.76 24.80 35.61 38.85 23.93 62.98 51.25 42.58 42.16
H2O+ 26.98 22.38 22.92 61.10 14.00 54.67 33.58 37.00 42.28 24.32 60.81 54.28 52.21 44.25

SnapKV 28.46 23.85 22.98 62.75 14.00 55.84 34.63 40.62 43.30 24.78 67.14 53.81 52.57 46.37
Quest 30.31 21.41 24.60 63.40 17.50 52.47 35.29 42.00 43.87 26.03 66.89 54.53 48.87 46.92

1024

AttentionPredictor 30.18 24.28 24.20 63.81 14.00 54.38 35.62 43.59 45.88 25.87 69.42 53.59 54.69 48.58
StreamingLLM 24.79 20.44 23.62 61.52 5.75 52.62 31.99 34.39 36.61 24.63 64.80 45.13 44.99 41.64

Cascade 24.97 22.84 20.79 62.28 7.00 10.33 26.46 38.43 41.33 24.46 65.30 52.25 43.08 43.98
H2O+ 27.51 22.91 21.51 62.58 14.50 54.66 34.09 40.55 43.78 24.94 65.51 53.36 53.58 46.34

SnapKV 29.77 24.27 23.71 63.53 14.25 56.69 35.50 42.77 44.79 25.31 67.19 53.32 54.35 47.44
Quest 31.64 23.90 24.51 64.43 15.75 53.13 36.14 43.73 44.75 25.91 69.39 54.25 50.01 48.00

2048

AttentionPredictor 30.91 24.37 24.34 64.60 15.25 54.52 36.15 42.78 45.25 26.09 68.26 55.38 51.81 48.04
StreamingLLM 29.63 20.01 23.64 56.18 7.75 55.36 32.36 41.63 38.82 24.44 58.95 41.15 52.27 42.63

Cascade 27.94 22.83 21.40 63.68 8.25 10.29 27.57 41.80 44.33 25.34 66.08 51.59 43.58 45.57
H2O+ 30.07 23.72 21.74 63.16 14.75 54.66 35.06 43.14 45.21 25.52 66.14 53.29 53.61 47.45

SnapKV 30.52 24.35 24.54 63.80 14.50 56.70 35.99 42.87 45.34 25.79 67.63 54.09 53.39 47.84
Quest 30.94 22.98 24.61 64.19 15.50 53.62 35.83 43.46 44.51 25.77 68.23 53.21 50.16 47.59

4096

AttentionPredictor 30.78 24.50 24.65 64.19 14.75 54.85 36.10 43.87 44.57 25.69 69.07 53.38 53.44 48.17

4.2 Main Results

Results on LongBench. We evaluate our method on various long-context tasks in the LongBench
benchmark, with the KV cache budgets ranging from 1024 to 4096. We restrict H2O’s attention
to the past 64 steps to ensure fairness and denote this variant as H2O+. As shown in Table 1,
AttentionPredictor surpasses the performance of all SOTA KV cache eviction and retrieval methods
across various KV budgets and LLMs. Notably, the average performance loss compared to the full
cache is less than 0.5% across all cache budgets. This demonstrates the ability of our method to
effectively model attention patterns and precisely predict the locations of critical tokens. Furthermore,
in an extremely sparse budget setting of 8% (1K/13K), our approach achieves full cache performance,
while all other methods suffer at least a 1.25% reduction. Additional results of SeerAttention,
long-context benchmark InfiniteBench and RULER QA are in Appendix C.2, C.3, and C.4.

1024 2048
KV Cache Budget

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

30.0

46.7

16.7

43.3
53.2

Full Cache (80%)
H2O
Quest
AttentionPredictor

76.7

Figure 4: Evaluation results on the long-
output reasoning task AIME2024 with
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Results on CoT reasoning. Reasoning significantly enhances the problem-solving capabilities of
LLMs. For instance, QwQ-32B achieves an accuracy of 76.7% on the challenging AIME benchmark
with the aid of detailed reasoning. However, generating complex answers leads to output length of
up to 31.5K tokens. This sharply contrasts with typical long-context scenarios, which involve long
inputs but short outputs. Such a shift introduces distinct challenges for KV cache compression during
decoding. Under this demanding setting, we evaluate AttentionPredictor against two decoding-phase
acceleration baselines, H2O and Quest. As shown in Figure 4, AttentionPredictor consistently
outperforms both baselines. It achieves comparable accuracy of 76.7% with a KV budget ratio of
0.13 (2K/15K average), whereas Quest drops sharply to 43.3%. Moreover, our approach attains
this accuracy with an average output of only 15K tokens, offering significantly higher efficiency
compared to H2O (21K) and Quest (20K). Additional results of GSM8K, multi-choice benchmarks
MMLU and GPQA are in Appendix C.1, C.5, and C.6.
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4.3 Needle In A HayStack

We conduct the "Fact Retrieval Across Context Lengths" (Needle In A Haystack) experiment. Our
approach achieved a perfect 100% retrieval accuracy with a 64K-token context and a 1/64 cache
compression ratio, surpassing all existing methods. This outcome underscores the effectiveness of
our method in preserving critical information necessary for accurate retrieval.
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Figure 6: Results of the Fact Retrieval Across Context Lengths (“Needle In A HayStack”) test in
LLaMA-3.1-8B-Instruct with 64k context size in 1024 KV cache size.

4.4 Efficiency

Decode latency. We evaluate decoding latency in a cache offloading setup [55], essential for
long contexts where the KV cache exceeds GPU memory. In this scenario, the standard approach
(FlashAttention2) creates a bottleneck by prefetching the entire KV cache from CPU to GPU, which
our method optimizes. Further details on the setup are in Appendix B.4. As shown in Figure 5, our
method consistently outperforms both FlashAttention2 and H2O across all context lengths. Notably,
at 32K tokens, we achieve a 5.6× acceleration compared to FlashAttention2, demonstrating the
dramatic acceleration enabled by loading only a small fraction of the cache. Moreover, we attain
a 1.6× speedup over the calculation-efficient H2O, showing the effectiveness of our cross-token
prefetch system.

Table 2: Per-layer overhead breakdown
(in ms) of our cache prefetching system,
averaged across all layers.

Context Length 4K 8K 16K 32K
Predict Attention 0.7 1.2 2.3 4.5
Transfer Cache 2.3 3.9 7.6 13.2

Wait for Main LLM 44.4 43.4 39.7 32.3

Total Per-Layer Overhead 47.3 48.6 49.6 50.0

Overload breakdown. Table 2 details the per-layer over-
head of our prefetching system. A key result is that this
total overhead remains remarkably stable, increasing only
from 47.3ms to 50.0ms as context length grows from 4K to
32K. This stability is a core advantage of our asynchronous
design. The growing latency from Predict Attention and
Transfer Cache is effectively hidden by being absorbed
into the Wait for Main LLM period, during which the main
model is busy processing the current token’s inference.
Due to parallel execution across layers, this per-layer over-
head is equivalent to the final per-token latency.

4.5 Prediction Accuracy

Compare with Baselines. We evaluate the prediction accuracy to evaluate our predictor, and
the metric is Rpred

rec /Rtarget
rec . On the three representative tasks—QA, summary, and mathematical

reasoning—with different KV cache budgets, AttentionPredictor consistently achieves a higher
average recovery rate compared to H2O and Quest, as shown in Table 3. This demonstrates that our
method accurately identifies the positions of critical tokens, thereby minimizing information loss.
Notably, with the KV budget of 512, AttentionPredictor shows a significant advantage over Quest,
achieving a 7% higher average recovery rate, emphasizing our robustness under the extremely high
(20×) compression ratio.

Generalization across datasets. We evaluate our model’s generalization by training exclusively
on a single dataset and then evaluating prediction accuracy on all remaining, unseen tasks within
LongBench. As shown in Figure 7, the model consistently achieves over 95% accuracy across every
task, demonstrating strong cross-task transferability and generalization.
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Table 3: The attention prediction accuracy
(%) across different cache sizes.

Llama-3.1-8B
KV Budget Method QA Summary Math Average

H2O 85.90 87.89 93.89 89.23
Quest 86.84 80.15 83.15 83.38512

AttentionPredictor 91.07 88.30 93.40 90.93
H2O 89.79 89.92 95.40 91.70
Quest 91.87 87.26 89.29 89.471024

AttentionPredictor 94.95 91.72 96.10 94.25
H2O 93.82 92.61 97.09 94.51
Quest 95.69 92.35 94.27 94.102048

AttentionPredictor 97.36 94.63 97.84 96.61
H2O 97.37 95.65 98.75 97.26
Quest 98.16 96.10 97.83 97.364096

AttentionPredictor 98.86 97.07 99.04 98.33
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Figure 7: The prediction accuracy (%) of dif-
ferent dataset from LongBench.

4.6 Ablation Study

The effects of hyperparameter block size on AttentionPredictor performance are studied. Other
hyperparameters, predictor structure and training efficiency are shown in App. C.8, C.7, and D.1.
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Figure 8: Evaluation of Block Size
on Longchat with LongBench.

Block size b. Figure 8 shows that AttentionPredictor maintains
superior average performance with block sizes 8-64. While
larger block sizes degrade performance from coarser token po-
sitioning, AttentionPredictor declines more mildly than Quest’s
block-wise KV cache retrieval. Quest’s performance drop may
stem from losing total attention score information when its min-
max based per-block attention score upper bound estimation
is used for retrieval, causing inaccurate block identification.
In contrast, AttentionPredictor accurately captures attention
patterns, improving critical block identification and mitigating block-wise retrieval drawbacks.

5 Conclusion

We present AttentionPredictor, the first learning-based method to directly predict attention patterns for
KV compression and attention sparsity method. With a lightweight convolution model, AttentionPre-
dictor captures spatiotemporal patterns of attention score and predicts the next-token attention score
accurately. Additionally, we propose the first cross-token prefetching framework, which effectively
mitigates prediction and transfer delays in the LLM decoding stage. Experiments on the long-context
datasets demonstrate that AttentionPredictor achieves 13× KV cache compression and 5.6× speedup
with comparable accuracy of LLM.
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A High Similarity of Queries and Keys

A.1 Qeury Similarity

Our model predicts the attention at step t+ 1 from a recent history. Since the temporal dimension
corresponds to the query sequence (one query per step), the similarity between adjacent queries (qt
and qt+1) is the most critical factor for demonstrating step-by-step temporal continuity. Therefore,
we evaluate the similarity of consecutive queries. Specifically, we extract query data from LLM using
LongBench and compute the cosine autocorrelation of adjacent queries with a lag of 1:

ρ(1) =
1

t− 1

t−1∑
i=1

⟨qi, qi+1⟩
∥qi∥ · ∥qi+1∥

,

As shown in Figure 9, the heatmap illustrates the query similarity across each layer and head of
the LLM. The average similarity is 86% for Longchat and 87% for LLaMA-3.1, indicating strong
continuity. Furthermore, the similarity in LLaMA is more consistent across layers, while Longchat
shows higher similarity in the shallower layers.
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Figure 9: Query similarity of Longchat and LLaMA-3.1.

Table 4: Self similarity of query and key over different distances.
Distance 1 2 5 10 20 50

Query Similarity 0.87 0.83 0.80 0.78 0.77 0.76
Key Similarity 0.82 0.77 0.74 0.72 0.71 0.67

To provide a more detailed analysis of the similarity of queries at a far distance, we measure the
average query cosine similarity across various distances (lags). The results are presented in Table 4.
The query similarity gradually decreases as the distance increases, which is expected. However,
the similarity remains relatively high even at longer distances. This finding suggests that while the
influence of the most recent tokens is strongest, the attention patterns exhibit a strong local stability
that decays slowly over time. This supports our model’s effectiveness in capturing these evolving yet
persistent patterns using a recent history window.

A.2 Key Similarity

In addition to queries, we also investigate the similarity of keys over time. When analyzing the atten-
tion scores between pairs such as At,i and At+1,i, both attend to the same position i. Consequently,
the keys involved in the two computations are exactly the same (ki), and therefore no issue of key
self-similarity arises in this case.

In contrast, when analyzing patterns like the "Periodic Slashes" pattern, the comparison involves
pairs such as At,i and At+1,i+1, where the attention scores are influenced by different keys (ki and
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ki+1). In this case, the self-similarity of keys becomes relevant. To quantify this, we compute the
cosine similarity between keys at different positions with various lags:

ρ(τ) =
1

t− τ

t−τ∑
i=1

⟨ki, ki+τ ⟩
∥ki∥ · ∥ki+τ∥

, τ ≥ 1,

where τ denotes the distance between keys. The results are also presented in Table 4, and we can find
that they indeed exhibit strong self-similarity. These consistently high similarity values indicate that
keys vary slowly over time. Our findings are also consistent with prior works such as KIVI [34] and
KVQuant [35], which reported that keys often contain fixed, massive channels, suggesting limited
variation across positions.

B Implement Details

B.1 Implement Details of AttentionPredictor

Model Architecture Details. The architecture of the CNN-based AttentionPredictor model is
summarized in Table 5. This design ensures efficiency and adaptability to varying sequence lengths,
while maintaining sufficient capacity to capture temporal patterns.

Table 5: CNN-based AttentionPredictor Architecture.
Layer No. Layer Type Details

1 2D Convolution Kernel: (3,3), Padding: 1, Channels: 1→ 16
2 ReLU Activation -
3 2D Convolution Kernel: (3,3), Padding: 1, Channels: 16→ 32
4 ReLU Activation -
5 Adaptive Avg. Pooling Collapses temporal history dimension to size 1
6 1D Convolution Kernel: 1, Channels: 32→ 1

Training Details. We capture the attention scores during full-cache inference as raw data. We
package the attention scores of H steps, together with the (H + 1)-th step’s score, as input-output
pairs. The training data is block-compressed to align with the usage during LLM model inference.
Specifically, the input history attention is AH ∈ RH× t

b padding with zero for short attentions and the
output attention score is C ∈ R1× t

b . Attention scores with insufficient lengths are padded with zeros
at the end to ensure that all data within a package has the same length. For the attention at step t+ 1,
we only predict the first t positions because the last position is derived from the newly generated key,
which does not need to be compressed or transferred. Notably, only the attention scores from the
decoding phase are used as output data. As a result, the training dataset includes the final H steps
of the pre-filling attention and all attention scores from the decoding stage. To train the model, we
calculate the discrepancy between the predicted and real attention scores using mean squared error
(MSE) loss. The training epoch is set to 30, and we select the model with the best attention prediction
accuracy as shown in Equation 1.

Cross-token Prefetching. We leverage GPU parallel streams and CPU multi-threading to parallelize
the token retrieval and cache transfer across different layers. Consistent with the main experiment,
we maintain uncompressed caches for the first two layers to ensure higher inference accuracy. The
timeline of prefetching framework is in Figure 10.

B.2 Implement Details of Baselines

Our experiments are based on LLMs using 16-bit floating points, and we utilize FlashAttention2 [56]
during the prefilling stage to reduce GPU memory consumption. Since FlashAttention2 does not
output intermediate attention scores, for methods that rely on historical attention, we additionally
compute partial prefill attention to obtain the scores. Our batch size is fixed at 1. For all baselines, we
use the official code implementations to ensure the effectiveness of the methods. Additionally, for all
methods, we skip compress the first two layers of the LLM.
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Figure 10: Timeline of our proposed cross-token prefetching. By asynchronously loading the
critical KV cache for the next token, our framework hides the token evaluation and transfer latency,
accelerating the decoding stage of LLM inference.

• StreamingLLM [12] finds that the sink token is very important, so it retains the initial and
the most recent few tokens. For StreamingLLM, we evenly distribute the budget between
sink tokens and local tokens.

• H2O [11] accumulates all historical attention scores as an estimation. We evenly distribute
the budget between the heavy budget and the recent budget. Since computing the full
historical data can cause OOM with longer inputs, we use the last 64 steps of historical
information to calculate the heavy hitters, and denote this as H2O+. Note that accumulating
all prefill attention scores causes H2O to focus on initial tokens, so this is an improvement
to the method’s effectiveness.

• SnapKV [13] accumulates attention scores within a recent window as an estimate and
performs one-time filtering during the prefill stage. We set the time window to a size of 64
to align with our method. Since SnapKV only performs cache compression once during the
prefill stage, the number of KV tokens it uses continues to grow during decoding, resulting
in a relatively lower compression ratio compared to other methods.

• Quest [31] uses the current query and paged key to approximate the attention score. We
use a chunk size of 16, corresponding to the block size in our method, which is also the
parameter value used in the original paper.

B.3 Details of LongBench Dataset

LongBench [45] is a carefully crafted benchmark suite designed to evaluate the capabilities of
language models in processing extended documents and complex information sequences. It was
developed for multi-task assessment of long-context inputs. The details of the metrics, number of
words, language, and data used in LongBench are presented in Table 6.

B.4 Details of Efficiency Experiment Setup

Our efficiency evaluation is conducted under the cache offloading scenario, which is essential for
long-context generation when the KV cache size exceeds the available GPU memory. Unlike GPU-
based eviction/compression, offloading keeps the full cache on CPU, preserving model accuracy.
This setting is also adopted in recent works [32, 19, 33].

We conduct experiments under this offloading setup on FlashAttention2, H2O, and our proposed
AttentionPredictor:

• FlashAttention2 [56]: We utilize the standard KV cache offloading implementation provided
by the Hugging Face library. In this setup, at each decoding layer, the entire KV cache for
the upcoming layers is prefetched from CPU to GPU to compute the full attention.

• H2O [11]: Also uses cross-layer prefetching but transfers sparse KV cache, making the
comparison a more direct evaluation of the prefetching framework’s efficiency.

• AttentionPredictor: Runs on an offloading setup but prefetches across tokens, improving
efficiency.
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Table 6: An overview of the dataset statistics in LongBench. ’Source’ denotes the origin of the
context. ’Avg len’ refers to the average number of words, which is shorter than the token length after
tokenization. ’Accuracy (CLS)’ refers to classification accuracy, while ’Accuracy (EM)’ refers to
exact match accuracy.

Dataset Source Avg len Metric Language #data
Single-Document QA
NarrativeQA Literature, Film 18,409 F1 English 200
Qasper Science 3,619 F1 English 200
MultiFieldQA-en Multi-field 4,559 F1 English 150

Multi-Document QA
HotpotQA Wikipedia 9,151 F1 English 200
2WikiMultihopQA Wikipedia 4,887 F1 English 200
MuSiQue Wikipedia 11,214 F1 English 200

Summarization
GovReport Government report 8,734 Rouge-L English 200
QMSum Meeting 10,614 Rouge-L English 200
MultiNews News 2,113 Rouge-L English 200

Few-shot Learning
TREC Web question 5,177 Accuracy (CLS) English 200
TriviaQA Wikipedia, Web 8,209 F1 English 200
SAMSum Dialogue 6,258 Rouge-L English 200

Synthetic Task
PassageCount Wikipedia 11,141 Accuracy (EM) English 200
PassageRetrieval-en Wikipedia 9,289 Accuracy (EM) English 200

Code Completion
LCC Github 1,235 Edit Sim Python/C#/Java 500
RepoBench-P Github repository 4,206 Edit Sim Python/Java 500

C Additional Experimental Results on Accuracy

C.1 Results on Long N-shot CoT GSM8K.

We evaluate the reasoning task under a long-input scenario, which is different with long output
scenario in Section 4.2. As shown in Table 7, we evaluate our method on the mathematical reasoning
dataset GSM8K with LLaMA-3.1.

To simulate CoT tasks within long-context, we increased the number of few-shot examples. Specifi-
cally, we randomly selected a fixed number of questions and standard CoT answer pairs as prompts,
along with the questions to be tested. We chose 25, 47, and 97 few-shot examples, resulting in input
lengths of approximately 4K, 8K, and 16K tokens respectively. The few-shot data were sourced from
the GSM8K training set. Since the test set does not overlap with the training set, the answers remain
undisclosed to the LLM.

Unlike long-context tasks LongBench, CoT mathematical reasoning tasks present distinct challenges.
For example, the retrieval-based SOTA method, Quest, excels on long-context benchmarks but
performs poorly on CoT tasks, showing a 16.91% accuracy drop at a sequence length of 16K. In
contrast, AttentionPredictor achieves a significantly smaller accuracy loss of just 0.91%. Moreover,
across all sequence lengths, our method outperforms baselines in most cases.

Table 7: Evaluation results on the long n-shot CoT GSM8K task with different input context lengths
with Llama-3.1-8B-Instruct.

GSM8K+LLaMA-3.1

Method Budget Prompt length
4K 8K 16K Average

Full cache Full 56.79 55.27 54.13 55.40

StreamingLLM 1K 54.74 49.96 50.94 51.88
H2O+ 1K 57.16 52.01 52.16 53.78
Quest 1K 48.52 45.26 37.22 43.67

SnapKV 1K 53.45 48.67 49.20 50.44
AttentionPredictor 1K 56.48 53.30 53.22 54.33
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Table 8: The detailed evaluation results from LongBench of all tasks. Since the official pre-trained
model of SeerAttention for LongChat is unavailable, we only evaluate its performance on LLaMA-
3.1-8B-Instruct.

Single-DocumentQA Multi-DocumentQA Summary Few-shot Learning Synthetic Code

Budget Method NrtvQA

Qasper

M
F-en

HotpotQA

2W
ikiM

QA

M
usique

GovReport

QM
Sum

M
ultiNews

TREC

TriviaQA

SAM
Sum

PCount
PRe

Lcc
RB-P

Average↑

Longchat-v1.5-7b-32k
Full Full cache 20.70 29.41 43.09 33.05 24.14 14.66 30.84 22.79 26.61 66.50 83.99 40.90 0.00 30.50 52.94 56.78 36.06

StreamingLLM 15.03 17.71 27.14 27.00 21.52 9.09 21.51 19.39 21.97 55.00 81.07 37.07 0.50 5.00 46.40 53.05 28.65
Cascade 16.56 19.02 24.16 25.57 22.13 7.88 11.76 19.50 15.77 51.50 82.44 36.73 1.00 7.50 6.07 12.45 22.50
H2O+ 19.01 24.00 33.08 30.60 22.47 12.23 21.01 21.59 22.07 50.50 83.42 39.62 0.00 27.50 51.35 54.63 32.07

SnapKV 18.73 25.21 38.18 33.26 23.79 13.27 21.84 21.15 22.58 59.00 84.20 38.41 0.00 25.50 54.39 57.43 33.56
Quest 16.80 31.43 38.01 27.95 23.73 10.03 27.91 22.58 25.68 60.50 81.27 39.95 0.00 41.50 51.95 50.22 34.34

512

AttentionPredictor 17.69 28.49 41.63 34.13 23.67 14.18 28.40 21.82 25.52 64.00 84.66 40.56 1.00 25.50 54.42 55.89 35.10
StreamingLLM 16.30 20.06 32.30 28.60 21.37 9.56 25.52 20.36 23.51 60.50 82.15 39.29 1.50 6.00 52.74 53.71 30.84

Cascade 19.30 21.21 27.47 30.24 22.29 10.78 14.60 20.63 19.19 57.00 83.43 39.10 2.50 9.50 6.69 12.83 24.80
H2O+ 18.92 24.65 37.38 32.40 22.28 12.46 22.72 21.62 24.22 59.00 84.39 39.90 0.00 28.00 53.74 55.60 33.58

SnapKV 19.46 26.97 38.96 34.01 23.22 14.33 23.17 21.46 24.50 64.00 84.33 39.93 0.00 28.00 53.96 57.72 34.63
Quest 18.51 31.09 41.32 29.92 22.95 11.35 30.16 22.67 26.52 66.00 83.35 40.86 0.00 35.00 50.77 54.16 35.29

1024

AttentionPredictor 19.36 29.50 41.67 33.64 24.30 14.91 29.92 22.30 26.09 66.00 84.85 40.58 0.00 28.00 52.22 56.54 35.62
StreamingLLM 15.52 22.66 36.20 29.03 22.15 10.13 27.59 21.04 26.20 64.00 81.93 38.62 2.00 9.50 49.78 55.46 31.99

Cascade 19.49 24.80 30.63 33.48 22.68 12.37 16.82 20.82 20.76 63.00 83.51 40.32 3.00 11.00 7.28 13.38 26.46
H2O+ 19.10 26.62 36.82 33.23 22.66 12.83 25.13 21.93 21.09 62.50 84.65 40.60 0.00 29.00 53.33 55.99 34.09

SnapKV 20.02 28.69 40.61 34.13 24.02 14.67 26.05 21.82 25.59 65.00 84.71 40.89 0.00 28.50 54.93 58.44 35.50
Quest 19.12 32.08 43.72 31.91 24.97 14.83 31.56 22.65 26.36 66.50 85.09 41.69 0.00 31.50 50.53 55.73 36.14

2048

AttentionPredictor 20.07 30.06 42.60 34.26 24.20 14.64 30.53 22.07 26.61 67.00 84.94 41.86 0.00 30.50 52.45 56.59 36.15
StreamingLLM 19.45 27.90 41.53 28.54 20.50 10.99 26.86 20.73 26.54 58.00 75.71 34.82 2.50 13.00 54.31 56.41 32.36

Cascade 20.47 27.98 35.38 32.45 23.90 12.15 17.87 21.33 21.46 64.50 84.99 41.55 0.50 16.00 7.48 13.09 27.57
H2O+ 20.53 28.28 41.41 32.78 23.87 14.52 27.81 21.76 21.71 64.50 84.09 40.90 0.00 29.50 52.71 56.61 35.06

SnapKV 20.30 28.90 42.36 33.49 24.46 15.11 28.37 22.54 26.54 66.00 84.19 41.20 0.00 29.00 54.70 58.69 35.99
Quest 19.67 29.26 43.90 32.72 23.61 12.61 31.49 22.95 26.27 67.00 84.38 41.18 0.00 31.00 51.62 55.61 35.83

4096

AttentionPredictor 20.12 29.33 42.88 34.12 24.27 15.10 30.74 22.70 26.59 67.00 84.14 41.42 0.00 29.50 53.00 56.69 36.10
LLaMA-3.1-8B-Instruct

Full Full cache 29.28 45.36 56.12 56.67 48.90 32.43 33.77 25.20 27.08 74.00 91.48 40.85 5.07 99.50 56.86 48.15 48.17

StreamingLLM 22.49 24.93 38.64 48.48 41.41 29.43 24.08 20.24 23.38 58.50 81.60 38.22 8.00 98.50 55.32 45.49 41.17
Cascade 25.49 30.09 39.83 52.05 44.75 22.92 24.16 21.49 24.57 48.00 87.49 40.61 8.50 94.50 45.58 36.33 40.40
H2O+ 25.93 29.59 45.53 50.59 45.75 29.24 24.50 23.28 23.56 48.50 88.90 41.39 8.16 99.50 56.06 47.88 43.02

SnapKV 26.51 39.81 52.05 54.60 46.31 26.92 24.27 23.22 24.16 65.50 90.93 40.31 4.39 99.00 55.66 46.64 45.02
SeerAttention 20.46 43.07 52.82 48.86 41.54 26.32 29.86 22.88 26.37 61.50 88.10 42.51 4.50 54.00 40.49 33.32 39.79

Quest 25.82 44.01 53.99 58.08 43.96 28.84 32.90 24.50 26.80 70.00 88.55 39.42 11.16 99.50 51.65 42.03 46.33

512

AttentionPredictor 27.53 43.92 56.58 57.78 45.30 27.00 30.21 24.92 26.54 67.50 92.28 40.45 7.50 99.50 59.11 46.81 47.06
StreamingLLM 24.69 27.84 42.65 48.20 37.82 26.50 26.80 21.55 22.40 64.00 89.42 40.65 8.00 94.50 56.18 46.33 42.35

Cascade 27.14 37.17 42.51 53.06 37.75 25.73 26.74 22.25 25.61 58.50 89.70 40.73 6.50 96.00 46.88 38.27 42.16
H2O+ 26.24 36.30 48.47 53.97 45.78 27.08 26.11 23.59 25.05 53.00 88.54 40.88 9.05 99.50 55.20 49.22 44.25

SnapKV 27.63 41.86 52.37 55.83 46.39 27.69 26.39 24.06 25.49 70.00 90.66 40.76 8.12 99.50 55.55 49.58 46.37
SeerAttention 23.64 46.13 54.41 54.61 38.78 28.13 31.47 24.28 26.69 65.50 89.21 41.79 6.00 82.00 45.97 35.49 43.38

Quest 27.46 43.58 54.95 57.22 44.53 29.86 33.64 25.37 26.68 72.00 88.61 40.05 9.55 99.50 53.92 43.82 46.92

1024

AttentionPredictor 28.30 46.66 55.81 56.87 50.67 30.10 32.34 25.08 26.66 74.00 92.11 42.15 7.17 100.00 59.12 50.26 48.58
StreamingLLM 25.79 32.35 45.03 49.84 36.71 23.29 29.31 22.43 26.83 69.00 86.87 38.53 7.25 83.00 43.32 46.66 41.64

Cascade 28.49 40.74 46.05 51.86 45.54 26.58 28.98 22.42 26.49 63.50 90.55 41.85 10.50 94.00 47.03 39.13 43.98
H2O+ 28.07 40.35 53.22 54.81 44.75 31.77 28.20 23.50 26.37 64.50 90.71 41.32 6.71 100.00 57.97 49.19 46.34

SnapKV 28.00 45.34 54.98 57.97 45.89 30.50 28.92 24.29 26.32 71.50 89.36 40.71 6.64 100.00 58.79 49.90 47.44
SeerAttention 27.56 46.05 55.70 55.83 47.07 29.09 32.02 24.25 26.82 68.50 88.24 40.14 6.00 93.50 46.94 37.74 45.34

Quest 29.25 46.05 55.90 57.91 45.51 30.82 34.05 24.89 26.93 74.00 92.41 41.77 8.50 100.00 54.29 45.72 48.00

2048

AttentionPredictor 29.52 45.72 54.20 56.50 46.93 33.45 33.28 24.68 26.88 72.00 91.79 42.20 10.08 99.50 57.47 49.09 48.33
StreamingLLM 25.88 43.45 55.55 49.90 37.78 28.79 28.13 22.18 26.70 62.00 78.53 36.32 8.29 74.00 58.63 45.91 42.63

Cascade 28.43 46.21 50.77 55.02 47.68 30.29 31.47 23.75 26.93 66.50 90.03 41.70 8.67 94.50 47.14 40.02 45.57
H2O+ 28.37 45.33 55.72 56.27 47.74 31.63 30.91 24.15 26.89 65.50 90.96 41.97 7.08 99.50 57.52 49.70 47.45

SnapKV 29.17 44.03 55.40 56.14 49.01 30.86 31.36 24.73 26.85 72.00 90.31 40.58 8.68 99.50 57.75 49.03 47.84
SeerAttention 30.43 46.06 56.00 55.67 45.73 31.08 32.60 24.49 26.82 68.50 89.44 42.94 10.62 99.50 46.13 39.46 46.59

Quest 29.30 46.43 54.66 55.88 47.01 30.65 34.54 25.23 26.31 71.00 89.76 43.92 6.42 100.00 55.25 45.06 47.59

4096

AttentionPredictor 28.67 47.07 55.87 57.46 48.35 27.91 33.12 24.76 26.62 73.50 90.30 43.40 6.75 100.00 58.03 48.85 48.17

C.2 Additional Results on Longbench Benchmark

Due to space constraints, we presented the test results after aggregating task types in Section 4.2.
Here, we present the individual results for all tasks. The Table 8 shows that our method surpasses
the majority of the SOTAs on most tasks, and the average performance under all budgets and LLMs
exceeds all compared methods, demonstrating the effectiveness of our approach.

SeerAttention utilizes a learnable module to aid cache compression. We use the officially released
SeerAttention model for our tests. Since the official pre-trained model of SeerAttention for LongChat
is unavailable, we evaluate its performance on LLaMA-3.1-8B-Instruct.

Table 8 indicates that our method outperforms SeerAttention, which also employs a learnable module.
In particular, with a cache budget of 512, our method achieves an average accuracy 7.27% higher
than SeerAttention. This could be attributed to SeerAttention encoding keys and queries without
directly modeling attention scores, thus failing to accurately retrieve important token blocks under
extreme resource constraints. Moreover, by employing a single unified model for all LLM layers, our
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approach results in a total model size that is merely 0.02% of SeerAttention’s, further attesting to the
effectiveness of our method.

C.3 Results on InfiniteBench

To evaluate the effectiveness of our proposed method, we conduct experiments on selected tasks
from the InfiniBench [46] benchmark, an extremely long-context benchmark with an average context
length 214K. We use LLaMA-3-8B as the base model and focus on the Math Find and Choice
tasks, which require numerical reasoning and multi-option selection, respectively. We compare our
approach against several state-of-the-art KV compression baselines under an 8K token KV cache
budget.

As shown in Table 9, AttentionPredictor achieves the highest average performance (44.9), outper-
forming Quest (43.4), SnapKV (42.5), and InfLLM (33.7). Notably, on the Math Find task, which
is particularly sensitive to the preservation of precise attention information, our method attains
34.3—significantly higher than all baselines. These results suggest that AttentionPredictor is more
effective at identifying and preserving the most relevant attention information under constrained
memory, enabling better retention of long-range dependencies.

Table 9: Evaluation on InfiniteBench.
InfiniteBench with Llama-3-8B

KV Budget Method Math Find Choice Average
Full Full cache 21.7 44.1 32.9

8K InfLLM [32] 23.7 43.7 33.7
8K SnapKV [13] 27.4 57.6 42.5
8K Quest [31] 32.3 54.5 43.4
8K AttentionPredictor 34.3 55.5 44.9

C.4 Results on RULER QA Benchmark

We further evaluate our method on the RULER QA benchmark [47], which is designed to assess
long-context understanding under varying context lengths and constrained KV cache budgets. The
results are summarized in Table 10. The results demonstrate that with a highly constrained budget
of only 1K tokens, our AttentionPredictor consistently and significantly outperforms the SnapKV
baseline across all tested context lengths.

Table 10: Evaluation results on the RULER QA benchmark with different input context lengths with
Llama-3.1-8B-Instruct.

RULER QA Benchmark with Llama-3.1-8B-Instruct
Context LengthMethod KV Budget 4K 8K 16K

Full cache Full 75.0 73.0 69.0
Snap KV 1K 63.7 71.7 68.0

AttentionPredictor 1K 73.4 71.9 68.8

C.5 Results on MMLU Benchmark

To further assess the effectiveness of our approach, we conduct experiments on the MMLU benchmark
[49]. Since the default evaluation mode in the official lm-eval library is a single-step prediction task,
it does not fully reflect the benefits of our method, which is designed to optimize multi-step decoding.
Therefore, we adopt the cot_fewshot configuration, which applies an n-shot Chain-of-Thought (CoT)
prompting strategy and involves a multi-step reasoning process. This setup provides a more suitable
testbed for evaluating our decoding-stage optimizations.

As shown in Table 11, our proposed AttentionPredictor achieves performance very close to that of the
full-cache model while consistently outperforming the SnapKV baseline under different KV cache
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budgets. These results demonstrate that our method remains effective even on relatively short input
tasks, provided that the decoding process requires multi-step reasoning.

Table 11: Evaluation results on the MMLU benchmark with few-shot CoT.
MMLU Benchmark with Llama-3.1-8B-Instruct

Method Budget
512 1024

Full cache 67.17 67.17
Snap KV 65.60 66.17

AttentionPredictor 66.27 66.64

C.6 Results on GPQA Benchmark

To further validate our approach on expert-level tasks, we also tested it on the GPQA benchmark [50].
GPQA is a challenging dataset of graduate-level multiple-choice questions curated by domain experts
across biology, physics, chemistry, and philosophy. It is similar in format to MMLU but significantly
more difficult, requiring deep expert-level reasoning.

As shown in Table 12, our method again proves effective, maintaining high accuracy in a scenario
requiring deep reasoning.

Table 12: Evaluation results on the GPQA benchmark with n-shot CoT.
Method Budget 5-shot 10-shot 15-shot Average
Llama-3.1-8B-Instruct Full 31.31 37.88 31.31 33.50
SnapKV 1K 22.73 29.80 23.23 25.25
AttentionPredictor 1K 31.31 33.33 31.82 32.15

C.7 Prediction Model

Table 13: Prediction accuracy and
parameter numbers of different
model implementations.

LongBench+Longchat
Model type Total params Recovery rate
MLP 49K 92.88
LSTM-block 3.2M 91.75
CNN-block 21K 91.94
CNN 4.9K 93.65

Our prediction task can be framed as modeling spatio-temporal
information inherent in the token sequences, a problem for
which various architectures have been explored [43, 44, 57, 58].
We evaluate the performance of various prediction model im-
plementations. MLP is applied to the sequence dimension to
handle variations in token length. For LSTM, attention is di-
vided into 16 width blocks and predictions are independent for
each block, referred to as LSTM-block in Table 13. Similarly,
CNN-block utilizes a block-wise prediction approach, employ-
ing a fully connected layer for fixed block lengths. Finally, the
CNN model, as the primary setting in our experiments, predicts
all attention scores simultaneously. As reported in Table 13,
CNN outperforms other models, achieving the highest attention prediction accuracy by effectively
capturing attention patterns. MLP failed to account for neighboring token interactions, while LSTM-
block and CNN-block were restricted to block-level information without global context. Notably,
CNN also required the fewest parameters and was the most memory-efficient during inference.

C.8 Ablation Study Results of Hyperparameters

We evaluate the impact of hyperparameters on our method. Specifically, we train the predictor using
the default parameters of the main experiment, i.e., b = 16, H = 64. We employ full attention without
sparse computation during training, which is equivalent to performing distribution error calibration
at each step, i.e., M = 1. Subsequently, we test the performance under different hyperparameters
using the trained model. Other parameters during testing remain consistent with the main experiment,
with a KV budget of 1K. We evaluate six representative tasks in Longbench. The results are shown in
Table 14.
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Calibration step M . Table 14 shows the average performance of AttentionPredictor with calibration
steps ranging from 1 to 20. Performance improves with shorter calibration intervals, indicating that
the calibration scheme reduces cumulative errors caused by differences between sparse and original
attention distributions. However, higher calibration frequencies increase computational costs, creating
a trade-off between accuracy and efficiency.

History step H . As depicted in Table 14, we evaluate the average accuracy of AttentionPredictor
over a range of history steps. Overall, the performance gap compared to the full cache remains
consistently small. Notably, the middle value of H maximizes performance by providing the
necessary information for pattern recognition, while mitigating redundancy caused by the decaying
self-correlation of attention scores.

Table 14: Results of AttentionPredictor with different hyperparameters.
LongBench+Longchat

Hyperprameter SQA MQA Summary Few-shot Synthetic Code Average
MF-en HotpotQA QMSum TriviaQA Pre Lcc

Full Cache 43.09 33.05 22.79 83.99 30.50 52.94 44.39

History
Step

16 41.83 34.00 22.22 84.45 28.00 51.87 43.73
32 41.60 33.90 22.32 84.81 30.00 52.53 44.19
64 41.67 33.64 22.30 84.85 28.00 52.22 43.78
128 41.51 34.39 22.45 84.35 26.00 52.96 43.61

Calibration
Step

1 42.89 33.27 22.35 84.70 28.50 52.53 44.04
2 42.47 33.61 22.43 84.90 28.00 52.13 43.92
5 41.67 33.64 22.30 84.85 28.00 52.22 43.78

10 41.10 33.87 22.37 84.85 28.00 52.36 43.76
20 41.54 33.99 22.12 84.90 28.00 52.50 43.84

Block
Size

8 43.09 34.61 22.38 85.29 28.00 52.76 44.36
16 41.67 33.64 22.30 84.85 28.00 52.22 43.78
32 40.85 34.47 22.46 84.87 25.00 53.02 43.45
64 42.60 34.04 22.01 84.85 19.00 52.86 42.56

C.9 Necessity of the Learnable Attention Predictor

A pertinent question arises regarding the necessity of a learnable attention predictor: given the
potential for high similarity between attention distributions of adjacent tokens or layers, could one
simply utilize the attention map from a preceding token or layer as a direct estimate? To address
this, we conducted a comparative experiment evaluating our proposed AttentionPredictor against
two such heuristic baselines: (1) Previous-Layer Attention, which uses the attention map from
the corresponding position in the immediately preceding layer, and (2) Previous-Token Attention,
which employs the attention map of the immediately preceding token within the same layer.

Table 15: Performance comparison on LongBench with Llama3.1-8B-Instruct.

Single-DocumentQA Multi-DocumentQA Summary Few-shot Learning Synthetic Code
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Full Full cache 29.28 45.36 56.12 56.67 49.90 32.43 33.77 25.20 27.08 74.00 91.48 40.85 5.07 99.50 56.86 48.15 48.17

1024 Previous layer 26.04 33.93 46.17 53.50 46.04 26.80 26.27 21.94 25.81 64.00 83.48 35.74 10.75 99.50 48.60 41.58 42.51
1024 Previous token 28.90 39.84 55.37 55.63 48.66 30.30 27.36 23.45 25.73 69.50 88.95 43.01 8.50 99.56 56.96 47.40 46.82
1024 AttentionPredictor 28.50 47.35 54.99 57.53 45.91 31.63 32.52 24.51 26.78 73.00 89.54 42.12 6.49 99.56 56.96 47.43 47.80

The results of this evaluation, performed on the LongBench benchmark using Llama3.1-8B-Instruct,
are presented in Table 15. Employing previous-layer attention yields an average score of 42.51%,
which is a substantial 5.29% lower than our AttentionPredictor’s average of 47.80%. This performance
decrement underscores the limitation of direct cross-layer attention transference, primarily because
attention patterns often exhibit considerable variation across different layers, making the previous
layer’s attention a less reliable proxy for identifying critical tokens in the current layer.

The previous-token attention strategy achieves a higher average score of 46.82%. This is 4.31%
better than the previous-layer approach and aligns with the observation that attention mechanisms
frequently display sequential patterns along the token dimension within the same layer. However,
despite this improvement, relying solely on the single immediately preceding token is still suboptimal.
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Our learnable AttentionPredictor, with an average score of 47.80%, outperforms the previous-token
attention baseline by 0.98%. This superiority stems from our model’s capacity to learn and leverage
more complex, dynamic attention patterns from several previous tokens, rather than being confined
to the heuristic of the single last token, which may not adequately capture evolving contextual
dependencies.

Therefore, these comparative results affirm that while attention similarities exist, simplistic heuris-
tic estimations are insufficient. The empirical evidence highlights the necessity and distinct
advantage of our proposed learnable AttentionPredictor for achieving more accurate anticipation of
attention distributions.

C.10 Comparison between MInference and AttentionPredictor

To further evaluate the effectiveness of our proposed AttentionPredictor, we compare its performance
against MInference [16]. MInference operates by categorizing attention heads into three predefined
sparse patterns (A-shape, Vertical-Slash, and Block-Sparse) and uses a kernel-aware search to assign
the optimal pattern to each head offline. During inference, it dynamically builds sparse indices based
on the assigned pattern and the specific input.

We consider two variants of MInference for a comprehensive comparison: (1) MInference (prefill):
The standard version where the pattern-fitting algorithm is run only during the pre-filling stage.
(2) MInference (decode): A stronger, more dynamic variant where the computationally expensive
pattern-fitting algorithm is re-run at every decoding step to adapt to new contexts.

As shown in Table 16, AttentionPredictor consistently outperforms both MInference variants across
all tasks, achieving an average accuracy of 94.25%. This demonstrates that by learning from recent
history instead of relying on fixed pattern templates, AttentionPredictor more accurately captures the
dynamic nature of attention during decoding.

Table 16: Attention prediction accuracy (%) on Llama-3.1-8B-Instruct with 1K KV budget.
Method QA Summary Math Average
MInference (prefill) 90.51 84.45 93.47 89.48
MInference (decode) 92.18 88.74 94.67 91.86
AttentionPredictor 94.95 91.72 96.10 94.25

C.11 Top-K Selection Strategy Analysis

Why Top-K Outperforms Sampling? While prior works such as MagicPIG [59] suggest that Top-K
may introduce bias in certain tasks, our experiments reveal a critical insight: prediction accuracy
matters more than the design of the selection policy. As shown in Table 17, we compare the
performance of our AttentionPredictor and MagicPIG on the LongBench benchmark using Llama-
3.1-8B-Instruct (MagicPIG’s results are taken from the original paper). The results demonstrate that
when combined with our high-precision AttentionPredictor, even a simple Top-K strategy achieves
superior performance compared to MagicPIG’s more sophisticated sampling approach. This indicates
that high-quality attention predictions can enable basic selection policies to outperform more complex
alternatives. Furthermore, it is important to note that our AttentionPredictor is decoupled from the
selection policy and can be flexibly integrated with various methods, including both Top-K and
importance sampling.

Table 17: Longbench task results on Llama-3.1-8B-Instruct with 10% KV budgets.
Method Qasper RB-P Lcc Pre TREC TriviaQA Average
Full Cache 45.36 48.15 56.86 99.50 74.00 91.48 69.22
MagicPig 43.96 46.45 57.06 100.00 74.40 91.38 68.87
AttentionPredictor 45.50 50.26 59.41 99.67 74.00 88.61 69.58
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D Additional Experimental Results on Efficiency

D.1 Training Efficiency

We evaluate the impact of the training data ratio on prediction accuracy on the hotpotqa dataset
of Longbench. The predictor’s performance improved only slightly, from 96.0% to 97.5%, as the
proportion of training samples increased from 3% to 70%. This efficiency can be attributed to two
factors. First, the predictor only needs to capture the relative patterns rather than precisely predict
attention scores, which is easier. Second, since attention patterns are inherent characteristics of the
LLM, the predictor exhibits strong generalization capabilities. These findings suggest that a relatively
small amount of training data is adequate for the predictor to effectively learn the underlying attention
dynamics.

Table 18: Accuracy of predictor with different training sample ratios. The test set is a 20% split from
the datasets.

Training Samples Ratio 0.03 0.05 0.1 0.2 0.5 0.7
Accuracy (%) on Test Samples 96.0 96.2 95.9 96.6 97.2 97.5

D.2 Computational Overhead of AttentionPredictor.

We have quantified the inference overhead of our predictor model. As shown in Table 19, both the
latency and memory footprint are minimal, ensuring that the prediction process does not become a
bottleneck.

Table 19: The computational overhead of the prediction model.
Context Length Prediction Latency (ms) Peak Memory Usage (MB)

4K 0.28 97
8K 0.47 194
16K 0.91 388
32K 2.22 776

D.3 Memory Efficiency of Cross-Token Prefetching

We have evaluated the memory footprint of our proposed cross-token prefetching framework during
decoding. As shown in Table 20, the framework consistently consumes less GPU memory compared
to the standard cross-layer approach. This advantage arises because the memory savings from loading
only a small, sparse KV cache outweighs the potential overhead from the cross-token prefetching
mechanism.

Table 20: Peak GPU memory consumption (GB) of LLaMA-3.1-8B during decoding.
Context Length Standard Cross-Layer Our Cross-Token Memory Reduction

4K 32.9 30.1 8%
8K 35.9 30.3 16%

16K 41.9 30.5 27%
32K 53.9 31.1 42%

E Limitations

Our current investigation is primarily centered on a specific range of LLM architectures and sizes,
and the generalizability of observed attention patterns to vastly different model types warrants further
study. The necessary conditions for a specific attention pattern can be explored in the future work.
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F Boarder Impacts

Academic Impact: Our study of LLM attention score patterns and their predictability may offer
insights into attention dynamics, potentially informing future research on these characteristics. By
exploring attention score patterns, this work could also be relevant to advancements in KV cache
compression, possibly contributing to the development of more memory-efficient model designs.

Societal Impact: Through the potential implications for KV cache compression via attention pre-
dictability, this research could contribute to more efficient LLM inference. This might lead to reduced
latency in AI applications and lower energy consumption. Such improvements could potentially
enhance the accessibility of LLMs and support more sustainable AI practices.

G License

We include the following licenses for the code, models, and benchmarks we used in this paper.

Benchmarks: LongBench [45]: License, AIME 2024 [48]: License, GSM8K [60]: License, Needle
In A Haystack [51]: License, InfiniteBench [46]: License. Models: LLaMA-3.1-8B-Instruct [54]:
License, LongChat [53]: License. Code: H2O [11]: License, Minference [16]:License, SeerAttention
[14]: License.
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https://github.com/gkamradt/LLMTest_NeedleInAHaystack/blob/main/LICENSE.txt
https://github.com/OpenBMB/InfiniteBench/blob/main/LICENSE
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct/blob/main/LICENSE
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
https://opensource.org/licenses/MIT
 https://github.com/microsoft/MInference/blob/main/LICENSE
https://github.com/microsoft/SeerAttention/blob/main/LICENSE
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