
Value-Based Deep Multi-Agent Reinforcement
Learning with Dynamic Sparse Training

Pihe Hu∗

Tsinghua University
Beijing, China

hupihe@gmail.com

Shaolong Li∗
Central South University

Changsha, China
shaolongli16@gmail.com

Zhuoran Li
Tsinghua University

Beijing, China
lizr20@mails.tsinghua.edu.cn

Ling Pan
Hong Kong University of
Science and Technology

Hong Kong, China
lingpan@ust.hk

Longbo Huang†

Tsinghua University
Beijing, China

longbohuang@tsinghua.edu.cn

Abstract

Deep Multi-agent Reinforcement Learning (MARL) relies on neural networks
with numerous parameters in multi-agent scenarios, often incurring substantial
computational overhead. Consequently, there is an urgent need to expedite training
and enable model compression in MARL. This paper proposes the utilization of
dynamic sparse training (DST), a technique proven effective in deep supervised
learning tasks, to alleviate the computational burdens in MARL training. However,
a direct adoption of DST fails to yield satisfactory MARL agents, leading to break-
downs in value learning within deep sparse value-based MARL models. Motivated
by this challenge, we introduce an innovative Multi-Agent Sparse Training (MAST)
framework aimed at simultaneously enhancing the reliability of learning targets
and the rationality of sample distribution to improve value learning in sparse mod-
els. Specifically, MAST incorporates the Soft Mellowmax Operator with a hybrid
TD-(λ) schema to establish dependable learning targets. Additionally, it employs
a dual replay buffer mechanism to enhance the distribution of training samples.
Building upon these aspects, MAST utilizes gradient-based topology evolution
to exclusively train multiple MARL agents using sparse networks. Our compre-
hensive experimental investigation across various value-based MARL algorithms
on multiple benchmarks demonstrates, for the first time, significant reductions in
redundancy of up to 20× in Floating Point Operations (FLOPs) for both training
and inference, with less than 3% performance degradation.

1 Introduction
Multi-agent reinforcement learning (MARL) [Shoham and Leyton-Brown, 2008], coupled with deep
neural networks, has not only revolutionized artificial intelligence but also showcased remarkable
success across a wide range of critical applications. From mastering multi-agent video games such
as Quake III Arena [Jaderberg et al., 2019], StarCraft II [Mathieu et al., 2021], Dota 2 [Berner
et al., 2019], and Hide and Seek [Baker et al., 2020] to guiding autonomous robots through intricate
real-world environments [Shalev-Shwartz et al., 2016, Da Silva et al., 2017, Chen et al., 2020b], deep
MARL has emerged as an indispensable and versatile tool for addressing complex, multifaceted
challenges. Its unique capability to capture intricate interactions and dependencies among multiple

∗Equal contribution.
†Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

agents has spurred novel solutions, solidifying its position as a transformative paradigm across various
domains [Zhang et al., 2021, Albrecht et al., 2023].

However, the exceptional success of deep MARL comes at a considerable computational cost.
Training these agents involves the intricate task of adapting neural networks to accommodate an
expanded parameter space, especially in scenarios with a substantial number of agents. For instance,
the training regimen for AlphaStar [Mathieu et al., 2021], tailored for StarCraft II, extended over a
grueling 14-day period, employing 16 TPUs per agent. Similarly, the OpenAI Five [Berner et al.,
2019] model for Dota 2 underwent an extensive training cycle spanning 180 days and harnessing
thousands of GPUs. This exponential increase in computational demands as the number of agents
grows (and the corresponding joint action and state spaces) poses a significant challenge during
MARL deployment.

To tackle these computational challenges, researchers have delved into dynamic sparse training
(DST), a method that trains neural network models with dynamically sparse topology. For example,
RigL [Evci et al., 2020] can train a 90%-sparse network from scratch in deep supervised learning
without performance degradation. However, in deep reinforcement learning (DRL), the learning
target evolves in a bootstrapping manner [Tesauro et al., 1995], and the distribution of training data
is path-dependent [Desai et al., 2019], posing additional challenges to sparse training. Improper
sparsification can result in irreversible damage to the learning path [Igl et al., 2020]. Initial attempts
at DST in sparse single-agent DRL training have faced difficulties in achieving consistent model
compression across diverse environments, as documented in [Sokar et al., 2022, Graesser et al., 2022].
This is mainly because sparse models may introduce significant bias, leading to unreliable learning
targets and exacerbating training instability as agents learn through bootstrapping. Moreover, the
partially observable nature of each agent makes training non-stationarity inherently more severe in
multi-agent settings. Collectively, these factors pose significant challenges for value learning in each
agent under sparse models.

SS SET RigL RLx2 MAST0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
(%

)

32%

49%
42%

47%

93%

Figure 1: Comparison of dif-
ferent sparse training methods.

We present a motivating experiment in Figure 1, where we evalu-
ated various sparse training methods on the 3s5z task from SMAC
[Samvelyan et al., 2019] using a neural network with only 10%
of its original parameters. Classical DST methods, including SET
[Mocanu et al., 2018] and RigL [Evci et al., 2020], demonstrate
poor performance in MARL scenarios, along with using static sparse
networks (SS). Additionally, RLx2 as proposed in [Tan et al., 2022]
proves ineffective for multi-agent settings, despite enabling DST
for single-agent settings with 90% sparsity. In contrast, our MAST
framework in this work achieves a win rate of over 90%. In addition,
the only prior attempt to train sparse MARL agents, as described
in [Yang et al., 2022], prunes agent networks during training with weight grouping [Wang et al.,
2019]. However, this approach fails to maintain sparsity throughout training, and only achieves a
final model sparsity of only 80%. Moreover, their experiment is confined to a two-user environment,
PredatorPrey-v2, in MuJoCo [Todorov et al., 2012]. These observations highlight the fact that,
despite its potential, the application of sparse networks in the context of MARL remains largely
unexplored (A comprehensive literature review is deferred in Appendix A.1). Consequently, a critical
and intriguing question arises:

Can we train MARL agents effectively using ultra-sparse networks throughout?

We affirmatively address the question by introducing a novel sparse training framework, Multi-Agent
Sparse Training (MAST). Since improper sparsification results in network fitting errors in the learning
targets and incurs large policy inconsistency errors in the training samples, MAST ingeniously
integrates the Soft Mellowmax Operator with a hybrid TD-(λ) schema to establish reliable learning
targets. Additionally, it incorporates a novel dual replay buffer mechanism to enhance the distribution
of training samples. Leveraging these components, MAST employs gradient-based topology evolution
to exclusively train multiple MARL agents using sparse networks. Consequently, MAST facilitates
the training of highly efficient MARL agents with minimal performance compromise, employing
ultra-sparse networks throughout the training process.

Our extensive experimental investigation across various value-based MARL algorithms on multiple
SMAC benchmarks reveals MAST’s ability to achieve model compression ranging from 5× to 20×,
while incurring minimal performance trade-offs (under 3%). Moreover, MAST demonstrates an

2

impressive capability to reduce the Floating Point Operations (FLOPs) required for both training and
inference by up to 20×, showcasing a significant margin over other baselines (detailed in Section 4).

2 Preliminaries
Deep MARL We model the MARL problem as a decentralized partially observable Markov decision
process (Dec-POMDP) [Oliehoek et al., 2016], represented by a tuple ⟨N ,S,U , P, r,Z, O, γ⟩.
Deep Multi-Agent Q-learning extends the deep Q learning method [Mnih et al., 2013] to multi-
agent scenarios [Sunehag et al., 2018, Rashid et al., 2020b, Son et al., 2019]. The agent-wise Q
function is defined over its history τi as Qi for agent i. Subsequently, the joint action-value function
Qtot(τ ,u) operates over the joint action-observation history τ and joint action u. The objective,
given transitions (τ ,u, r, τ ′) sampled from the experience replay buffer B, is to minimize the mean
squared error loss L(θ) on the temporal-difference (TD) error δ = y − Qtot(τ ,u). Here, the TD
target y = r + γmaxu′ Q̄tot(τ

′,u′), where Q̄tot is the target network for the joint action Q-function,
periodically copied from Qtot. Parameters of Qtot are updated using θ′ = θ − α∇θL(θ), with α
representing the learning rate.

We focus on algorithms that adhere to the Centralized Training with Decentralized Execution (CTDE)
paradigm [Kraemer and Banerjee, 2016], within which, agents undergo centralized training, where the
complete action-observation history and global state are available. However, during execution, they
are constrained to individual local action-observation histories. To efficiently implement CTDE, the
Individual-Global-Maximum (IGM) property [Son et al., 2019] in Eq. (1), serves as a key mechanism:

argmax
u

Qtot(s,u) =
(
argmax

u1

Q1 (s, u1) , · · · , argmax
uN

QN (s, uN)
)
. (1)

Many deep MARL algorithms [Yu et al., 2022, Pan et al., 2022] adhere to the IGM criterion, such
as the QMIX series algorithms [Rashid et al., 2020b,a, Pan et al., 2021]. These algorithms employ
a mixing network fs with non-negative weights, enabling the joint Q-function to be expressed as
Qtot(s,u) = fs (Q1 (s, u1) , · · · , QN (s, uN)).
Dynamic Sparse Training Dynamic sparse training (DST), initially proposed in deep supervised
learning, can train a 90% sparse network without performance degradation from scratch, such as
in ResNet-50 [He et al., 2016] and MobileNet [Howard et al., 2017]. In DST, the dense network is
randomly sparsified at initialization, as shown in Figure 2, and its topology is dynamically changed
during training by link dropping and growing. Specifically, the topology evolution mechanism in
MAST follows the RigL method [Evci et al., 2020], which improves the optimization of sparse
neural networks by leveraging weight magnitude and gradient information to jointly optimize model
parameters and connectivity.

Dense Network Sparse Initialization Link Drop Link Grow
Figure 2: Illustration of dynamic sparse training.

RigL periodically and dynamically drops a subset
of existing connections with the smallest absolute
weight values and concurrently grows an equiva-
lent number of empty connections with the largest
gradients. The pseudo-code of RigL is given in
Algorithm 1, where the symbol ⊙ denotes the
element-wise multiplication operator, Mθ sym-
bolizes the binary mask that delineates the sparse
topology for the network θ, and ζt is the update
fraction in training step t. This process maintains
the network sparsity throughout the training with

Algorithm 1 Topology Evoltion[Evci et al., 2020]
1: θl, Nl, sl: parameters, number of parameters,

sparsity of layer l.
2: for each layer l do
3: k = ζt(1− sl)Nl

4: Idrop = ArgTopK(−|θl ⊙Mθl |, k)
5: Igrow = ArgTopKi/∈θl⊙Mθl

\Idrop
(|∇θlL|, k)

6: Update Mθl according to Idrop and Igrow
7: θl ← θl ⊙Mθl
8: end for

a strong evolutionary ability that saves training FLOPs and gives a sparse model after training.
However, in DRL, the learning target evolves in a bootstrapping manner [Tesauro et al., 1995],
such that the distribution of training data is path-dependent [Desai et al., 2019], posing additional
challenges to sparse training. Moreover, the partially observable nature of each agent exacerbates
training non-stationarity, particularly in multi-agent settings. These factors collectively present
significant hurdles for value learning in each agent under sparse models. As illustrated in Figure 1,

3

attempts to train ultra-sparse MARL models using simplistic topology evolution or the sparse training
framework for single-agent RL have failed to achieve satisfactory performance. Therefore, MAST
introduces innovative solutions to enhance value learning in ultra-sparse models by simultaneously
improving the reliability of learning targets and the rationality of sample distribution.

3 Enhancing Value Learning in Sparse Models
This section outlines the pivotal components of the MAST framework for training sparse MARL
agents. MAST introduces innovative solutions to enhance the accuracy of value learning in ultra-
sparse models by concurrently refining training data targets and distributions. Consequently, the
topology evolution in MAST effectively identifies appropriate ultra-sparse network topologies. This
approach aligns with single-agent DRL, where sparse training necessitates co-design with the value
learning method as described in [Tan et al., 2022]. However, the partially observable nature of each
agent exacerbates training non-stationarity in multi-agent settings. As illustrated in Figure 3, MAST
implements two key innovations to achieve accurate value learning in ultra-sparse models: i) hybrid
TD(λ) targets combined with the Soft Mellowmax operator to mitigate estimation errors arising from
network sparsity, and ii) dual replay buffers to reduce policy inconsistency errors due to sparsification.

. . .

(𝑜!" ,𝑢!#"") (𝑜!$, 𝑢!#"$)

Mixing Network

𝑄"(𝜏" , 𝑢!") 𝑄"(𝜏$, 𝑢!$)

𝑄!%! (𝝉,𝒖𝒕)InteractionStoring

Environment

𝑠!

TD(𝝀) with Soft Mellowmax

1 − 𝜆 % 𝜆!"#𝒯$
! (𝑟,sm%(𝑄))

&

!'#

Agent 1 Agent N

On-Policy
Buffer

Off-Policy
Buffer

Sampling

Dual buffers
Figure 3: An example of the MAST framework based on QMIX.

3.1 Improving the Reliability of Training Targets
Initially, we observe that the expected error is amplified under sparse models, motivating the intro-
duction of multi-step TD targets. However, different environments may require varying values of step
lengths to achieve optimal performance. Consequently, we focus on hybrid TD(λ) targets, which
can achieve performance comparable to the best step length across different settings. Additionally,
we find that the overestimation problem remains significant in sparse models. To address this, we
propose the use of the Soft Mellowmax operator in constructing learning targets. This operator is
effective in reducing overestimation bias without incurring additional computational costs.
Hybrid TD(λ) Targets. In deep multi-agent Q-learning, temporal difference (TD) learning is a
fundamental method for finding an optimal policy, where the joint action-value network is iteratively
updated by minimizing a squared loss driven by the TD target. Let Mθ be a binary mask representing
the network’s sparse topology, and denote the sparse network as θ̂ = θ ⊙Mθ, where ⊙ signifies
element-wise multiplication. Since sparse networks operate within a reduced hypothesis space with
fewer parameters, the sparse network θ̂ may induce a large bias, making the learning targets unreliable,
as evidenced in [Sokar et al., 2022].

Moreover, we establish Theorem 3.1 to characterize the upper bound of the expected multi-step TD
error under sparse models, where the multi-step return at (st,ut) is Tn(st,ut) =

∑n−1
k=0 γ

krt+k +

γn maxu Qtot(st+n,u; θ̂) under sparse models. As Eq (2) shows, the expected multi-step TD error
comes from two parts, intrinsical policy inconsistency error and network fitting error. Thus, Eq (2)
implies that the expected TD error will be enlarged if the network is sparsified improperly with a
larger network fitting error. Indeed, the upper bound of the expected TD error will be enlarged if the
network fitting error is increased. Subsequently, it is infeasible for the model to learn a good policy.
Eq. (2) also shows that introducing a multi-step return target discounts the network fitting error by a
factor of γn in the upper bound of the expected TD error. Thus, employing a multi-step return T (n)

t
with a sufficiently large n, or even Monte Carlo methods [Sutton and Barto, 2018], can effectively
diminish the TD error caused by network sparsification for γ < 1.

Theorem 3.1. Denote π as the target policy at timestep t, and ρ as the behavior policy generating the
transitions (st,ut, . . . , st+n,ut+n). Denote the network fitting error as ϵ(s,u) = |Qtot(s,u; θ̂)−

4

Qπ
tot(s,u)|. Then, the expected error between the multi-step TD target Tn conditioned on transitions

from the behavior policy ρ and the true joint action-value function Qπ
tot is

|Eρ[Tn(st,ut)]−Qπ
tot(st,ut)| ≤ γnEρ[2ϵ(st+n, ρ(st+n)) + ϵ(st+n, π(st+n))︸ ︷︷ ︸

Network fitting error

]

+ |Qρ
tot(st,ut)−Qπ

tot(st,ut)|︸ ︷︷ ︸
Policy inconsistency error

+ γnEρ[|Qπ
tot(st+n, π(st+n))−Qρ

tot(st+n, ρ(st+n))|]︸ ︷︷ ︸
Discounted policy inconsistency error

.
(2)

Proof. Please refer to Appendix A.3.
However, the Monte Carlo method is prone to high variance, suggesting that an optimal TD target
in sparse models should be a multi-step return with a judiciously chosen step length, balancing
network fitting error due to sparsification and training variance. Figure 4 illustrates model perfor-
mance across different step lengths and model sizes, revealing that an optimal step length exists for
various model sizes. Moreover, the optimal step length increases as model size decreases, which
aligns with Theorem 3.1 due to the increased network fitting error in models with higher sparsity.

0 5 10 15 20 25 30 35 40
Multi step length

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 w
in

 ra
te

Total size
12.5% 10.0% 7.5% 5.0% 10% TD() 5% TD()

Figure 4: Performances of different step lengths.

The above facts suggest the need to increase the
step length in the learning targets to maintain
the performance of sparse models. However, the
optimal step length varies across different set-
tings. To address this, we introduce the TD(λ)
target [Sutton and Barto, 2018] to achieve a
good trade-off: Tλ = (1 − λ)

∑∞
n=1 λ

n−1Tn
for λ ∈ [0, 1]. This target averages all possible
multi-step returns {Tn}∞n=1 into a single return
using exponentially decaying weights, provid-
ing a computationally efficient approach with
episode-form data. In Figure 4, we also plot two representative performances of TD(λ) under 10%
and 5% model sizes, which are both close to the optimal step length under different model sizes.

Previous studies [Fedus et al., 2020] have highlighted that an immediate shift to multi-step targets
can exacerbate policy inconsistency error as shown in Eq. (2). Since the TD(λ) target Tλ averages all
potential multi-step returns {Tn}∞n=1, an immediate transition to this target may encounter similar
issues. To address this challenge, we adopt a hybrid strategy inspired by the delayed mechanism
proposed in [Tan et al., 2022]. Initially, when the training step is less than a threshold T0, we employ
one-step TD targets (T1) to minimize policy inconsistency errors. As training progresses and the
policy stabilizes, we transit to TD(λ) targets to mitigate sparse network fitting errors. This mechanism
ensures consistent and reliable learning targets throughout the sparse training process.
Soft Mellowmax Operator. The max operator in the Bellman operator poses a well-known theoret-
ical challenge, namely overestimation, which hinders the convergence of various linear and non-linear
approximation schemes [Tsitsiklis and Van Roy, 1996]. Deep MARL algorithms, including QMIX
[Rashid et al., 2020b], also grapple with the overestimation problem. Several works have addressed
this issue in dense MARL algorithms, such as double critics [Ackermann et al., 2019], weighted critic
updates [Sarkar and Kalita, 2021], the Softmax operator [Pan et al., 2021], and the Sub-Avg operator
[Wu et al., 2022]. However, these methods introduce additional computational costs, sometimes even
doubling the computational budget, which is infeasible for our sparse training framework.

We turn our attention to the Soft Mellowmax operator, which has been proven effective in reducing
overestimation for dense MARL algorithms in [Gan et al., 2021]. For MARL algorithms satisfying
the IGM property in Eq. (1), we replace the max operator in Qi with the Soft Mellowmax operator in
Eq. (3) to mitigate overestimation bias in the joint-action Q function within sparse models:

smω(Qi(τ, ·)) =
1

ω
log

[∑
u∈U

exp (αQi (τ, u))∑
u′∈U exp (αQi (τ, u′))

exp (ωQi (τ, u))

]
, (3)

where ω > 0, and α ∈ R. Let T be the value estimation operator that estimates the value of the next
state s′. Theorem 3.2 shows that the Soft Mellowmax operator can reduce the severe overestimation
bias in sparse models.
Theorem 3.2. Let B(T) = E [T (s′)] − maxu′ Q∗

tot (s
′,u′) be the bias of value estimates

of T . For an arbitrary joint-action Q-function Q̄tot, if there exists some V ∗
tot (s

′) such that

5

V ∗
tot (s

′) = Q∗
tot (s

′,u′) for different joint actions,
∑

u′

(
Q̄tot (s

′,u′)− V ∗
tot (s

′)
)

= 0, and
1

|U |
∑

u′

(
Q̄tot (s

′,u′)− V ∗
tot (s

′)
)2

= C (C > 0), then B (TRigL-QMIX-SM) ≤ B (TRigL-QMIX).

Proof. Please refer to Appendix A.4.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

Te
st

 w
in

 ra
te

RigL-QMIX
RigL-QMIX-SM

(a) Win rates

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0

2

4

6

8

Va
lu

e
es

tim
at

es

RigL-QMIX
True RigL-QMIX
RigL-QMIX-SM
True RigL-QMIX-SM

(b) Estimated values
Figure 5: Effects of Soft Mellowmax operator.

Our empirical investigations reveal
that overestimation remains a signif-
icant performance barrier in sparse
models, resulting in substantial per-
formance degradation. Figure 12 il-
lustrates the win rates and estimated
values of QMIX with and without our
Soft Mellowmax operator on 3s5z in
the SMAC. Figure 5(a) shows that the
performance of RigL-QMIX-SM out-
performs RigL-QMIX, while Figure 5(b) demonstrates that the Soft Mellowmax operator effectively
mitigates overestimation bias. These findings highlight that QMIX still faces overestimation issues
in sparse models and underscore the efficacy of the Soft Mellowmax operator in addressing this
problem.

Additionally, the Soft Mellowmax operator introduces negligible extra computational costs, as it
averages the Q function over each agent’s individual action spaces rather than the joint action spaces
used in the Softmax operator [Pan et al., 2021], which grow exponentially with the number of agents.

3.2 Improving the Rationality of Sample Distribution
Although we have improved the reliability of the learning target’s confidence as discussed above,
the learning process can still suffer from instability due to improper sparsification. This suggests
the need to enhance the distribution of training samples to stabilize the training process. Improper
sparsification can lead to irreversible damage to the learning path [Igl et al., 2020] and exacerbate
training instability as agents learn through bootstrapping.

Generally, sparse models are more challenging to train compared to dense models due to the reduced
hypothesis space [Evci et al., 2019]. Therefore, it is important to prioritize more recent training
samples to estimate the true value function within the same training budget. Failing to do so can result
in excessively large policy inconsistency errors, thereby damaging the learning process irreversibly.

MAST introduces a dual buffer mechanism utilizing two First-in-First-Out (FIFO) replay buffers:
B1 (with large capacity) and B2 (with small capacity), with some data overlap between them.
While B1 adopts an off-policy style, B2 follows an on-policy approach. During each training step,
MAST samples b1 episodes from B1 and b2 episodes from B2, conducting a gradient update using a
combined batch size of (b1 + b2). For instance, in our experiments, we set |B1| : |B2| = 50 : 1 and
b1 : b2 = 3 : 1. Generally, training with online data enhances learning stability, as the behavior policy
closely matches the target policy. Conversely, training with offline data improves sample efficiency
but can lead to instability.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

QMIX
QMIX-Dual-Buf
RigL-QMIX
RigL-QMIX-Dual-Buf

Figure 6: Different buffers.

Figure 6 illustrates the training dynamics for RigL-QMIX in the
SMAC’s 3s5z task. The green curve with large variances highlights
the training instability of QMIX in sparse models. However, with the
integration of dual buffers, QMIX’s training stability and efficiency
are significantly improved under sparse conditions, leading to con-
sistent policy enhancements and higher rewards. Notably, the dual
buffer mechanism does not enhance dense training, suggesting that
this approach is particularly effective in sparse scenarios where net-
work parameters are crucial for ensuring stable policy improvements.
Although prior works [Schaul et al., 2015, Hou et al., 2017, Banerjee
et al., 2022] have explored prioritized or dynamic-capacity buffers, their applicability in this context
may be limited due to the data being in episode form in value-based deep MARL algorithms, making
it difficult to determine the priority of each training episode. Similarly, the dynamic buffer approach
in [Tan et al., 2022] is also inapplicable, as the policy distance measure cannot be established for
episode-form data. This further emphasizes the unique effectiveness of the dual buffer approach in
enhancing training stability for sparse MARL models.

6

𝑑!
𝑑"

Target
Policy

Behavior
Policy

Shifted
Policy

Sample
Space

Density

Figure 7: Distribution Shift: d1 and
d2 are distribution distances.

We highlight that the performance improvement observed with
MAST is not due to providing more training data samples to
agents. Instead, it results from a more balanced training data
distribution enabled by the utilization of dual buffers. The
primary objective of incorporating dual buffers is to shift the
overall distribution of training data. Figure 7 illustrates the
distribution of samples induced by different policies, where
behavior policy and target policy are defined in Theorem 3.1.
Specifically, samples in the original single buffer are subject to
the distribution of the behavior policy (blue), which introduces
a policy inconsistency error d1. However, by utilizing dual
buffers, the distribution of training samples shifts towards the
target policy, as there are more recent samples from the on-
policy buffer. This reduces the policy inconsistency in our dual buffers, thereby bolstering the stability
and effectiveness of the learning process under sparse models. Additionally, the extra on-policy buffer
does not significantly reduce sample efficiency, as its capacity is small.

4 Experiments
In this section, we conduct a comprehensive performance evaluation of MAST across various tasks
in the StarCraft Multi-Agent Challenge (SMAC) [Samvelyan et al., 2019] benchmark. Additional
experiments on the multi-agent MuJoCo (MAMuJoCo) [Peng et al., 2021] benchmark are provided in
Appendix B.9. MAST serves as a versatile sparse training framework specifically tailored for value
decomposition-based MARL algorithms. In Section 4.1, we integrate MAST with state-of-the-art
value-based deep MARL algorithms, including QMIX [Rashid et al., 2020b], WQMIX [Rashid
et al., 2020a], and RES [Pan et al., 2021]. We also apply MAST to a hybrid value-based and policy-
based algorithm, FACMAC [Peng et al., 2021]. Subsequently, we assess the performance of sparse
models generated by MAST in Section 4.2. Furthermore, a comprehensive ablation study of MAST
components is detailed in Appendix B.7. Each reported result represents the average performance
over eight independent runs, each utilizing distinct random seeds.
Table 1: Comparisons of MAST with different sparse training baselines: "Sp." stands for "sparsity",
"Total Size" means total model parameters, and the data is all normalized w.r.t. the dense model.

Alg. Env. Sp. Total
Size

FLOPs
(Train)

FLOPs
(Test)

Tiny
(%)

SS
(%)

SET
(%)

RigL
(%)

RLx2
(%)

MAST
(%)

Q-
MIX

3m 95% 0.066x 0.051x 0.050x 98.3 91.6 96.0 95.3 12.1 100.9
2s3z 95% 0.062x 0.051x 0.050x 83.7 73.0 77.6 69.4 45.8 98.0
3s5z 90% 0.109x 0.101x 0.100x 68.2 34.0 52.3 45.2 50.1 99.0
64* 90% 0.106x 0.100x 0.100x 58.2 40.2 67.1 48.7 9.9 97.6
Avg. 92% 0.086x 0.076x 0.075x 77.1 59.7 73.2 64.6 29.8 98.9

WQ-
MIX

3m 90% 0.108x 0.100x 0.100x 98.3 96.9 97.8 97.8 98.0 98.6
2s3z 90% 0.106x 0.100x 0.100x 89.6 75.4 85.9 86.8 87.3 100.2
3s5z 90% 0.105x 0.100x 0.100x 70.7 62.5 56.0 50.4 60.7 96.1
64* 90% 0.104x 0.100x 0.100x 51.0 29.6 44.1 41.0 52.8 98.4
Avg. 90% 0.106x 0.100x 0.100x 77.4 66.1 70.9 69.0 74.7 98.1

RES

3m 95% 0.066x 0.055x 0.050x 97.8 95.6 97.3 91.1 97.9 99.8
2s3z 90% 0.111x 0.104x 0.100x 96.5 92.8 92.8 94.7 94.0 98.4
3s5z 85% 0.158x 0.154x 0.150x 95.1 89.0 90.3 92.8 86.2 99.4
64* 85% 0.155x 0.151x 0.150x 83.3 39.1 44.1 35.3 72.7 104.9
Avg. 89% 0.122x 0.116x 0.112x 93.2 79.1 81.1 78.5 87.7 100.6

4.1 Comparative Evaluation
Table 1 presents a comprehensive summary of our comparative evaluation in the SMAC benchmark,
where MAST is benchmarked against the following baseline methods: (i) Tiny: Utilizing tiny
dense networks with a parameter count matching that of the sparse model during training. (ii) SS:
Employing static sparse networks with random initialization. (iii) SET [Mocanu et al., 2018]: Pruning
connections based on their magnitude and randomly expanding connections. (iv) RigL [Evci et al.,
2020]: This approach leverages dynamic sparse training, akin to MAST, by removing and adding

7

connections based on magnitude and gradient criteria, respectively. (v) RLx2 [Tan et al., 2022]: A
specialized dynamic sparse training framework tailored for single-agent reinforcement learning.

We set the same sparsity levels for both the joint Q function Qtot, and each individual agent’s Q
function Qi. For every algorithm and task, the sparsity level indicated in Table 1 corresponds to the
highest admissible sparsity threshold of MAST. Within this range, MAST’s performance consistently
remains within a 3% margin compared to the dense counterpart, effectively representing the minimal
sparse model size capable of achieving performance parity with the original dense model. All
other baselines are evaluated under the same sparsity level as MAST. We assess the performance of
each algorithm by computing the average win rate per episode over the final 20 policy evaluations
conducted during training, with policy evaluations taking place at 10000-step intervals. Identical
hyperparameters are employed across all scenarios.

Performance Table 1 unequivocally illustrates MAST’s substantial performance superiority over
all baseline methods in all four environments across the three algorithms. Notably, static sparse (SS)
consistently exhibits the lowest performance on average, highlighting the difficulty of finding optimal
sparse network topologies in the context of sparse MARL models. Dynamic sparse training methods,
namely SET and RigL, slightly outperform SS, although their performance remains unsatisfactory.
Sparse networks also, on average, underperform tiny dense networks. However, MAST significantly
outpaces all other baselines, indicating the successful realization of accurate value estimation through
our MAST method, which effectively guides gradient-based topology evolution. Notably, the
single-agent method RLx2 consistently delivers subpar results in all experiments, potentially due
to the sensitivity of the step length in the multi-step targets, and the failure of dynamic buffer for
episode-form training samples.

80 82 84 86 88 90 92 94
Sparsity(%)

0.0

0.2

0.4

0.6

0.8

1.0
Te

st
 w

in
 ra

te

Dense
Tiny
SS
SET
RigL
RLx2
MAST

Figure 8: Different sparsity.

To further substantiate the efficacy of MAST, we conduct per-
formance comparisons across various sparsity levels in 3s5z,
as depicted in Figure 8. This reveals an intriguing observa-
tion: the performance of sparse models experiences a sharp
decline beyond a critical sparsity threshold. Compared to con-
ventional DST techniques, MAST significantly extends this
critical sparsity threshold, enabling higher levels of sparsity
while maintaining performance. Moreover, MAST achieves a
higher critical sparsity threshold than the other two algorithms
with existing baselines, e.g., SET and RigL, achieving a sparsity
level of over 80% on average. However, it is essential to note
that the Softmax operator in RES averages the Q function over
joint action spaces, which grow exponentially with the number of agents, resulting in significantly
higher computational FLOPs and making it computationally incomparable to MAST. The detailed
FLOPs calculation is deferred to Appendix B.4.2.

FLOP Reduction and Model Compression In contrast to knowledge distillation or behavior
cloning methodologies, exemplified by works such as [Livne and Cohen, 2020, Vischer et al., 2022],
MAST maintains a sparse network consistently throughout the entire training regimen. Consequently,
MAST endows itself with a unique advantage, manifesting in a remarkable acceleration of training
FLOPs. We observed an acceleration of up to 20× in training and inference FLOPs for MAST-QMIX
in the 2s3z task, with an average acceleration of 10×, 9×, and 8× for QMIX, WQMIX, and RES-
QMIX, respectively. Moreover, MAST showcases significant model compression ratios, achieving
reductions in model size ranging from 5× to 20× for QMIX, WQMIX, and RES-QMIX, while
incurring only minor performance degradation, all below 3%.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

FACMAC-Dense
FACMAC-SS
FACMAC-SET
FACMAC-RigL
FACMAC-MAST

(a) MMM

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

Te
st

 w
in

 ra
te

FACMAC-Dense
FACMAC-SS
FACMAC-SET
FACMAC-RigL
FACMAC-MAST

(b) 2c_vs_64zg

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

FACMAC-Dense
FACMAC-SS
FACMAC-SET
FACMAC-RigL
FACMAC-MAST

(c) bane_vs_bane
Figure 9: Mean episode win rates on different SMAC tasks with MAST-FACMAC.

8

Results on FACMAC In addition to pure value-based deep MARL algorithms, we also evaluate
MAST with a hybrid value-based and policy-based algorithm, FACMAC [Peng et al., 2021], in
SMAC. The results are presented in Figure 18. From the figure, we observe that MAST consistently
achieves a performance comparable with that of the dense models, and outperforms other methods in
three environments, demonstrating its applicability across different algorithms.

4.2 Sparse Models Obtained by MAST

We conduct a comparative analysis of diverse sparse network architectures. With identical sparsity
levels, distinct sparse architectures lead to different hypothesis spaces. As emphasized in [Frankle and
Carbin, 2019], specific architectures, such as the "winning ticket," outperform randomly generated
counterparts. We compare three architectures: the "random ticket" (randomly sampled topology
held constant during training), the "winning ticket" (topology from a MAST or RigL run and kept
unchanged during training), and the "cheating ticket" (trained by MAST).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

Cheating Ticket
Wining Ticket by MAST
Wining Ticket by RigL
Random Ticket

Figure 10: Comparison of dif-
ferent sparse masks.

Figure 10 illustrates that both the "cheating ticket" and "winning
ticket" by MAST achieve the highest performance, closely approach-
ing the original dense model’s performance. Importantly, using a
fixed random topology during training fails to fully exploit the bene-
fits of high sparsity, resulting in significant performance degradation.
Furthermore, RigL’s "winning ticket" fares poorly, akin to the "ran-
dom ticket." These results underscore the advantages of our MAST
approach, which automatically discovers effective sparse architec-
tures through gradient-based topology evolution, without the need
for pretraining methods, e.g., knowledge distillation [Schmitt et al.,
2018]. Crucially, our MAST method incorporates key elements: the
hybrid TD(λ) mechanism, Soft Mellowmax operator, and dual buffers. Compared to RigL, these
components significantly improve value estimation and training stability in sparse models facilitating
efficient topology evolution.

Figure 11 showcases the evolving sparse mask of a hidden layer during MAST-QMIX training in
3s5z, capturing snapshots at 0, 5, 10, and 20 million steps. In Figure 11, the light pixel in row i and
column j indicates the existence of the connection for input dimension j and output dimension i,
while the dark pixel represents the empty connection. Notably, a pronounced shift in the mask is
evident at the start of training, followed by a gradual convergence of connections within the layer
onto a subset of input neurons. This convergence is discernible from the clustering of light pixels
forming continuous rows in the lower segment of the final mask visualization, where several output
dimensions exhibit minimal or no connections. This observation underscores the distinct roles played
by various neurons in the representation process, showing the prevalent redundancy in dense models.

T = 0M T = 0.5M T = 1M T = 2M

Figure 11: Visualization of weight masks in the first hidden layer of agent 1 by MAST-QMIX.

Stalkers Zealots

(a) Agent mask visual-
ization.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

Dense
MAST-Total10%
MAST-S10%-Z10%
MAST-S8%-Z12%
MAST-S14%-Z6%

(b) Different sparsity
patterns.

Figure 12: Agent roles.

When sparsifying agent networks, MAST only re-
quires setting the total sparsity. The sparsity of dif-
ferent agents is determined automatically by MAST,
by concatenating all the agent networks together in
our implementation based on PyMARL [Samvelyan
et al., 2019] (detailed in Appendix B.3), and treating
these networks as a single network during topology
evolution with only a total sparsity requirement. We
visualize the trained masks of different agents in 3s5z
in Figure 12(a), including the masks of two stalkers
and two zealots, respectively.

9

Interestingly, we find that the network topology in the same type of agents looks very similar. However,
stalkers have more connections than zealots, which aligns with the fact that stalkers play more critical
roles due to their higher attack power and wider attack ranges. This observation highlights an
advantage of the MAST framework, i.e., it can automatically discover the proper sparsity levels for
different agents to meet the total sparsity budget. To further validate this point, we compare the
adaptive allocation scheme with fixed manually-set patterns in Figure 12(b). The manual patterns
include (stalker-10%, zealot-10%), (stalker-8%, zealot-12%), and (stalker-14%, zealot-6%). The
results also show that the adaptive sparsity allocation in MAST outperforms other manual sparsity
patterns, demonstrating the superiority of MAST.

5 Conclusion
This paper introduces MAST, a novel sparse training framework for valued-based deep MARL. We
identify and address value estimation errors and policy inconsistency caused by sparsification, two
significant challenges in training sparse agents. MAST offers innovative solutions: a hybrid TD(λ)
target mechanism combined with the Soft Mellowmax operator for precise value estimation under
extreme sparsity, and a dual buffer mechanism to reduce policy inconsistency and enhance training
stability. Extensive experiments validate MAST’s effectiveness in sparse training, achieving model
compression ratios of 5× to 20× with minimal performance degradation and up to a remarkable 20×
reduction in FLOPs for both training and inference.

Acknowledgement

This work was supported by the Technology and Innovation Major Project of the Ministry of Science
and Technology of China under Grant 2020AAA0108400 and 2020AAA0108403.

10

References
Johannes Ackermann, Volker Gabler, Takayuki Osa, and Masashi Sugiyama. Reducing overestimation

bias in multi-agent domains using double centralized critics. arXiv preprint arXiv:1910.01465,
2019.

SV Albrecht, F Christianos, and L Schäfer. Multi-agent reinforcement learning: Foundations and
modern approaches. Massachusetts Institute of Technology: Cambridge, MA, USA, 2023.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
Mordatch. Emergent tool use from multi-agent autocurricula. In International Conference on
Learning Representations, 2020.

Chayan Banerjee, Zhiyong Chen, and Nasimul Noman. Improved soft actor-critic: Mixing prioritized
off-policy samples with on-policy experiences. IEEE Transactions on Neural Networks and
Learning Systems, 2022.

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
very sparse deep networks. In International Conference on Learning Representations, 2018.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Christopher Brix, Parnia Bahar, and Hermann Ney. Successfully applying the stabilized lottery ticket
hypothesis to the transformer architecture. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 3909–3915, 2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks. Advances in neural
information processing systems, 33:15834–15846, 2020a.

Yu-Jia Chen, Deng-Kai Chang, and Cheng Zhang. Autonomous tracking using a swarm of uavs:
A constrained multi-agent reinforcement learning approach. IEEE Transactions on Vehicular
Technology, 69(11):13702–13717, 2020b.

Filippos Christianos, Georgios Papoudakis, Muhammad A Rahman, and Stefano V Albrecht. Scaling
multi-agent reinforcement learning with selective parameter sharing. In International Conference
on Machine Learning, pages 1989–1998. PMLR, 2021.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Arnau Colom. Empirical analysis of exploration strategies in qmix. 2021.

Felipe Leno Da Silva, Ruben Glatt, and Anna Helena Reali Costa. Simultaneously learning and ad-
vising in multiagent reinforcement learning. In Proceedings of the 16th conference on autonomous
agents and multiagent systems, pages 1100–1108, 2017.

Shrey Desai, Hongyuan Zhan, and Ahmed Aly. Evaluating lottery tickets under distributional shifts.
EMNLP-IJCNLP 2019, page 153, 2019.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. arXiv preprint arXiv:1907.04840, 2019.

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. Advances in Neural Information Processing Systems, 30, 2017.

Utku Evci, Fabian Pedregosa, Aidan Gomez, and Erich Elsen. The difficulty of training sparse neural
networks. In ICML 2019 Workshop on Identifying and Understanding Deep Learning Phenomena,
2019.

11

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pages 2943–2952.
PMLR, 2020.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In International
Conference on Machine Learning, pages 3061–3071. PMLR, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International conference on learning representations, 2019.

Yaozhong Gan, Zhe Zhang, and Xiaoyang Tan. Stabilizing q learning via soft mellowmax operator.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 7501–7509,
2021.

Laura Graesser, Utku Evci, Erich Elsen, and Pablo Samuel Castro. The state of sparse training in
deep reinforcement learning. In International Conference on Machine Learning, pages 7766–7792.
PMLR, 2022.

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In Autonomous Agents and Multiagent Systems: AAMAS 2017
Workshops, Best Papers, São Paulo, Brazil, May 8-12, 2017, Revised Selected Papers 16, pages
66–83. Springer, 2017.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In International conference on learning
representations, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Yuenan Hou, Lifeng Liu, Qing Wei, Xudong Xu, and Chunlin Chen. A novel ddpg method with
prioritized experience replay. In 2017 IEEE international conference on systems, man, and
cybernetics (SMC), pages 316–321. IEEE, 2017.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson.
Transient non-stationarity and generalisation in deep reinforcement learning. In International
Conference on Learning Representations, 2020.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in 3d multiplayer games with population-based reinforcement learning. Science,
364(6443):859–865, 2019.

Woojun Kim and Youngchul Sung. Parameter sharing with network pruning for scalable multi-agent
deep reinforcement learning. In Proceedings of the 2023 International Conference on Autonomous
Agents and Multiagent Systems, pages 1942–1950, 2023.

Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning as a rehearsal for
decentralized planning. Neurocomputing, 190:82–94, 2016.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. In International conference on learning representations, 2019.

Chenghao Li, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, and Chongjie Zhang.
Celebrating diversity in shared multi-agent reinforcement learning. Advances in Neural Information
Processing Systems, 34:3991–4002, 2021.

12

Dor Livne and Kobi Cohen. Pops: Policy pruning and shrinking for deep reinforcement learning.
IEEE Journal of Selected Topics in Signal Processing, 14(4):789–801, 2020.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l_0 regularization. In International conference on learning representations, 2018.

Michael Mathieu, Sherjil Ozair, Srivatsan Srinivasan, Caglar Gulcehre, Shangtong Zhang, Ray Jiang,
Tom Le Paine, Konrad Zolna, Richard Powell, Julian Schrittwieser, et al. Starcraft ii unplugged:
Large scale offline reinforcement learning. In Deep RL Workshop NeurIPS 2021, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connectivity
inspired by network science. Nature communications, 9(1):2383, 2018.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. In International Conference on Machine Learning, pages 2498–2507. PMLR, 2017.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation
for neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11264–11272, 2019.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In International Conference on Machine Learning, pages
4646–4655. PMLR, 2019.

Frans A Oliehoek, Christopher Amato, et al. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

Ling Pan, Tabish Rashid, Bei Peng, Longbo Huang, and Shimon Whiteson. Regularized softmax
deep multi-agent q-learning. Advances in Neural Information Processing Systems, 34:1365–1377,
2021.

Ling Pan, Longbo Huang, Tengyu Ma, and Huazhe Xu. Plan better amid conservatism: Offline
multi-agent reinforcement learning with actor rectification. In International conference on machine
learning, pages 17221–17237. PMLR, 2022.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy
gradients. Advances in Neural Information Processing Systems, 34:12208–12221, 2021.

Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. Advances in
neural information processing systems, 33:10199–10210, 2020a.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. The Journal of Machine Learning Research, 21(1):7234–7284, 2020b.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon Whiteson. The
StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

Tamal Sarkar and Shobhanjana Kalita. A weighted critic update approach to multi agent twin
delayed deep deterministic algorithm. In 2021 IEEE 18th India Council International Conference
(INDICON), pages 1–6. IEEE, 2021.

13

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Simon Schmitt, Jonathan J Hudson, Augustin Zidek, Simon Osindero, Carl Doersch, Wojciech M
Czarnecki, Joel Z Leibo, Heinrich Kuttler, Andrew Zisserman, Karen Simonyan, et al. Kickstarting
deep reinforcement learning. arXiv preprint arXiv:1803.03835, 2018.

Jonathan Schwarz, Siddhant Jayakumar, Razvan Pascanu, Peter E Latham, and Yee Teh. Powerpropa-
gation: A sparsity inducing weight reparameterisation. Advances in neural information processing
systems, 34:28889–28903, 2021.

Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic, and
logical foundations. Cambridge University Press, 2008.

Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu, Mykola Pechenizkiy, and Peter Stone.
Dynamic sparse training for deep reinforcement learning. 2022.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In International
conference on machine learning, pages 5887–5896. PMLR, 2019.

Suraj Srinivas, Akshayvarun Subramanya, and R Venkatesh Babu. Training sparse neural networks.
In Proceedings of the IEEE conference on computer vision and pattern recognition workshops,
pages 138–145, 2017.

Chuangchuang Sun, Macheng Shen, and Jonathan P How. Scaling up multiagent reinforcement
learning for robotic systems: Learn an adaptive sparse communication graph. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 11755–11762. IEEE,
2020.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning based on team reward. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, pages 2085–2087, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yiqin Tan, Pihe Hu, Ling Pan, Jiatai Huang, and Longbo Huang. Rlx2: Training a sparse deep rein-
forcement learning model from scratch. In International Conference on Learning Representations,
2022.

Gerald Tesauro et al. Temporal difference learning and td-gammon. Communications of the ACM, 38
(3):58–68, 1995.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages 5026–5033.
IEEE, 2012.

JN Tsitsiklis and B Van Roy. An analysis of temporal-difference learning with function approxima-
tiontechnical. Rep. LIDS-P-2322). Lab. Inf. Decis. Syst. Massachusetts Inst. Technol. Tech. Rep,
1996.

Marc Aurel Vischer, Robert Tjarko Lange, and Henning Sprekeler. On lottery tickets and minimal
task representations in deep reinforcement learning. In International conference on learning
representations, 2022.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

Xijun Wang, Meina Kan, Shiguang Shan, and Xilin Chen. Fully learnable group convolution for
acceleration of deep neural networks. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 9049–9058, 2019.

14

Haolin Wu, Jianwei Zhang, Zhuang Wang, Yi Lin, and Hui Li. Sub-avg: Overestimation reduction
for cooperative multi-agent reinforcement learning. Neurocomputing, 474:94–106, 2022.

Je Yang, JaeUk Kim, and Joo-Young Kim. Learninggroup: A real-time sparse training on fpga
via learnable weight grouping for multi-agent reinforcement learning. In 2022 International
Conference on Field-Programmable Technology (ICFPT), pages 1–9. IEEE, 2022.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022.

Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S Morcos. Playing the lottery with rewards
and multiple languages: lottery tickets in rl and nlp. In International conference on learning
representations, 2020.

Hongjie Zhang, Zhuocheng He, and Jing Li. Accelerating the deep reinforcement learning with
neural network compression. In 2019 International Joint Conference on Neural Networks (IJCNN),
pages 1–8. IEEE, 2019.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of reinforcement learning and control, pages
321–384, 2021.

15

Supplementary Materials

A Additional Details for MAST Framework 16

A.1 Comprehensive Related Work . 16

A.2 Decentralized Partially Observable Markov Decision Process 17

A.3 Proof of Theorem 3.1 . 17

A.4 Proof of Theorem 3.2 . 18

A.5 MAST with Different Algorithms . 18

A.6 Limitations of MAST . 21

B Experimental Details 21

B.1 Hardware Setup . 21

B.2 Environment . 21

B.3 Hyperparameter Settings . 22

B.4 Calculation of Model Sizes and FLOPs . 22

B.5 Training Curves of Comparative Evaluation in Section 4.1 26

B.6 Standard Deviations of Results in Table 1 . 27

B.7 Ablation Study . 28

B.8 Sensitivity Analysis for Hyperparameters . 29

B.9 Experiments on QMIX in Multi-Agent MuJoCo 30

B.10 Experiments on FACMAC in SMAC . 30

B.11 Visualization of Sparse Masks . 30

A Additional Details for MAST Framework

A.1 Comprehensive Related Work

Sparse networks, initially proposed in deep supervised learning can train a 90%-sparse network
without performance degradation from scratch. However, for deep reinforcement learning, the
learning target is not fixed but evolves in a bootstrap way [Tesauro et al., 1995], and the distribution
of the training data can also be non-stationary [Desai et al., 2019], which makes the sparse training
more difficult. In the following, we list some representative works for training sparse models from
supervised learning to reinforcement learning.

Sparse Models in Supervised Learning Various techniques have been explored for creating
sparse networks, ranging from pruning pre-trained dense networks [Han et al., 2015, 2016, Srinivas
et al., 2017], to employing methods like derivatives [Dong et al., 2017, Molchanov et al., 2019],
regularization [Louizos et al., 2018], dropout [Molchanov et al., 2017], and weight reparameterization
[Schwarz et al., 2021]. Another avenue of research revolves around the Lottery Ticket Hypothesis
(LTH) [Frankle and Carbin, 2019], which posits the feasibility of training sparse networks from
scratch, provided a sparse “winning ticket" initialization is identified. This hypothesis has garnered
support in various deep learning models [Chen et al., 2020a, Brix et al., 2020]. Additionally, there is
a body of work dedicated to training sparse neural networks from the outset, involving techniques
that evolve the structures of sparse networks during training. Examples include Deep Rewiring
(DeepR) [Bellec et al., 2018], Sparse Evolutionary Training (SET) [Mocanu et al., 2018], Dynamic
Sparse Reparameterization (DSR) [Mostafa and Wang, 2019], Sparse Networks from Scratch (SNFS)
[Dettmers and Zettlemoyer, 2019], and Rigged Lottery (RigL) [Evci et al., 2020]. Furthermore,

16

methods like Single-Shot Network Pruning (SNIP) [Lee et al., 2019] and Gradient Signal Preservation
(GraSP) [Wang et al., 2020] are geared towards identifying static sparse networks prior to training.

Sparse Models in Single-Agent RL Existing research [Schmitt et al., 2018, Zhang et al., 2019]
has employed knowledge distillation with static data to ensure training stability and generate small
dense agents. Policy Pruning and Shrinking (PoPs) [Livne and Cohen, 2020] generates sparse agents
through iterative policy pruning, while the LTH in DRL is first indentified in [Yu et al., 2020]. Another
line of investigation aims to train sparse DRL models from scratch, eliminating the necessity of
pre-training a dense teacher. Specifically, [Sokar et al., 2022] introduces the Sparse Evolutionary
Training (SET) approach, achieving a remarkable 50% sparsity level through topology evolution in
DRL. Additionally, [Graesser et al., 2022] observes that pruning often yields superior results, with
plain dynamic sparse training methods, including SET and RigL, significantly outperforming static
sparse training approaches. More recently, RLx2 [Tan et al., 2022] has demonstrated the capacity to
train DRL agents with highly sparse neural networks from scratch. Nevertheless, the application of
RLx2 in MARL yields poor results, as demonstrated in Section 4.1.

Sparse Models in MARL Existing works have made attempts to train sparse MARL agents,
such as [Yang et al., 2022], which prunes networks for multiple agents during training, employing
weight grouping [Wang et al., 2019]. Another avenue of sparse MARL research seeks to enhance
the scalability of MARL algorithms through sparse architectural modifications. For instance, [Sun
et al., 2020] proposes the use of a sparse communication graph with graph neural networks to reduce
problem scale. [Kim and Sung, 2023] adopts structured pruning for a deep neural network to extend
the scalability. Yet another strand of sparse MARL focuses on parameter sharing between agents to
reduce the number of trainable parameters, with representative works including [Gupta et al., 2017,
Li et al., 2021, Christianos et al., 2021]. However, existing methods fail to maintain high sparsity
throughout the training process, such that the FLOPs reduction during training is incomparable to the
MAST framework outlined in our paper.

A.2 Decentralized Partially Observable Markov Decision Process

We model the MARL problem as a decentralized partially observable Markov decision process
(Dec-POMDP) [Oliehoek et al., 2016], represented by a tuple ⟨N ,S,U , P, r,Z, O, γ⟩, where N =
{1, . . . , N} denotes the finite set of agents, S is the global state space, U is the action space for an
agent, P is the transition probability, r is the reward function, Z is the observation space for an agent,
O is the observation function, and and γ ∈ [0, 1) is the discount factor. At each timestep t, each
agent i ∈ N receives an observation z ∈ Z from the observation function O(s, i) : S × N 7→ Z
due to partial observability, and chooses an action ui ∈ U , which forms a joint action u ∈ U ≡ Un.
The joint action u taken by all agents leads to a transition to the next state s′ according to transition
probability P (s′ | s,u) : S × U × S 7→ [0, 1] and a joint reward r(s,u) : S × U 7→ R. As the time
goes by, each agent i ∈ N has an action-observation history τi ∈ T ≡ (Z × U)∗, where T is the
history space. Based on τi, each agent i outputs an action ui according to its constructed policy πi(ui |
τi) : T × U 7→ [0, 1]. The goal of agents is to find an optimal joint policy π = ⟨π1, . . . , πN ⟩, which
maximize the joint cumulative rewards J(s0;π) = Eut∼π(·|st),st+1∼P (·|st,ut)

[∑∞
t=0 γ

ir(st,ut)
]
,

where s0 is the initial state. The joint action-value function associated with policy π is defined as
Qπ(st,ut) = Eut+i∼π(·|st+i),st+i+1∼P (·|st+i,ut+i)

[∑∞
i=0 γ

ir(st+i,ut+i)
]
.

A.3 Proof of Theorem 3.1

Proof. By the definitions of multi-step targets, we have

Eρ[Tn(st,ut)]

=Eρ[

n−1∑
k=0

γkrt+k + γn max
u

Qtot (st+n,u; θ)]

=Eρ[

n−1∑
k=0

γkrt+k + γnQtot (st+n, π(st+n); θ)]

17

=Eρ[

n−1∑
k=0

γkrt+k + γnQtot (st+n, ρ(st+n);ϕ)]

+ γnEρ[Qtot (st+n, π(st+n); θ)−Qtot (st+n, ρ(st+n);ϕ)]

=Eρ[

n−1∑
k=0

γkrt+k + γnQρ
tot (st+n, ρ(st+n))]

+ γnEρ[Qtot (st+n, ρ(st+n);ϕ)−Qρ
tot (st+n, ρ(st+n))]

+ γnEρ[Qtot (st+n, π(st+n); θ)−Qtot (st+n, ρ(st+n);ϕ)]

=Qρ
tot (st,ut) + γnEρ[ϵ(st+n, ρ(st+n))] + γnEρ[Qtot (st+n, π(st+n); θ)−Qtot (st+n, ρ(st+n);ϕ)].

(4)

Besides, we also have

Eρ[Qtot (st+n, π(st+n); θ)−Qtot (st+n, ρ(st+n);ϕ)]

=Eρ[Qtot (st+n, π(st+n); θ)−Qπ
tot (st+n, π(st+n))]

+ Eρ[Q
π
tot (st+n, π(st+n))−Qρ

tot (st+n, ρ(st+n))]

+ Eρ[Q
ρ
tot (st+n, ρ(st+n))−Qtot (st+n, ρ(st+n);ϕ)]

=Eρ[ϵ(st+n, π(st+n))] + Eρ[Q
π
tot (st+n, π(st+n))−Qρ

tot (st+n, ρ(st+n))] + Eρ[ϵ(st+n, ρ(st+n))].
(5)

Thus, combining Eq. (4) and Eq. (5) gives

Eρ[Tn(st,ut)]−Qπ
tot (st,ut) = γnEρ[2ϵ(st+n, ρ(st+n)) + ϵ(st+n, π(st+n))]︸ ︷︷ ︸

Network fitting error

+Qρ
tot (st,ut)−Qπ

tot (st,ut)︸ ︷︷ ︸
Policy inconsistency error

+ γnEρ[Q
π
tot (st+n, π(st+n))−Qρ

tot (st+n, ρ(st+n))]︸ ︷︷ ︸
Discounted policy inconsistency error

.

A.4 Proof of Theorem 3.2

Relace the Softmax operator in the proof of Theorem 3 in [Pan et al., 2021] with Eq. (3) gives the
result directly.

A.5 MAST with Different Algorithms

In this section, we present the pseudocode implementations of MAST for QMIX [Rashid et al.,
2020b] and WQMIX [Rashid et al., 2020a] in Algorithm 2 and Algorithm 3, respectively. It is
noteworthy that RES [Pan et al., 2021] exclusively modifies the training target without any alterations
to the learning protocol or network structure. Consequently, the implementation of MAST with RES
mirrors that of QMIX.

Crucially, MAST stands as a versatile sparse training framework, applicable to a range of value
decomposition-based MARL algorithms, extending well beyond QMIX, WQMIX3, and RES. Fur-
thermore, MAST’s three innovative components—hybrid TD(λ), Soft Mellowmax operator, and dual
buffer—can be employed independently, depending on the specific algorithm’s requirements. This
flexible framework empowers the training of sparse networks from the ground up, accommodating a
wide array of MARL algorithms.

In the following, we delineate the essential steps of implementing MAST with QMIX (Algorithm 2).
The steps for WQMIX are nearly identical, with the exception of unrestricted agent networks and
the unrestricted mixing network’s inclusion. Also, note that we follow the symbol definitions from
[Colom, 2021] in Algorithm 2 and 3.

3Note that WQMIX encompasses two distinct instantiations, namely Optimistically-Weighted (OW) QMIX
and Centrally-Weighted (CW) QMIX. In this paper, we specifically focus on OWQMIX.

18

Gradient-based Topology Evolution: The process of topology evolution is executed within
Lines 31-33 in Algorithm 2. Specifically, the topology evolution update occurs at intervals of ∆m

timesteps. For a comprehensive understanding of additional hyperparameters pertaining to topology
evolution, please refer to the definitions provided in Algorithm 1.

TD Targets: Hybrid TD(λ) with Soft Mellowmax operator is computed in the Line 25 in Algo-
rithm 2, which modify the TD target y as follows:

yS =

{
G

(1)
t , if t < T0.

(1− λ)
∑∞

n=1 λ
n−1T (n)

t , Otherwise.
(6)

Algorithm 2 MAST-QMIX
1: Initialize sparse agent networks, mixing network and hypernetwork with random parameters θ

and random masks Mθ with determined sparsity S .
2: θ̂ ← θ ⊙Mθ // Start with a random sparse network
3: Initialize target networks θ̂− ← θ̂
4: Set the learning rate to α
5: Initialize the replay buffer B1 ← {} with large capacity C1 and B2 ← {} with small capacity C2

6: Initialize training step← 0
7: while step < Tmax do
8: t← 0
9: s0 ← initial state

10: while st ̸= terminal and t < episode limit do
11: for each agent a do
12: τat ← τat−1 ∪ {(ot, ut−1)}
13: ϵ← epsilon-schedule(step)

14: ua
t ←

{
argmaxua

t
Q (τat , u

a
t) with probability 1− ϵ

randint(1, |U |) with probability ϵ
// ϵ-greedy exploration

15: end for
16: Get reward rt and next state st+1

17: B1 ← B1 ∪ {(st,ut, rt, st+1)} // Data in the buffer is of episodes form.
18: B2 ← B2 ∪ {(st,ut, rt, st+1)}
19: t← t+ 1,step← step + 1
20: end while
21: if |B1| > batch-size then
22: b← random batch of episodes from B1 and B2 // Sample from dual buffers.
23: for each timestep t in each episode in batch b do
24:

Qtot ← Mixing-network
(
(Q1(τ

1
t , u

1
t), · · · , Qn(τ

n
t , u

n
t));Hypernetwork(st; θ̂)

)
25: Compute TD target y according to Eq. (6). // TD(λ) targets with Soft Mellowmax

operator.
26: end for
27: ∆Qtot ← y −Qtot

28: ∆θ̂ ← ∇θ̂
1
b

∑
(∆Qtot)

2

29: θ̂ ← θ̂ − α∆θ̂
30: end if
31: if step mod ∆m = 0 then
32: Topology_Evolution(networksθ̂ by Algorithm 1.
33: end if
34: if step mod I = 0, where is the target network update interval then
35: θ̂− ← θ̂ // Update target network.
36: θ̂− ← θ̂− ⊙Mθ̂
37: end if
38: end while

19

Algorithm 3 MAST-(OW)QMIX
1: Initialize sparse agent networks, mixing network and hypernetwork with random parameters θ

and random masks Mθ with determined sparsity S.
2: Initialize unrestricted agent networks and unrestricted mixing network with random parameters

ϕ and random masks Mϕ with determined sparsity S.
3: θ̂ ← θ ⊙Mθ , ϕ̂← ϕ⊙Mϕ // Start with a random sparse network
4: Initialize target networks θ̂− ← θ̂,ϕ̂− ← ϕ̂
5: Set the learning to rate α
6: Initialize the replay buffer B1 ← {} with large capacity C1 and B2 ← {} with small capacity C2

7: Initialize training step← 0
8: while step < Tmax do
9: t← 0,

10: s0 ← initial state
11: while st ̸= terminal and t < episode limit do
12: for each agent a do
13: τat ← τat−1 ∪ {(ot, ut−1)}
14: ϵ← epsilon-schedule(step)

15: ua
t ←

{
argmaxua

t
Q(τat , u

a
t ; θ̂) with probability 1− ϵ

randint(1, |U |) with probability ϵ
// ϵ-greedy exploration

16: end for
17: Get reward rt and next state st+1

18: B1 ← B1 ∪ {(st,ut, rt, st+1)} // Data in the buffer is of episodes form.
19: B2 ← B2 ∪ {(st,ut, rt, st+1)}
20: t← t+ 1, step← step + 1
21: end while
22: if |B1| > batch-size then
23: b← random batch of episodes from B1 and B2 // Sample from dual buffers.
24: for each timestep t in each episode in batch b do
25:

Qtot ← Mixing-network
(
(Q1(τ

1
t , u

1
t ; θ̂), ..., Qn(τ

n
t , u

n
t ; θ̂));Hypernetwork(st; θ̂)

)
26:

Q̂∗ ← Unrestricted-Mixing-network
(
Q1(τ

1
t , u

1
t ; ϕ̂), ..., Qn(τ

n
t , u

n
t ; ϕ̂), st

)
27: Compute TD target y with target Unrestricted-Mixing network according to Eq. (6).

// TD(λ) targets with Soft Mellowmax operator.

28: ω(st,ut)←
{
1, Qtot < y

α, otherwise.
29: end for
30: ∆Qtot ← y −Qtot

31: ∆θ̂ ← ∇θ̂
1
b

∑
ω(s,u)(∆Qtot)

2

32: θ̂ ← θ̂ − α∆θ̂
33: ∆Q̂∗ ← y − Q̂∗

34: ∆ϕ̂← ∇ϕ̂
1
b

∑
(∆Q̂∗)2

35: ϕ̂← ϕ̂− α∆ϕ̂
36: end if
37: if step mod ∆m = 0 then
38: Topology_Evolution(networksθ̂) and Topology_Evolution(networksϕ̂) by Algorithm 1.
39: end if
40: if step mod I = 0, where is the target network update interval then
41: θ̂− ← θ̂, ϕ̂− ← ϕ̂

42: θ̂− ← θ̂− ⊙Mθ̂, ϕ̂
− ← ϕ̂− ⊙Mϕ̂

43: end if
44: end while

20

Here, λ ∈ [0, 1] is a hyperparameter, and T (n)
t =

∑t+n
i=t γi−tri +

γn+1fs
(
smω(Q̄1(τ1, ·), . . . , smω(Q̄N (τN , ·)

)
, where fs denotes the mixing network and Q̄i

is the target network of Qi. The loss function of MAST, LS(θ), is defined as:

LS(θ) = E(s,u,r,s′)∼B1∪B2

[
(yS −Qtot(s,u))

2
]

(7)

Dual Buffers: With the creation of two buffers B1 and B2, the gradient update with data sampled
from dual buffers is performed in Lines 21-30 in Algorithm 2.

A.6 Limitations of MAST

This paper introduces MAST, a novel framework for sparse training in deep MARL, leveraging
gradient-based topology evolution to explore network configurations efficiently. However, under-
standing its limitations is crucial for guiding future research efforts.

Hyperparameters: MAST relies on multiple hyperparameters for its key components: topology
evolution, TD(λ) targets with Soft Mellowmax Operator, and dual buffers. Future work could explore
methods to automatically determine these hyperparameters or streamline the sparse training process
with fewer tunable settings.

Implementation: While MAST achieves efficient MARL agent training with minimal performance
trade-offs using ultra-sparse networks surpassing 90% sparsity, its current use of unstructured sparsity
poses challenges for running acceleration. The theoretical reduction in FLOPs might not directly
translate to reduced running time. Future research should aim to implement MAST in a structured
sparsity pattern to bridge this gap between theoretical efficiency and practical implementation.

B Experimental Details

In this section, we offer comprehensive experimental insights, encompassing hardware configurations,
environment specifications, hyperparameter settings, model size computations, FLOPs calculations,
and supplementary experimental findings.

B.1 Hardware Setup

Our experiments are implemented with PyTorch 2.0.0 [Paszke et al., 2017] and run on 4× NVIDIA
GTX Titan X (Pascal) GPUs. Each run needs about 12 ∼ 24 hours for QMIX or WQMIX, and about
24 ∼ 72 hours for RES for two million steps. depends on the environment types.

B.2 Environment
We assess the performance of our MAST framework using the SMAC benchmark [Samvelyan et al.,
2019], a dedicated platform for collaborative multi-agent reinforcement learning research based on
Blizzard’s StarCraft II real-time strategy game, specifically version 4.10. It is important to note that
performance may vary across different versions. Our experimental evaluation encompasses four
distinct maps, each of which is described in detail below.

• 3m: An easy map, where the agents are 3 Marines, and the enemiesa are 3 Marines.
• 2s3z: An easy map, where the agents are 2 Stalkers and 3 Zealots, and the enemies are 2

Stalkers and 3 Zealots.
• 3s5z: An easy map, where the agents are 3 Stalkers and 5 Zealots, and the enemies are 3

Stalkers and 5 Zealots.
• 2c_vs_64zg: A hard map, where the agents are 2 Colossi, and the enemies are 64 Zerglings.

We also evaluate MAST on the Multi-Agent MuJoCo (MAMuJoCo) benchmark from [Peng et al.,
2021], which is an environment designed for evaluating continuous MARL algorithms, focusing
on cooperative robotic control tasks. It extends the single-agent MuJoCo framework included with
OpenAI Gym [Brockman et al., 2016]. Inspired by modular robotics, MAMuJoCo includes scenarios
with a large number of agents, aiming to stimulate progress in continuous MARL by providing diverse

21

and challenging tasks for decentralized coordination. We test MAST-COMIX in the Humanoid,
Humanoid Standup, and ManyAgent Swimmer scenarios in MAMuJoCo. The environments are
tested using their default configurations, with other settings following FACMAC [Peng et al., 2021].
Specifically, we set the maximum observation distance to k = 0. In the ManyAgent Swimmer
scenario, we configure 10 agents, each controlling a consecutive segment of length 2. The agent
network architecture of MAST-COMIX uses an MLP with two hidden layers of 400 dimensions each,
following the settings in FACMAC. All other hyperparameters are also based on FACMAC.

B.3 Hyperparameter Settings
Table 3 provides a comprehensive overview of the hyperparameters employed in our experiments
for MAST-QMIX, MAST-WQMIX, and MAST-RES. It includes detailed specifications for network
parameters, RL parameters, and topology evolution parameters, allowing for a thorough understanding
of our configurations. Besides, MAST is implemented based on the PyMARL [Samvelyan et al.,
2019] framework with the same network structures and hyperparameters as given in Table 3. We also
provide a hyperparameter recommendation for three key components, i.e. gradient-based topology
evolution, Soft Mellowmax enabled hybrid TD(λ) targets and dual buffers, in Table 2 for deployment
MAST framework in other problems.

Table 2: Recommendation for Key Hyperparameters in MAST.

Category Hyperparameter Value
Topology
Evolution

Initial mask update fraction ζ0 0.5
Mask update interval ∆m 200 episodes

TD Targets

Burn-in time T0 3/8 of total training steps
λ value in TD(λ) 0.6 or 0.8

α in soft mellow-max operator 1
ω in soft mellow-max operator 10

Dual
Buffer

Offline buffer size C1 5× 103 episodes
Online buffer size C2 128 episodes

Sample partition
of online and offline buffer 2:6

Besides, to extend the existing QMIX to continuous action spaces, we utilized COMIX from FACMAC
[Peng et al., 2021] for our experiments, which employs the Cross-Entropy Method (CEM) for
approximate greedy action selection. The hyperparameter configuration of CEM also follows
FACMAC settings.

B.4 Calculation of Model Sizes and FLOPs
B.4.1 Model Size
First, we delineate the calculation of model sizes, which refers to the total number of parameters
within the model.

• For a sparse network with L fully-connected layers, the model size, as expressed in prior
works [Evci et al., 2020, Tan et al., 2022], can be computed using the equation:

Mlinear =

L∑
l=1

(1− Sl)IlOl, (8)

where Sl represents the sparsity, Il is the input dimensionality, and Ol is the output dimen-
sionality of the l-th layer.

• For a sparse network with L GRU layers, considering the presence of 3 gates in a single
layer, the model size can be determined using the equation:

MGRU =

L∑
l=1

(1− Sl)× 3× hl × (hl + Il), (9)

where hl represents the hidden state dimensionality.

22

Table 3: Hyperparameters of MAST-QMIX, MAST-WQMIX and MAST-RES.

Category Hyperparameter Value

Shared
Hyperparameters

Optimizer RMSProp
Learning rate α 5× 10−4

Discount factor γ 0.99
Number of hidden units

per layer of agent network 64

Hidden dimensions in the
GRU layer of agent network 64

Embedded dimensions
of mixing network 32

Hypernet layers
of mixing network 2

Embedded dimensions
of hypernetwork 64

Activation Function ReLU
Batch size B 32 episodes
Warmup steps 50000

Initial ϵ 1.0
Final ϵ 0.05

Double DQN update True
Target network update interval I 200 episodes
Initial mask update fraction ζ0 0.5

Mask update interval ∆m timesteps of 200 episodes
Offline buffer size C1 5× 103 episodes
Online buffer size C2 128 episodes

Burn-in time T0 7.5× 105

α in soft mellow-max operator 1
ω in soft mellow-max operator 10

Number of episodes
in a sampled batch
of offline buffer S1

20

Number of episodes
in a sampled batch
of online buffer S2

12

Hyperparameters
for MAST-QMIX

Linearly annealing steps for ϵ 50k
λ value in TD(λ) 0.8

Hyperparameters
for MAST-WQMIX

Linearly annealing steps for ϵ 100k
λ value in TD(λ) 0.6

Coefficient of Qtot loss 1
Coefficient of Q̂∗ loss 1

Embedded dimensions of
unrestricted mixing network 256

Embedded number of actions
of unrestricted agent network 1

α in weighting function 0.1

Hyperparameters
for MAST-RES

Linearly annealing steps for ϵ 50k
λ value in TD(λ) 0.8

λ value in Softmax operator 0.05
Inverse temperature β 5.0

23

Specifically, the "Total Size" column in Table 1 within the manuscript encompasses the model size,
including both agent and mixing networks during training. For QMIX, WQMIX, and RES, target
networks are employed as target agent networks and target mixing networks. We denote the model
sizes of the agent network, mixing network, unrestricted agent network, and unrestricted mixing
network as MAgent, MMix, MUnrestricted-Agent, and MUnrestricted-Mix, respectively. Detailed calculations
of these model sizes are provided in the second column of Table 4.

Table 4: FLOPs and model size for MAST-QMIX , MAST-WQMIX and MAST-RES.

Algorithm Model size Training
FLOPs

Inference
FLOPs

MAST-QMIX 2MAgent + 2MMix 4B(FLOPsAgent + FLOPsMix) FLOPsAgent

MAST-WQMIX
MAgent +MMix+
2MUnrestricted-Agent+
2MUnrestricted-Mix

3B(FLOPsAgent + FLOPsMix)+
4B · FLOPsUnrestricted-Agent+
4B · FLOPsUnrestricted-Mix

FLOPsAgent

MAST-RES 2MAgent + 2MMix
4B · FLOPsAgent+

(5 + nm)B · FLOPsMix
FLOPsAgent

B.4.2 FLOPs Calculation
Initially, for a sparse network with L fully-connected layers, the required FLOPs for a forward pass
are computed as follows (also adopted in [Evci et al., 2020] and [Tan et al., 2022]):

FLOPs =
L∑

l=1

(1− Sl)(2Il − 1)Ol, (10)

where Sl is the sparsity, Il is the input dimensionality, and Ol is the output dimensionality of the
l-th layer. Similarly, for a sparse network with L GRU [Chung et al., 2014] layers, considering the
presence of 3 gates in a single layer, the required FLOPs for a forward pass are:

FLOPs =
L∑

l=1

(1− Sl)× 3× hl × [2(hl + Il)− 1], (11)

where hl is the hidden state dimensionality.

We denote B as the batch size employed in the training process, and FLOPsAgent and FLOPsMix as
the FLOPs required for a forward pass in the agent and mixing networks, respectively. The inference
FLOPs correspond exactly to FLOPsAgent, as detailed in the last column of Table 4. When it comes to
training FLOPs, the calculation encompasses multiple forward and backward passes across various
networks, which will be thoroughly elucidated later. Specifically, we compute the FLOPs necessary
for each training iteration. Additionally, we omit the FLOPs associated with the following processes,
as they exert minimal influence on the ultimate result:

• Interaction with the environment: This operation, where agents decide actions for interac-
tion with the environment, incurs FLOPs equivalent to FLOPsAgent. Notably, this value is
considerably smaller than the FLOPs required for network updates, as evident in Table 4,
given that B ≫ 1.

• Updating target networks: Each parameter in the networks is updated as θ′ ← θ. Conse-
quently, the number of FLOPs in this step mirrors the model size, and is thus negligible.

• Topology evolution: This element is executed every 200 gradient updates. To be precise,
the average FLOPs involved in topology evolution are computed as B × 2FLOPsAgent

(1−S(a))∆m
for the

agent, and B × 2FLOPsMix
(1−S(m))∆m

for the mixer. Given that ∆m = 200, the FLOPs incurred by
topology evolution are negligible.

Therefore, our primary focus shifts to the FLOPs related to updating the agent and mixer. We will
first delve into the details for QMIX, with similar considerations for WQMIX and RES.

B.4.3 Training FLOPs Calculation in QMIX
Recall the way to update networks in QMIX is given by

θ ← θ − α∇θ
1

B

∑
(yt −Qtot(si, ai; θ))

2, (12)

24

where B is the batch size. Subsequently, we can compute the FLOPs of training as:

FLOPstrain = FLOPsTD_target + FLOPscompute_loss + FLOPsbackward_pass, (13)

where FLOPsTD_target, FLOPscompute_loss, and FLOPsbackward_pass refer to the numbers of FLOPs in
computing the TD targets in forward pass, loss function in forward pass, and gradients in backward
pass (backward-propagation), respectively. By Eq. (6) and (7), we have:

FLOPsTD_target =B × (FLOPsAgent + FLOPsMix),

FLOPscompute_loss =B × (FLOPsAgent + FLOPsMix).
(14)

For the FLOPs of gradients backward propagation, FLOPsbackward_pass, we compute it as two times
the computational expense of the forward pass, which is adopted in existing literature [Evci et al.,
2020], i.e.,

FLOPsbackward_pass = B × 2× (FLOPsAgent + FLOPsMix), (15)

Combining Eq. (13), Eq. (14), and Eq. (15), the FLOPs of training in QMIX is:

FLOPstrain = B × 4× (FLOPsAgent + FLOPsMix). (16)

B.4.4 Training FLOPs Calculation in WQMIX
The way to update the networks in WQMIX is different from that in QMIX. Specifically, denote
the parameters of the original network and unrestricted network as θ and ϕ, respectively, which are
updated according to

θ ←θ − α∇θ
1

B

∑
i

ω(si, ai)(Tλ −Qtot(si, ai; θ))
2

ϕ←ϕ− α∇ϕ
1

B

∑
i

(Tλ − Q̂∗(si, ai;ϕ))
2

, (17)

where B is the batch size, ω is the weighting function, Q̂∗ is the unrestricted joint action value
function. As shown in Algorithm 3, the way to compute TD target in WQMIX is different from that
in QMIX. Thus, we have

FLOPsTD_target = B × (FLOPsUnrestricted-Agent + FLOPsUnrestricted-Mix). (18)

In this paper, we take an experiment on one of two instantiations of QMIX. i.e., OW-QMIX [Rashid
et al., 2020a]. Thus, the number of FLOPs in computing loss is

FLOPscompute_loss = B × (FLOPsAgent + FLOPsMix + FLOPsUnrestricted-Agent + FLOPsUnrestricted-Mix).
(19)

where unrestricted-agent and unrestricted-mix have similar network architectures as Qtot and Qtot to,
respevtively. The FLOPs of gradients backward propagation can be given as

FLOPsbackward_pass = B×2×(FLOPsAgent+FLOPsMix+FLOPsUnrestricted-Agent+FLOPsUnrestricted-Mix).
(20)

Thus, the FLOPs of training in WQMIX can be computed by

FLOPstrain = B×(3FLOPsAgent+3FLOPsMix+4FLOPsUnrestricted-Agent+4FLOPsUnrestricted-Mix). (21)

B.4.5 Training FLOPs Calculation in RES
Calculations of FLOPs for RES are similar to those in QMIX. The way to update the network
parameter in RES is:

θ ← θ − α∇θ
1

B

∑
i

(Tλ −Qtot(si, ai; θ))
2, (22)

where B is the batch size. Meanwhile, note that the way to compute TD target in RES [Pan et al.,
2021] includes computing the approximate Softmax operator, we have:

FLOPsTD_target = B × (FLOPsAgent + n×m× (2FLOPsMix)), (23)

where n is the number of agents, m is the maximum number of actions an agent can take in a scenario.
Other terms for updating networks are the same as QMIX. Thus, the FLOPs of training in RES can
be computed by

FLOPstrain = B × (4FLOPsAgent + (3 + 2× n×m)FLOPsMix). (24)

25

B.5 Training Curves of Comparative Evaluation in Section 4.1

Figure 13, Figure 14, and Figure 15 show the training curves of different algorithms in four SMAC
environments. The performance is calculated as the average win rate per episode over the last 20
evaluations of the training. MAST outperforms baseline algorithms on all four environments in all
three algorithms. We smooth the training curve by a 1-D filter by scipy.signal.savgol_filter
in Python with window_length=21 and polyorder=2.

These figures unequivocally illustrate MAST’s substantial performance superiority over all baseline
methods in all four environments across the three algorithms. Notably, static sparse (SS) consistently
exhibit the lowest performance on average, highlighting the difficulty of finding optimal sparse
network topologies in the context of sparse MARL models. Dynamic sparse training methods, namely
SET and RigL, slightly outperform (SS), although their performance remains unsatisfactory. Sparse
networks also, on average, underperform tiny dense networks. However, MAST significantly outpaces
all other baselines, indicating the successful realization of accurate value estimation through our
MAST method, which effectively guides gradient-based topology evolution. Notably, the single-agent
method RLx2 consistently delivers subpar results in all experiments, potentially due to the sensitivity
of the step length in the multi-step targets, and the failure of dynamic buffer for episode-form training
samples.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

Dense
Tiny
SS
SET
RigL
RLx2
MAST

(a) MAST-QMIX 95% on 3m

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

Dense
Tiny
SS
SET
RigL
RLx2
MAST

(b) MAST-QMIX 95% on 2s3z

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

Dense
Tiny
SS
SET
RigL
RLx2
MAST

(c) MAST-QMIX 90% on 3s5z

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

Dense
Tiny
SS
SET
RigL
RLx2
MAST

(d) MAST-QMIX 90% on 64zg
Figure 13: Training processes of MAST-QMIX on four SAMC benchmarks.

26

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

Dense
Tiny
SS
SET
RigL
RLx2
MAST

(a) MAST-WQMIX 90% on 3m

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

Dense
Tiny
SS
SET
RigL
RLx2
MAST

(b) MAST-WQMIX 90% on 2s3z

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

Dense
Tiny
SS
SET
RigL
RLx2
MAST

(c) MAST-WQMIX 90% on 3s5z

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

Te
st

 w
in

 ra
te

Dense
Tiny
SS
SET
RigL
RLx2
MAST

(d) MAST-WQMIX 90% on 64zg
Figure 14: Training processes of MAST-WQMIX on four SAMC benchmarks.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

Dense
Tiny
SS
SET
RigL
RLx2
MAST

(a) MAST-RES 95% on 3m

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

Dense
Tiny
SS
SET
RigL
RLx2
MAST

(b) MAST-RES 90% on 2s3z

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

Dense
Tiny
SS
SET
RigL
RLx2
MAST

(c) MAST-RES 85% on 3s5z

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

Dense
Tiny
SS
SET
RigL
RLx2
MAST

(d) MAST-RES 85% on 64zg

Figure 15: Training processes of MAST-RES on four SAMC benchmarks.

B.6 Standard Deviations of Results in Table 1
Table 5 showcases algorithm performance across four SMAC environments along with their cor-
responding standard deviations. It’s important to note that the data in Table 5 is not normalized
concerning the dense model. Notably, MAST’s utilization of topology evolution doesn’t yield in-
creased variance in results, demonstrating consistent performance across multiple random seeds.

27

Table 5: Results in Table 1 with standard deviations

Alg. Env. Tiny(%) SS(%) SET(%) RigL(%) RLx2(%) Ours(%)

Q-
MIX

3m 96.3±4.3 89.8±7.9 94.1±5.9 93.4±9.5 11.9±20.5 98.9±2.0
2s3z 80.8±12.9 70.4±13.1 74.9±16.4 67.0±14.0 44.2±17.0 94.6±4.6
3s5z 64.2±11.8 32.0±20.3 49.3±16.6 42.6±19.2 47.2±16.2 93.3±5.1
64* 54.0±29.9 37.3±23.4 62.3±21.9 45.2±23.4 9.2±15.0 90.6±7.8
Avg. 73.8±14.7 57.4±16.2 70.1±15.2 62.0±16.5 28.1±17.2 94.3±4.9

WQ-
MIX

3m 97.0±4.0 95.6±4.0 96.5±3.6 96.5±3.6 96.7±4.3 97.3±4.0
2s3z 86.0±7.9 72.4±12.4 82.5±10.9 83.3±10.3 83.8±9.9 96.2±4.2
3s5z 64.5±17.9 57.0±14.5 51.1±15.0 46.0±20.5 55.4±11.3 87.6±6.9
64* 43.8±27.4 25.4±22.0 37.8±26.2 35.2±16.7 45.3±24.7 84.4±8.4
Avg. 68.5±13.5 62.2±13.0 64.0±13.5 65.8±11.4 70.3±12.5 91.4±5.9

RES

3m 96.9±4.1 94.7±4.8 96.4±4.3 90.3±7.4 97.0±3.8 102.2±3.2
2s3z 95.8±3.8 92.2±5.9 92.2±5.5 94.0±5.7 93.4±5.5 97.7±2.6
3s5z 92.2±4.8 86.3±8.8 87.6±5.9 90.0±7.3 83.6±9.2 96.4±3.4
64* 73.5±25.8 34.5±29.6 38.9±32.3 31.1±36.2 64.1±33.8 92.5±4.9
Avg. 89.6±9.6 76.9±12.3 78.8±12.0 76.3±14.1 84.5±13.1 97.2±3.5

Avg. 78.7±12.8 65.6±13.9 72.0±13.7 67.8±14.5 61.0±14.3 94.2±4.6

B.7 Ablation Study

We conduct a comprehensive ablation study on three critical elements of MAST: hybrid TD(λ)
targets, the Soft Mellowmax operator, and dual buffers, specifically evaluating their effects on QMIX
and WQMIX. Notably, since MAST-QMIX shares similarities with MAST-RES, our experiments
focus on QMIX and WQMIX within the 3s5z task. This meticulous analysis seeks to elucidate the
influence of each component on MAST and their robustness in the face of hyperparameter variations.
The reported results are expressed as percentages and are normalized to dense models.

Hybrid TD(λ) We commence our analysis by evaluating different burn-in time T0 in hybrid
TD(λ) in Table 6. Additionally, we explore the impact of different λ values within hybrid TD(λ)
in Table 7. These results reveal hybrid TD(λ) targets achieve optimal performance with a burn-in
time of T0 = 0.75M and λ = 0.6. It is noteworthy that hybrid TD(λ) targets lead to significant
performance improvements in WQMIX, while their impact on QMIX is relatively modest.

Table 6: Ablation study on burn-in time T0 in hybrid TD(λ).

Alg. 0 0.45M 0.75M 1M 1.5M 2M

QMIX / RES 93.6 94.3 97.9 92.0 92.5 91.5
WQMIX 83.5 88.4 98.0 98.7 76.9 70.3

Avg. 88.5 91.3 97.9 95.4 84.7 80.9

Table 7: Ablation study on λ in hybrid TD(λ).

Alg. 0 0.2 0.4 0.6 0.8 1

QMIX / RES 91.5 94.7 96.8 96.8 97.9 89.4
WQMIX 83.5 83.5 74.7 98.0 96.1 87.9

Avg. 87.5 89.1 85.7 97.4 97.0 88.6

Soft Mellowmax Operator The Soft Mellowmax operator in Eq.(3) introduces two hyperparam-
eters, α and ω. A comprehensive examination of various parameter configurations is presented

28

in Table 8, showing that the performance of MAST exhibits robustness to changes in the two
hyperparameters associated with the Soft Mellowmax operator.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

Te
st

 w
in

 ra
te

RigL-QMIX-Max
RigL-QMIX-Mellowmax
RigL-QMIX-Softmax
RigL-QMIX-Soft-Mellowmax

Figure 16: Comparison of different
operators.

Additionally, it is worth noting that the Softmax operator is
also employed in [Pan et al., 2021] to mitigate overestimation
in multi-agent Q learning. To examine the effectiveness of
various operators, including max, Softmax, Mellowmax, and
Soft Mellowmax, we conduct a comparative analysis in Fig-
ure 16. Our findings indicate that the Soft Mellowmax operator
surpasses all other baselines in alleviating overestimation. Al-
though the Softmax operator demonstrates similar performance
to the Soft Mellowmax operator, it should be noted that the
Softmax operator entails higher computational costs.

Table 8: Ablation study on the Soft Mellowmax operator.

Alg. α = 1
ω = 10

α = 5
ω = 5

α = 5
ω = 10

α = 10
ω = 5

α = 10
ω = 10

QMIX / RES 97.9 100.0 98.9 96.8 97.9
WQMIX 98.0 92.3 87.9 92.3 85.7

Avg. 97.9 96.1 93.4 94.5 91.8

Dual Buffers In each training step, we concurrently sample two batches from the two buffers, B1
and B2. We maintain a fixed total batch size of 32 while varying the sample partitions b1 : b2 within
MAST. The results, detailed in Table 9, reveal that employing two buffers with a partition ratio of
6 : 2 yields the best performance. Additionally, we observed a significant degradation in MAST’s
performance when using data solely from a single buffer, whether it be the online or offline buffer.
This underscores the vital role of dual buffers in sparse MARL.

Table 9: Ablation study on dual buffers.

Alg. 8 : 0 6 : 2 5 : 3 3 : 5 2 : 6 0 : 8

QMIX / RES 93.6 99.4 97.9 97.8 89.6 85.1
WQMIX 64.8 101.2 98.0 86.8 95.1 70.3

Avg. 79.2 100.3 97.9 92.3 92.4 77.7

B.8 Sensitivity Analysis for Hyperparameters
Table 10 shows the performance with different mask update intervals (denoted as ∆m) in different
environments, which reveals several key observations:

• Findings indicate that a small ∆m negatively impacts performance, as frequent mask
adjustments may prematurely drop critical connections before their weights are adequately
updated by the optimizer.

• Overall, A moderate ∆m = 200 episodes performs well in different algorithms.

Table 10: Sensitivity analysis on mask update interval.

Alg. ∆m = 20
episodes

∆m = 100
episodes

∆m = 200
episodes

∆m = 1000
episodes

∆m = 2000
episodes

QMIX/RES 99.4% 97.7% 99.0% 100.6% 100.6%
WQMIX 83.2% 91.9% 96.1% 68.1% 71.5%

Avg. 91.3% 94.8% 97.5% 84.3% 86.0%

29

B.9 Experiments on QMIX in Multi-Agent MuJoCo

We compare MAST-QMIX with other baselines on the MAMuJoCo benchmark, and the results
are presented in Figure 17. From the figure, we observe that MAST consistently achieves dense
performance and outperforms other methods in three environments, except for ManyAgent Swimmer,
where the static sparse network performs similarly to MAST. This similarity may be attributed to the
simplicity of the ManyAgent Swimmer environment, which allows a random static sparse network to
achieve good performance. This comparison demonstrates the applicability of MAST across different
environments.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Million steps

100

200

300

400

500

Ep
iso

de
 re

tu
rn

s

COMIX-Dense
COMIX-SS
COMIX-SET
COMIX-RigL
COMIX-MAST

(a) 2-Agent Humanoid

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Million steps

40000

60000

80000

100000

120000

140000

Ep
iso

de
 re

tu
rn

s

COMIX-Dense
COMIX-SS
COMIX-SET
COMIX-RigL
COMIX-MAST

(b) 2-Agent HumanoidStandup

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Million steps

150

100

50

0

50

100

150

Ep
iso

de
 re

tu
rn

s

COMIX-Dense
COMIX-SS
COMIX-SET
COMIX-RigL
COMIX-MAST

(c) ManyAgent Swimmer
Figure 17: Mean episode return on different MAMuJoCo tasks with MAST-QMIX.

B.10 Experiments on FACMAC in SMAC

In addition to pure value-based deep MARL algorithms, we also evaluate MAST with a hybrid value-
based and policy-based algorithm, FACMAC [Peng et al., 2021], in SMAC. The results are presented
in Figure 18. From the figure, we observe that MAST consistently achieves dense performance and
outperforms other methods in three environments, demonstrating its applicability across different
algorithms.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

FACMAC-Dense
FACMAC-SS
FACMAC-SET
FACMAC-RigL
FACMAC-MAST

(a) MMM

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.0

0.2

0.4

0.6

0.8

Te
st

 w
in

 ra
te

FACMAC-Dense
FACMAC-SS
FACMAC-SET
FACMAC-RigL
FACMAC-MAST

(b) 2c_vs_64zg

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million steps

0.2

0.4

0.6

0.8

1.0

Te
st

 w
in

 ra
te

FACMAC-Dense
FACMAC-SS
FACMAC-SET
FACMAC-RigL
FACMAC-MAST

(c) bane_vs_bane
Figure 18: Mean episode win rates on different SMAC tasks with MAST-FACMAC.

B.11 Visualization of Sparse Masks

We present a series of visualizations capturing the evolution of masks within network layers during
the MAST-QMIX training in the 3s5z scenario. These figures, specifically Figure 20 (a detailed
view of Figure 11, Figure 21, and Figure 22, offer intriguing insights. Additionally, we provide
connection counts in Figure 23, 24 and 25, for input and output dimensions in each sparse mask,
highlighting pruned dimensions. To facilitate a clearer perspective on connection distributions, we
sort dimensions based on the descending order of nonzero connections, focusing on the distribution
rather than specific dimension ordering. The connection counts associated with Figure 11 in the main
paper s given in Figure 19.

30

0 10 20 30 40 50 60 70
Sorted input dimension

0
1
2
3
4
5
6
7
8
9

10

(a) T = 0M (Input)

0 10 20 30 40 50 60 70
Sorted input dimension

0
1
2
3
4
5
6
7
8
9

10

(b) T = 0.5M (Input)

0 10 20 30 40 50 60 70
Sorted input dimension

0
1
2
3
4
5
6
7
8
9

10

(c) T = 1M (Input)

0 10 20 30 40 50 60 70
Sorted input dimension

0
1
2
3
4
5
6
7
8
9

10

(d) T = 2M (Input)

0 5 10 15 20 25 30
Sorted output dimension

0
6

12
18
24
30
36
42
48
54
60

(e) T = 0M (Output)

0 5 10 15 20 25 30
Sorted output dimension

0
6

12
18
24
30
36
42
48
54
60

(f) T = 0.5M (Output)

0 5 10 15 20 25 30
Sorted output dimension

0
6

12
18
24
30
36
42
48
54
60

(g) T = 1M (Output)

0 5 10 15 20 25 30
Sorted output dimension

0
6

12
18
24
30
36
42
48
54
60

(h) T = 2M (Output)

Figure 19: Number of nonzero connections for input and output dimensions in descending order of
the sparse layer visualized in Figure 11.
During the initial phases of training, a noticeable shift in the mask configuration becomes evident,
signifying a dynamic restructuring process. As the training progresses, connections within the hidden
layers gradually coalesce into a subset of neurons. This intriguing phenomenon underscores the
distinct roles assumed by individual neurons in the representation process, thereby accentuating the
significant redundancy prevalent in dense models.

• Figure 20 provides insights into the input layer, revealing that certain output dimensions can
be omitted while preserving the necessity of each input dimension.

• Figure 21 showcases analogous observations, reinforcing the idea that only a subset of
output neurons is indispensable, even within the hidden layer of the GRU.

• Figure 22 presents distinct findings, shedding light on the potential redundancy of certain
input dimensions in learning the hyperparameters within the hypernetwork.

31

T = 0M T = 0.5M

T = 1M T = 2M

Figure 20: The learned mask of the input layer weight of Q1. Light pixels in row i and column j
indicate the existence of the connection for input dimension j and output dimension i, while the dark
pixel represents the empty connection.

T = 0M T = 0.5M T = 1M T = 2M

Figure 21: The learned mask of the GRU layer weight of Q1. Light pixels in row i and column j
indicate the existence of the connection for input dimension j and output dimension i, while the dark
pixel represents the empty connection.

32

T = 0M T = 0.5M T = 1M T = 2M

Figure 22: The learned mask of the first layer weight of Hypernetwork. Light pixels in row i and
column j indicate the existence of the connection for input dimension j and output dimension i,
while the dark pixel represents the empty connection.

33

0 20 40 60 80 100 120 140
Sorted input dimension

0
2
4
6
8

10
12
14
16
18
20

(a) T = 0M (Input)

0 20 40 60 80 100 120 140
Sorted input dimension

0
2
4
6
8

10
12
14
16
18
20

(b) T = 0.5M (Input)

0 20 40 60 80 100 120 140
Sorted input dimension

0
2
4
6
8

10
12
14
16
18
20

(c) T = 1M (Input)

0 20 40 60 80 100 120 140
Sorted input dimension

0
2
4
6
8

10
12
14
16
18
20

(d) T = 2M (Input)

0 10 20 30 40 50 60
Sorted output dimension

0
10
20
30
40
50
60
70
80
90

100

(e) T = 0M (Output)

0 10 20 30 40 50 60
Sorted output dimension

0
10
20
30
40
50
60
70
80
90

100

(f) T = 0.5M (Output)

0 10 20 30 40 50 60
Sorted output dimension

0
10
20
30
40
50
60
70
80
90

100

(g) T = 1M (Output)

0 10 20 30 40 50 60
Sorted output dimension

0
10
20
30
40
50
60
70
80
90

100

(h) T = 2M (Output)

Figure 23: Number of nonzero connections for input and output dimensions in descending order of
the sparse layer visualized in Figure 20.

0 10 20 30 40 50 60
Sorted input dimension

0
5

10
15
20
25
30
35
40
45
50

(a) T = 0M (Input)

0 10 20 30 40 50 60
Sorted input dimension

0
5

10
15
20
25
30
35
40
45
50

(b) T = 0.5M (Input)

0 10 20 30 40 50 60
Sorted input dimension

0
5

10
15
20
25
30
35
40
45
50

(c) T = 1M (Input)

0 10 20 30 40 50 60
Sorted input dimension

0
5

10
15
20
25
30
35
40
45
50

(d) T = 2M (Input)

0 25 50 75 100 125 150 175 200
Sorted output dimension

0
5

10
15
20
25
30
35
40
45
50

(e) T = 0M (Output)

0 25 50 75 100 125 150 175 200
Sorted output dimension

0
5

10
15
20
25
30
35
40
45
50

(f) T = 0.5M (Output)

0 25 50 75 100 125 150 175 200
Sorted output dimension

0
5

10
15
20
25
30
35
40
45
50

(g) T = 1M (Output)

0 25 50 75 100 125 150 175 200
Sorted output dimension

0
5

10
15
20
25
30
35
40
45
50

(h) T = 2M (Output)

Figure 24: Number of nonzero connections for input and output dimensions in descending order of
the sparse layer visualized in Figure 21.

0 10 20 30 40 50 60
Sorted input dimension

0
20
40
60
80

100
120
140
160

No
nz

er
o

co
nn

ec
tio

ns

(a) T = 0M

0 10 20 30 40 50 60
Sorted input dimension

0
20
40
60
80

100
120
140
160

No
nz

er
o

co
nn

ec
tio

ns

(b) T = 0.5M

0 10 20 30 40 50 60
Sorted input dimension

0
20
40
60
80

100
120
140
160

No
nz

er
o

co
nn

ec
tio

ns

(c) T = 1M

0 10 20 30 40 50 60
Sorted input dimension

0
20
40
60
80

100
120
140
160

No
nz

er
o

co
nn

ec
tio

ns

(d) T = 2M

0 50 100 150 200
Sorted output dimension

0
2
4
6
8

10
12
14
16
18

No
nz

er
o

co
nn

ec
tio

ns

(e) T = 0M

0 50 100 150 200
Sorted output dimension

0
2
4
6
8

10
12
14
16
18

No
nz

er
o

co
nn

ec
tio

ns

(f) T = 0.5M

0 50 100 150 200
Sorted output dimension

0
2
4
6
8

10
12
14
16
18

No
nz

er
o

co
nn

ec
tio

ns

(g) T = 1M

0 50 100 150 200
Sorted output dimension

0
2
4
6
8

10
12
14
16
18

No
nz

er
o

co
nn

ec
tio

ns

(h) T = 2M

Figure 25: Number of nonzero connections for input and output dimensions in descending order of
the sparse layer visualized in Figure 22.

34

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction clearly state the claims that training in multi-
agent reinforcement learning involves heavy computational load, and our proposed MAST
framework can save up to 20 times FLOPs without performance degradation less than 3%
for value-based deep MARL algorithms.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Our paper explores some shortcomings of the MAST framework, such as the
multiple hyperparameters. Please refer to Appendix A.6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

35

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All our theoretical results are accompanied by clear, complete and correct
proofs. All the assumptions we present are clearly stated or referenced.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We ensure that the configurations and details of each experimental result are
clearly explained, and all experimental results are reproducible.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

36

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code will be open-sourced upon publication of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We ensure that the parameter configurations and details of each experimental
result are clearly explained, such as the network architecture and training hyperparameters.
Please refer to B.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For each experiment, we presented the results of eight random seeds and
calculated their mean and standard deviation. Pleasr refer to B.6

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

37

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided the necessary computational resources, hardware setup, and
duration required to reproduce the experiments. Please refer to B.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We ensure compliance with all aspects of the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

38

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly credited assets used in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

39

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have provided a README file alongside our code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

40

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

41

	Introduction
	Preliminaries
	Enhancing Value Learning in Sparse Models
	Improving the Reliability of Training Targets
	Improving the Rationality of Sample Distribution

	Experiments
	Comparative Evaluation
	Sparse Models Obtained by MAST

	Conclusion
	Additional Details for MAST Framework
	Comprehensive Related Work
	Decentralized Partially Observable Markov Decision Process
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	MAST with Different Algorithms
	Limitations of MAST

	Experimental Details
	Hardware Setup
	Environment
	Hyperparameter Settings
	Calculation of Model Sizes and FLOPs
	Training Curves of Comparative Evaluation in Section 4.1
	Standard Deviations of Results in Table 1
	Ablation Study
	Sensitivity Analysis for Hyperparameters
	Experiments on QMIX in Multi-Agent MuJoCo
	Experiments on FACMAC in SMAC
	Visualization of Sparse Masks

