
Knowledge Graph Lifecycle: Building and
maintaining Knowledge Graphs

Umutcan Şimşek1, Kevin Angele1 Elias Kärle1,2, Juliette Opdenplatz1, Dennis
Sommer1, Jürgen Umbrich2, and Dieter Fensel1

1 University of Innsbruck, Technikerstrasse 21a 6020 Innsbruck, Austria
firstname.lastname@sti2.at

2 Onlim GmbH firstname.lastname@onlim.com

Abstract. Knowledge Graphs can integrate a large amount of data from
heterogeneous sources. They can be an important resource for various ap-
plications; however, they are only useful if they satisfy the requirements
of those applications in terms of quality. In this in use experience paper,
we present our approach and tools for supporting the Knowledge Graph
Lifecycle that starts with creation and hosting and continues with the
curation and deployment. The curation process enables the mainteinance
of a Knowledge Graph, especially in terms of correctness and complete-
ness. We provide process models and evaluation of developed tools with
Knowledge Graphs in tourism domain. We discuss the lessons learned
from implementing such an approach in an open and commercial setting
and conclude with a summary and a description of currently ongoing use
cases.

Keywords: knowledge graphs · knowledge graph lifecycle · knowledge
curation · knowledge creation

1 Introduction

Knowledge Graphs integrate data from heterogeneous sources and can rapidly
become quite large [5, 7]. They can be a useful resource to power many applica-
tions in different domains. To enable these applications, the scalable construction
and maintenance of Knowledge Graphs are crucial. The lifecycle of a Knowl-
edge Graph comes with two main challenges (1) how to integrate heterogeneous
sources in a Knowledge Graph in a scalable manner (2) how to make them a
high-quality resource (e.g., semantically and syntactically correct, no duplicate
instances) given the applications in hand.

In this in-use experience paper, we explain the methodology and tools to
support the Knowledge Graph Lifecycle, which consists of the creation, hosting,
curation, and deployment of a Knowledge Graph. The Knowledge Graphs built
with this approach are deployed in an open as well as a commercial setting in the
tourism domain to support conversational agents. We discuss the lessons learned
while implementing our approach.



2 U. Şimşek et al.

In the remainder of the paper, we first present our methodology and tools for
the Knowledge Graph lifecycle (Section 2). Then, we discuss the lessons learned
from developing and implementing our methodology (Section 3). Finally, we
provide concluding remarks and indicators for the future work (Section 4)3.

2 Knowledge Graph Lifecycle

There are already proposed methodologies for iterative construction of Knowl-
edge Graphs from various sources (a recent one is described in [12]), but con-
struction is only the one side of the coin. On the one hand, it must be built from
various heterogenous sources, on the other hand, it must be turned into a high-
quality resource that satisfies the requirements of the use case and applications
in hand [14]. Figure 1 shows these processes and the tools developed to support
them.

Knowledge Creation

Knowledge Hosting

Knowledge Cleaning Knowledge Enrichment

Knowledge
Assessment

Knowledge
Curation

 Importer
and

semantify.it

GraphDB

Quality Assessment Tool

VeriGraph
Duplication Detection

as a Service

Knowledge DeploymentConversational Agents

MongoDB

Fig. 1: The Knowledge Graph Lifecycle (adapted from [5]). The italic labels
represent the tools developed/used for each process

The lifecycle starts with the creation process that deals with the creation of
semantic data from heterogeneous sources. This semantic data is then hosted in

3 Note that we do not have a dedicated related work section. Naturally, we benefited
from a plethora of research work while developing our approach. Unfortunately, we
cannot mention them all in this experience paper due to space restrictions, but only
the ones that are directly related to each process. A comprehensive review can be
found in [5].



Knowledge Graph Lifecycle 3

various stores (depending on the deployment target) and curated. The curation
process first assesses the quality and based on the assessment result trigger
cleaning and enrichment processes to improve its correctness and completeness.
This process continues iteratively to constiute the lifecycle. In the remainder of
the section, the process model, tool, and evaluation for each step in the lifecycle
are presented.

2.1 Knowledge Creation

Knowledge creation4, as defined in [5], describes ”extracting information from
different sources, structuring it, and creating useful knowledge”. For the creation
process, we use schema.org vocabulary as schema. The vocabulary covers many
domains in a shallow way and is a de facto industrial standard for semantic
annotations on the web. We create domain-specific patterns of schema.org to
facilitate knowledge creation. These patterns are extended subsets of schema.org.
These subsets define local properties on types from schema.org its extensions and
constraints on those properties (see also Section 2.3).

We focus on two different ways of creating knowledge: manual and via map-
pings. A free-to-use deployment of both knowledge creation tools can be found
in the semantify.it platform [8]5.

Manual The manual knowledge creation refers to creating RDF graphs via a
form-based interface. The form-based interface is dynamically generated based
on a domain-specific pattern [16], which is a SHACL node shape (see also 2.3).

The manual creation process is typically used for low-volume, unstructured,
and low-volatility content and data. For example, annotation of web pages that
provide relatively static information. To make this process a bit easier, we pro-
vided tool support as part of the semantify.it platform . The platform offers a
generic annotation editor that provides a form-based interface based on domain-
specific patterns for the annotation of content and data.

Mapping The majority of the knowledge used for building Knowledge Graphs
in our case is created through declarative mappings from semi-structured data
sources. In the context of our work, the data to be integrated into the knowledge
graph was obtained from different service providers in different formats, typically
JSON or XML. The mapping was then defined from those sources to schema.org.

The process model for knowledge creation via mappings is the following: We
first collect raw data from different service providers via web services. Each ob-
ject retrieved is mapped to schema.org to create an instance of a schema.org type
with its property values assertions. The generated RDF data is then enriched
with provenance information based on PROV-O6.

4 It may be also called knowledge acquisition
5 https://semantify.it - registration and login required.
6 https://www.w3.org/TR/prov-o



4 U. Şimşek et al.

We implemented this process in the Importer tool. The tool allows registra-
tion of new sources including all the access information and their RML[3] map-
ping files. The timing and frequency of the mappings can be specified with cron
strings. The Importer has Apache NiFi7 in its core to manage the entire dataflow
from accessing raw data to storing in a triple store. Apache NiFi is a dataflow
management tool that offers load balancing, buffering, and guaranteed delivery.
The actual mapping is executed via an external RocketRML[17]8 instance, a
scalable RML mapper implemented with NodeJS. RocketRML currently sup-
ports JSON, XML, and CSV formats and adopts optimization techniques like
JOIN path memoization for high-performance. It supports various JSON-Path
and XPath implementations allowing users to access extra features like back-
ward traversal in a JSON file with JSON-Path Plus9. It also supports function
mappings which are frequently used for transforming property values and distin-
guishing between different subtypes of schema.org type during the mapping (e.g.,
different types of events can be dynamically mapped with a single mapping).

The RML mapper used in the Importer, RocketRML, can map 25K triples
per second in average. However, the overhead caused by sending queries to the
GraphDB instance over HTTP has a negative impact on the overall import
process. A more detailed explanation of knowledge creation via mappings and a
detailed evaluation of the importer tool can be found in [18].

2.2 Knowledge Hosting

We host the created knowledge on two different stores namely a MongoDB in-
stance as a document store, and a GraphDB Enterprise instance. With the cre-
ation approach above we create various Knowledge Graphs, in fact, each user of
the semantify.it platform can create its Knowledge Graphs via mappings. They
can additionally publish the created instances of schema.org types on their web
pages for purposes like semantic search engine optimization. The web annota-
tions are stored in a MongoDB instance as JSON-LD documents to ease the
access to individual annotations, as it is challenging to retrieve all properties
describing an instance directly from a triplestore via SPARQL.

We create both commercial and open knowledge graphs with the afore-
mentioned approach. A notable example is the Tyrolean Tourism Knowledge
Graph10, which contains more than 12B statements. It is populated with data
from 11 different sources (mainly Destination Management Organizations from
different regions in Tyrol) and updated daily. The knowledge coming from dif-
ferent sources is organized in named graphs. The named graphs imported from
the same source on different time points are linked with each other via the
provenance information, which allows applications like time series analysis on
frequently changing data (e.g., accommodation prices, weather measurements).

7 https://nifi.apache.org
8 https://github.com/semantifyit/RocketRML
9 https://www.npmjs.com/package/jsonpath-plus

10 http://tirol.kg



Knowledge Graph Lifecycle 5

2.3 Knowledge Curation

Knowledge Curation is a process for assessing and improving a Knowledge Graph
in various dimensions, especially correctness and completeness (see also ”knowl-
edge refinement” [11], with a narrower set of tasks). In this section, we explain
the processes comprising Knowledge Curation and the tasks on which we focused
in the scope of our work.

Knowledge Assessment Knowledge Assessment is the process of assessing
the quality of Knowledge Graphs. The quality is measured on multiple dimen-
sions using different metrics. In our case, the dimensions and metrics have been
selected from the (linked) data quality literature (e.g., [2], [4], [15]). After elim-
inating some redundancies, we ended up with 20 dimensions (e.g., Accessibility,
Correctness, Completeness, Consistent Representation) with a total of 41 met-
rics (e.g., Accessibility dimensions has a metric for whether a Knowledge Graph
offers a SPARQL endpoint).

In many application scenarios, different quality dimensions have a different
degree of importance for different applications and domains. Similarly, different
metrics may have different importance for the calculation of the quality score for
a dimension. For example, the Timeliness dimension may not be very important
in a domain that has predominantly static data. Therefore, we allow quality
dimensions and metrics to be weighted for different domains (i.e., for instances
of different types). The sum of the weights for metrics for each dimension and
the sum of the weights for each dimension amounts to 1. The process model for
Knowledge Assessment is shown in Figure 2.

Preperation Calculate quality score per
dimension per domain

calculate quality score
per domain

Fig. 2: UML Activity Diagram for the Knowledge Assessment process

Preperation is the activity that deals with various configuration steps that are
necessary for the assessment of a Knowledge Graph. This includes the definition
of weights for different metrics and dimensions for different domains, as well as
the dimension-specific configuration (e.g., where to find RDF dumps for Acces-
sibility dimension, which property values should the instances contain for each
domain to calculate completeness metrics, specification of integrity constraints).

Calculating quality score per dimension per domain step produces a score be-
tween 0 and 1 for each dimension based on adding up its weighted metric scores.
The score of a metric in a dimension is multiplied by the weight defined at the
previous activity to obtain a weighted metric score. The extent of automation
for the calculation depends on the nature of the Knowledge Graph. For example,



6 U. Şimşek et al.

if the Knowledge Graph has its license in a machine-readable format, then the
metric scores involving licenses can be calculated in an automated fashion. More-
over, some of the metrics, especially regarding semantic correctness of the data
simply cannot be fully automated with the intrinsic knowledge in the Knowl-
edge Graph. To check whether the address of a place is correct, the assessment
process needs external knowledge, either a human observer or an authoritative
source. This may not be scalable on a very large Knowledge Graph, therefore
sampling may be needed for such an assessment.

Calculating weighted aggregate quality score per domain step takes the score of
each dimension and creates an aggregated score based on the weights defined for
each dimension for each domain. The score is between 0 and 1.

The described process model has been implemented in a Knowledge Assess-
ment Framework called QAT11 (Quality Assessment Tool). QAT is implemented
as Software as a Service (SaaS) that periodically12 fetches the information from
the configured data sources automatically, whenever possible. Other metrics can
be assessed by a user and assigned to the corresponding metrics. Similarly, a user
can define customized weights to the metrics and dimensions and can access the
result of the overall score either via an API13 or a user interface. The evaluation
of the tool is still ongoing.

Knowledge Cleaning Knowledge Cleaning is a process that aims to improve
the correctness of a Knowledge Graph. It consists of (a) error detection, the task
for identifying the erroneous type and property value assertions (b) error correc-
tion, fixing the identified statements. We focused on the former, particularly the
verification task where the Knowledge Graph is checked against a specification
such as integrity constraints14.

Our approach is based on verifying the instances in a Knowledge Graph
against the domain-specific patterns of schema.org. These patterns are expressed
with a subset of SHACL 15.

For detecting errors in a Knowledge Graph, we conceptualized and developed
a verifier that checks whether a particular subset of a Knowledge Graph fits the
domain-specific pattern. Figure 3 shows the process model.

The first step loads a domain-specific pattern that comprises the shapes
graph for verification. Then the verification process is split into two lines: The
first line of verification retrieves the URIs of the instances that match the target
specification and adds them to a verification queue. Then, for each URI in the
queue, a data graph is retrieved and verified against the domain-specific pattern.

11 https://qat.semantify.it/
12 Assessment on demand is part of the future work.
13 https://qat.semantify.it/datasources - API that returns the assessment values for

the implemented domains and data sources using default weights.
14 The validation tasks complements verification by checking the Knowledge Graph

against the ”real-world”. This task has not been covered in our work yet.
15 Details of the subset can be found in [16]



Knowledge Graph Lifecycle 7

Fig. 3: UML Activity Diagram for error detection process model

In parallel, the verification process retrieves all blank nodes that match the target
description and their data graphs and stores them in a cache. Then, each data
graph in the cache is verified against the loaded domain-specific pattern. The
results of both lines of verification are then compiled in a verification report.
Note that the data graph in both lines corresponds to the subgraph built by
following the all outgoing edges of a focus node recursively until no new node
can be added to the data graph (e.g., all nodes to be expanded are literals)16.

We implemented our error detection approach in the VeriGraph tool17. The
tool has been implemented in Javascript and available with an open license. It
can be configured to run on any Knowledge Graph that provides a SPARQL
endpoint. In our experience with many SHACL verifiers, we realized there are
generally two main issues in practice: (1) operating in-memory, which causes
insufficient memory problems with large data graphs (2) SPARQL endpoints
are not always reliable for frequent queries that return high-volume results. The
first issue we address with the caching mechanism. The data graphs are cached on
the disk and only loaded to the memory when they are needed for verification.

16 Due to the limitations of SPARQL, such a recursive traversal is tricky. There is a way
to do this in a single query by using ?s (:|!:)* ?o graph pattern, but admittedly it
is a bit hacky. One can also rely on DESCRIBE queries if the triplestore implements
it appropriately.

17 https://github.com/semantifyit/VeriGraph



8 U. Şimşek et al.

The second issue is addressed by both indexing and the caching mechanism.
Indexing the URIs and querying their data graphs one-by-one reduces the size
of the data graph returned by a single query18. Each constraint component
defined by the property shapes is checked by graph-traversal in the memory.
This reduces the number of SPARQL queries running against an endpoint for
verification. Additional to the typical SHACL verification report, the VeriGraph
tool provides metadata about the verification process (e.g., duration, number of
violations found).

We evaluated the VeriGraph tool on several Knowledge Graphs with an in-
creasing number of triples, starting from 100K up to 1B19. Each Knowledge
Graph contains instances of types like Event, Hotel, HotelRoom, Person, and
Product. The instances were verified against a set of constraints with differ-
ent target specifications20. The evaluation has been conducted on a server with
an Intel Core i9-9900K Octa-Core 3.60GHz processor, 64GB RAM, and 2TB
SSD. We compared our tool with AllegroGraph, RDFUnit, ShExJava, Stardog
ICV, and TopBraid. Figure 4 shows the verification time in relation to the size
of Knowledge Graph size. VeriGraph stands out as the size grows, as it is the
only one that can finish verification on a Knowledge Graph with 1B triples. In
smaller Knowledge Graphs, VeriGraph is only better than RDFUnit. This can be
explained by other tools either working completely in-memory (ShExJava and
TopBraid) or on their triplestores natively (AllegroGraph, Stardog). For RD-
FUnit and VeriGraph connecting to generic SPARQL endpoints of triplestores
create an overhead.

Knowledge Enrichment Knowledge Enrichment is a process that aims to
improve the completeness of a Knowledge Graph [5]. The completeness is en-
hanced by identifying and adding missing instance, property value, and equality
assertions. In our work, we focused on the duplicate detection task, to find the
equality assertions between instances within or across Knowledge Graphs21.

18 Such indexing is not possible with blank nodes as they are locally-scoped and can-
not be directly addressed in a SPARQL query. However, we have a ”retail mode”
that can be configured for using the internal identifiers given to a blank node by
a triple store. These identifiers are naturally vendor-specific, however, improve the
verification performance significantly.

19 http://dataset.sti2.at/datasets/. Large datasets have been created based on Ty-
rolean Tourism Knowledge Graph.

20 https://github.com/semantifyit/VeriGraph/blob/master/constraints/constraints.ttl
21 We take schema.org as the golden standard and do not focus on the alignment

of TBox. Heterogenous schemas from different Knowledge Graphs are mapped to
schema.org via declarative mappings such as RML mappings.



Knowledge Graph Lifecycle 9

10−1 100 101 102 103
10−1

101

103

105

Size of dataset (in million)

O
v
er

a
ll

p
ro

ce
ss

in
g

ti
m

e
(s

ec
o
n
d
s)

agTool RDFUnit ShEx

Stardog ICV TopBraid VeriGraph

Fig. 4: Verification time - Knowledge Graph size plot for different tools [1]

Mapping Indexing Pre-filtering Property-value
standardization

Instance
comparison

Decision
model

application

Duplicate Detection PhaseIndexing Phase

Fig. 5: A short depiction of the duplicate detection process.

We developed a highly configurable service-oriented approach to the dupli-
cate detection problem that allows linking duplicate instances in a Knowledge
Graph or from external Knowledge Graphs [10]. The process model is shown in
Figure 5. The whole process is divided into two main phases: (1) the indexing
phase where the knowledge sources are mapped to a common format if needed
and indexed into an internal Elasticsearch22 instance, and (2) the duplicate de-
tection phase which is divided into four steps: The first step is the pre-filtering
step that determines candidate duplicates of two previously indexed knowledge
sources. This step selects a set of candidate instances to which the duplicate
detection process will pay attention23. In the second step properties are normal-
ized such that two instances are easier to compare (e.g., via regular expressions
over string values, mathematical operations to normalize units of certain numer-
ical values). The third step executes the actual detailed comparison between the

22 https://www.elastic.co/elasticsearch/
23 The pre-filtering works based on the more like this queries of elasticsearch.

The ”likeness” is calculated with TF-IDF. Putting a high threshold for the
number of matching terms may harm the recall of the overall approach. See
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-mlt-
query.html .



10 U. Şimşek et al.

candidate duplicates which results in a similarity score for a candidate duplicate.
Here several different similarity metrics are used for different types of property
values (e.g., Jaccard, Levenshtein for string similarity; Euclidean distance for
geocoordinates). Finally, the fourth step applies a decision model in which the
similarities from the third step are utilized to classify the suspected duplicates as
either duplicates or non-duplicates. The output of the duplicate detection phase
can then simply be translated into schema:sameAs statements.

Both indexing and duplicate detection steps need to be configured. For ex-
ample, the threshold for pre-filtering must be specified, and the normalization
functions together with similarity metrics must be specified for each property
(or a combination of them) relevant to the duplicate detection process. The con-
figuration task requires a lot of a priori knowledge about the application and the
data. To tackle this challenge, our approach offers supervised methods to learn
configurations from a sample set of linked instances (i.e., a golden standard).
We use various algorithms such as time-constrained brute force, hill climbing,
localized brute force, and genetic algorithms with random mutations to learn
the configuration parameters for different steps. The configuration learning can
be optimized towards improving recall, precision, or F-score.

We implemented our approach in a tool called Duplicate Detection as a Ser-
vice (DDaaS). DDaaS was developed as a general-purpose duplicate detection
framework that consists of easily exchangeable and extensible components. The
tool consists of multiple services for different tasks. These services are orches-
trated via REST. In future iterations, the services are going to be more loosely
coupled and orchestrated using an Apache Kafka instance.

To evaluate the approach, we compared it with three other tools, Duke [6],
LIMES [9], Silk [13] all of which also influenced the development of DDaaS. We
compared the tools over two datasets (Restaurants24 and SPIMBENCH25). The
results are displayed in Table 1.

Restaurants

Tool F1-Score Precision Recall

DDaaS 0.76 1.00 0.61

Duke 0.77 1.00 0.62

LIMES 0.80 0.86 0.74

Silk 0.40 0.79 0.27

SPIMBENCH

Tool F1-Score Precision Recall

DDaaS 0.85 0.98 0.76

Duke 0.09 0.05 0.75

LIMES 0.72 0.88 0.61

Silk 0.62 0.77 0.53

Table 1: Duplicate detection comparison of DDaaS, Duke, LIMES, and Silk

We ran every tool the most automated way possible and results indicate that
DDaaS is at least on par with the other tools. The SPIMBENCH results are
particularly interesting here, while the results for the Restaurants dataset are
more balanced. The main differences between these datasets lie in the number of

24 https://www.cs.utexas.edu/users/ml/riddle/
25 https://project-hobbit.eu/challenges/om2020/



Knowledge Graph Lifecycle 11

properties and their completeness. While the Restaurant dataset is a perfect toy
dataset, the instances in the SPIMBENCH dataset are very sparse with regards
to property values on many instances. Duke’s purely genetic approach to learning
a configuration for this particular dataset seems to be flawed as it will keep
retrying to use properties that are not even available for most instances. DDaaS’
approach to learning a configuration is a composition of different approaches
which includes a genetic approach but also less randomized approaches. We call
this composition the learning strategy. Since every single element of this strategy
(i.e., configurable pieces) can be configured to aim to optimize one of the three
measures (precision/recall/F1), it achieved a good performance even on such an
incomplete dataset. Further evaluation on Tyrolean Tourism Knowledge Graph
is ongoing.

2.4 Knowledge Deployment

”The proof of the pudding is in the eating.” A Knowledge Graph is only as valu-
able as the applications it enables. Therefore, the knowledge deployment task
deals with the applications that are powered by a Knowledge Graph. Alongside
open Knowledge Graphs like Tyrolean Tourism Knowledge Graph, the Knowl-
edge Graphs developed with the presented approach are deployed commercially
by Onlim GmbH. Onlim uses their Knowledge Graph to power their conversa-
tional agents in different domains, most notably tourism. They provide about
20 conversational agents for customers in the tourism domain. These agents are
typically goal-oriented dialog systems (GDS) that help users to achieve their
goals via conversations. In the case of Onlim, a Knowledge Graph powers a GDS
in two different ways:

– Providing entities for annotating user utterances to train Natural Language
Understanding (NLU) models.

– Serving as a knowledge source to provide the knowledge needed for a task
at hand

Onlim uses state-of-the-art GDS development frameworks such as DialogFlow26

and RASA27 to streamline the conversational aspects of a dialog system such
as NLU, dialog management and NLG. Such frameworks work with intents,
structures that represent the user goals a GDS supports. The frameworks use
supervised machine learning to classify utterances to intents. They use Knowl-
edge Graphs to create annotated utterances for each intent to help the machine
learning models classify incoming utterances to the correct intents. An intent
is then mapped to a SPARQL query and the user’s question is answered based
on the data provided by the Knowledge Graph (e.g., accommodation, events,
infrastructure). The lifecycle explained throughout the paper ensures that the
answers returned a high quality (e.g., no duplicate instances, correct property
values). An example of such a GDS can be found online28.

26 https://dialogflow.com
27 https://rasa.ai
28 https://www.oberoesterreich.at/ - Flo-Bot virtual assistant.



12 U. Şimşek et al.

3 Discussion and Lessons Learned

In this section, we discuss our lessons learned from implementing the presented
methodology, from the perspective of the overall approach and individual steps
in the methodology.

Community effort needed to maintain existing research products

There is a plethora of research that resulted in various tools for creation and cu-
ration processes. Unfortunately, many of them were abandoned in their GitHub
repositories, and not maintained further. This is typically a consequence of re-
search projects being over and researchers moving on to other projects. Com-
munity groups such as Knowledge Graph Construction (KGC CG) may be the
solution to this ”research prototype graveyard” situation. Such groups consisting
of research and industrial partners can take a selection of approaches and tools
and further maintain them as an open-source community effort.

Real data is not perfect, knowledge creation is not trivial

Constructing Knowledge Graphs from heterogeneous sources scale well with
declarative mappings29. There are many alternatives with different advantages
and limitations. We decided on RML as it supports various syntaxes including
a YAML-based one, with which the developers of our adopters more comfort-
able. RML also has its limitations. For example, frequently, we encountered data
sources that do not provide any unique fields to join two logical sources (e.g.,
events and their organizers) but the relationship is specified by nested structures.
We worked around this by extending the existing JSON-Path and XPath imple-
mentations with a ˜PATH term which represents the absolute path of a value in
the JSON or XML tree. These paths can be used to join different related logical
sources without and fields to join. Here again community efforts like KGC CG
can be beneficial for identifying common challenges in declarative mappings and
addressing them within the existing tools and approaches.

Quality assessment requires significant manual labor

One lesson we learned from the Knowledge Assessment process is that the level
of automation varies a lot between Knowledge Graphs and there is no one-size-
fits-all solution. The automation for the configuration and assessment may be
increased if Knowledge Graphs provide more machine-understandable metadata
such as VoID30 descriptions.

29 See here for a comprehensive list: https://stiinnsbruck.github.io/lkgt/
30 https://www.w3.org/TR/void/



Knowledge Graph Lifecycle 13

There can be different perspectives on knowledge integrity

One experience we had with our use cases is that the different instances of the
same type may have different expected shapes. For instance, a generic Organi-
zation shape may require schema:vatID property however for an Organization
instance that is the value of organizer property of an Event only the name prop-
erty may be interesting. A SHACL shape that targets the Organization type
would verify both Organization instances, which is not the intended behavior.
To address this, we see domain-specific patterns as types with local properties
and ranges. This means the relevant shape of each instance has to be asserted on
that instance. Then the verification turns into instance checking under Closed-
World Assumption.

Necessary trade-offs in duplication detection

As for many challenges in computer science, there is a trade-off between the
run-time and the quality of the result. There are duplicates already lost in the
pre-filtering phase which is a necessary evil to make the run-time feasible if the
software shall run on a usual computer.

4 Conclusion and Future Work

Knowledge Graphs is a flexible and scalable solution for integrating large het-
erogeneous data. In this in-use experience paper, we summarized our work for
building Knowledge Graphs from tourism-related data to empower various ap-
plications, especially conversational agents. Building Knowledge Graphs involve
not only constructing them from different sources in different formats but also
maintaining their quality in different dimensions.

In the scope of our work, we proposed a methodology, a lifecycle-based ap-
proach to construct and maintain Knowledge Graphs. We developed a set of tools
to address the different tasks in the lifecycle. Although the majority of the tasks
in the Knowledge Graph Lifecycle have been covered, there are still some tasks
such as validating Knowledge Graphs against real-world, fusing linked instances,
and automation of error correction that require further research. Moreover, the
maturity of our tools is at a different stage, however, they are actively being de-
veloped by industrial adopters such as Onlim. We provided an evaluation of dif-
ferent tools supporting the lifecycle individually. Their real evaluation will be in
the next couple of years as the developed approaches and tools are continuously
being tested in the Knowledge Graphs and applications of Onlim. Alongside the
development of individual tools, another feature challenge that will be addressed
is the orchestration of all these tools within the lifecycle, which is when each task
is supposed to run and how they are supposed to be harmonized.

Perhaps one of the biggest knowledge graph-building challenges our approach
will tackle is the German Tourism Knowledge Graph. The presented methodol-
ogy is currently being adopted to build a Knowledge Graph for German tourism,



14 U. Şimşek et al.

which will integrate tourism data from the tourism marketing organizations of
16 federal states. The project started in December 2020 and the initial prototype
will be ready in May 202131.

As a Knowledge Graph gets bigger and supports more applications, it may
come to a point that the curation process may be infeasible, both due to the
size of the Knowledge Graph and changing contexts (e.g., different applications
and customers may have a different set of constraints and rules). Therefore, our
further research will focus also on building a layer on top of Knowledge Graphs
that enables applications to work on small subsets of Knowledge Graphs with
different configurations for curation which will allow the customization of the
Knowledge Graph for different application contexts.

Acknowledgement

This work has been partially funded by the industrial research project Mind-
Lab32.

References

1. Angele, K., Holzknecht, O., Huaman, E., Panasiuk, O., Simsek, U.: D312y2:
VeriGraph: A verification framework for Knowledge Integrity. Tech. rep., Mind-
Lab Project, Innsbruck, Austria (2020), https://drive.google.com/file/d/1RudX-
yt9JxomMb6OBCi4UD10vLtqWZBv/view

2. Batini, C., Cappiello, C., Francalanci, C., Maurino, A.: Methodologies
for data quality assessment and improvement. ACM Computing Sur-
veys 41(3), 16:1–16:52 (2009). https://doi.org/10.1145/1541880.1541883,
https://doi.org/10.1145/1541880.1541883

3. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de
Walle, R.: Rml: A generic language for integrated rdf mappings of heterogeneous
data. In: Proceedings of the Workshop on Linked Data on the Web (LDOW2014)
co-located with the 23rd International World Wide Web Conference (WWW2014),
April 8. CEUR Workshop Proceedings, Vol-1184 (2014), http://ceur-ws.org/Vol-
1184/ldow2014 paper 01.pdf

4. Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of dbpe-
dia, freebase, opencyc, wikidata, and YAGO. Semantic Web Journal 9(1), 77–129
(2018). https://doi.org/10.3233/SW-170275, https://doi.org/10.3233/SW-170275

5. Fensel, D., Şimşek, U., Angele, K., Huaman, E., Kärle, E., Panasiuk, O., Toma,
I., Umbrich, J., Wahler, A.: Knowledge Graphs. Springer International Publishing
(2020). https://doi.org/10.1007/978-3-030-37439-6

6. Garshol, L.M., Borge, A.: Hafslund Sesam - An Archive on Semantics. In: Pro-
ceedings of the 10th Extending Semantic Web Conference (ESWC2013): Semantics
and Big Data, Montpellier, France, May 26-30, 2013. Lecture Notes in Computer
Science, vol. 7882, pp. 578–592. Springer (2013), https://doi.org/10.1007/978-3-
642-38288-8 39

31 See the project timeline online. - https://open-data-germany.org/projektstand/
32 https://mindlab.ai/



Knowledge Graph Lifecycle 15

7. Hogan, A., Blomqvist, E., Cochez, M., D’Amato, C., de Melo, G., Gutierrez, C.,
Gayo, J.E.L., Kirrane, S., Neumaier, S., Polleres, A., et al.: Knowledge graphs (Mar
2020), http://arxiv.org/abs/2003.02320

8. Kärle, E., Şimşek, U., Fensel, D.: semantify. it, a platform for creation, publication
and distribution of semantic annotations. arXiv preprint arXiv:1706.10067 (2017)

9. Ngomo, A.N., Auer, S.: LIMES - A time-efficient approach for large-scale link
discovery on the web of data. In: Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI2011), Barcelona, Spain, July 16–22,
2011. pp. 2312–2317. AAAI Press (2011), https://doi.org/10.5591/978-1-57735-
516-8/IJCAI11-385

10. Opdenplatz, J.: Duplicate detection as a service (2020), master’s Thesis
11. Paulheim, H.: Knowledge graph refinement: A survey of approaches

and evaluation methods. Semantic Web Journal 8(3), 489–508 (2017).
https://doi.org/10.3233/SW-160218, https://doi.org/10.3233/SW-160218

12. Sequeda, J.F., Briggs, W.J., Miranker, D.P., Heideman, W.P.: A pay-as-you-go
methodology to design and build enterprise knowledge graphs from relational
databases. In: Ghidini, C., Hartig, O., Maleshkova, M., Svátek, V., Cruz, I., Hogan,
A., Song, J., Lefrançois, M., Gandon, F. (eds.) The Semantic Web – ISWC 2019.
pp. 526–545. Springer International Publishing, Cham (2019)

13. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links on
the web of data. In: Proceedings of the 8th International Semantic Web Conference
(ISWC 2009), Chantilly, USA, October 25-29, 2009. Lecture Notes in Computer
Science, vol. 5823, pp. 650–665. Springer (2009), https://doi.org/10.1007/978-3-
642-04930-9 41

14. Weikum, G., Dong, L., Razniewski, S., Suchanek, F.M.: Machine knowledge: Cre-
ation and curation of comprehensive knowledge bases. ArXiv abs/2009.11564
(2020)

15. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality
assessment for linked data: A survey. Semantic Web Journal 7(1), 63–93 (2016)

16. Şimşek, U., Angele, K., Kärle, E., Panasiuk, O., Fensel, D.: Domain-specific cus-
tomization of schema.org based on shacl. In: The Proceedings of the 19th Interna-
tional Semantic Web Conference. Springer (2020)

17. Şimşek, U., Kärle, E., Fensel, D.: Rocketrml - A nodejs implementation of a use-case
specific RML mapper. In: Proceedings of 1st Knowledge Graph Building Workshop
co-located with 16th Extended Semantic Web Conference (ESWC), to appear.
CEUR Workshop Proceedings (2019), http://arxiv.org/abs/1903.04969

18. Şimşek, U., Umbrich, J., Fensel, D.: Towards a Knowledge Graph Lifecycle: A
pipeline for the population of a commercial Knowledge Graph. In: Proceedings of
Conference on Digital Curation Technologies (Qurator 2020). CEUR-WS, Berlin,
Germany (jan 2020), http://ceur-ws.org/Vol-2535/paper 10.pdf


