

# 000 001 002 003 004 005 FILTERING WITH CONFIDENCE: WHEN DATA AUGMEN- 006 TATION MEETS CONFORMAL PREDICTION 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024

## ABSTRACT

025 With promising empirical performance across a wide range of applications, synthetic  
026 data augmentation appears a viable solution to data scarcity and the demands  
027 of increasingly data-intensive models. Its effectiveness lies in expanding the training  
028 set in a way that reduces estimator variance while introducing only minimal  
029 bias. Controlling this bias is therefore critical: effective data augmentation should  
030 generate diverse samples from the same underlying distribution as the training set,  
031 with minimal shifts. In this paper, we propose conformal data augmentation, a  
032 principled data filtering framework that leverages the power of conformal prediction  
033 to produce diverse synthetic data while filtering out poor-quality generations  
034 with provable risk control. Our method is simple to implement, requires no access  
035 to internal model logits, nor large-scale model retraining. We demonstrate the  
036 effectiveness of our approach across multiple tasks, including topic prediction,  
037 sentiment analysis, image classification, and fraud detection, showing consistent  
038 performance improvements of up to 40% in  $F_1$  score over unaugmented baselines,  
039 and 4% over other filtered augmentation baselines.  
040

## 1 INTRODUCTION

041 *Synthetic data augmentation* refers to a set of machine learning techniques and heuristics designed to  
042 artificially expand a training dataset Shorten & Khoshgoftaar (2019); Taqi et al. (2018). As noted by  
043 Huang et al. (2022), practitioners have long relied on augmenting inputs with perturbed versions of  
044 the original data—both to enhance model robustness to small perturbations and based on the general  
045 intuition that “more data is always better.” With the emergence of advanced foundation models  
046 capable of generating remarkably high-quality synthetic data however (from images (Ho et al., 2020;  
047 Karras et al., 2017; 2019; Ramesh et al., 2022; Rombach et al., 2022), to text (Brown et al., 2020; Li  
048 et al., 2022; Touvron et al., 2023), or molecular structures (Jin et al., 2018; Shi et al., 2020)), synthetic  
049 data generation has experienced renewed interest. Such approaches promise significant practical  
050 advantages, particularly in reducing the time, cost, and effort involved in augmenting datasets through  
051 additional data collection and annotation Nadas et al. (2025). Synthetic data augmentation has already  
052 demonstrated promising empirical results across a wide range of applications. In natural language  
053 processing, it has been effectively used for model fine-tuning on small datasets and in low-resource  
054 language settings (Feng et al., 2020; Yang et al., 2019; Li et al., 2020; Mahamud et al., 2023; Wang  
055 et al., 2022), as well as for knowledge base construction (Li et al., 2024b), etc. In computer vision, it  
056 has shown benefits in tasks such as image classification (He et al., 2016; Li et al., 2025) and object  
057 detection (Bochkovskiy et al., 2020), etc.

058 From a theoretical perspective, much is still to determine about the benefits of synthetic data. Recent  
059 theoretical insights from Huang et al. (2022); Nakada et al. (2024) have begun characterizing  
060 the effect of synthetic oversampling in certain regimes on estimator error bounds. Intuitively,  
061 synthetic oversampling should work well if it manages to enlarge the training set, reducing estimator  
062 variance whilst only incurring a slightly increased bias. Synthetic augmentation methods thus face  
063 a fundamental tension. On one hand, generated samples should closely follow the distribution of  
064 the original data to minimize bias—typically requiring using lower variability in the generation (or  
065 a “low temperature”) to ensure that the generated data remains faithful to the original. On the other  
066 hand, synthetic samples need to be sufficiently diverse and decorrelated to be treated effectively as  
067 independent observations, a goal typically achieved by increasing generation variability (e.g., raising  
068 the temperature parameter) Havrilla et al. (2024).

Despite the current enthusiasm for synthetic data sampled from generative AI models, no principled approach has yet been proposed to determine this trade-off systematically Jordon et al. (2022). In fact, current methods for generating synthetic data exhibit limited flexibility in their handling of samples with varying levels of quality. To adapt the loss to various levels of synthetic data quality, some techniques, such as the approach by Jaine et al. Jain et al. (2024) or that of Nakada et al. Nakada et al. (2024), introduce hyperparameters to control the weights placed on the reconstruction errors corresponding to the original data and the synthetic data respectively, effectively putting less emphasis on the synthetic data if its quality is too low. But these methods are inherently inflexible and treat all generated datapoints similarly. In particular, these methods are unable to distinguish between good and bad synthetic examples, thereby effectively discarding all synthetic data points from distributions that produce mixtures of high-quality and low-quality outputs Alaa et al. (2022); Rajeswar et al. (2023); Ravuri & Vinyals (2019) . Finer methods, capable of operating effectively in high-variability ("high-temperature") regimes and explicitly distinguishing high-quality generated samples from poor ones, are still lacking.

**Contributions.** To bridge this gap, we introduce a principled filtering approach that selectively retains high-quality outputs with provable guarantees. Our method operates as a wrapper around existing generative AI-based data augmentation frameworks, enabling their use in high-temperature (high-variability) settings, while ensuring the quality of the generated content through conformal risk prediction. Specifically, our contributions include:

1. A principled framework (Section 2) for evaluating the quality of generated content, consisting of two primary components:
  - (a) A scoring function that quantifies the quality of generated samples.
  - (b) A rejection threshold that specifies the minimum acceptable quality, calibrated using conformal risk prediction (Section 3.1).
2. Provable guarantees of control of our procedure over the number of poor quality samples accepted in the augmented data using approximate conditional coverage in our setting (Section 3.2). Our method adapts the framework of Gibbs et al. (2025); Cherian et al. (2024) to provide robust, condition-specific quality guarantees.

Our approach is practical and straightforward to implement, requiring neither access to internal model logits nor extensive retraining. To evaluate the validity and practical utility of our method, we demonstrate its application across three text-based use cases and further assess its performance on three tabular datasets and one image dataset (Section 4). Across these tasks, our method consistently yields measurable improvements in downstream applications, including text classification, sentiment analysis, fraud detection, and image classification.

## 2 BACKGROUND: SYNTHETIC DATA GENERATION AND FILTERING

Let  $h : \mathcal{X} \rightarrow \Omega$  denote a pretrained generative model (e.g., ChatGPT, Gemini or DALL-E, or any VAE-type of model fit to the data). Here  $\mathcal{X}$  refers to a set of features on which to condition the generation, and  $\Omega$  to the generation domain (e.g. space of images, documents, etc). While this paper mostly considers text and tabular data examples, our methodology can, in principle, extend to any domain where data can be generated using generative models. Consider a dataset  $\mathcal{D} = \{X_i\}_{i=1}^N$ , where each  $X_i$  corresponds to a sample point (i.e. a document or image) and  $N$  is the total number of samples. Our objective is to leverage  $h$  to create alternative versions of each data point  $X_i$ , thereby increasing the dataset size. This approach is particularly useful in low-sample scenarios, such as when the training dataset is small (Section 4.1), as a mitigator of extreme class imbalance (Section 4.2).

**LLM-based Data Augmentation.** Ding et al. (2024) categorize LLM-based data augmentation into four classes: data creation, data reformation, data labeling, and human-LLM co-annotation. Our work specifically focuses on data reformation, where existing data points are transformed to produce new examples or enrich existing data points. Historically, reformation methods relied predominantly on rule-based approaches, such as token perturbations or back-translation. However, recent advancements in generative models have enabled significantly more diverse augmentation strategies. In this paper, we propose using a generative model based augmentation method due to its demonstrated ability to produce greater generative diversity. A detailed literature review of LLM-based augmentations is provided in Appendix B.

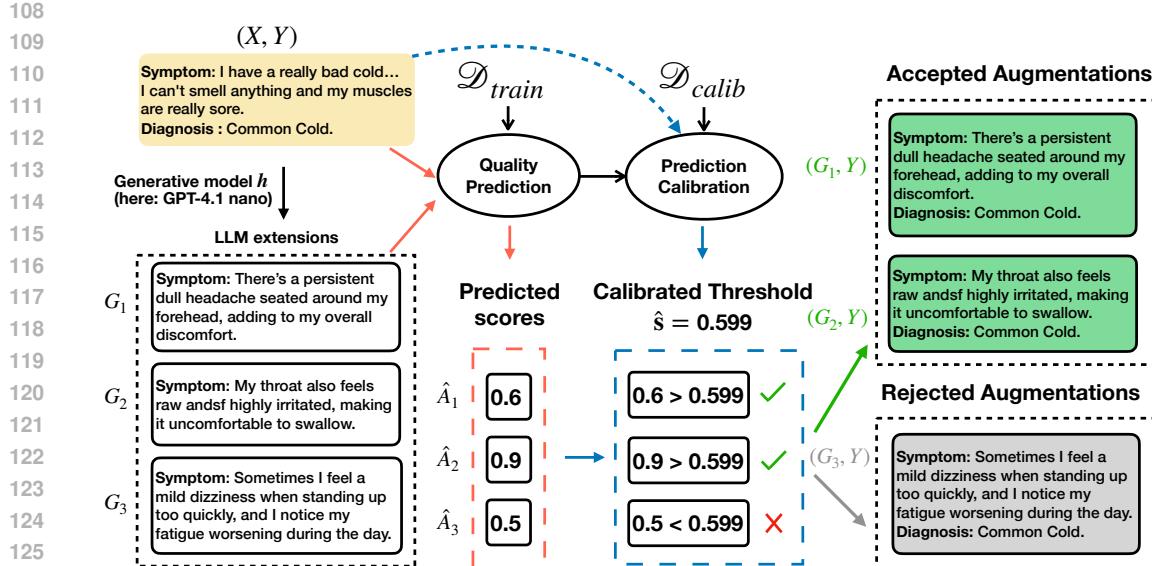


Figure 1: Illustration of the workflow in clinical disease prediction. Data augmentation candidate outputs from the generative model  $h$  (GPT-4.1 nano in this example) are filtered by a quality predictor trained on  $\mathcal{D}_{train}$  with a threshold calibrated by  $\mathcal{D}_{calib}$ . The retained output preserves the meaning of “common cold,” while the discarded output does not correspond to the intended symptom.

Formally, let  $X_i \in \mathcal{D}$  denote an observed data point,  $Y_i \in \mathcal{Y}$  denote additional sample meta information (such as labels captions) which we might want to condition upon in our generating procedure. We assume that the data point  $X_i$  is sampled from a true underlying distribution  $h^*$  that depends on the context/label:  $X_i \sim h^*(C_i, Y_i)$  where  $C_i$  represents the latent context. Intuitively,  $Y_i$  encodes observable attributes such as class labels or side information, and  $C_i$  captures hidden structure or nuisance variation specific to the dataset at hand, and that is not directly observed but decides how  $X_i$  is realized. To synthesize new instances from the same distribution, we generate  $K$  alternative versions of  $X_i$  by reusing  $X_i$  as proxy for the latent context  $C_i$ :

$$(G_{ik})_{k=1}^K \sim h(X_i, Y_i, \tau),$$

where  $h$  denotes the generative model conditioned explicitly on the observed data point and features  $(X_i, Y_i)$ , and  $\tau$  is a temperature parameter controlling the model’s generation variability. Thus, the generative model  $h$  serves as an approximation to the true distribution  $h^*$ , replacing the inaccessible latent context  $C_i$  with observable surrogates  $X_i, Y_i$ .

**Evaluating Generation Quality** Although effective, synthetic data from generative models can be noisy or distributionally shifted Feng et al. (2021); Kumar et al. (2020) — particularly when increasing the temperature  $\tau$ —, potentially reducing downstream performance. Various approaches, such as prompt engineering, direct generative modeling, retrieval-based methods, and filtering strategies (e.g., human evaluation, similarity metrics, classification-based filtering), have been proposed to improve synthetic data quality Alaa et al. (2022); Lewis et al. (2020); Liu et al. (2023). However, these filtering methods critically depend on accurate and oftentimes expensive quality metrics (such as human evaluation), which remain challenging Ding et al. (2024); Rajeswar et al. (2023). With increased generation diversity, ensuring quality becomes critical.

We propose revisiting here a simple filtration technique, as proposed in Islam et al. (2024); Kang et al. (2021); Li et al. (2024a). These methods all operate on the following premise: low-quality generations should be filtered out. Let  $\mathcal{A} : \Omega \times \Omega \times \mathcal{Y} \rightarrow \mathbb{R}$  be a measure of a generated sample’s quality. Ideally,  $\mathcal{A}$  should quantify the degree of deviation of the generation from the underlying data distribution. Filtering-based methods choose to remove generated examples for which  $\mathcal{A}(G_{ik}, X_i, Y_i) < \lambda$ , for a user-defined threshold  $\lambda$ . The threshold  $\lambda$  should be neither too low (to avoid content of low quality), nor too high (to avoid generating trivial rephrasings).

162 While this framework promises to improve the quality of data augmentation, it relies on access to  
 163 a trustworthy evaluation metric  $\mathcal{A}$ . Choosing an unsuitable  $\mathcal{A}$  can distort the training distribution.  
 164 For example, simply measuring similarity between generated and original samples risks biasing the  
 165 augmented data toward reproducing existing examples rather than capturing the broader distribution.  
 166 Quality annotators might not necessarily exist, or if they do (e.g. human annotators in certain settings),  
 167 they might be too expensive to deploy at scale. In the absence of gold-standard evaluations, the  
 168 only option is to use a cheaper evaluator  $\hat{\mathcal{A}}$  (e.g. an LLM to evaluate text generations), thereby  
 169 providing an imperfect, noisy surrogate for  $\mathcal{A}$ . Developing an approach that explicitly accounts for  
 170 this noisiness and its uncertainty is therefore essential.

171 In this paper, we propose to adjust for the noisiness in the data by calibrating the acceptance threshold  
 172 using conformal prediction. Rather than simply accepting the claim based on the quality metric  $\hat{\mathcal{A}}$ ,  
 173 we propose calibrating the threshold  $\lambda$  to mimic an oracle gold-standard  $\mathcal{A}$  whilst limiting the number  
 174 of false acceptances.

175 As a concrete example, Figure 1 illustrates our method’s workflow in the context of clinical disease  
 176 prediction. The input (a description of symptoms) is first processed by the generative model  $h$   
 177 which is prompted to extend the description, after which the candidate outputs are screened using  
 178 the quality evaluator  $\hat{\mathcal{A}}$  and a calibrated filtering threshold  $\hat{s}$ . The selected generations retain the  
 179 intended meaning of “common cold,” though minor surface errors such as typos may remain. Such  
 180 typos can also be viewed as a form of data augmentation: while they slightly perturb the text, they  
 181 preserve semantic meaning and can improve model robustness. By contrast, the discarded output  
 182 fails to capture relevant symptoms of the common cold.

### 184 3 METHOD: FILTERING USING CONDITIONAL CONFORMAL RISK CONTROL

186 We propose a two-step approach for filtering outputs. In the first step, we randomly select a subset of  
 187 the data, denoted by  $\mathcal{D}_{\text{calib}} = \{(X_i, (G_{ik})_{k=1}^K, Y_i)\}$ , on which evaluate the generations using both a  
 188 gold-standard quality measure  $\mathcal{A}$  and its surrogate  $\hat{\mathcal{A}}$  (for settings where no gold-standard exists, we  
 189 propose an alternative in Section 3.3). This calibration set is then used to train a conformal prediction  
 190 algorithm that calibrates the thresholding level  $\lambda$  correctly for that particular generation, accounting  
 191 for the uncertainty in  $\hat{\mathcal{A}}$  as a surrogate for  $\mathcal{A}$ . In the second step, we apply the conformal prediction  
 192 filter—using the calibrated threshold—to the remaining dataset,  $\mathcal{D}_{\text{aug}} = \{(X_i, (G_{ik})_{k=1}^K, Y_i)\}$ , using  
 193 the conformal prediction algorithm.

194 Let the sizes of  $\mathcal{D}_{\text{calib}}$  and  $\mathcal{D}_{\text{aug}}$  be  $n_{\text{calib}}$  and  $n_{\text{aug}}$ , respectively. With a slight abuse of notation, we  
 195 also use  $\mathcal{D}_{\text{calib}}$  and  $\mathcal{D}_{\text{aug}}$  to refer to the corresponding index sets when the meaning is clear from  
 196 context.

#### 198 3.1 CONTROLLING THE NUMBER OF WRONG INCLUSIONS

200 **Problem Formalization.** We consider the gold standard quality scores  $\mathbf{A}_i = (A_{ik})_{k=1}^K$  and the  
 201 corresponding surrogate scores  $\hat{\mathbf{A}}_i = (\hat{A}_{ik})_{k=1}^K$  for the generations in the calibration data. We  
 202 define the filtered set at surrogate level  $s$  by the notation:  $\mathcal{S}(\hat{\mathbf{A}}_i, s) = \{G_{ik} : \hat{A}_{ik} \geq s\}$ . Let  
 203  $\mathcal{L}_\lambda(\mathcal{S}(\hat{\mathbf{A}}_i, s), \mathbf{A}_i)$  denote a loss function that measures the quality of filtered output compared to the  
 204 ground truth  $\mathbf{A}_i$ . For instance, we may define  $\mathcal{L}_\lambda(\mathcal{S}(\hat{\mathbf{A}}_i, s), \mathbf{A}_i)$  to be the number of generations  $\hat{A}_{ik}$   
 205 with surrogate score at least  $s$  but whose gold-standard scores  $A_{ik}$  are below the nominal quality  
 206 threshold  $\lambda$ :

$$207 \mathcal{L}_\lambda(\mathcal{S}(\hat{\mathbf{A}}_i, s), \mathbf{A}_i) = |\{G_{ik} \in \mathcal{S}(\hat{\mathbf{A}}_i, s) : A_{ik} < \lambda\}|. \quad (1)$$

209 We then define the non-conformity score as

$$210 S_i = S(\hat{\mathbf{A}}_i, \mathbf{A}_i) = \inf\{s : \mathcal{L}(\mathcal{S}(\hat{\mathbf{A}}_i, s), \mathbf{A}_i) \leq \rho\}, \quad (2)$$

212 where  $\rho$  is a hyperparameter that represents the tolerance on the loss, or the maximal number of “false  
 213 discoveries” per sample that we are willing to allow. In other words, we define the non-conformity  
 214 score  $S(\hat{\mathbf{A}}_i, \mathbf{A}_i)$  as the minimal threshold  $s$  such that the filtered set  $\mathcal{S}(\hat{\mathbf{A}}_i, s)$  contains only all  
 215 the generations for  $X_i$  with surrogate score  $\hat{A}_{ik} > s$ , and at most  $\rho$  of these generations have  
 gold-standard scores  $A_{ik} < \lambda$ .

In this paper, we formulate the problem of filtering generations based on imperfect surrogate quality scores  $\hat{\mathbf{A}}$  as a calibration problem: we need to select the surrogate filtering threshold  $s$  in a data-driven manner so as to ensure that  $\mathbb{P}(\mathcal{L}_\lambda(\mathcal{S}(\hat{\mathbf{A}}_{i_0}; s_{i_0}), \mathbf{A}_{i_0}) \leq \rho) \geq 1 - \alpha$  for all  $i_0 \in \mathcal{D}_{\text{aug}}$  with some user-specified confidence level  $\alpha \in (0, 1)$ . To this end, we propose leveraging conformal prediction (CP) Vovk et al. (2005); Angelopoulos et al. (2022) for risk control. Conformal methods provide finite-sample, distribution-free guarantees by calibrating predictions using a hold-out validation set (see Appendix B for a more in-depth review). In our setting, we use the distribution of the scores  $S(\hat{\mathbf{A}}_i, \mathbf{A}_i)$  to correctly calibrate our rejection threshold to ensure retaining quality content. Letting  $\hat{s}_{i_0}$  be the output of the conformal prediction algorithm for each  $\mathbf{X}_{i_0}$  (see the explicit formula in equation 7 in Appendix), we will solely accept generated examples with  $\hat{A}_{i_0 k} > \hat{s}_{i_0}$ .

### 3.2 CONDITIONAL CONFORMAL RISK CONTROL

While this setup is intuitive, one could argue that, like  $\lambda$ , the surrogate threshold  $s$  might just as well be chosen using data splitting – making the conformal prediction step appear unnecessary. However, our setting is more challenging: the difficulty of the filtering problem varies across samples, and fixed validation-based thresholds cannot adapt to this heterogeneity. To address this, we incorporate sample-specific information and apply conditional conformal prediction, allowing the filtering procedure to adapt to the hardness of each instance and thereby provide more reliable control.

While conformal prediction can act as a wrapper around any method, it is a well-established fact that it is impossible to get conditional results Barber et al. (2021). To address this, we adopt the relaxation proposed by Gibbs et al. (2025), which designs a prediction set that satisfies the guarantee over a specified function class  $\mathcal{F}$ :

$$\mathbb{E} \left[ f(X_{i_0}) \cdot \left( \mathbf{1}\{\mathcal{L}_\lambda(\mathcal{S}(\hat{\mathbf{A}}_{i_0}; s_{i_0}), \mathbf{A}_{i_0}) \leq \rho\} - (1 - \alpha) \right) \right] = 0, \text{ for all } f \in \mathcal{F}. \quad (3)$$

To handle conditional coverage without prior structural information, we take  $\mathcal{F}$  to be a reproducing kernel Hilbert space (RKHS) with an added intercept, following Gibbs et al. (2025). Given a positive-definite kernel  $W : \Omega \times \Omega \rightarrow \mathbb{R}$  (e.g., Gaussian/RBF kernel), define

$$\mathcal{F} = \{f_W(\cdot) + \beta : g_W \in \mathcal{F}_W, \beta \in \mathbb{R}\}, \quad (4)$$

where  $\mathcal{F}_W$  is the RKHS function class associated with  $W$ . The intercept  $\beta$  guarantees the marginal coverage, while the RKHS term  $f_W$  enables flexible, smooth calibration of the conformity scores  $\{S_i\}_{i \in \mathcal{D}_{\text{calib}}}$  against covariates. As the following lemma shows, the resulting cutoff  $\hat{s}_{i_0}$  for each data  $i_0 \in \mathcal{D}_{\text{aug}}$  satisfies the conditional guarantee over a localization region around  $X_{i_0}$ .

**Lemma 1** *Consider the function class  $\mathcal{F}$  as defined in Equation 4, and assume  $\mathcal{D}_{\text{calib}} \cup \mathcal{D}_{\text{aug}}$  are i.i.d. . Suppose  $\mathcal{L}_\lambda(\cdot, \cdot)$  is monotone (i.e. for any sets  $\mathcal{S}_{i_0}^1 \subseteq \mathcal{S}_{i_0}^2$ , it must be the case that  $\mathcal{L}_\lambda(\mathcal{S}_{i_0}^1, \mathbf{A}_{i_0}) \leq \mathcal{L}_\lambda(\mathcal{S}_{i_0}^2, \mathbf{A}_{i_0})$ ) and  $\mathcal{L}_\lambda(\emptyset, \cdot) = 0$ . Assume  $W(x, \cdot)$  defines a density with respect to each  $x \in \Omega$ , and sample  $X'_{i_0} \mid X_{i_0} = x \sim W(x, \cdot)$ . Then for all  $f \in \mathcal{F}$ ,  $i_0 \in \mathcal{D}_{\text{aug}}$ ,*

$$\mathbb{P} \left( \mathcal{L}_\lambda(\mathcal{S}(\hat{\mathbf{A}}_{i_0}; \hat{s}_{i_0}), \mathbf{A}_{i_0}) \leq \rho \mid X'_{i_0} = x'_{i_0} \right) = 1 - \alpha - \frac{\gamma \mathbb{E}[\hat{f}_W^{\hat{s}_{i_0}}(x'_{i_0})]}{\mathbb{E}[W(X_{i_0}, x'_{i_0})]},$$

where  $\gamma$  is the hyperparameter and  $\hat{f}_W^{\hat{s}_{i_0}} \in \mathcal{F}_W$  is the fitted RKHS function defined in equation 5.

Due to the infinite dimensionality of the RKHS class, the achieved coverage departs from the nominal level  $1 - \alpha$  by a gap of  $\frac{-\gamma \mathbb{E}[\hat{f}_W^{\hat{s}_{i_0}}(x'_{i_0})]}{\mathbb{E}[W(X_{i_0}, x'_{i_0})]}$ . from the nominal level  $1 - \alpha$ . However, this coverage gap is estimable, and can be quantified using the procedure proposed in Gibbs et al. (2025). The proof of Lemma 1 is shown in Appendix C.2

In practice, we rely on the fast implementation of this approximate conditional CP algorithm as provided in Anonymous (2026), which provides a fast alternative to the original algorithm of Gibbs et al. (2025).

---

270 **Algorithm 1** Conformal Filtering

---

271

272 **Require:** Reference evaluation  $A$ ; surrogate evaluation  $\hat{A}$ ; calibration dataset  $\mathcal{D}_{\text{calib}} =$   
 273  $\{(X_i, (G_{ik})_{k=1}^K, Y_i)\}$  augmentation dataset  $\mathcal{D}_{\text{aug}} = \{(X_i, (G_{ik})_{k=1}^K, Y_i)\}$ ; quality level  $\lambda$ ; loss  
 274 function  $\mathcal{L}$ ; contamination allowance  $\rho$   
 275 1: Compute the reference score:  $A_{ik} = \mathcal{A}(G_{ik}, X_i, Y_i), \forall i \in \mathcal{D}_{\text{calib}}$ .  
 276 2: Compute the surrogate score:  $\hat{A}_{ik} \leftarrow \hat{A}((G_{ik})_{k=1}^K, X_i, Y_i), \forall i \in \mathcal{D}_{\text{calib}} \cup \mathcal{D}_{\text{aug}}$ .  
 277 3: Compute the non-conformity score associated with loss  $\mathcal{L}$  and  $\rho$ , denoted as  $S(\hat{A}_i, \mathbf{A}_i)$ , according  
 278 to Equation 2,  $\forall i \in \mathcal{D}_{\text{calib}}$ .  
 279 4: **for**  $i \in \mathcal{D}_{\text{aug}}$  **do**  
 280 5:     Fit conditional conformal prediction to find  $\hat{s}_i$   
 281 6:     Select generations :  $\mathcal{S}(\hat{A}_i, \hat{s}_i) = \{G_{ik} : \hat{A}_{ik} \geq \hat{s}_i\}$   
 282 7: **end for**  
 283 8:  
 284 **Ensure:** The selected generations  $\{\mathcal{S}_i : i \in \mathcal{D}_{\text{aug}}\}$ .

---

285 3.3 LEARNING TO RECOGNIZE QUALITY OUTPUTS ON  $\mathcal{D}_{\text{TRAIN}}$ 

---

286

287 In the previous discussion, we focused on the setting where the gold standard measure  $\mathcal{A}$  is directly  
 288 available on a small subset of the data. We now extend our approach to scenarios in which only a  
 289 surrogate measure  $\tilde{\mathcal{A}}$  can be observed. We shall assume that the surrogate measure satisfies  
 290

$$\mathcal{A}(G_{ik}, X_i, Y_i) = \mathbb{E}_{\tilde{X}_i \sim h^* (C_i, Y_i)} [\tilde{\mathcal{A}}(G_{ik}, \tilde{X}_i, Y_i)],$$

291 In other words, the gold-standard is the population average of the observed surrogate, and conversely,  
 292  $\tilde{\mathcal{A}}$  can be viewed as a specific realization of a random variable, centered at  $\mathcal{A}$ . For instance, in text  
 293 data, embedding-based similarity metrics such as cosine similarity computed from BERT embeddings  
 294 are widely used to capture semantic coherence Devlin et al. (2018); Zhang et al. (2020). In image  
 295 data, similarity measures based on CLIP scores Radford et al. (2021) are effective for capturing both  
 296 semantic alignment and stylistic similarity. These metrics typically compare each generation directly  
 297 against its original sample, which can be viewed as a realization from the underlying distribution  $h^*$ .  
 298

299 We propose reducing the variability of the surrogate  $\tilde{\mathcal{A}}$  by applying a regression-based strategy that  
 300 leverages similar samples to approximate the underlying expectation. By smoothing over similar  
 301 samples, this learned approximation is expected to more closely reflect the ground-truth measure  $\mathcal{A}$ .  
 302

303 Let  $\tilde{A}_{ik} = \tilde{\mathcal{A}}(G_{ik}, X_i, Y_i)$  and  $A_{ik} = \mathcal{A}(G_{ik}, X_i, Y_i)$ . We model  $A_{ik}$  as:

$$A_{ik} = \eta(G_{ik}, C_i, Y_i) + \epsilon_{ik}$$

304 where  $\epsilon_{ik}$  denotes some centered noise, and where  $\eta(G_{ik}, C_i, Y_i) = \mathbb{E}[\tilde{A}_{ik} | G_{ik}, C_i, Y_i]$  is the  
 305 population quantity we would like to estimate.  
 306

307 In this setting, we split the data into  $\mathcal{D}_{\text{train}}$ ,  $\mathcal{D}_{\text{calib}}$ , and  $\mathcal{D}_{\text{aug}}$ . We then train a regression model  
 308  $\hat{\mathcal{A}} : (G_{ik})_{k=1}^K, X_i, Y_i \mapsto \hat{A}_{ik}$  on  $\mathcal{D}_{\text{train}}$  to predict  $\hat{A}_{ik}$ . The model takes as input the generated  
 309 samples  $(G_{ik})_{k=1}^K$  together with the observed  $(X_i, Y_i)$  and outputs a predicted score. For example,  
 310 in text data,  $\hat{\mathcal{A}}$  may incorporate features such as the semantic relevance between  $G_{ik}$  and  $(X_i, Y_i)$ , as  
 311 well as generation entropy, a metric that has been used to quantify uncertainty in generated outputs  
 312 and to detect hallucinations. We then calibrate  $\hat{\mathcal{A}}$  using  $\tilde{\mathcal{A}}$  as an unbiased estimator of  $\mathcal{A}$ , as described  
 313 in Section 3.1.  
 314

315 

## 4 EXPERIMENTS

316 To highlight the efficacy of our method, we propose three case studies: (a) a data enrichment  
 317 setting, (b) an imbalanced classification setting, and (c) a very low-data regime with generations of  
 318 heterogeneous quality. Our examples span different data types, from text, to images, to tabular data.  
 319

320 

### 4.1 PREDICTION WITH LLM-AUGMENTED TRAINING DATA

321 We study our data augmentation pipeline for clinical text classification, focusing on mapping symptom  
 322 descriptions to medical diagnoses (Gretel AI, 2024). The dataset  $(X_i, Y_i)$  consists of 853 training  
 323

samples and 212 test samples, where  $X_i$  denotes a symptom description and  $Y_i$  is one of 22 possible diagnoses. Each training example  $(X_i, Y_i)$  is augmented using a generative language model (GPT-4.1 nano (OpenAI, 2023)), which extends the original symptom description  $X_i$  with five additional sentences  $(G_{ik})_{k=1}^5$ . From these extensions, we generate new samples that inherit the original label, yielding a total of 4,265 synthetic observations  $\{(G_{ik})_{k=1}^5 : i = 1, 2, \dots, 853\}$ .

To ensure output quality, we employ a two-stage evaluation strategy. First, a random subset of 500 generations, derived from 100 symptom descriptions, is evaluated with a high-accuracy model  $\mathcal{A}$  (**Gemini-2.5-pro** (Comanici et al., 2025)), forming the calibration set  $\mathcal{D}_{\text{calib}}$ . Next, all augmented samples are scored using a faster, lower-cost surrogate model  $\hat{\mathcal{A}}$  (**Gemini-2.5-flash** (Comanici et al., 2025)). Both models assign a score in  $[0, 1]$ , with 0.5 as the retention threshold (see the detailed prompt in the supplement). This design reflects a practical labeling scenario in which reliable annotations are costly, whereas approximate labels can be obtained inexpensively. Let  $(A_{ik})_{i \in \mathcal{D}_{\text{calib}}}$  denote the Gemini-pro scores and  $(\hat{A}_{ik})_{i=1}^{853}$  denote the Gemini-flash scores.

We then apply our calibration step. For each  $(X_i, (G_{ik})_{k=1}^K, Y_i) \in \mathcal{D}_{\text{calib}}$ , a non-conformity score is defined as the minimum threshold that guarantees all selected sentences achieve a pro-score above 0.5, so that:  $S(\hat{\mathcal{A}}_i, \mathbf{A}_i) = \inf \left\{ \tau : |\{G_{ik} : 1 \leq k \leq 5, \hat{A}_{ik} \geq \tau, A_{ik} < 0.5\}| \leq 1 \right\}$ .

For each  $X_i$ , we embed the text into a lower-dimensional space using Latent Dirichlet Allocation (LDA) (Blei et al., 2003), a classical method for producing low-dimensional text representations, fitted on the entire training set. Let  $\hat{\pi}(\cdot)$  denote the resulting LDA mapping. We construct a kernel  $W(\cdot, \cdot) = \exp\{-\xi\|\hat{\pi}(\cdot) - \hat{\pi}(\cdot)\|_2^2\}$ , with  $\xi$  selected via cross-validation. Then we apply conditional CP (CondCP) (Gibbs et al., 2025) with  $\alpha = 0.1, \rho = 0$  to obtain adaptive thresholds on  $\hat{A}_{ik}$ .

To evaluate performance, we fine-tune a diagnostic classifier (`distilbert-base-uncased` (Devlin et al., 2018)) using LoRA (Hu et al., 2022). Each training iteration consists of 100 fixed high-confidence documents (selected by the pro-scores) and 400 additional documents sampled under one of the following filtering schemes: (1) No augmentation; (2) No filtering; (3) Filtering by  $\hat{A}_{ik}$  only (threshold = 0.5); (4) Hybrid filtering (using  $A_{ik}$  for  $\mathcal{D}_{\text{calib}}$  and  $\hat{A}_{ik}$  with threshold 0.5 for the remainder); (5) CondCP-based filtering on  $\mathcal{D}_{\text{aug}}$  (using  $A_{ik}$  for  $\mathcal{D}_{\text{calib}}$ ).

Performance, averaged across 20 trials, is reported in Figure 2, with evaluation consistently conducted on the held-out test set. We also report the results of experiments performed in an identical manner on topic prediction (predicting the topic of statistical abstracts downloaded from arXiv with 5 possible categories) and sentiment analysis (predicting one of 6 emotions on a dataset of Twitter messages — see details in the Appendix D). Overall, across these three datasets, our CondCP filter improves the precision, recall, and F1-score by up to 3% over the unaugmented baseline, and substantially improves upon the unfiltered baseline. We note that in the diagnosis task, the unfiltered augmentation outperforms the unaugmented baseline, but this advantage does not hold for the abstract and Twitter datasets, suggesting that including all generations can be detrimental when low-quality samples are present. In contrast, the CondCP filter achieves the best performance across all metrics and tasks.

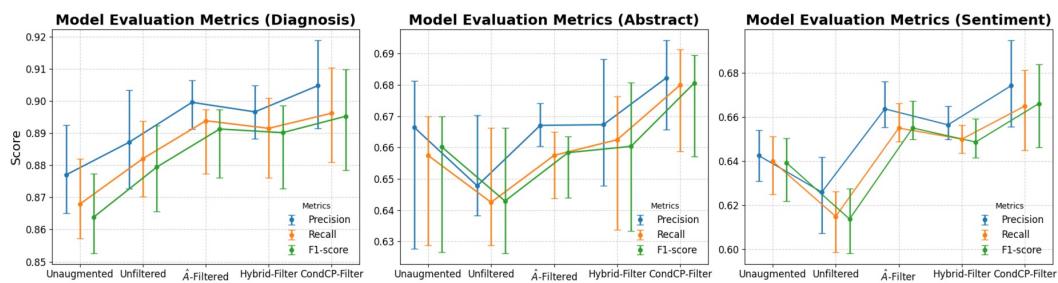


Figure 2: Evaluation of different data augmentation methods on diagnosis prediction, abstract topic prediction, and Twitter message sentiment prediction. Results are averaged over 20 replicates. Error bars indicate the interquartile range, with centers representing the median and boundaries corresponding to the first and third quartiles.

| Dataset                                             | Strategy          | $F_1$ ( $\uparrow$ )                | Precision ( $\uparrow$ )            | Recall ( $\uparrow$ )               | Stable Rank ( $\uparrow$ )           |
|-----------------------------------------------------|-------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|
| Thyroid<br>(N=2,644, d=27, Imb.=6.4%)               | Unaugmented       | 0.139 $\pm$ 0.080                   | <b>0.538 <math>\pm</math> 0.240</b> | 0.081 $\pm$ 0.050                   | 7.713 $\pm$ 0.169                    |
|                                                     | SMOTE             | 0.499 $\pm$ 0.022                   | 0.354 $\pm$ 0.017                   | <b>0.848 <math>\pm</math> 0.061</b> | 7.358 $\pm$ 0.202                    |
|                                                     | Unfiltered        | 0.495 $\pm$ 0.031                   | 0.356 $\pm$ 0.030                   | 0.819 $\pm$ 0.061                   | 8.238 $\pm$ 0.812                    |
|                                                     | $\hat{A}$ -Filter | 0.507 $\pm$ 0.046                   | 0.370 $\pm$ 0.046                   | 0.817 $\pm$ 0.065                   | 8.495 $\pm$ 0.384                    |
|                                                     | CondCP-Filter     | <b>0.542 <math>\pm</math> 0.043</b> | 0.417 $\pm$ 0.043                   | 0.783 $\pm$ 0.070                   | <b>8.730 <math>\pm</math> 0.336</b>  |
| Credit Card Fraud<br>(N=284,807, d=28, Imb.=0.17%)  | Unaugmented       | 0.732 $\pm$ 0.023                   | <b>0.886 <math>\pm</math> 0.044</b> | 0.626 $\pm$ 0.045                   | <b>25.790 <math>\pm</math> 0.605</b> |
|                                                     | SMOTE             | 0.108 $\pm$ 0.004                   | 0.057 $\pm$ 0.002                   | <b>0.920 <math>\pm</math> 0.023</b> | 2.405 $\pm$ 0.012                    |
|                                                     | Unfiltered        | 0.709 $\pm$ 0.029                   | 0.668 $\pm$ 0.049                   | 0.760 $\pm$ 0.055                   | 1.962 $\pm$ 0.049                    |
|                                                     | $\hat{A}$ -Filter | 0.711 $\pm$ 0.030                   | 0.675 $\pm$ 0.048                   | 0.757 $\pm$ 0.061                   | 2.273 $\pm$ 0.117                    |
|                                                     | CondCP-Filter     | <b>0.807 <math>\pm</math> 0.027</b> | 0.813 $\pm$ 0.041                   | 0.803 $\pm$ 0.045                   | 7.380 $\pm$ 1.049                    |
| MNIST 7 vs. Others<br>(N=70,000, d=784, Imb.=10.9%) | Unaugmented       | 0.894 $\pm$ 0.010                   | <b>0.905 <math>\pm</math> 0.008</b> | 0.882 $\pm$ 0.027                   | <b>16.582 <math>\pm</math> 0.065</b> |
|                                                     | SMOTE             | 0.880 $\pm$ 0.008                   | 0.858 $\pm$ 0.001                   | <b>0.903 <math>\pm</math> 0.015</b> | 13.507 $\pm$ 0.085                   |
|                                                     | Unfiltered        | 0.891 $\pm$ 0.011                   | 0.891 $\pm$ 0.005                   | <u>0.892 <math>\pm</math> 0.027</u> | <u>11.980 <math>\pm</math> 0.840</u> |
|                                                     | $\hat{A}$ -Filter | 0.892 $\pm$ 0.009                   | 0.895 $\pm$ 0.008                   | 0.888 $\pm$ 0.025                   | 11.865 $\pm$ 0.855                   |
|                                                     | CondCP-Filter     | <b>0.896 <math>\pm</math> 0.007</b> | 0.904 $\pm$ 0.005                   | 0.888 $\pm$ 0.025                   | 11.972 $\pm$ 1.510                   |

Table 1: Results of imbalanced classification: predictive performance metrics and data diversity (Stable Rank) averaged over 10 different splits. Dataset sizes (N), feature dimensions (d), and imbalance rates (Imb.) are given in parentheses. Higher values are better for all metrics presented. The best value is bolded and the second best value is underlined. Across all benchmarks, our CondCP-Filter consistently attains the best  $F_1$  and increase data diversity, as reflected by higher stable rank.

#### 4.2 IMBALANCED CLASSIFICATION: TABULAR DATA EXAMPLES

In imbalanced classification, models often default to predicting the majority class, yielding misleadingly high accuracy while missing rare but critical events. For example, in the European Credit-Card Fraud dataset<sup>1</sup> (0.17% frauds), labeling all cases as “non-fraud” achieves 99.8% accuracy but detects no fraud (He & Garcia, 2009; Japkowicz & Stephen, 2002). Data augmentation seems therefore a promising way of enhancing recall whilst maintaining precision.

We evaluate our method on three benchmark datasets spanning different imbalance regimes: European Credit-Card Fraud (Kaggle), Thyroid (OpenML), and MNIST-7 vs Others (OpenML). See the details of the dataset and experiment setup in Appendix D.8.1. In these settings, to generate new data, we train a Variational AutoEncoder (VAE) (Kingma & Welling, 2013; Sohn et al., 2015) to increase the number of samples from the minority class. Since gold-standard quality measures are not available in this setting, we use the procedure detailed in section 3.3, and use for our surrogate scores  $\hat{A}$  a gradient boosting predictor, trained to predict the surrogate measure  $\tilde{A}$ . For the experiments presented in this subsection,  $\tilde{A}$  is defined as the geometric mean of a  $k$ -nearest-neighbor similarity (to measure closeness to real minority data) and a cosine similarity (directional closeness to the reference data).

In each case, we split the data into train/calibration/test subsets (60/20/20) and report average  $F_1$  scores. We fit a logistic regression classifier, and we compare the performance of our CP-filtering procedure with (a) an unaugmented baseline; (b) SMOTE (Chawla et al., 2002), a widely used oversampling method that interpolates minority examples in feature space; (c) unfiltered augmentation; and (d) various filtering procedures (e.g. CP-based filtering, and filtering based on  $\hat{A}$ ).

Table 1 reports  $F_1$ , precision, recall, and Stable Rank across five benchmarks. On *severely imbalanced datasets* such as credit-card fraud, quality-controlled augmentation clearly dominates both the unaugmented baseline and SMOTE; while SMOTE boosts recall, it inflates false positives, lowering precision. Our  $\hat{A}$ -Filter and CondCP-Filter maintain recall while improving precision, yielding the best  $F_1$ . On *moderate imbalance* (Thyroid), all methods perform similarly, but our filters still outperform baselines and increase Stable Rank, indicating genuine diversity rather than duplication. For MNIST-7, where *the signal is strong*, unfiltered augmentation already works well; nonetheless, CondCP-Filter achieves the highest  $F_1$  and superior precision–recall balance, showing the benefit of targeted acceptance even in easier tasks.

Beyond predictive performance, we also study diversity metrics of the training sets after augmentation with filtering. In particular, we compute the *stable rank* of the feature matrix ( $X$ ), which is defined as  $\|X\|_F^2/\|X\|_2^2$ . Stable rank captures the effective dimensionality of the sample cloud (Tsitsulin et al., 2023). Whereas simple augmentation often inflates data density along a few dominant directions

<sup>1</sup><https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud/data>

(due to interpolation), our method introduces genuinely new modes in the minority manifold, reflected in higher stable rank. These results indicate that quality-controlled generation is not only effective for balancing datasets, but also enhances geometric richness in ways that may improve generalization.

#### 4.3 LOW-DATA REGIME WITH MIXED-QUALITY GENERATIONS: AN IMAGE ANALYSIS EXAMPLE

In this example, we wish to evaluate the performance of our method in a low-data regime for classification, with inputs of mixed qualities (with a distribution of 50% good inputs, 50% bad). In this setting, we expect the filtering procedure to be particularly useful.

To this end, we consider two classes from the mini ImageNet dataset (arctic foxes and toucans), and make a dataset of around 172 training images (86 per class). A moderate-capacity CNN is trained from scratch on this base set. We simulate data augmentation by masking 70% of each training image and asking DALL-E 2 to inpaint the missing regions, and replacing the masked area by the generated content (Fig. 3). To simulate unhelpful data generations, we use the masks as additional generations that need filtering out.

Each candidate is assigned a surrogate quality score. To compute this score, we first train the CNN on a separate split of the data (with around 35 images per class on average), and take the CNN’s class–probability margin  $|p(y | x) - 0.5|$  as a measure of the compatibility of the generation with its class and the image clip score as the quality gold standard. We then compare three filtering regimes: (a) **Threshold baseline**: keep candidates with score  $\geq \lambda$ ; (b) **Marginal CP**: compute a global cutoff from calibration documents using split–conformal quantiles of per–document scores  $S_{\text{doc}}$ ; and (c) **Conditional CP**: compute adaptive per–document cutoffs from PCA embeddings of the base images using the CondCP–filter procedure.

After selection, we retrain a CNN from scratch on all original images plus the selected augmentations. Validation and test sets remain fixed. The validation set (175 images of each class) is used for hyperparameter selection (here, the threshold  $\lambda$ , chosen in the grid  $\lambda \in \{0.5, 0.75, 0.8, 0.9\}$ ). The CP parameters are fixed to  $\rho = 0$  and  $\alpha = 0.1$ ). Results are reported on the test set (300 images), and averaged over 5 runs of the procedure, shuffling the training set split into calibration and testing. Across this two-class task, conformal filtering yields consistent improvements, with the CondCP filter providing a +3.7% accuracy improvement over the unaugmented baseline and +2% gain in test accuracy over the baseline. Importantly, we note that the marginal CP baseline does not yield any improvement in accuracy, highlighting the importance of using conditional CP in this setting. Moreover, we do note the importance of filtering just the right amount, as the choice of the  $\lambda$  does not default to the minimal value.

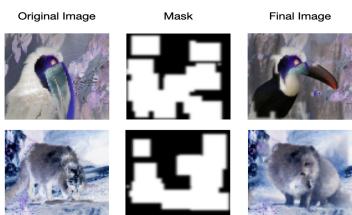


Figure 3: Examples of data generation procedures for an image of a Toucan (top row) and an image of an Arctic Fox.

## 5 CONCLUSION

In this study, we propose a principled data augmentation algorithm that evaluates the quality of generated content beyond simple comparison with observed data, and filters out low-quality generations with provable risk control. Future directions for improvement include: (1) extending our methodology to other generative settings such as counterfactual or retrieval-based augmentation; (2) integrating our framework with other conformal prediction techniques, such as adaptive level control for different tasks.

| $\lambda$ | Regime           | Training Set Size  | Test Accuracy                       |
|-----------|------------------|--------------------|-------------------------------------|
| -         | Unaugmented      | $172.8 \pm 5.8$    | $0.786 \pm 0.023$                   |
| -         | Unfiltered       | $3630.8 \pm 317.4$ | $0.802 \pm 0.006$                   |
| 0.80      | $\hat{A}$ Filter | $897.0 \pm 986.9$  | $0.804 \pm 0.036$                   |
| 0.75      | CondCP Filter    | $1916.6 \pm 158.4$ | <b><math>0.823 \pm 0.018</math></b> |
| 0.50      | MargCP Filter    | $1334.8 \pm 463.2$ | $0.763 \pm 0.055$                   |

Figure 4: Performance of the methods on the ImageNet dataset, averaged over 5 iterations.

486 ETHICS STATEMENT  
487488 All authors confirm that this work adheres to the ICLR Code of Ethics. This research does not involve  
489 human subjects, personally identifiable information, or sensitive data. The datasets used are publicly  
490 available and have been properly cited. No potentially harmful applications, discriminatory outcomes,  
491 or security/privacy risks are anticipated from this study.492 We have made efforts to ensure fairness, transparency, and integrity in both the methodology and  
493 the interpretation of results. All analyses and conclusions comply with ethical standards for repro-  
494 ducibility, research documentation, and integrity. No conflicts of interest or sponsorship influenced  
495 this work.496  
497 REFERENCES  
498499 Chirag Agarwal, Daniel D’souza, and Sara Hooker. Estimating example difficulty using variance  
500 of gradients. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*  
501 *Recognition*, pp. 10368–10378, 2022.502 Ahmed M. Alaa, Boris van Breugel, Evgeny Saveliev, and Mihaela van der Schaar. How faithful  
503 is your synthetic data? sample-level metrics for evaluating and auditing generative models. In  
504 *International Conference on Machine Learning (ICML)*, pp. 290–306. PMLR, 2022.  
505506 Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich, Amir Kantor, George Kour, Segev Shlomov,  
507 Naama Tepper, and Naama Zwerdling. Do not have enough data? deep learning to the rescue! In  
508 *Proceedings of the AAAI conference on artificial intelligence*, volume 34-05, pp. 7383–7390, 2020.509 Anastasios N Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I Jordan. A gentle intro-  
510 duction to conformal prediction and distribution-free uncertainty quantification. *arXiv preprint*  
511 *arXiv:2107.07511*, 2022.512 Anonymous. Speedcp: Fast kernel-based conditional conformal prediction, 2026. Submitted to ICLR  
513 2026. Under review. Available at <https://openreview.net/forum?id=22472>.  
514515 Artgor. arxiv metadata exploration. <https://www.kaggle.com/code/artgor/arxiv-metadata-exploration>, 2019. Accessed: 2025-09-20.  
516517 Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mohammad Norouzi, and David J Fleet.  
518 Synthetic data from diffusion models improves imagenet classification. *arXiv preprint*  
519 *arXiv:2304.08466*, 2023.  
520521 Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. The limits of  
522 distribution-free conditional predictive inference. *Information and Inference: A Journal of the*  
523 *IMA*, 10(2):455–482, 2021.524 David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. *Journal of Machine*  
525 *Learning Research*, 3:993–1022, 2003.  
526527 Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and  
528 accuracy of object detection. *arXiv preprint arXiv:2004.10934*, 2020.529 Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, et al. Language models are few-shot  
530 learners. *Advances in Neural Information Processing Systems*, 33:1877–1901, 2020.  
531532 Yaping Chai, Haoran Xie, and Joe S Qin. Text data augmentation for large language models: A  
533 comprehensive survey of methods, challenges, and opportunities. *arXiv preprint arXiv:2501.18845*,  
534 2025.535 Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic  
536 minority over-sampling technique. *Journal of artificial intelligence research*, 16:321–357, 2002.  
537538 John Cherian, Isaac Gibbs, and Emmanuel Candes. Large language model validity via enhanced  
539 conformal prediction methods. *Advances in Neural Information Processing Systems*, 37:114812–  
114842, 2024.

540 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit  
 541 Dhillon, Marcel Blstein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier  
 542 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.  
 543 *arXiv preprint arXiv:2507.06261*, 2025.

544 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep  
 545 bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.

546 Bosheng Ding, Chengwei Qin, Ruochen Zhao, Tianze Luo, Xinze Li, Guizhen Chen, Wenhan Xia,  
 547 Junjie Hu, Anh Tuan Luu, and Shafiq Joty. Data augmentation using large language models: Data  
 548 perspectives, learning paradigms and challenges. *arXiv preprint arXiv:2403.02990*, 2024.

549 Lisa Dunlap, Alyssa Umino, Han Zhang, Jiezhi Yang, Joseph E. Gonzalez, and Trevor Darrell.  
 550 Diversify your vision datasets with automatic diffusion-based augmentation. *arXiv preprint  
 551 arXiv:2305.16289*, 2023. doi: 10.48550/arXiv.2305.16289.

552 Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-translation at  
 553 scale. *arXiv preprint arXiv:1808.09381*, 2018.

554 Steven Y Feng, Aaron W Li, and Jesse Hoey. Keep calm and switch on! preserving sentiment and  
 555 fluency in semantic text exchange. *arXiv preprint arXiv:1909.00088*, 2019.

556 Steven Y Feng, Varun Gangal, Dongyeop Kang, Teruko Mitamura, and Eduard Hovy. Genaug: Data  
 557 augmentation for finetuning text generators. *arXiv preprint arXiv:2010.01794*, 2020.

558 Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mitamura, and  
 559 Eduard Hovy. A survey of data augmentation approaches for nlp. *arXiv preprint arXiv:2105.03075*,  
 560 2021.

561 Jun Gao, Changlong Yu, Wei Wang, Huan Zhao, and Ruifeng Xu. Mask-then-fill: A flexible and  
 562 effective data augmentation framework for event extraction. *arXiv preprint arXiv:2301.02427*,  
 563 2023.

564 Isaac Gibbs, John J Cherian, and Emmanuel J Candès. Conformal prediction with conditional  
 565 guarantees. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, pp. qkaf008,  
 566 2025.

567 Gretel AI. symptom\_to\_diagnosis dataset. [https://huggingface.co/datasets/gretelai/symptom\\_to\\_diagnosis](https://huggingface.co/datasets/gretelai/symptom_to_diagnosis), 2024. Accessed: 2025-09-20.

568 Yu Gui, Ying Jin, and Zhimei Ren. Conformal alignment: Knowing when to trust foundation models  
 569 with guarantees. *arXiv preprint arXiv:2405.10301*, 2024.

570 Himanshu Gupta, Kevin Scaria, Ujjwala Anantheswaran, Shreyas Verma, Mihir Parmar, Saurabh Ar-  
 571 jun Sawant, Chitta Baral, and Swaroop Mishra. Targen: Targeted data generation with large  
 572 language models. *arXiv preprint arXiv:2310.17876*, 2023.

573 Alex Havrilla, Andrew Dai, Laura O'Mahony, Koen Oostermeijer, Vera Zisler, Alon Albalak, Fabrizio  
 574 Milo, Sharath Chandra Raparth, Kanishk Gandhi, Baber Abbasi, et al. Surveying the effects of  
 575 quality, diversity, and complexity in synthetic data from large language models. *arXiv preprint  
 576 arXiv:2412.02980*, 2024.

577 Haibo He and Edwardo A Garcia. Learning from imbalanced data. *IEEE Transactions on knowledge  
 578 and data engineering*, 21(9):1263–1284, 2009.

579 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image  
 580 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,  
 581 pp. 770–778, 2016.

582 Reyhane Askari Hemmat, Mohammad Pezeshki, Florian Bordes, Michal Drozdzal, and Adriana  
 583 Romero-Soriano. Feedback-guided data synthesis for imbalanced classification. *arXiv preprint  
 584 arXiv:2310.00158*, 2023.

594 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*  
 595 *neural information processing systems*, 33:6840–6851, 2020.

596

597 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Lu Wang, and Weizhu  
 598 Wang. Lora: Low-rank adaptation of large language models. In *International Conference on*  
 599 *Learning Representations (ICLR)*, 2022. URL <https://openreview.net/forum?id=nZeVKeeFYf9>.

600

601 Kevin Han Huang, Peter Orbantz, and Morgane Austern. Data augmentation in the underparameterized  
 602 and overparameterized regimes. *arXiv preprint arXiv:2202.09134*, 2022.

603

604 Mominul Islam, Hasib Zunair, and Nabeel Mohammed. Cossif: Cosine similarity-based image  
 605 filtering to overcome low inter-class variation in synthetic medical image datasets. *Computers in*  
 606 *Biology and Medicine*, 172:108317, 2024.

607

608 Ayush Jain, Andrea Montanari, and Eren Sasoglu. Scaling laws for learning with real and surrogate  
 609 data. *arXiv preprint arXiv:2402.04376*, 2024.

610

611 Nathalie Japkowicz and Shaju Stephen. The class imbalance problem: A systematic study. *Intelligent*  
 612 *data analysis*, 6(5):429–449, 2002.

613

614 Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for  
 615 molecular graph generation. In *International Conference on Machine Learning*, pp. 2323–2332,  
 616 2018.

617

618 James Jordon, Lukasz Szpruch, F. Houssiau, Mirko Bottarelli, Giovanni Cherubin, Carsten Maple,  
 619 and Samuel N. Cohen. Synthetic data—what, why and how? *Journal of the Royal Statistical Society*  
 620 *Series A: Statistics in Society*, 185(3):1039–1069, 2022. doi: 10.1111/rssa.12804.

621

622 Bhavikji Kadara. Emotions dataset. <https://www.kaggle.com/datasets/bhavikjikadara/emotions-dataset>, 2018.

623

624 Min Kang, Kye Hwa Lee, and Youngho Lee. Filtered bert: Similarity filter-based augmentation with  
 625 bidirectional transfer learning for protected health information prediction in clinical documents.  
 626 *Applied Sciences*, 11(8):3668, 2021.

627

628 Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for  
 629 improved quality, stability, and variation. *arXiv preprint arXiv:1710.10196*, 2017.

630

631 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative  
 632 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*  
 633 *recognition*, pp. 4401–4410, 2019.

634

635 George Kimeldorf and Grace Wahba. Some results on tchebycheffian spline functions. *Journal of*  
 636 *mathematical analysis and applications*, 33(1):82–95, 1971.

637

638 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*  
 639 *arXiv:1312.6114*, 2013.

640

641 Ashutosh Kumar, Satwik Bhattacharya, Manik Bhandari, and Partha Talukdar. Submodular  
 642 optimization-based diverse paraphrasing and its effectiveness in data augmentation. In *Proceedings*  
 643 *of the 2019 Conference of the North American Chapter of the Association for Computational*  
 644 *Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 3609–3619,  
 645 2019.

646

647 Bhawesh Kumar, Charlie Lu, Gauri Gupta, Anil Palepu, David Bellamy, Ramesh Raskar, and Andrew  
 648 Beam. Conformal prediction with large language models for multi-choice question answering.  
 649 *arXiv preprint arXiv:2305.18404*, 2023.

650

651 Varun Kumar, Ashutosh Choudhary, and Eunah Cho. Data augmentation using pre-trained transformer  
 652 models. *arXiv preprint arXiv:2003.02245*, 2020.

653

654 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,  
 655 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-  
 656 tion for knowledge-intensive nlp tasks. *arXiv preprint arXiv:2005.11401*, 2020.

648 Yanhao Li, Quentin Bammey, Marina Gardella, Tina Nikoukhah, Jean-Michel Morel, Miguel Colom,  
 649 and Rafael Grompone Von Gioi. Masksim: Detection of synthetic images by masked spectrum  
 650 similarity analysis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*  
 651 *Recognition*, pp. 3855–3865, 2024a.

652 Yinheng Li, Rogerio Bonatti, Sara Abdali, Justin Wagle, and Kazuhito Koishida. Data generation  
 653 using large language models for text classification: An empirical case study. *arXiv preprint*  
 654 *arXiv:2407.12813*, 2024b.

655 Yu Li, Xiao Li, Yating Yang, and Rui Dong. A diverse data augmentation strategy for low-resource  
 656 neural machine translation. *Information*, 11(5):255, 2020.

658 Yujia Li, Yitong Zhang, Yiming Yu, et al. Diffusion-lm improves controllable text generation. In  
 659 *Advances in Neural Information Processing Systems*, volume 35, pp. 21954–21967, 2022.

660 Zhiteng Li, Lele Chen, Jerone Andrews, Yunhao Ba, Yulun Zhang, and Alice Xiang. Gendataagent:  
 661 On-the-fly dataset augmentation with synthetic data. In *The Thirteenth International Conference*  
 662 *on Learning Representations*, 2025.

664 Alisa Liu, Swabha Swayamdipta, Noah A Smith, and Yejin Choi. Wanli: Worker and ai collaboration  
 665 for natural language inference dataset creation. *arXiv preprint arXiv:2201.05955*, 2022.

667 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.  
 668 Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language pro-  
 669 cessing. In *Proceedings of the 2023 Conference of the Association for Computational Linguistics*,  
 670 pp. 2194–2216, 2023.

671 Mosleh Mahamud, Zed Lee, and Isak Samsten. Distributional data augmentation methods for low  
 672 resource language. *arXiv preprint arXiv:2309.04862*, 2023. URL <https://arxiv.org/abs/2309.04862>.

674 Christopher Mohri and Tatsunori Hashimoto. Language models with conformal factuality guarantees.  
 675 *arXiv preprint arXiv:2402.10978*, 2024.

677 Mihai Nadas, Laura Diosan, and Andreea Tomescu. Synthetic data generation using large language  
 678 models: Advances in text and code. *arXiv preprint arXiv:2503.14023*, 2025.

679 Ryumei Nakada, Yichen Xu, Lexin Li, and Linjun Zhang. Synthetic oversampling: Theory and a  
 680 practical approach using llms to address data imbalance. *arXiv preprint arXiv:2406.03628*, 2024.

682 Nathan Ng, Kyunghyun Cho, and Marzyeh Ghassemi. Ssmba: Self-supervised manifold based data  
 683 augmentation for improving out-of-domain robustness. *arXiv preprint arXiv:2009.10195*, 2020.

684 OpenAI. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023. URL <https://arxiv.org/abs/2303.08774>.

686 Victor Quach, Adam Fisch, Tal Schuster, Adam Yala, Jae Ho Sohn, Tommi S Jaakkola, and Regina  
 687 Barzilay. Conformal language modeling. *arXiv preprint arXiv:2306.10193*, 2023.

689 Alec Radford, Jong Wook Kim, Chris Hallacy, et al. Learning transferable visual models from natural  
 690 language supervision. In *International Conference on Machine Learning (ICML)*, 2021.

692 Sai Rajeswar, Tianyi Lin, Ruihan Bao, Andrew Saxe, and R. Devon Hjelm. Diversity and fidelity in  
 693 generative models: Trade-offs and metrics. *arXiv preprint arXiv:2301.06712*, 2023.

694 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-  
 695 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

696 Suman Ravuri and Oriol Vinyals. Classification accuracy score for conditional generative models.  
 697 In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 32, pp. 12247–12258,  
 698 2019.

700 Allen Z Ren, Anushri Dixit, Alexandra Bodrova, Sumeet Singh, Stephen Tu, Noah Brown, Peng Xu,  
 701 Leila Takayama, Fei Xia, Jake Varley, et al. Robots that ask for help: Uncertainty alignment for  
 large language model planners. *arXiv preprint arXiv:2307.01928*, 2023.

702 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-  
 703 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-  
 704 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

705

706 Mert Bülent Sarıyıldız, Karteek Alahari, Diane Larlus, and Yannis Kalantidis. Fake it till you make  
 707 it: Learning transferable representations from synthetic imagenet clones. In *Proceedings of the  
 708 IEEE/CVF conference on computer vision and pattern recognition*, pp. 8011–8021, 2023.

709

710 Vikash Sehwag, Caner Hazirbas, Albert Gordo, Firat Ozgenel, and Cristian Canton. Generating high  
 711 fidelity data from low-density regions using diffusion models. In *Proceedings of the IEEE/CVF  
 712 Conference on Computer Vision and Pattern Recognition*, pp. 11492–11501, 2022.

713

714 Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation models  
 715 with monolingual data. *arXiv preprint arXiv:1511.06709*, 2015.

716

717 Hooman Shahrokhi, Devjeet Raj Roy, Yan Yan, Venera Arnaoudova, and Janaradhan Rao Doppa.  
 718 Conformal prediction sets for deep generative models via reduction to conformal regression. *arXiv  
 719 preprint arXiv:2503.10512*, 2025.

720

721 Chence Shi, Minkai Xu, Hongyu Guo, Ming Zhang, and Jian Tang. Graphaf: a flow-based au-  
 722 toregressive model for molecular graph generation. In *International Conference on Learning  
 723 Representations*, 2020.

724

725 Jordan Shipard, Arnold Wiliem, Kien Nguyen Thanh, Wei Xiang, and Clinton Fookes. Diversity  
 726 is definitely needed: Improving model-agnostic zero-shot classification via stable diffusion. In  
 727 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.  
 728 769–778, 2023.

729

730 Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep learning.  
 731 *Journal of big data*, 6(1):1–48, 2019.

732

733 Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep  
 734 conditional generative models. *Advances in neural information processing systems*, 28, 2015.

735

736 Jiayuan Su, Jing Luo, Hongwei Wang, and Lu Cheng. Api is enough: Conformal prediction for large  
 737 language models without logit-access.(2024). URL <https://arxiv.org/abs/2403.1216>, 2024.

738

739 Arwa Mohammed Taqi, Ahmed Awad, Fadwa Al-Azzo, and Mariofanna Milanova. The impact of  
 740 multi-optimizers and data augmentation on tensorflow convolutional neural network performance.  
 741 In *2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)*, pp.  
 742 140–145. IEEE, 2018.

743

744 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée  
 745 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and  
 746 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

747

748 Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan Salakhutdinov. Effective data augmenta-  
 749 tion with diffusion models. *arXiv preprint arXiv:2302.07944*, 2023.

750

751 Anton Tsitsulin, Marina Munkhoeva, and Bryan Perozzi. Unsupervised embedding quality evaluation.  
 752 In *Topological, Algebraic and Geometric Learning Workshops 2023*, pp. 169–188. PMLR, 2023.

753

754 Veniamin Veselovsky, Manoel Horta Ribeiro, Akhil Arora, Martin Josifoski, Ashton Anderson, and  
 755 Robert West. Generating faithful synthetic data with large language models: A case study in  
 756 computational social science. *arXiv preprint arXiv:2305.15041*, 2023.

757

758 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*,  
 759 volume 29. Springer, 2005.

760

761 Shuohang Wang, Yang Liu, Yichong Xu, Chenguang Zhu, and Michael Zeng. Want to reduce labeling  
 762 cost? gpt-3 can help. *arXiv preprint arXiv:2108.13487*, 2021.

756 Yufei Wang, Can Xu, Qingfeng Sun, Huang Hu, Chongyang Tao, Xiubo Geng, and Daxin Jiang.  
 757 Prompt-based data augmentation for low-resource nlu tasks. In *Proceedings of the 60th Annual*  
 758 *Meeting of the Association for Computational Linguistics (ACL)*, pp. 4170–4183, 2022. URL  
 759 <https://aclanthology.org/2022.acl-long.292/>.

760 Jason Wei and Kai Zou. Eda: Easy data augmentation techniques for boosting performance on text  
 761 classification tasks. *arXiv preprint arXiv:1901.11196*, 2019.

763 Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmentation  
 764 for consistency training. *Advances in neural information processing systems*, 33:6256–6268, 2020.

765 Wei Yang, Yuqing Xie, Luchen Tan, Kun Xiong, Ming Li, and Jimmy Lin. Data augmentation for  
 766 bert fine-tuning in open-domain question answering. *arXiv preprint arXiv:1904.06652*, 2019.

768 Yiben Yang, Chaitanya Malaviya, Jared Fernandez, Swabha Swayamdipta, Ronan Le Bras, Ji-Ping  
 769 Wang, Chandra Bhagavatula, Yejin Choi, and Doug Downey. Generative data augmentation for  
 770 commonsense reasoning. *arXiv preprint arXiv:2004.11546*, 2020.

771 Xun Yao, Zijian Huang, Xinrong Hu, JACK Yang, and Yi Guo. Masking the unknown: leveraging  
 772 masked samples for enhanced data augmentation. In *The 40th Conference on Uncertainty in*  
 773 *Artificial Intelligence*, 2024.

775 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluating  
 776 text generation with bert. In *International Conference on Learning Representations (ICLR)*, 2020.

777 Yao Zhang and Emmanuel J Candès. Posterior conformal prediction. *arXiv preprint*  
 778 *arXiv:2409.19712*, 2024.

780 Yizhe Zhang, Siqi Sun, Xiang Gao, Yuwei Fang, Chris Brockett, Michel Galley, Jianfeng Gao, and  
 781 Bill Dolan. Retgen: A joint framework for retrieval and grounded text generation modeling. In  
 782 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36-10, pp. 11739–11747,  
 783 2022.

784  
 785  
 786  
 787  
 788  
 789  
 790  
 791  
 792  
 793  
 794  
 795  
 796  
 797  
 798  
 799  
 800  
 801  
 802  
 803  
 804  
 805  
 806  
 807  
 808  
 809

810 A THE USE OF LARGE LANGUAGE MODELS (LLMs)  
811812 In this work, LLMs were used for synthetic data generation as part of our research on data aug-  
813 mentation with generative models. Specifically, LLMs produced candidate text samples that were  
814 subsequently filtered, evaluated, and integrated into the experimental pipeline. The role of LLMs was  
815 limited to data generation within the proposed methodology and did not extend to research ideation,  
816 conceptual framing, or substantive writing of the manuscript.817 All analysis, interpretation, and writing were conducted by the authors. We take full responsibility  
818 for the content of this paper, including any outputs derived from LLMs. No portion of the manuscript  
819 relies on fabricated or plagiarized material produced by LLMs.  
820821 B RELATED LITERATURES  
822823 **Data Augmentation** In Ding et al. (2024), LLM-based data augmentations are categorized into  
824 four categories: data creation, data reformation, data labeling, and human-LLM co-annotation. In this  
825 work we focus on the data reformation, which transforms existing data to produce new data. People  
826 have proposed data reformation approaches prior to the advent of pre-trained generative models,  
827 with the majority of them being rule-based methods (Feng et al. (2021)). For instance, Easy Data  
828 Augmentation (EDA) Wei & Zou (2019) applies token-level perturbations like synonym replacement,  
829 random insertion, deletion, and swapping; Machine back-translation involves translating the original  
830 sentences into another language and then translating them back to the original language Sennrich  
831 et al. (2015); Edunov et al. (2018). Model-based methods, by contrast, leverage generative models  
832 to synthesize new text. Common examples include paraphrasing Kumar et al. (2019), semantic text  
833 exchange Feng et al. (2019) and masked word prediction followed by replacement Ng et al. (2020).  
834 The goal is to generate synthetic data that introduces diversity while maintaining semantic consistency  
835 (often referred to as label-preserving in classification problems (Xie et al., 2020)). Ideally, augmented  
836 data should not be too similar to the original (which limits diversity) nor too dissimilar (which risks  
837 domain shift and degraded performance).838 **Despite its ease of implementation, synthetic data generated by generative models is often noisy and**  
839 **distributionally misaligned with the original data, potentially hindering model training (Zhang et al.,**  
840 **2022).** To address this, several complementary strategies have been proposed. Some approaches  
841 focus on prompt engineering to steer generation more precisely (Veselovsky et al., 2023; Gupta  
842 et al., 2023), while others leverage model-based augmentation by estimating a generative process  
843 from the training set and sampling from it (Anaby-Tavor et al., 2020). Retrieval-based techniques  
844 further enhance the expressiveness of LLM-driven augmentation by incorporating external knowledge  
845 (Chai et al., 2025). At generation time, diffusion-based models have been guided toward low-density  
846 or underrepresented modes—such as through class-conditional or classifier-informed sampling for  
847 minority classes (Sehwag et al., 2022; Trabucco et al., 2023). Prompt perturbation has been used  
848 to mitigate semantic ambiguity and encourage coverage of diverse outputs (Sariyildiz et al., 2023;  
849 Shipard et al., 2023). In parallel, foundation models have been fine-tuned to better align with the target  
850 domain, either via on-the-fly adaptation (e.g., GenDataAgent (Li et al., 2025)) or through large-scale  
851 domain-specific retraining, as demonstrated with text-to-image diffusion models on ImageNet-scale  
852 data (Azizi et al., 2023; Dunlap et al., 2023).853 These approaches improve the quality of the generations, but still, there could be low-quality  
854 generations that ideally we would like to filter out. The filtering-based methods evaluate typically  
855 the generations based on quality metrics, such as human evaluation (Wang et al., 2021; Liu et al.,  
856 2022)(which can be expensive), **model confidence or difficulty (Hemmat et al., 2023; Agarwal et al.,**  
857 **2022)**, similarity to the original input in paraphrasing Li et al. (2024b), confidence of LLM, or  
858 classifiers trained to distinguish real from synthetic data Veselovsky et al. (2023). Most of these  
859 methods either explicitly or implicitly leverage the prediction on the quality of the generations, which  
860 could be problematic when the prediction is not accurate.861 **Filtering.** Filtering methods are commonly based on the following strategies (Chai et al., 2025):  
862863

- **Lexical overlap:** filtering based on n-gram overlap metrics such as ROUGE.
- **Semantic similarity:** filtering based on cosine similarity in embedding space.

- 864 • **Model-based filtering:** scoring generations using pre-trained models (e.g., LLMs).
- 865
- 866 • **Round-trip consistency:** checking whether back-translation or round-trip generation recov-
- 867 ers the original input.
- 868 • **Influence-function filtering:** discarding augmentations predicted to harm downstream
- 869 performance (Yang et al., 2020).

870 In practice, many augmentation pipelines combine multiple filters; for example, a heuristic may first  
 871 remove obviously poor outputs, and then the top- $k$  most similar examples to the ground truth are  
 872 retained (Chai et al., 2025). The goal is to balance fidelity and diversity: overly strict filters yield  
 873 safe but low-diversity augmentations, while overly permissive filters risk introducing label noise or  
 874 factual errors. Recent methods explicitly address this trade-off. For example, Mask-then-Fill (Gao  
 875 et al., 2023) reports that infilling achieves a balance between novelty and distributional similarity to  
 876 the source, likely through careful tuning of mask size and model parameters. In contrast, M4DA (Yao  
 877 et al., 2024) promotes diversity by masking tokens to increase variance and then selecting variants  
 878 with the highest semantic complexity. While the generated text must still preserve the original  
 879 meaning, this preference for more complex rephrasings can yield stronger augmentation effects.  
 880 Experiments on text classification benchmarks show that such methods can outperform conservative  
 881 approaches, suggesting that filtering should not always default to the safest outputs—some controlled  
 882 complexity, when consistent, is beneficial.

## 883 C RELATED WORKS ON CONFORMAL PREDICTION

884 **Conformal Prediction** Given a dataset  $\{(X_i, Y_i)\}_{i=1}^N$ , a pretrained-predictor  $h$  and a new text  
 885 input  $X_{n+1}$ , conformal prediction (Vovk et al., 2005) attempts to construct a prediction  $\hat{C}(X_{n+1})$   
 886 such that  $\mathbb{P}(Y_{n+1} \notin \hat{C}(X_{n+1})) \leq 1 - \alpha$  for some user-specified  $\alpha$ . Conformal prediction has the  
 887 distribution-free property and it is finite-sample valid under the exchangeability of the data points  
 888  $\{(X_i, Y_i)\}_{i=1}^{n+1}$ . For instance, in split conformal prediction, one can define  $S_i = \|Y_i - h(X_i)\|$  and  
 889 then set  $\hat{C}(X_{n+1}) = \{y : \|y - h(X_{n+1})\| \leq \tau\}$  where  $\tau = \text{quantile}(\{S_i\}_{i=1}^n \cup \{\infty\}, 1 - \alpha)$ . This  
 890 type of method provides a guarantee on marginal coverage. Previous studies have demonstrated that  
 891 achieving exact conditional coverage is impossible without any further distributionally assumption  
 892 (Barber et al., 2021). Nevertheless, researchers have developed methods to achieve conditional  
 893 coverage with controllable error rates (Zhang & Candès, 2024; Gibbs et al., 2025).

894 **Conformal Prediction and LLMs** Researchers have increasingly explored the application of  
 895 conformal prediction (CP) frameworks in generative models for factuality control, motivated by  
 896 CP’s ability to provide distribution-free inference. In (Ren et al., 2023; Kumar et al., 2023), CP is  
 897 employed to identify probability thresholds for next-token generation, thereby selecting response  
 898 candidates. Several works have proposed CP methods that do not require access to model logits  
 899 (Su et al., 2024). For instance, (Shahrokhi et al., 2025; Quach et al., 2023) use CP to determine  
 900 the number of generations needed to construct a prediction set that includes at least one truthful  
 901 response or satisfies a specified confidence level. Other approaches, such as (Mohri & Hashimoto,  
 902 2024; Cherian et al., 2024), segment LLM outputs into individual claims and apply CP to select  
 903 factual ones. Additionally, Gui et al. (2024) extends CP to multiple test units with a focus on ensuring  
 904 valid false discovery rate (FDR) control. Despite the successes in these applications, how CP can be  
 905 applied in data augmentation is under-explored, perhaps due to its unsupervised nature.

906 **Conditional Conformal Prediction** While Conformal prediction seems like a promising wrapper  
 907 around any blackbox method, its scope is fundamentally restricted to marginal coverage guarantees.  
 908 However, marginal coverage does not preclude large variability in *conditional coverage*, defined as

$$909 \mathbb{P}(Y_{n+1} \in \hat{C}(X_{n+1}) \mid X_{n+1} = x) = 1 - \alpha,$$

910 which may differ significantly across inputs. This limitation is critical in sensitive applications (e.g.,  
 911 medicine, finance), where systematic under-coverage on certain subgroups undermines reliability.  
 912 Prior work shows that in distribution-free settings, exact conditional coverage is impossible: any set  
 913 satisfying it must degenerate to  $\hat{C}(X_{n+1}) = \mathbb{R}$  with infinite expected size (Barber et al., 2021).

918 To address this, Gibbs et al. (2025) reformulate conditional coverage as a marginal constraint over  
 919 measurable functions  $f$ :

$$921 \quad \mathbb{E} \left[ f(X_{n+1}) \cdot (\mathbf{1}\{Y_{n+1} \in \hat{C}(X_{n+1})\} - (1 - \alpha)) \right] = 0.$$

923 They then restrict  $f$  to a user-specified function class  $\mathcal{F}$ , yielding approximate conditional va-  
 924 lidity. Different choices of  $\mathcal{F}$  lead to different notions of conditional coverage: for example,  
 925  $\mathcal{F} = \{\text{constants}\}$  recovers marginal coverage, while  $\mathcal{F} = \{\sum_{G \in \mathcal{G}} \beta_G \mathbf{1}\{x \in G\} : \beta \in \mathbb{R}^{|\mathcal{G}|}\}$  en-  
 926 forces group-conditional guarantees. Gibbs et al. (2025), by contrast, allow  $\mathcal{F}$  to take more general  
 927 forms, from linear distribution shifts, to more complex shifts parametrized by an RKHS function.

### 929 C.1 ADDITIONAL DETAILS ON CONDITIONAL CONFORMAL

931 In our setting, the conformity score  $S_{i_0}$  is unknown for every  $i_0 \in \mathcal{D}_{\text{aug}}$ ; we therefore impute a value  
 932  $S$  for each such test index and solve a single regularized quantile problem that treats the imputed  
 933 test pair symmetrically with the calibration data. Following Gibbs et al. (2025), we estimate a  
 934 high-probability upper bound for these scores  $\{S_i\}_{i \in \mathcal{D}_{\text{calib}} \cup S}$  by fitting a regularized kernel quantile  
 935 regression:

$$936 \quad \hat{f}_S = \arg \min_{f \in \mathcal{F}^*} \left\{ \frac{1}{|\mathcal{D}_{\text{calib}}| + 1} \sum_{i \in \mathcal{D}_{\text{calib}}} \ell_\alpha(S_i - f(X_i)) + \frac{1}{|\mathcal{D}_{\text{calib}}| + 1} \ell_\alpha(S - f(X_{i_0})) + \frac{\gamma}{2} \|f_W\|_W^2 \right\}, \quad (5)$$

939 where  $\alpha \in (0, 1)$ ,  $\ell_\alpha(z) = (1 - \alpha)[z]_+ + \alpha[z]_-$  is the pinball loss,  $\gamma > 0$  is a regularization parameter,  
 940 and  $\|\cdot\|_W$  is the RKHS norm associated with the positive-definite kernel  $W$ .

942 By the representer theorem (Kimeldorf & Wahba, 1971), the optimizer admits the finite expansion

$$944 \quad \hat{f}_S(X) = \hat{\beta}_S + \frac{1}{\gamma} \sum_{i \in \mathcal{D}_{\text{calib}} \cup \{i_0\}} \hat{v}_{S,i} W(X, X_i), \quad (6)$$

947 with coefficient vector  $\hat{v}_S \in \mathbb{R}^{|\mathcal{D}_{\text{calib}}|+1}$  and intercept  $\hat{\beta}_S \in \mathbb{R}$ . Accordingly, the fitted RKHS  
 948 component is of form  $\hat{f}_W(x) = \frac{1}{\gamma} \sum_{i \in \mathcal{D}_{\text{calib}} \cup \{i_0\}} \hat{v}_{S,i} W(x, X_i)$ . As shown in the discussion of  
 949 Anonymous (2026), the coefficients  $\hat{v}_S$  depend *affinely* on the imputed value  $S$  and the mapping  
 950  $S \mapsto \hat{v}_S$  is nondecreasing. Consequently, the event  $S \leq \hat{f}_S(X_{i_0})$  is equivalent to the linear inequality  
 951  $\hat{v}_{S,i_0} \leq 1 - \alpha$ . Following the standard randomized conformalization in Anonymous (2026); Gibbs  
 952 et al. (2025), we replace  $1 - \alpha$  by a draw  $U \sim \text{Unif}(-\alpha, 1 - \alpha)$ , and define the final fitted cutoff by

$$954 \quad \hat{s}_{i_0} = \max \{ S : \hat{v}_{S,i_0} \leq U \}. \quad (7)$$

955 Equivalently, the final prediction set  $\hat{C}(X_{i_0})$  is obtained by plugging the cutoff  $s = \hat{s}_{i_0}$  into the set  
 956 construction  $\mathcal{S}(\hat{\mathbf{A}}_{i_0}; s)$ .

958 **Coverage guarantee.** The following lemma collects the conditional guarantee delivered by this  
 959 construction. For each  $i_0 \in \mathcal{D}_{\text{aug}}$ , we write  $\hat{f}_W^{\hat{s}_{i_0}}$  for the fitted RKHS function evaluated at the cutoff  
 960  $\hat{s}_{i_0}$ .

962 **Lemma 2 (Coverage; cf. Gibbs et al. (2025); Cherian et al. (2024))** *Let  $\mathcal{F}$  be as in equation 4,  
 963 and assume the pooled indices  $\mathcal{D}_{\text{calib}} \cup \mathcal{D}_{\text{aug}}$  are exchangeable. Suppose the loss  $\mathcal{L}(\cdot, \cdot)$  is monotone  
 964 in its first argument (i.e., if  $\mathcal{S}_{i_0}^1 \subseteq \mathcal{S}_{i_0}^2$  then  $\mathcal{L}(\mathcal{S}_{i_0}^1, \mathbf{A}_{i_0}) \leq \mathcal{L}(\mathcal{S}_{i_0}^2, \mathbf{A}_{i_0})$ ) and satisfies  $\mathcal{L}(\emptyset, \cdot) = 0$ .  
 965 Then, for all  $f \in \mathcal{F}$  and all  $i_0 \in \mathcal{D}_{\text{aug}}$ ,*

$$967 \quad \mathbb{E} \left[ f(X_{i_0}) \left\{ \mathbf{1} \left( \mathcal{L}_\lambda(\mathcal{S}(\hat{\mathbf{A}}_{i_0}; \hat{s}_{i_0}), \mathbf{A}_{i_0}) \leq \rho \right) - (1 - \alpha) \right\} \right] = -\gamma \mathbb{E} \left[ \langle \hat{f}_W^{\hat{s}_{i_0}}, f_W \rangle_W \right].$$

969 The lemma shows that the deviation from the nominal level  $(1 - \alpha)$  comes from the RKHS inner  
 970 product involving the learned calibration function, yielding an estimable coverage gap as discussed in  
 971 Gibbs et al. (2025).

972 C.2 PROOF OF LEMMA 1  
973974 For the localized conformal prediction, we adapt Lemma 2 to a class of covariate shifts induced by  
975 the density kernel  $W$ . Under the setting of Lemma 1, the tuples

976 
$$(X_1, \{G_{1k}\}_{k \in [K]}, Y_1), \dots, (X_n, \{G_{nk}\}_{k \in [K]}, Y_n)$$
  
977

978 are independent of  $(X_{i_0}, \{G_{i_0k}\}_{k \in [K]}, Y_{i_0}, X'_{i_0})$ . By definition of  $X'_{i_0}$ , the joint distribution of  
979  $(X_{i_0}, \{G_{i_0k}\}_{k \in [K]}, Y_{i_0}, X'_{i_0})$  is given by

980 
$$X_{i_0} \sim P_X, \quad Y_{i_0} \mid X_{i_0} \sim P_{Y|X}, \quad (G_{i_0k})_{k=1}^K \mid (X_{i_0}, Y_{i_0}) \sim h(X_{i_0}, Y_{i_0}, \tau),$$
  
981 
$$X'_{i_0} \mid (X_{i_0}, (G_{i_0k})_{k=1}^K, Y_{i_0}) \sim W(X_{i_0}, \cdot),$$
  
982

983 so that  $X'_{i_0} \perp\!\!\!\perp ((G_{i_0k})_{k=1}^K, Y_{i_0}) \mid X_{i_0}$ .  
984985 For any realization  $x' \in \Omega$ , Bayes' rule yields

986 
$$(X_{i_0}, (G_{i_0k})_{k=1}^K, Y_{i_0}) \mid X'_{i_0} = x' \sim \frac{W(x, x')}{\mathbb{E}[W(X, x')]} dP_{(X, \mathbf{G}, Y)}(x, \mathbf{G}, y),$$
  
987

988 i.e., the original joint distribution  $P_{(X, \mathbf{G}, Y)}$  tilted by the weight  $W(x, x')$  and renormalized by  
989  $\mathbb{E}[W(X, x')]$ .  
990991 Conditioning on  $X'_{i_0} = x'$  and writing  $\mathcal{S}(\hat{\mathbf{A}}_{i_0}; s_{i_0})$  for the set construction, we obtain  
992

993 
$$\begin{aligned} & \mathbb{E}\left[\mathbf{1}\left\{\mathcal{L}_\lambda(\mathcal{S}(\hat{\mathbf{A}}_{i_0}; s_{i_0}), \mathbf{A}_{i_0}) \leq \rho\right\} - (1 - \alpha) \mid X'_{i_0} = x'\right] \\ &= \frac{\mathbb{E}\left[W(X, x') \cdot \left(\mathbf{1}\left\{\mathcal{L}_\lambda(\mathcal{S}(\hat{\mathbf{A}}_{i_0}; s_{i_0}), \mathbf{A}_{i_0}) \leq \rho\right\} - (1 - \alpha)\right)\right]}{\mathbb{E}[W(X, x')]} \\ &= \frac{-\gamma \mathbb{E}\left[\langle \hat{f}_W^{\hat{s}_{i_0}}, W(\cdot, x') \rangle_W\right]}{\mathbb{E}[W(X, x')]} \quad (\text{by Lemma 2}) \\ &= \frac{-\gamma \mathbb{E}\left[\hat{f}_W^{\hat{s}_{i_0}}(x')\right]}{\mathbb{E}[W(X, x')]} \end{aligned}$$
  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004

1005 Using the finite expansion of the fitted RKHS component,  
1006

1007 
$$\hat{f}_W^{\hat{s}_{i_0}}(x') = \hat{\beta}_{\hat{s}_{i_0}} + \frac{1}{\gamma} \sum_{i \in \mathcal{D}_{\text{calib}} \cup \{i_0\}} \hat{v}_{\hat{s}_{i_0}, i} W(X_i, x'),$$
  
1008

1009 we can further write  
1010

1011 
$$\mathbb{E}\left[\mathbf{1}\left\{\mathcal{L}_\lambda(\mathcal{S}(\hat{\mathbf{A}}_{i_0}; s_{i_0}), \mathbf{A}_{i_0}) \leq \rho\right\} - (1 - \alpha) \mid X'_{i_0} = x'\right] = \frac{-\mathbb{E}\left[\sum_{i \in \mathcal{D}_{\text{calib}} \cup \{i_0\}} \hat{v}_{\hat{s}_{i_0}, i} W(X_i, x')\right]}{\mathbb{E}[W(X, x')]} ,$$
  
1012

1013 which completes the localized reweighting conformal prediction.  
10141015 D EXPERIMENTAL DETAILS  
10161017 D.1 CLINICAL TEXT CLASSIFICATION  
10181019 This dataset consists of natural language descriptions of symptoms annotated with 22 corresponding  
1020 diagnoses (Gretel AI, 2024). In total, it contains 1,065 English-language symptom descriptions, of  
1021 which 853 (80%) are allocated for training and 212 (20%) for testing.  
10221023 As described in the main text, each training symptom description is extended with five additional  
1024 sentences using GPT-4.1 nano with temperature 1.5. Each augmented sentence is paired with the orig-  
1025 inal label and treated as a new sample. To assess quality, we applied Gemini-2.5-Pro to genera-  
1026 tions from 100 randomly selected documents (yielding 500 new samples) and Gemini-2.5-Flash  
1027 to generations from all 853 training documents (yielding 4,265 new samples).  
1028

1026 For evaluating augmentation methods, we fixed a set of 100 documents with scores from Gemini-  
 1027 2.5-pro and randomly sampled an additional 400 documents from the training set. From these 500  
 1028 documents, we applied different filtering strategies. In particular, for CondCP, we applied Latent  
 1029 Dirichlet Allocation (LDA) with 18 latent mixtures to the entire training set, where the number  
 1030 of mixtures was chosen based on log-likelihood validation, in order to estimate the latent mixture  
 1031 representation of each document. The procedure was repeated 20 times, and we reported precision,  
 1032 recall, and accuracy.

1033

### 1034 **Prompt for Data Generation**

1035

1036 You are given a description of a disease.

1037

1038 Description: {symptom}

1039

1040 Task: Extend the symptom description with additional details that  
 1041 still plausibly describe the SAME disease.

1042

- Write EXACTLY 5 sentences.
- Do not copy wording from the original; paraphrase and add plausible details consistent with the same condition.
- Avoid lists, bullets, headings, or numbering; just 5 full sentences in a single paragraph.
- No disclaimers, no citations, no markdown.

1043

### 1044 **Prompt for Evaluation**

1045

1046 You are evaluating individual symptom descriptions for diseases.

1047

1048 Scoring instructions:

1049

- Assign each description a score between 0 and 1, rounded to two decimal places.
- Criteria: The description should plausibly match the specified disease and avoid confusion with other diseases.
- Use the full 0-1 range: 1 = perfectly clear, specific, and accurate; 0 = completely unusable.
- 0.5 is the threshold: any description with a score <= 0.5 should be dropped to prevent misclassification.

1050

1051 For reference, here is the complete list of possible diseases:  
 1052 {disease\_ls}

1053

1054 Output requirements:

1055

- Output only the scores, one per line, in the same order as the input cases.
- Do not include explanations, text, or formatting other than the numeric scores.

1056

1057 Case : Disease: {diag} : Symptom: {symp}

1058

## 1059 **D.2 ABSTRACT TOPIC CLASSIFICATION**

1060

1061 ArXiv hosts more than 1.5 million articles across diverse fields. For this analysis, we use a random  
 1062 sample of 1,000 abstracts published after January 1, 2021, distributed evenly across five statistical  
 1063 categories: statistical methodology, statistical machine learning, statistical applications, statistical  
 1064 computation, and statistical theory (Artgor, 2019). The classification task is challenging because  
 1065 these categories are closely related. We split the 1,000 abstracts into 800 for training and 200 for  
 1066 testing.

1067

1068 Each training abstract is extended with six additional sentences using GPT-4.1 nano with tem-  
 1069 perature 1.5. Every two consecutive sentences are grouped as a new sample, paired with the label

1080 of the original abstract. To assess quality, we applied Gemini-2.5-Pro to generations from 100  
 1081 randomly selected abstracts (yielding 300 new samples) and Gemini-2.5-Flash to generations  
 1082 from all 800 training abstracts (yielding 2,400 new samples). For each abstract  $X_i$ , with extended  
 1083 groups  $\{G_{ik}\}_{k=1}^3$ , Gemini-pro scores  $\{A_{ik}\}$ , and Gemini-flash scores  $\{\hat{A}_{ik}\}$ , we define  
 1084

$$1085 S(\hat{\mathbf{A}}_i, \mathbf{A}_i) = \inf \left\{ \tau : |\{G_{ik} : 1 \leq k \leq 3, \hat{A}_{ik} \geq \tau, A_{ik} < 0.5\}| = 0 \right\}.$$

1087 The evaluation procedure follows the same protocol as in clinical text classification. We fixed a set  
 1088 of 100 documents with scores from Gemini-2.5-Pro and randomly sampled an additional 200  
 1089 documents from the training set. From these 300 documents, we applied different filtering strategies.  
 1090 Latent Dirichlet Allocation (LDA) was then performed with 5 latent mixtures, consistent with the  
 1091 number of categories in the dataset. Just as the clinical text example, we fine-tune a small classifier  
 1092 (distilbert-base-uncased) for topic prediction.  
 1093

#### 1094 **Prompt for Data Generation**

1095 You are given a statistical abstract.

1096 Abstract: {abstract}

1097 Task: Extend the abstract with additional details that remain  
 1098 consistent with the SAME statistical topic.

- 1099 - Write EXACTLY 6 sentences.
- 1100 - Do not copy wording from the original; paraphrase and add  
 1101 plausible extensions consistent with the same subject.
- 1102 - Avoid lists, bullets, headings, or numbering; just 6 full  
 1103 sentences in a single paragraph.
- 1104 - No disclaimers, no citations, no markdown.

#### 1105 **Prompt for Evaluation**

1106 You are evaluating individual sentences from extended statistical  
 1107 abstracts.

1108 Scoring instructions:

- 1109 - Assign each sentence a score between 0 and 1, rounded to two  
 1110 decimal places.
- 1111 - Criteria: The sentence should plausibly match the specified topic,  
 1112 remain coherent, and avoid drifting into other topics from the list.
- 1113 - Use the full 0-1 range: 1 = perfectly clear, on-topic, and  
 1114 informative; 0 = completely unusable.
- 1115 - 0.5 is the threshold: any sentence with a score  $\leq 0.5$  should be  
 1116 dropped to prevent topic drift.

1117 Output requirements:

- 1118 - Output only the scores, one per line, in the same order as the  
 1119 input cases.
- 1120 - Do not include explanations, text, or formatting other than the  
 1121 numeric scores.

1122 Case : Topic: {topic} : Sentences: {sent}

#### 1123 **D.3 TWITTER MESSAGE SENTIMENT ANALYSIS**

1124 The dataset (Kadara, 2018) contains text segments from Twitter messages, each labeled with the  
 1125 predominant emotion expressed. The emotions are categorized into six classes: sadness, joy, love,  
 1126 anger, fear, and surprise. We randomly sampled 1,200 messages, evenly distributed across the six  
 1127 categories, and split them into 1,000 for training and 200 for testing.

1134 Each training message was extended with five additional sentences using GPT-4.1 nano  
 1135 with temperature 1.5, with each sentence paired to the original label as a new sample. For  
 1136 evaluation, Gemini-2.5-Pro scored generations from 100 documents (500 samples), while  
 1137 Gemini-2.5-Flash covered all 1,000 training documents (5,000 samples). The evaluation pro-  
 1138 cedure follows the same protocol as in clinical text classification: we fixed a set of 100 documents  
 1139 with scores from Gemini-2.5-Pro and randomly sampled an additional 200 documents from the  
 1140 training set. We define the non-conformity score as

$$1141 \quad S(\hat{\mathbf{A}}_i, \mathbf{A}_i) = \inf \left\{ \tau : \left| \{G_{ik} : 1 \leq k \leq 5, \hat{A}_{ik} \geq \tau, A_{ik} < 0.5\} \right| \leq 1 \right\}.$$

1143 The remaining steps were identical to the previous cases, except that here we applied LDA with six  
 1144 mixture components.  
 1145

#### 1146 **Prompt for Data Generation**

1148 You are given a short Twitter message.  
 1149

1150 Message: {tweet}

1152 Task: Extend the message with additional content that preserves the  
 1153 SAME sentiment and topic.

- 1154 - Write EXACTLY 5 sentences.
- 1155 - Paraphrase and expand naturally; do not copy wording from the  
 1156 original.
- 1157 - Vary phrasing, tone, and detail while remaining consistent with  
 1158 the sentiment.
- 1159 - Avoid lists, bullets, hashtags, mentions, links, or numbering;  
 1160 produce 5 full sentences in a single paragraph.
- 1161 - No disclaimers, citations, or markdown.

#### 1162 **Prompt for Evaluation**

1163 You are evaluating individual sentences for sentiment consistency.  
 1164

1165 Scoring instructions:

- 1166 - Assign each sentence a score between 0 and 1, rounded to two  
 1167 decimal places.
- 1168 - Criteria: The sentence should clearly reflect the SPECIFIED  
 1169 sentiment, remain coherent, and avoid conflicting emotions.
- 1170 - Use the full 0-1 range: 1 = perfectly consistent and natural;  
 1171 0 = completely unusable.
- 1172 - 0.5 is the threshold: any sentence with a score <= 0.5 should  
 1173 be excluded.

1174 Output requirements:

- 1175 - Output only the scores, one per line, in the same order as the  
 1176 input cases.
- 1177 - Do not include explanations, text, or formatting beyond the  
 1178 numeric scores.

1180 Case: Sentiment: {senti} Sentence: {sent}

#### 1182 D.4 DIVERSITY OF AUGMENTED TEXT

1184 **Diversity of Selected Augmentations.** To evaluate the diversity of the augmentation techniques,  
 1185 we compute their Shannon entropy. The results are reported in Table 2 for the Diagnosis, Abstract  
 1186 and Sentiment Datasets. Overall, we find that augmentation generally increases the diversity of the  
 1187 training data (e.g., the Diagnosis dataset features an unaugmented diversity of 6.92, compared to  
 8.02 for the CondCP filter and 8.52 for the unfiltered dataset). The filtered versions typically show

lower diversity compared with the unfiltered versions since poor-quality generations are excluded. We also note that the CondCP-filtered generations exhibit lower diversity than those filtered by other algorithms. This outcome is expected, given the nature of conformal prediction. Nonetheless, the reduction in diversity is relatively small, highlighting that the CondCP filter effectively preserves the essential information contained in the training data.

**Sensitivity to the choice of  $\rho$  and  $\lambda$ :** To assess the sensitivity of the proposed CondCP approach to the choice of hyperparameters (e.g.  $\rho$  and  $\lambda$ ), we report the Shannon entropy of the CondCP-filtered results under different hyperparameter configurations in Table 3. Overall, larger values of  $\lambda$  and smaller values of  $\rho$  tend to reduce diversity. This highlights the fact that these hyperparameters should be chosen to balance diversity against faithfulness to the original data distribution. Their sensitivity depends on the dataset as well as on both the gold-standard and surrogate diversity measures.

| Data               | Unaugmented | Unfiltered | Flash Filter | Hybrid Filter | CondCP Filter |
|--------------------|-------------|------------|--------------|---------------|---------------|
| Diagnosis          | 6.92        | 8.52       | 8.14         | 8.14          | 8.02          |
| Abstract           | 9.64        | 9.83       | 9.81         | 9.81          | 9.76          |
| Sentiment Analysis | 8.69        | 9.34       | 9.23         | 9.23          | 8.96          |

Table 2: Shannon entropy of augmented data across datasets under different augmentation methods

| Diagnosis          |                 |                 |                 |                 |                 |                 |
|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                    | $\lambda = 0.3$ | $\lambda = 0.4$ | $\lambda = 0.5$ | $\lambda = 0.6$ | $\lambda = 0.7$ | $\lambda = 0.8$ |
| $\rho = 0$         | 7.67            | 7.53            | 7.42            | 7.44            | 7.36            | 7.32            |
| $\rho = 1$         | 8.14            | 8.10            | 8.02            | 7.94            | 7.87            | 7.81            |
| $\rho = 2$         | 8.19            | 8.16            | 8.13            | 8.13            | 8.05            | 8.03            |
| Abstract           |                 |                 |                 |                 |                 |                 |
|                    | $\lambda = 0.3$ | $\lambda = 0.4$ | $\lambda = 0.5$ | $\lambda = 0.6$ | $\lambda = 0.7$ | $\lambda = 0.8$ |
| $\rho = 0$         | 9.76            | 9.76            | 9.76            | 9.76            | 9.76            | 9.76            |
| $\rho = 1$         | 9.77            | 9.77            | 9.77            | 9.77            | 9.76            | 9.76            |
| $\rho = 2$         | 9.77            | 9.77            | 9.77            | 9.77            | 9.76            | 9.76            |
| Sentiment Analysis |                 |                 |                 |                 |                 |                 |
|                    | $\lambda = 0.3$ | $\lambda = 0.4$ | $\lambda = 0.5$ | $\lambda = 0.6$ | $\lambda = 0.7$ | $\lambda = 0.8$ |
| $\rho = 0$         | 8.99            | 8.94            | 8.89            | 8.90            | 8.89            | 8.87            |
| $\rho = 1$         | 9.08            | 9.01            | 8.96            | 8.96            | 8.94            | 9.01            |
| $\rho = 2$         | 9.08            | 9.07            | 9.09            | 8.99            | 8.98            | 8.97            |

Table 3: Shannon entropy of CondCP filtered data across different  $\lambda$  and  $\rho$

## D.5 COMPARISON BETWEEN GEMINI-2.5-PRO SCORES AND GEMINI-2.5-FLASH SCORES

Figure 5 presents a comparison of evaluation scores between Gemini-2.5-Pro and Gemini-2.5-Flash across datasets. While the two scores show a clear positive correlation, they are not perfectly aligned.

## D.6 EXPERIMENTAL RESULTS FOR TEXT DATA UNDER LOW-TEMPERATURE GENERATION

The LLM-augmented experiments presented in the main text were conducted with a high generation temperature of 1.5. For completeness, we report in Figure 6 the corresponding results obtained under a low-temperature setting with generation temperature 0.3. As anticipated, CondCP filter offers limited improvement in this regime due to the substantially reduced diversity of generated samples: at low temperature, the LLM predominantly produces highly frequent or canonical outputs, leaving little variation for the filtering mechanism to act upon. Consequently, overall performance is worse than the high-temperature setting with CondCP filtering reported in the main text.

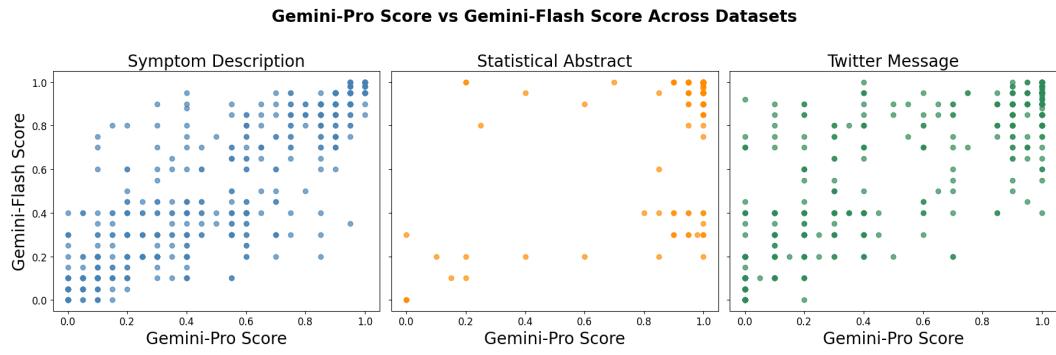


Figure 5: Scatter plots comparing Gemini-Pro and Gemini-Flash scores for symptom descriptions, statistical abstracts, and Twitter messages datasets.,

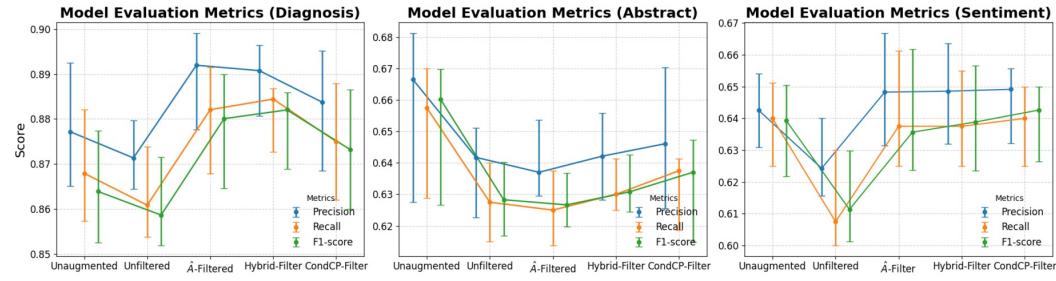


Figure 6: Evaluation of different data augmentation methods on diagnosis prediction, abstract topic prediction, and Twitter message sentiment prediction with generation temperature 0.3.

## D.7 ASSESSMENT OF RISK-CONTROL VIOLATIONS

For each text dataset, we partition the samples with Gemini-2.5-pro scores into 10 folds. In each split, we use 9 folds to train CondCP and evaluate the empirical violation rate on the remaining fold, which is the frequency with which the number of low-quality generations exceeds the allowed threshold  $\rho$ . The results are shown in Figure 7, which illustrates the risk control achieved by our method.

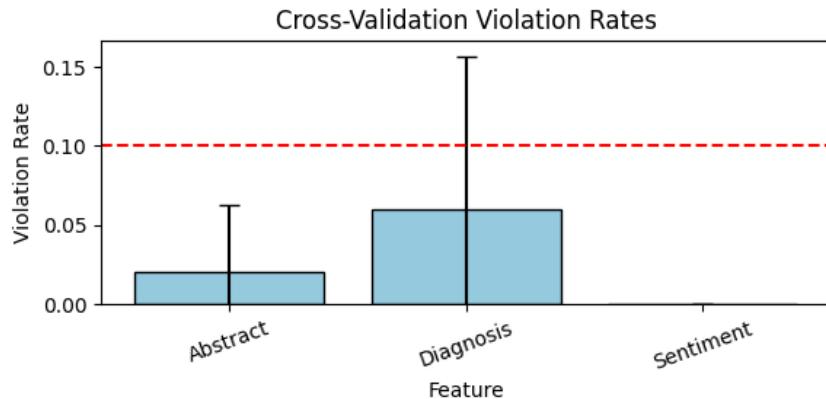


Figure 7: Empirical violation rate for allowing at most  $\rho$  low quality generations. Error bars represent  $\pm 1$  standard deviation.

## D.8 ADDITIONAL EXPERIMENTS ON IMBALANCED CLASSIFICATION

| Dataset          | Hidden Dim | Context Dim ( $c$ ) | Latent Dim | Epochs | Learning Rate      |
|------------------|------------|---------------------|------------|--------|--------------------|
| Thyroid          | 64         | 32                  | 32         | 100    | $1 \times 10^{-3}$ |
| Credit Card      | 64         | 32                  | 32         | 100    | $1 \times 10^{-3}$ |
| MNIST-7 vs. rest | 64         | 32                  | 32         | 100    | $1 \times 10^{-3}$ |

Table 4: CVAE hyperparameters across datasets. Hidden dimension refers to the encoder/decoder width, context dimension is the size of the seed-conditioned embedding  $c = h_\psi(x)$ , and latent dimension is the size of the stochastic latent variable  $z$ .

In this appendix, we offer a deep dive into some of the examples presented in this paper for the imbalanced classification results (Section 4.2).

### D.8.1 EXPERIMENT DETAILS

**Datasets.** We evaluate our framework on three benchmark datasets that cover a wide spectrum of imbalance ratios, dimensionalities, and application domains:

- **European Credit-Card Fraud** (Kaggle): 284,807 transactions with 492 frauds (0.17% positives). Each record contains transaction time, amount, and 28 PCA-compressed features (V1–V28). This dataset is widely used as a canonical benchmark for extreme class imbalance.
- **Thyroid Disease** (OpenML-38): 2,644 patient records with 6.4% positives. Features include demographic covariates, hormone levels, and binary medical indicators. This dataset represents a typical medical diagnosis problem with moderate imbalance.
- **MNIST-7 vs. Rest** (OpenML-554): 70,000 handwritten digits recast into a binary task of distinguishing “7” (10.9% positives) from all other digits. While less imbalanced, this high-dimensional vision-like dataset provides a contrasting baseline where signal is strong and plentiful.

**Conditional VAE (CVAE).** We generate minority samples with a Conditional Variational Autoencoder (CVAE) (Kingma & Welling, 2013; Sohn et al., 2015) that is *conditioned on an actual minority seed*. Let  $h_\psi : \mathbb{R}^d \rightarrow \mathbb{R}^c$  be a small *context net* that maps a reference minority instance  $x$  to a context vector  $c = h_\psi(x)$ . The encoder receives the concatenation  $[x, c]$  and outputs a Gaussian  $q_\phi(z | x, c) = \mathcal{N}(\mu_\phi(x, c), \text{diag}(\sigma_\phi^2(x, c)))$ ; the decoder reconstructs  $x$  from  $[z, c]$  via  $p_\theta(x | z, c)$ . Both encoder and decoder are two-layer MLPs with ReLU activation.

We train on minority data only ( $y = 1$ ) with the ELBO using Adam optimizer for 100+ epochs (features are MinMax-scaled). At generation time, given a seed  $x_s$  we compute  $c_s = h_\psi(x_s)$  and draw K candidates by sampling  $z_k \sim \mathcal{N}(0, \tau^2 I)$  (with  $\tau > 0$  and decoding  $g_k = g_\theta(z_k, c_s)$ ). This *seed-conditional* design produces local, seed-aware variations that stay on the minority manifold with controlled dispersion  $\tau$ . The raw candidates are then quality-scored and filtered by our  $\hat{A}$  regressor and conformal thresholds before being added for training a classifier. See the detailed choice of architecture in Table 4.

**Conformal Prediction conditioned on Latent Representation** We apply conditional conformal filtering that operates in a learned latent representation of the data (Anonymous, 2026). Specifically, we project the feature space into a lower-dimensional latent embedding using Principal Component Analysis (PCA) before applying the conformal calibration step. For each dataset, we tune the latent dimension to reflect its scale: 2 for *Thyroid* and *Credit Card Fraud*, and 16 for *MNIST-7*.

### D.8.2 EVALUATING THE QUALITY OF THE (SELECTED) GENERATIONS

We examine the *MNIST 7* example, an imbalanced classification task where MNIST digits are classified as 7 or not 7, with 7s being underrepresented. We evaluate the effect of temperature and selection on the diversity of the generated samples, as the results in this example should be easily interpretable visually.

1350  
 1351 **Understanding the effect of temperature on the diversity of the samples.** Figure 8 highlights a  
 1352 few examples of generations of the digit 7 for different temperatures  $\tau$ . In low temperature settings  
 1353 (e.g.  $\tau = 0.1$ ), the model generates almost identical samples. In moderately high temperature settings  
 1354 ( $\tau = 2$ ), the model starts to generate more variable shapes of the digit 7. However, as the temperature  
 1355 becomes too high ( $\tau = 10$ ), the synthetic data become extremely noisy.

1356 Figure 9 and 10 further illustrate the temperature effect through principal component analysis,  
 1357 comparing real and generated data. As the temperature ( $\tau$ ) increases, the synthetic samples gradually  
 1358 explore a wider area of the real data. However, excessively high temperatures (e.g.,  $\tau = 10$ ) cause  
 1359 the generator to sample outside the MNIST distribution, resulting in points that do not align with the  
 1360 original data's structure.

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

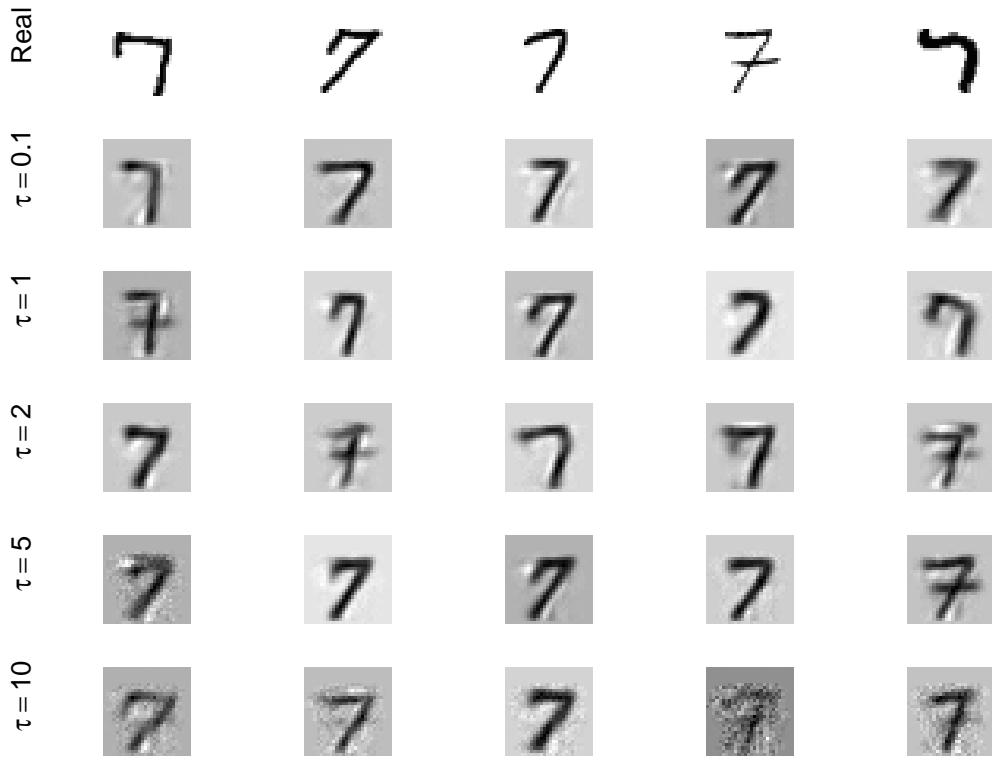
1399

1400

1401

1402

1403

Figure 8: Generated minority digit (7) by the VAE model for varying temperature ( $\tau$ ).

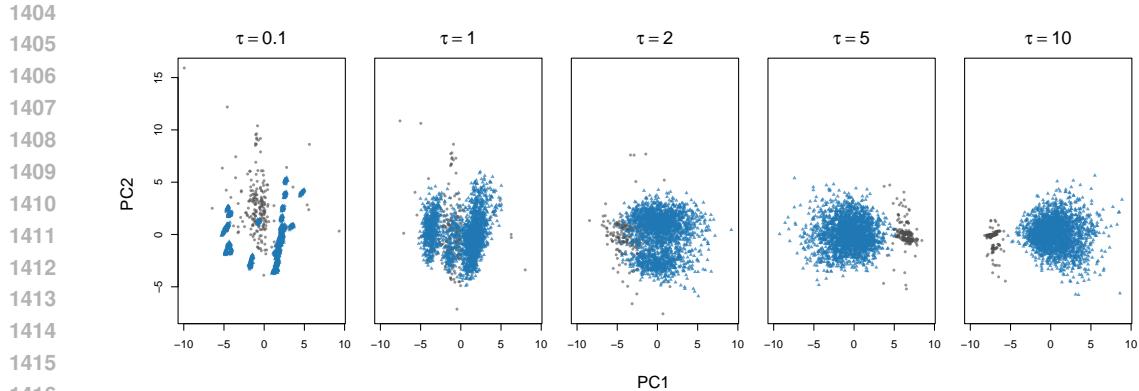


Figure 10: PCA visualization of real samples from thyroid dataset and VAE-generated samples under different temperature values  $\tau$ . The gray circle points denote the real data, and the blue triangular points denote the generated data.

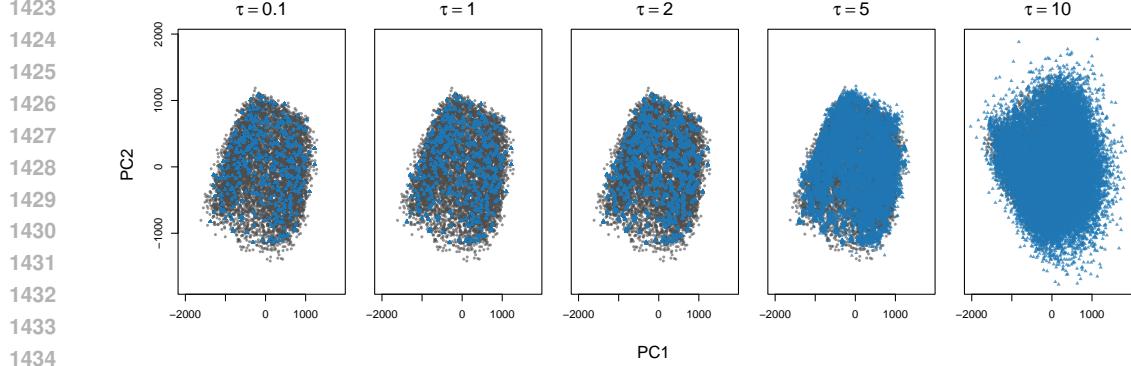


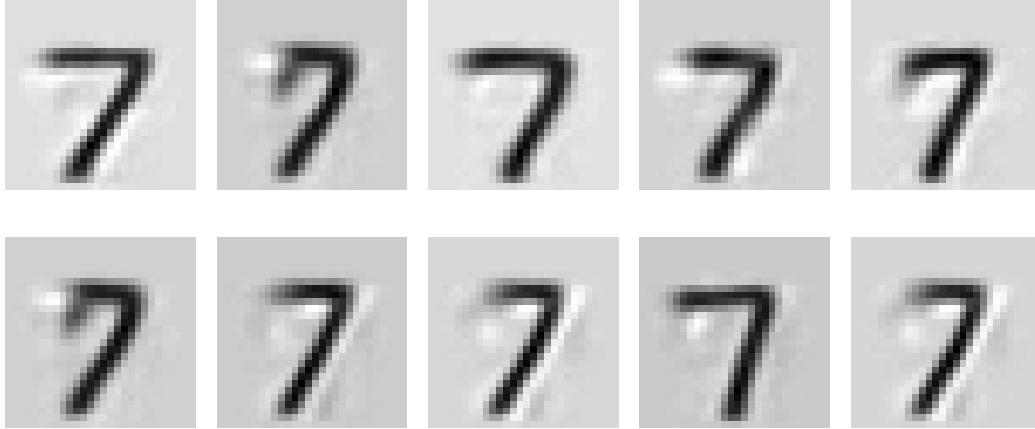
Figure 9: PCA visualization of real MNIST-7 digits and VAE-generated samples under different temperature values  $\tau$ . The gray circle points denote the real data, and the blue triangular points denote the generated data.

To quantify these effects and directly examine the role of temperature, we measure the diversity of the (unfiltered) generated samples for different values of the parameter  $\tau$  using the stable rank. The results, shown in Table 5, confirm that increasing the sampling temperature produces higher-diversity synthetic data; however, but this diversity is uncontrolled. Beyond moderate temperatures, the generator begins to sample outside the real data manifold, producing overly noisy or implausible examples. Figure 8 illustrates this phenomenon, where high-temperature samples turn out to be overly noisy. This supports the motivation stated in the introduction: while higher temperatures can, in principle, expose rare modes, naively relying on high-temperature augmentation is harmful because it injects low-quality, out-of-support samples.

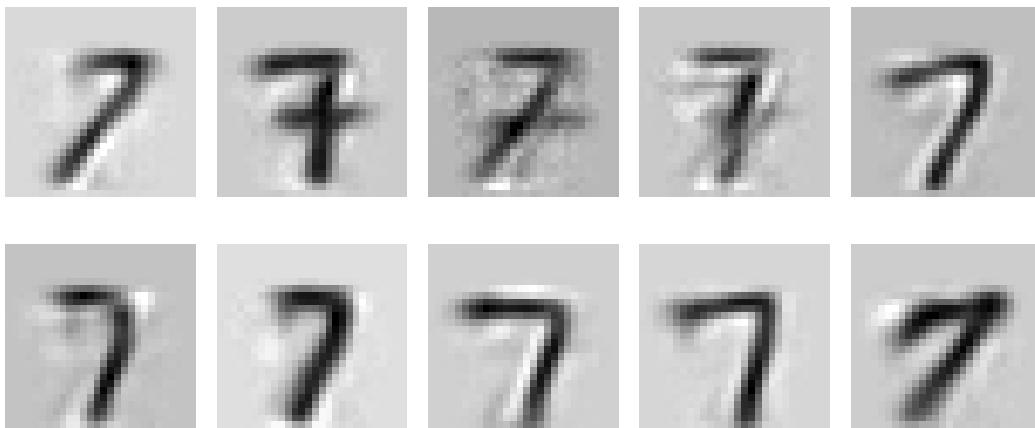
| $\tau$ | <b>Thyroid</b>    | <b>Credit Card Fraud</b> | <b>MNIST 7</b>     |
|--------|-------------------|--------------------------|--------------------|
| 0.1    | $6.072 \pm 0.689$ | $1.960 \pm 0.039$        | $12.048 \pm 0.754$ |
| 1      | $8.238 \pm 0.773$ | $1.989 \pm 0.034$        | $12.020 \pm 0.745$ |
| 2      | $8.026 \pm 1.075$ | $1.998 \pm 0.095$        | $12.125 \pm 0.707$ |

Table 5: Diversity measure by Stable Rank of unfiltered augmentation with varying temperature ( $\tau$ ). Mean and standard deviation computed across different splits (seed). The smaller  $\tau$  will lead to generate the samples closer to the existing point, and the higher  $\tau$  will lead to more noisy generation.

1458  
 1459 **Understanding the effect of selection.** Figures 11 and 12 show examples of accepted and rejected  
 1460 samples, respectively. As expected, we see that the rejected samples feature more low quality  
 1461 (extremely blurry and jagged) sevens, compared to the selected ones: the condCP selection seems to  
 1462 select samples that are more realistic.  
 1463  
 1464  
 1465  
 1466  
 1467  
 1468  
 1469  
 1470  
 1471  
 1472  
 1473  
 1474  
 1475  
 1476  
 1477  
 1478  
 1479



1480 Figure 11: Examples of accepted generations by CondCP with  $\tau = 0.1, \lambda = 0.5, \rho = 2$ .  
 1481  
 1482  
 1483  
 1484  
 1485  
 1486  
 1487  
 1488  
 1489  
 1490  
 1491  
 1492  
 1493  
 1494  
 1495  
 1496  
 1497  
 1498  
 1499  
 1500



1501 Figure 12: Examples of generations filtered out by CondCP with  $\tau = 0.1, \lambda = 0.5, \rho = 2$ .  
 1502  
 1503  
 1504  
 1505  
 1506  
 1507  
 1508  
 1509  
 1510  
 1511

This effect extends to other datasets. In Figure 13, we visualize the effect of the selection on the Thyroid dataset. To this end, we first extracted important predictors using regression on training dataset, and the three variables, `on_thyroxine` (binary treatment indicator), `T3` (serum triiodothyronine level), and `TT4` (total thyroxine level), emerged as significant predictors. The plots show, for each variable and each filtering strength  $\lambda$ , how the distribution of accepted synthetic samples aligns with the real minority-class distribution. Across features, accepted samples (blue) consistently match the true minority distribution (black) better than rejected samples (gray), demonstrating that the filtering criterion preferentially retains synthetic points that lie on the true data-support for the minority class.

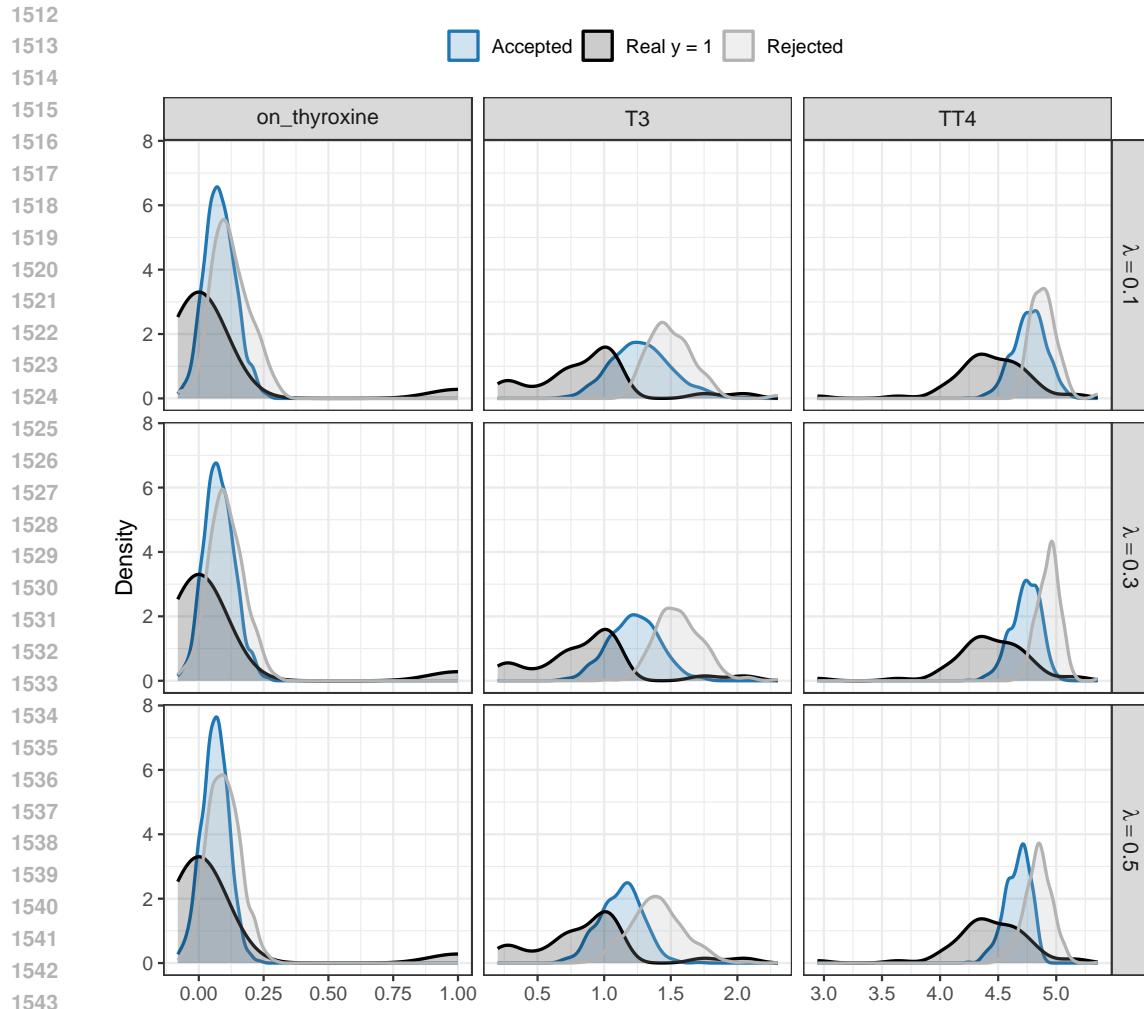


Figure 13: Using the thyroid dataset, we first fit a simple logistic regression on 60% of the real data to predict the minority thyroid-disease class. Three variables, `on_thyroxine` (binary treatment indicator), `T3` (serum triiodothyronine level), and `TT4` (total thyroxine level), emerged as significant predictors. The tolerance parameter  $\rho$  is fixed to be 2.