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Abstract

Inference-time computation has emerged as a promising scaling axis for improving
large language model reasoning. However, despite yielding impressive perfor-
mance, the optimal allocation of inference-time computation remains poorly under-
stood. A central question is whether to prioritize sequential scaling (e.g., longer
chains of thought) or parallel scaling (e.g., majority voting across multiple short
chains of thought). In this work, we seek to illuminate the landscape of test-time
scaling by demonstrating the existence of reasoning settings where sequential
scaling offers an exponential advantage over parallel scaling. These settings are
based on graph connectivity problems in challenging distributions of graphs. We
validate our theoretical findings with comprehensive experiments across a range
of language models, including models trained from scratch for graph connectivity
with different chain of thought strategies as well as large reasoning models.*

1 Introduction

Large Language Model (LLM) scaling has recently undergone a paradigm shift toward increasing
the amount of compute used during inference [1, 2], moving beyond traditional axes such as model
size, training data, and pretraining compute [3, 4]. Scaling inference-time compute is particularly
important for reasoning tasks, and is a key ingredient in OpenAI’s o-series models [5], DeepSeek-R1
[6] among other frontier models [7, 8, 9, 10].

Despite the impressive performance of these systems, the central question of how to optimally allocate
inference-time compute is not yet settled. The main challenge is that the space of strategies that use
compute at test time is large and diverse: a wide variety of methods exist [2, 11, 12], each with its
own empirical scaling law [1, 2]. Additionally, different methods can sometimes be combined, which
further complicates any analysis.

In this paper, we seek fundamental and general principles that help clarify the landscape of inference-
time compute. Since there is a large range of inference-time methods, in order to make progress we
categorize methods into two classes [7]: (1) parallel scaling and (2) sequential scaling. We review
these notions below.
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(1) Parallel scaling refers to generating multiple independent responses in parallel, and ag-
gregating them in some way to output the final solution [13, 14, 15]. The most common
aggregation technique is “best-of-n”’, where a reward function (e.g. another language model
or a task-specific verifier [14]) selects the single highest-scoring response as the output.
Another widely used aggregation method is majority voting, which determines the final
response by choosing the most frequent one among all generated responses [13].

(2) Sequential scaling encompasses all techniques that do not fall under parallel scaling. The
flagship method in this category is Chain of Thought (CoT) [16, 17, 18], in which an LLM
first outputs a chain of reasoning tokens, before outputting its final answer. This may be
achieved with one of several strategies to induce longer chains of reasoning in LLMs, such
as adding a prompt instruction to “think step by step” [18], or forcing a longer chain of
thought by replacing end-of-text tokens with “Wait” [7], or training with reinforcement
learning objectives which can automatically induce longer chains of thought [6].

Consensus has yet to be reached on how to balance both types of scaling most effectively. On the
one hand, sequential scaling via long chains of thought has demonstrated particular promise for
tackling challenging problems, such as mathematics and coding benchmarks [19, 20, 21, 22, 6, 7].
On the other hand, the computational cost of inference grows quadratically in the context window
for transformer-based architectures [23], making sequential scaling more expensive per-token than
parallel scaling. This motivates the main question addressed in this work:

Can we quantify the trade-off between sequential and parallel scaling for reasoning problems?

1.1 Our contributions

Our main contribution is to introduce a reasoning task in which sequential scaling can be exponentially
more powerful than parallel scaling. Namely, a small decrease in sequential scale necessitates a large
increase in parallel scale to achieve the same level of accuracy. This tradeoff is illustrated in Figure 1
for transformer models evaluated on this task.
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Figure 1: Model accuracy with different combinations of parallel and sequential scaling on a graph
reasoning task. The sequential scale is the length budget for the chain of thought, and the parallel
scale is the number of independent chains of thought generated. Left: The performance of a small
transformer model trained for this task, where aggregation is with best-of-n. Right: The performance
of the frontier DeepSeek-R1-Distill-Qwen-32B reasoning model [6], where aggregation is with
majority vote. In both cases, there is a regime in which large increases to parallel scaling are required
to compensate for a small decrease in sequential scaling; more details in Section 4.

Reasoning task Our reasoning task is a variant of the basic graph connectivity task. Solving it
requires determining whether pairs of vertices are connected by stepping through several edges, and
thus it serves as a proxy task modeling multi-step reasoning with CoT on more naturalistic data.
Details are in Section 2.

Our task is motivated by a growing theoretical literature on the limitations and capabilities of
transformers on graph reasoning tasks [24, 25, 26], which have found that graph connectivity is



challenging for bounded-depth transformers [27, 28, 29, 30, 31]. The reason for this is that graph
computation appears to be a sequential problem, yet the transformers’ sequential computation is
bounded by their depth, as proved in expressivity results [32, 33, 34].

Theoretical separations between sequential scaling and parallel scaling We consider bounded-
depth, bounded-precision transformers on the connectivity problem, and we present two theoretical
results that crystallize the intuition that graph connectivity requires sequential scaling which cannot
be cost-effectively compensated by parallel scaling.

First, we prove that (a) sequentially scaling with one polynomial-length CoT can solve the connectivity
problem, but in contrast (b) parallel scaling by aggregating over polynomially-many O(1)-length
Chains of Thought cannot succeed. The proof of this theorem leverages recent results on the
expressivity of transformers [32, 34], and requires making complexity-theoretic assumptions; see
Section 3.1.

Second, in order to obtain a more fine-grained picture of the landscape and understand the performance
of chains of thought with greater than constant length, we abstract transformer computation on graph
reasoning tasks with a “Vertex Query Model” of computation. This model of computation is inspired
by known limitations of transformers for multi-hop reasoning [31]. The Vertex Query Model has
the benefit that it is tractable to analyze. Thus, we use it to guide the construction of challenging
distributions of “two-path” graphs and “bridge” graphs, for which we give evidence that there is an
exponential gap between the performance of sequential and parallel scaling; see Section 3.2.

Experimental validation and exploration In Section 4, we empirically validate the challenging
distributions of “two-path” and “bridge” graphs motivated by our Vertex Query Model. We use these
tasks to test transformer-based language models trained to solve graph connectivity, and find that
there is a significant advantage to scaling sequential computation over scaling parallel computation.
We then extend this empirical investigation to leading open-source reasoning models, evaluating their
performance on the graph connectivity task as well as on the more complex AIME2024 [35] dataset.
The results reveal a consistent trend favoring sequential scaling over parallel scaling.

In Section 5, we explore training transformers on the graph connectivity problem with reinforcement
learning (RL). We observe the emergent behavior that RL training gradually increases the length of
the CoT. This behavior mirrors the growth in CoT length that occurs when training DeepSeek-R1 [6]
with RL, and supports that the graph connectivity problems studied in this work are a rich enough
task to capture many interesting behaviors observed in practice.

2 Graph reasoning tasks

Motivated by recent work on the expressivity and limitations of constant-depth transformers [28,
32, 31, 24, 29, 30], we test models on a graph connectivity task that serves as a basic testbed for
reasoning. The most canonical connectivity task that one could consider is (s, t)-connectivity, defined
below.

Definition 1 ((s, t)-connectivity problem). The (s, t)-connectivity problem is: given a graph G and
vertices s,t in this graph, return whether s and t are connected.

One drawback of this task is that it is asymmetric — in the case that s and ¢ are connected, there is a
path certifying that they are connected. On the other hand, when s and ¢ are in distinct components,
there is no such path certificate. In order to ease our theoretical analysis and the experiments, we
instead consider a more symmetrical problem that we call (s, 1, to)-connectivity, which captures the
essence of the difficulty in graph connectivity. We define this problem below.

Definition 2 ((s, t1, t2)-connectivity problem). The (s, t1,ts)-connectivity problem is: given a graph
G and vertices s, t1, and to in this graph, return whether s is connected to t1 or s is connected to ts,
given the promise that exactly one of these two alternatives is true.

The benefit of this formulation of the problem is that in all cases, there is a path certifying the correct
solution. For example, in the case that s is connected to ¢, then the model can easily verify this in its
chain of thought by finding a short path connecting s to ¢;.

Our theoretical results and our experiments are for (s, t1,t2)-connectivity in the setting where G
consists of two identical, disconnected components, one of the components contains s and ¢;, and the



other component contains ¢3_;. The task is inputted as a list of edges, followed by the IDs of s, t1,
and t». See Figure 2 for an example of the input format.

3 Theoretical evidence for benefits of sequential over parallel scaling

We provide two main pieces of theoretical evidence for the benefits of sequential scaling over parallel
scaling on these graph reasoning problems. We first prove a result based on expressivity limitations
of bounded-depth transformers. Next, we obtain a more fine-grained picture based on an abstraction
for CoT on graph reasoning problems that we call the vertex query model of computation.

3.1 Separation based on transformer expressivity limitations

We consider the (s, t1, t2)-connectivity problem on undirected graphs, as defined in Definition 1,
where the size of the problem is given by the number of nodes n in the graph. We study the most
extreme case of parallel versus sequential scaling: many chains of constant length, compared to one
long chain of polynomial length.

We leverage recent results on the expressive power of transformers with chain-of-thought to prove

the following theorem. It requires making the complexity theory assumption that TC® 2 L, which is
explained in Appendix A.

Theorem 1 (Informal statement of Theorem 4). Assume the complexity-theoretic statement that
TCY 2 L. Then the following is true for bounded-depth, limited-precision transformers.

* Sequential scaling succeeds: There is a constant ¢ > 0 such that a transformer with a CoT
of length < n° solves any (s, t1, t2)-connectivity problem.

* Parallel scaling fails: For any constants C1,Cy > 0, and any transformer architecture,
majority vote over < n°' independently-sampled CoTs of length < Co has accuracy
< 1+ 0(1) for (s, t1, t2)-connectivity problems.

The above result may be rephrased as follows: parallel scaling requires at least a super-polynomial
number of chains of thought of length O(1) in order to simulate the computation achievable by
sequentially scaling one chain of thought with polynomial length.

Proof ingredients In Appendix A we provide the formal statement of the theorem and the full
proof of the theorem. For the positive result, the main ingredient is from [32], which implies
that transformers with polynomial length CoT can implement any polynomial-time algorithm, and
therefore can implement breadth-first search which solves the connectivity problem. For the negative
result, the expressivity bounds of [34, 33] imply that transformers with O(1)-length chain-of-thought
fall into the class of circuits TC". Our main insight is that aggregating multiple independently-
sampled CoTs is also a TC? circuit, and therefore is unable to solve (s, t)-connectivity under the
complexity-theoretic assumption. Finally, we reduce from the (s, t)-connectivity problem to the
(s, t1, t2)-connectivity problem with a TC° reduction.

3.2 Evidence for separation based on the vertex query model

While the result in Theorem 1 is based on expressivity limitations of transformers, it is crude in the
sense that (1) it does not provide a polynomial versus exponential separation, and (2) the parallel
scaling limitations apply only to CoT of length O(1). We now complement Theorem 1 with a more
fine-grained lens on the tradeoff between sequential and parallel scale. In order to achieve this
fine-grained result, we make a simplifying abstraction on the dynamics of Chain of Thought called the
Vertex Query Model (VOM). This computational model is more amenable to analysis than studying
the TCO circuit class.

Definition 3 (Vertex Query Model). An algorithm for (s,t1,t)-connectivity is implementable in the

Vertex Query Model (VOM) if it takes as input s1,t1,ts, and can only access the graph G through
“neighborhood queries” N¢, which given a vertex v output the set Ng(v) = {u : I(v,u) € E}.

We also define the Restricted Vertex Query Model (RVQM), where the algorithm can only initially
query s, and subsequently can only query vertices in the sets returned by previous queries.
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Figure 2: Left: an example “two-path” graph task from Theorem 2. Right: the task input is a list of
edges in randomized order and with randomly permuted vertex IDs.

For the results in this section, we work under the simplifying abstraction that transformers with
chain of thought are constrained to learning functions computable in the VQM with a cost at most
proportional to the length of the chain of thought.

This simplifying abstraction is motivated by prior literature. First, constant-depth transformers are
known to have limited range for multi-hop reasoning in graphs [31]. In chains of thought that output
a sequence of nodes, it is reasonable to expect that the next node outputted by a transformer should lie
only in a constant-depth neighborhood of the previous nodes or be a randomly-chosen node. These
kinds of chains of thought correspond exactly to VQM algorithms. Second, the VQM is closely
related to the previously proposed “globality barrier” for transformers learning to reason (Definition
3 of [28]). The “globality barrier” suggests that transformers with CoT can only efficiently learn
functions such that each CoT step does a local computation — depending on a constant number of
entries in the previous chain of thought. The VQM corresponds to such algorithms where the local
computations allowed are neighborhood queries.

While the above arguments for VQM capturing the power of chain of thought are only heuristic,
we now show that it is a useful abstraction because it motivates challenging families of graphs for
the (s, t1, t2)-connectivity task. In Theorem 2 below, we show that algorithms in the VQM fail on
problems where the graph is given by two disjoint paths, unless a large number of queries proportional
to the length of the path is taken (corresponding under our assumption to a long chain of thought
proportional to the length of the path).

Theorem 2 (Minimum number of VQM queries needed for graph connectivity). Consider the graph
G given by two disjoint paths of length L > 3 with randomly permuted vertex IDs. Suppose s,t1, 12
are distinct endpoints of these paths such that s and t; are on the same path for exactly one i € {1,2}.
Then

» O(L) queries are sufficient: There is a VOM algorithm that executes L — 1 queries and
solves the (s, t1, ta)-connectivity problem with probability 1.

» Q(L) queries are needed: For any VOM algorithm that executes ¢ < (L — 2)/2 queries,
the probability of correctness of the algorithm on (s, t1, t3)-connectivity is exactly 1/2.

The proof is deferred to Appendix B. An example two-path graph is visualized in Figure 2. We
experimentally validate in Figure 10 that, on frontier reasoning models, a minimal amount of
sequential scale is needed to solve this problem, below which parallel scaling with majority vote is
ineffective.

A drawback of the above theorem is that it proves limitations when the number of queries is smaller
than the length of the shortest path between s and {¢1,t>}. In those situations, it may be impossible
for algorithms in the VQM model to certify which s and ¢; are connected. This raises the question:
are there graphs where sequential scale is still beneficial even with more queries than the shortest
path length? We provide one such example below, with the “bridge graph” construction. An example
of this graph structure is illustrated in Figure 3.

Definition 4 (Bridge Graph). A bridge graph is an undirected graph parametrized by the non-negative
integers depth, short, long, and deadend. It is constructed as follows:

Let v1 = s be the start node. Then, for eachi € 1,...depth — 1,

1. Let v;41 be the next "intersection”
2. Add two paths between v; and v, 1, one of length short and the other long
3. Add a path from v; of length deadend (do not connect this to v;41)



Input Prompt

Graph: [(29 54) (15 2) ... (47 9) (32 16)]
Task: 15 to 8 or 1 7

\.

Examples of CoT Strategies

DFS: [15 4 58 55 2 57 27 33 12 41 46 29 54 18 1]
Decision: [1]

Path: [156 2 57 27 33 12 41 46 29 54 18 1]
Decision: [1]

Shortest-Path: [15 2 57 27 37 44 29 54 18 1]
Decision: [1]

Figure 3: Left: Example “Bridge” graph task from Definition 4. Top right: the task input is a list of
edges in randomized order and with randomly permuted vertex IDs. Bottom right: examples of chain
of thought strategies used to train the model in our experiments in Section 4.

We now show that in the Restricted VQM, there is still a gap between sequential and parallel scale,
even in a regime where more queries are made than the length of the shortest path in the bridge graph.
Namely, with even a number of queries a constant fraction larger than the shortest path in this graph,
any RVQM algorithm will be exponentially unlikely to succeed.

Theorem 3. Consider an algorithm in the Restricted Vertex Query Model solving (s,t1,t2)-
connectivity on the union of two identical copies of the Bridge(d,l,2l,0) graph, where s is the
starting node on one side of the graph, and t1 and to correspond to the copies in the two connected
components of the end node of the main path on the other side. For any § € (0, 1),

1. Sequential scaling succeeds: There exists an algorithm which makes (1 + §)2ld queries
and succeeds with probability at least 1 — exp (f%déz)

2. Parallel scaling fails: Any algorithm which makes no more than (1—4) gld queries succeeds
with probability at most % +exp (—%52 %d) Thus, parallel scaling with majority vote needs
exp(€2(d)) independent runs to succeed with probability > 2/3.

We emphasize that the shortest path between the s and ¢; is of length Id, and the theorem proves
that any algorithm in the RVQM has exponentially poor advantage over random guessing even for a
number of queries a constant fraction larger than this shortest path. The intuition is that each time the
model hits an intersection (that is, a vertex with degree greater than two), it has to guess where to go
next, and only has a constant probability per intersection of choosing the shortest path. The proof can
be found in Appendix B.

4 Empirical evidence for benefits of sequential over parallel scaling

In this section, we experimentally study whether it is more efficient to parallelize multiple short CoTs
or to scale one CoT sequentially. We validate the theoretical evidence put forward in Section 3 by (a)
training transformer language models from scratch, and (b) evaluating leading open-source LLMs on
the (s, t1, t2)-connectivity task with the “bridge graphs” of Theorem 3. Further experiments on the
“two-path” graphs of Theorem 2 are available in Appendix C.

4.1 Chain of Thought strategies

In the transformers that we train from scratch, we seek to most efficiently use the chain-of-thought
budget in order to best exhibit the full power of sequential scaling. In order to achieve this, we first
train models on datasets generated by different CoT strategies, and then focus on the CoT strategy
that has the best performance.

The CoT strategies that we consider provide a “proof” in the form of an exploration of the graph
from the source to a sink, such as a path from the s to either ¢; or ¢5. This enables us to implement
best-of-n parallel scaling with a verifier for the proof. Even subject to the restriction of providing a



proof, the CoT lengths can still be short enough that we find that models trained on them get only
barely higher than trivial accuracy.

The strategy with the shortest CoT that we consider is Shortest-Path, where the training data consists
of shortest paths from the source node to the target node. Two other CoT strategies are derived from
the trace of a depth-first-search (DFS) starting from the source node and ending at the target node.
Path CoT is the path from the source node to the target node in the DFS tree, and DFS CoT is the
list of DFS tree nodes ordered by when they are first visited in the DFS trace. The CoT and the final
decision are appended to an input prompt to form a training example of the CoT strategy dataset (See
Figure 3).

4.2 Evaluation metrics

Given a task as an input prompt, a model trained with a CoT strategy autoregressively generates a
sequence of tokens either by greedy decoding or by sampling with a temperature. We extract the CoT
and the decision from the output and evaluate each separately using the following criteria:

1. Decision Criterion: This checks if the decision is equal to the reachable target node.

2. Evidence Criterion: This verifies that the CoT starts with the source node, ends with one of
the target nodes, and for every node in the CoT other than the source node, at least one of its
adjacent nodes appears earlier in the CoT.

Building on these, we consider the following aggregation methods for evaluating parallel scaling:

1. Majority Decision: This takes the majority over the decisions of the sampled outputs.

2. Best-of-n: This checks if any of the sampled CoTs meets the evidence criterion, and if finds
one, outputs its corresponding decision. Otherwise, it chooses one of the two target nodes at
random as its decision.

We also define decision accuracy and evidence accuracy based on the decision and evidence criteria
respectively, and evaluate models using them, over a set of test tasks from the same distribution as the
training tasks. For parallel scaling evaluation, we compute decision accuracy for majority decision
and best-of-n methods.

4.3 Experiment setup

In our experiments, we let short=3, long=5, deadend=3, and refer to Bridge(d, 3, 5, 3) as
Bridge (d). To construct a task of depth d, we generate two randomly labeled Bridge (d) graphs,
select the first starting node of one of the graphs as the source node s, and the last ending nodes of
the two graphs as the target nodes ¢; and ¢5. Finally, to transform the task into a sequence, we list
the edges of the graphs in a random order, along with the labels of the source and target nodes as
illustrated in Figure 3. For each CoT strategy and Bridge (d) task with depth from 1 to 5, we train a
Mistral causal language model [36, 37] with 4 hidden layers, 4 attention heads, and intermediate size
128 with a context length of 400 for 200 epochs. In the experiments of each task, we use the same
number of training tokens for all CoT strategies, equal to the number of training tokens in 500,000
samples from the Shortest-Path CoT strategy.

4.4 Results

We have found that models trained on DFS traces exploit a long CoT budget to outperform models
trained on short CoTs (those generated by Shortest-Path and Path). The models trained on short CoTs
tie with the DFS trained ones on very short budgets (at relatively low accuracy), but fall behind and
plateau when given a higher token budget, as if they don’t succeed early on, they don’t know how
to continue (which makes sense, since they have left their training distribution). The DFS model
achieves perfect evidence and decision accuracy on the tasks, while the Path and Shortest-Path models
struggle with the tasks when increasing the graph’s depth; achieving 11.16% and 0.0% evidence
accuracies respectively on the Bridge (5) task (See Figure 4).

How models trained on short CoTs behave. What scenarios at inference time lead to the failure
of models trained on short CoTs? Looking more closely at the evidence accuracy of the models and
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Figure 4: (left) Evidence accuracy of CoT strategies on Bridge tasks of various depths compared to
the probabilities of a DFS trace becoming the shortest path and a path respectively. (right) Evidence
accuracy of CoT strategies with different sequential CoT budgets on Bridge (5) task. Models outputs
are sampled with greedy decoding. Error bars represent 95% binomial confidence intervals.

their behavior in response to an input, we find that although the Shortest-Path model is trained to take
the short path from the starting node of each component to its end node, it cannot distinguish between
the unexplored paths attached to the current node and gets into out-of-distribution scenarios by
following the wrong paths and fails to recover from them. Therefore, given its limited CoT budget, its
accuracy matches with the exponentially small probability P(DFS € D(Shortest-Path)) = M%
of a DFS trace that randomly chooses an unvisited adjacent node at each step, traversing the shortest
path (See Figure 4). This supports the assumption that the model’s limited expressivity limits its
look-ahead ability, which motivated the Vertex Query Model (VQM) of Section 3.2. The Path
model’s accuracy follows a similar trend, but it is slightly higher than the in-distribution exploration

probability P(DFS € D(Path)) = Bxi%. The Path model’s more flexible CoT budget and its

ability to follow edges allows it to recover from some of the out-of-distribution scenarios it gets into
by backtracking from the deadend or backward paths.

Parallel scaling of models trained on short CoTs. Since Figure 4 shows that sequential scaling of
one chain of thought increases the accuracy significantly, we now ask: can we aggregate multiple
short CoTs (either with best-of-n or with majority voting) to achieve the same accuracy as one longer
CoT? If so, how many short CoTs must we aggregate? We experiment by generating many short CoTs
with temperature 1.0 and measuring accuracy for both majority and best-of-n aggregation methods.
For one run, decision accuracy is usually higher than evidence accuracy, because the model can both
rely on its CoT to make a decision and if the CoT is not a valid proof it can randomly guess between
the two target nodes. This also makes decision accuracy less robust when the model’s evidence
accuracy is low (See Figure 14 for evidence of both behaviors in short CoT models). However,
when parallel scaling, the best-of-n method that uses CoTs scales better than taking majority over
the decisions (See Figure 7). Hence, we report the best-of-n accuracy for the experiments with
parallel scaling. We find that the best-of-n accuracies of the Shortest-Path and Path models follow
the probability that at least one of their n independent sampled CoTs succeed, with the success
probability of each corresponding to the exponentially small probability of traversing the shortest
path and a path respectively (See Figure 7). Therefore, we need to sample an exponential number of
CoTs from these models to achieve an accuracy on par with a single CoT of our models trained on
long CoTs (See Figure 12).

Sequential scaling of CoT models. Inspired by the observation that our short CoT models behave
like the search models but with limited sequential CoT budget, we examine the evidence accuracy
of each model with different sequential scales of CoT budget. We budget-force [7] the models by
considering their CoTs of various maximum lengths, and find that at every sequential CoT budget,
the DFS model achieves the highest evidence accuracy (See Figure 4). Then, to examine the best
accuracy we could get with parallel scaling our models within a fixed sequential budget, we parallel
scale the DFS model of different sequential scales. We find that sequential scaling up to a certain
threshold is more effective than exponential parallel scaling (See Figure 1). Even from that threshold,
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Figure 5: A comparison of parallel and sequential scaling for s1-32B [7] and qwen3-32B [9]. Note
that the trend from Figure 1 is repeated. Sequential scaling is basically essential to get higher
accuracy, and parallel scaling only becomes useful once sequential scaling has allowed for non-trivial
performance.

scaling sequentially further is more efficient in terms of the number of tokens generated than parallel
scaling (See Figure 8). In other words, for a fixed total token budget, sequential scaling always beats
parallel scaling.

4.5 Experiments with large language models

We measured the performance of various LLMs on the graph connectivity task, as well as on the
AIME2024 [35] benchmark.

Specifically, we consider the graph connectivity task on a bridge graph with short=3, long=9,
deadend=0, depth=2. Mirroring our other experimental and theoretical results, LLMs only get
trivial performance without a CoT, but when allowed a long CoT, they can achieve very high
performance. We obtained similar trends with each of the three LLMs we tested, Qwen3-32B[9],
DeepSeek R1 Distill Qwen-32B[6], and S1-32B[7] (See Figure 1 and Figure 5). Note that it takes
roughly a thousand tokens of sequential scaling to get non-trivial accuracy, many of these tokens are
used up by the LLM describing what its general approach to the problem will be, before actually
executing a strategy.

We also conducted experiments with the s1-32B model [7] on the AIME2024 [35] dataset. The results
show that sequential scaling cannot be efficiently replaced by parallel scaling for this mathematical
task, supporting the generalizability of our findings to real-world scenarios (See Figure 11). While
quantifying the exact trade-off between them for complex mathematical problems such as this is
beyond the scope of our fundamental study, we observe that the results confirm our conclusion that
sequential scaling is necessary.

5 Emergent sequential scaling with reinforcement learning

We observed that our models trained on short CoTs cannot look ahead to distinguish the correct and
wrong paths and get into out-of-distribution scenarios. However, there are cases where the Path model
recovers from the out-of-distribution scenario and succeeds in generating a verified CoT followed by
the correct decision. This results in verified CoTs that are longer than any CoT in the training data
(See Figure 4), with behaviors such as backtracking that are not present in the training data. How
does reinforcing the model on its own verified CoTs, including these out-of-distribution CoTs, affect
the model’s performance and reasoning behavior? In this section, we explore this using Self-Taught
Reasoner (STaR) [38], an expert iteration RL method, to fine-tune the model on its verified CoTs.

Experiment setup We perform a few iterations of STaR, where at each iteration, we sample
responses to 500, 000 examples of the Bridge (d) task from the Path model with temperature 1.0.
Then we fine-tune the model for 20 more epochs on its own verified CoTs.
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Figure 6: Path model’s (a) Evidence accuracy, (b) Decision accuracy, and average length of (c¢) CoTs
that follow the format, and (d) CoTs that are verified on Bridge tasks of various depths, before and
after RL iterations. Error bars represent 95% binomial confidence intervals for accuracies, and 95%
normal confidence intervals for CoT lengths.

Results We find that the model’s accuracy on each task improves dramatically after a few iterations;
evidence accuracy of the model pre-trained on Bridge (3) task jumping from 21.16% to 92.02%
after 4 iterations. At the same time, the average length of the model’s valid CoTs and verified CoTs
increases and the model learns to exploit increasingly longer CoTs after each RL iteration (See
Figure 6). Moreover, we find that the model’s accuracy improves at every sequential CoT budget
(See Figure 9). This gives insight into the observed phenomena of long CoT emergence during RL
on reasoning tasks [6, 39, 40]. RL can adapt the model’s training to its expressivity for the task,
by reinforcing its own computations that result in solving the task. In our case, the model is not
expressive enough to solve the task by following the CoT strategy it was trained on. However, after
training on its successful generations during RL, its CoT scales sequentially to follow a longer but
more simple strategy it is expressive enough to adopt.

6 Discussion

Our results on graph connectivity demonstrate that there are settings in which sequential scaling is
vastly more cost-effective than parallel scaling. However, our results are limited only to the setting
that we study, and the optimal recipe for test-time compute may be problem-dependent, lying in a
mixture of combining both parallel scaling and sequential scaling. Indeed, our experiments indicate
that once the sequential scale becomes large enough, parallel scaling becomes a more cost-effective
axis to scale due to diminishing returns to sequential scaling. Understanding the general principles
that determine the optimal mix of parallel and sequential scaling for a given dataset is an interesting
direction for future study. Additional discussion of limitations beyond what is presented in this
section, as well as discussion of further related work, can be found in Appendix D and Appendix E.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in our paper are supported by theoretical proofs or rigorous
empirical evaluations.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our results in Section 6. Also, we make sure to
verify our theoretical assumptions in the context of our claims through our experiments.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Our appendix contains complete and correct proofs for both of our theoretical
results, Theorem 4 and Theorem 3, along with the required assumptions. We provide
intuition in the main paper.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully explain the experimental setup in Section 4, with the details needed
to reproduce the results included in Appendix C.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We plan to release the code after the supplementary application deadline and
prior to publication. However, we believe our experiments are easy to reproduce with the
provided information.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Necessary details are described in Section 4. The full details are available
in Appendix C.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include error bars on all plots where it makes sense. We discuss the sample
sizes involved in the experiments in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: This is included in the experiments details section in Appendix C.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read the code of ethics in its entirety and strongly believe that our research
abides by the stated code.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: As it is more a foundational work, we do not identify any direct societal impact
attributed to it.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators of the assests, such as the models used are properly credited in
the paper.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not introduce any new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The work does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The work does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs are not used as an important, original, or non-standard component of
our work.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Separation between exponential and sequential scaling based on
expressivity

We prove Theorem 4, which is the formal version of the Theorem 1 stated in the main text.

A.1 Preliminaries: expressivity of transformers

Before stating the theorem formally and proving it, let us first review known technical bounds on
the expressivity of limited-precision, bounded-depth transformers [42, 43, 34]. To present these, we
must first define the computational model of threshold circuits.

Definition 5 (TC® computational model). A TCC circuit is a boolean circuit with AND, OR, NOT,
and MAJORITY gates of potentially unbounded fan-in. A TCC circuit family is a collection of circuits
indexed by the input size n, such that for each input size the circuit has polynomial width and bounded
depth.

It has recently been shown that constant-depth transformers can be well-approximated by the class of
threshold circuits of constant depth.

Proposition 1 (Transformers are in TC"; implied by Theorem 14 of [34]). For any bounded-
depth softmax-attention transformer T : ¥* — RI*| and any polynomial p(n), there is a function
T : 2% — RI®lin TC? that approximates T to 2-P\"™) additive error on inputs of length n.!

This implies limitations on the expressive power of transformers, under standard computational
complexity assumptions. In particular, it is a common conjecture that TC" circuits are unable to
determine s-¢ connectivity in undirected graphs [44, 45], and this conjecture is normally stated as
L ¢ TC®2, because L is a complete problem undirected graph connectivity [46, 47]. Therefore,
Proposition 1 provides evidence that bounded-depth and poly-size transformers (without chain of
thought) are not able to directly determine whether two nodes are connected in an inputted graph.

A.2 Our result

Proposition 1 has not been shown to imply a tradeoff between parallel and sequential scaling in
transformers, which is the new contribution in Theorem 4 proved in this section.

Given a function 7' : ©* — RI*! operating on a polynomial-size alphabet of tokens X, and an input
prompt 2 € ¥, we inductively define the autoregressive distribution

Drn(z)
formed by sampling n tokens autoregressively from the transformer. Dt is the empty string
with probability 1. For any n > 1, the distribution Dy, is the distribution of [z1, ..., z,] where
[#1, .., 2n—1] ~ Drn—1, and z, ~ softmax(T([z; z1, ..., 2n—-1])).

We first prove that the distribution of outputs from a transformer is close in total variation to one
generated by iteratively applying a TCO circuit.

Lemma 1 (Approximating the autoregressive distribution of a transformer). Given a transformer
T : ¥* — Rl and polynomials py(n), pa(n), there is a function T in TCY such that for all z € "

drv (Drm(x); Dy ) < 2P (")

for any m < pa(n), where drvy denotes the total variation distance between distributions.

Proof. Let p(n) be a polynomial that we will fix later. Let T be a TC circuit family such that T
approximates 7" up to 2-P(") additive error on inputs of length n, as guaranteed by Proposition 1. For

"The TCP circuit outputs in R'*! is returned up to some number of bits of precision.
2For directed graphs, which we will not use here, the relevant conjecture is NL ¢ TC°
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m = 0, we have drv (Dr,0(z), Dy o(x)) = 0 by definition. For any string s of length > n, we have

_1 exp(T'(s)) exp(7'(s):)
A Brals) Pral) = 3 iEZZ|ZjEE exp(T(s);)  3;ex exp(T(s);)

|exp((IZ] 4+ 1)277) — exp(— (|| + 1)277™)]
< 5(1%] + 1270,

IN

whenever n is large enough and 2*p(”)(\2| + 1) < 1. So combining with the data-processing
inequality, for any m > 1, we have

drv(Drm(z), Dy, (2))
< drv(Drm-1(2), Ds 1 (@) + Eonpyr (@ ldrv (Dra([z; 2]), Dy ([25 2]))]
< drv(Drm-1(2), Dg (%)) +5(S] + 1277
Applying this inductively on m yields
drv(Drm(z), Ds,, (2)) < 5m(|5] + 1)277
< Bpa(n) (3] + 1)277.

Choosing p(n) large enough so that the right-hand side is < 2771(") concludes the proof. O

This allows us to consider the autoregressive distributions generated by TCY circuits, which we will
find easier to analyze than the autoregressive distributions generated by transformers.

We observe that, for constant-length chains of thought, the autoregressive distribution is also directly
sampleable by a TCP circuit with no chain of thought. This lemma was effectively claimed in Figure
1 of [32], but without a proof.

Lemma 2 (Constant-length CoT simulated by randomized TC®). Let C' be a constant number of
steps, and let T : ¥* — RI®| be a function in TCO Define the distribution of the last token P(x) to
be the law of zc where z ~ D ().

Then for any polynomial p1(n), there is a polynomial pa(n) and a function T: Xu{0,1}H)* =%
in TCY such that for all x € X" we have

drv (P(z); P(z)) < 2771
where P(x) is the law of T'(x;7), where v ~ Unif[{0, 1}72(")] are random input bits.

In other words, one step of T approximates C autoregressive steps of T.

Proof. For any polynomial p(n), there is a TCP circuit that (given a polynomial number of random
bits), samples from a step of the autoregressive distribution with T up to total variation error 27P(").
This is because first the circuit can compute T', and then the softmax operation can be approximated
by TCO circuits, as proved in Theorem 14 of [34]. Concatenating this circuit C' times, we obtain a
randomized TC" circuit 7" that satisfies the lemma, as long as we take p(n) > p; (n)logy(1/C). O

Now recall the folklore result that TC circuits can be derandomized.
Lemma 3 (Derandomization of TCY; folklore). Let p(n) and p'(n) be polynomials and T : (¥ U
{0,1})* — X be a TC® function.

Then, there is a TC® function T : ©* — ¥ such that for any n, any © € £" and o € X, we have

T(x) =0, ifProgoryeen [T(a;r) = 0] > 1/2+1/p(n).

Proof. Let p1(n) be a polynomial that we will fix later. Consider the circuit 7" that upon
input [:z:;rl,...,rpl(n)] where x € X" and r; € {0,1}”(”), takes a majority vote over
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T(x;71), ..., T(2;7p, (n))- By a Chernoff bound, and a large enough polynomial p;(n), we have
that for any = € " and r € {0, 1}?("), we have

P, . [T (271, Ty ) = 0] > 1= |57V P, ayeen [T(@57) = 0] > 1/241/p/(n) .

>Tpy(n)

By a union bound over all inputs 2 € |X[", for any 7 there is a random seed [, ..., r} ()] such that

T (z;77,. .. o)) = 0 i P o 13eon [T(@57) = 0] > 1/2 + 1/p'(n).

For any z € X7, let T'(z) = T"(x; 775, . .. ST, (ny)s Which is in TC" since the seed can be hardcoded
into the circuit and is of polynomial length. O

The final ingredient is a TC” reduction from (s, t)-connectivity to (s, t1, t2)-connectivity.

Lemma 4. Suppose that the function f(G, s,t1,t2) solving (s,t1, t2)-connectivity instances is in
TC. Then TC® D L.

Proof. We will show that if f is in TC", then (s, t)-connectivity is also in TC". The reduction is
as follows. Create a (u, v1, v2)-connectivity problem (H,w, vy, vs) by letting H = G LU G5 be a
disjoint union of two copies of G. Randomly choose i € {1,2}, and let u be the copy of s in G;. Let
v1 be the copy of ¢ in G and let v, be the copy of ¢ in G5. Also, permute the labels and the order of
the edges by some permutation o that we will choose randomly. Finally, compute a = f(H, u, vy, v2)
and return true if a = v; and false otherwise. There are two cases:

* If s and ¢ are connected in G, then (H,u, vy, vy) is a well-formed (u, vy, v9)-connectivity
problem, so f(H,u,v1,v2) will always output v;, and so the final answer is “true”.

* If s and ¢ are not connected in GG, then over the randomness of the label and edge permutations
the probability that f returns v; is exactly 1/2 (because the component in which v, resides
and the component in which vs resides are indistinguishable).

Finally, repeat this procedure in parallel with poly(n) different random permutations, and return
“true” if the answer for all repetitions is “true”, and “false” otherwise. By a union bound, over the set
of possible inputs, there is a deterministic choice of poly(n) permutations such that this procedure
is correct on any size-n input (G, s, t). This overall procedure can thus be implemented in TCO by
hard-coding those permutations into the circuit for any n.

Thus, we have shown a TC? circuit for (s, t)-connectivity. Recall that (s, t)-connectivity is complete
for the class L under TCY reductions (see e.g., [44,45]),s0 L C TCO, concluding the proof. O

With these preliminaries, we arrive at Theorem 4, which is the formal statement of Theorem 1, which
was in the main text. We assume that there are two output tokens yes, no € X, and the transformer’s
final token in the chain of thought is its response — either yes or no.

Theorem 4. We have the following results for (s, t1, ta)-connectivity problems of size n and trans-
formers.

* Sequential scaling succeeds: There is a constant ¢ > 0 such that a log-precision transformer
with a CoT of length < n° solves any (s, t1, t3)-connectivity problem.

« Parallel scaling fails: Assume that L ¢ TC°. Let Cy,Cy > 0 be constants, and let
T : * — RI®l be a polynomial-precision transformer. Let m(n) := n®? be the number
of chains of thought over which we take majority vote (breaking ties arbitrarily). Then
there are infinitely-many n such that there is a size-n (s, ty, t3)-connectivity graph problem
(G, s,t1,t2) with answer ans € {yes, no}, such that

]P)zl 7"'7Z7YL(7L)NDT‘CI (G,S,t) [Majority(ZLCI ’t 7Zm(n)7cl) = a’nS] < 1/2 + ]'/n .
Le., majority vote over m(n) parallel chains of thought with length Cy is correct with

probability at most 1/2 + o(1).
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Proof. For the positive result that sequential scaling succeeds, it is sufficient to use Corollary 2.1 of
[32], which implies that log-precision transformers with ¢(n)-length chain of thought can simulate
Turing machines that run in time ¢(n). Since (s, t1, t2)-connectivity is solvable in polynomial time
(e.g. with breadth-first search), the first part of the theorem follows.

For the negative result that parallel scaling fails, we use the lemmas that we have developed above.
Suppose by contradiction that for large enough n, we have for all size-n problems (G, s, t1, t2, ans)
that

Pz~ Drcy (Gosit ) Majority (215 - Zmn),0,) = ans] > 1/2+ 1/n.

Then by Lemma 1 with precision 1/n, and by triangle inequality, there is a TC° function 7' such that
for all large enough n and all size-n problems (G, s, t1, t2, ans), we have

PZ17""Z7"(")NDT,CI (Gys,t1,t2) IMaJOTItY (21,015 - - s Zm(n),cy) = ans] > 1/2+2/n.

By Lemma 2 again with precision 1/n, and by a triangle inequality, there is a TC? function 7T that
approximates the autoregressively-applied 7', in the sense that there is a polynomial p such that for
any size-n problem (G, s, t1, t2, ans)

Prl,...,r,,,,(mN{O,l}ﬁ(") [Majority (T'(x; 1), ..., T(@; 7)) = ans] > 1/2+3/n.
Since Majority is a gate, the circuit Majority (T(z; 1), ..., eT(x; Tm(n))) iS @ TC° function and so
it can be derandomized by Lemma 3. Using this lemma, yields a TC" function T such that for any
size-n problem (G, s, t1, t2, ans),
T(G,s,t1,t5) = ans.

Using Lemma 4, this implies L C TCP, which contradicts our assumption that L Z TCO,

B Evidence from vertex query model for sequential vs. parallel scaling
separation

B.1 Separation in vertex query model, Proof of Theorem 2

In the VQM, we can prove the necessity of a minimum number of queries (corresponding to a
minimum length for a chain of thought by our simplifying abstraction that the VQM models the
capabilities of transformers with bounded chain-of-thought).

Theorem 5 (Minimum number of VQM queries needed for graph connectivity; restatement of
Theorem 2). Consider the graph G given by two disjoint paths of length L > 3 with randomly
permuted vertex IDs. Suppose s,t1,ts are distinct endpoints of these paths such that s and t; are on
the same path for exactly one i € {1,2}. Then

* Q(L) queries needed: For any VOM algorithm that executes ¢ < (L — 2)/2 queries, the
probability of correctness of the algorithm on (s, t1, ta)-connectivity is exactly 1/2.

» O(L) queries sufficient: There is a VOM algorithm that executes L — 1 queries and solves
the (s, t1,t2)-connectivity problem with probability 1.

Proof. For the positive result, consider the algorithm that queries s, then the neighbor of s, and so on,
until it reaches the other end of the path. This takes at most L — 1 queries, and reaches either ¢; or to,
at which point the algorithm has enough information to return the correct answer.

For the analysis of the negative result, let uy, ..., ur denote the ordered vertices of the first path
and let vy, ..., vy, denote the ordered vertices of the second path. Let the algorithm run and make
g < (L — 2)/2 queries. By the pigeonhole principle there must be an ¢ € {1,...,L — 1} such
that the algorithm has not queried u;, v;, u;41 and v; 1. Now note that if we additionally reveal

the neighborhoods of w1, ..., u;—1,ujya,...,ur and vy, ..., v;—1, Viya, ..., vy With vertex queries
then the algorithm still has probability of success 1/2, since it is equally likely given its information
that u; is connected to u; as it is for v; to be connected to v;4 . O
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Figure 7: (left) Majority decision and (right) Best-of-n accuracy for parallel scaling of models
trained with CoT strategies for Bridge (3) task, compared to the accuracy predicted by each CoT
independently meeting the evidence criteria with the probability of a DFS trace becoming the shortest
path and a path respectively.

B.2 Proof of Theorem 3

Proof. First we will show the lower bound.

Without loss of generality, assume that the model will explore from s, and stop when it reaches ¢; or
t2 (note that because the vertex labels are uniformly random, there is no other way of getting a higher
than 50% success rate than finding ¢; or t2 when starting from s).

To get from s to ¢, the algorithm must explore each intersection (those vertices with degree greater
than two). To get from the current intersection to the next one, the algorithm has no way to distinguish
between the long and short path until it explores at least [ vertices, and so there is at most a 1/2
chance the model takes [ oracle calls to get to the next intersection, and at least a 1/2 chance it takes
2l oracle calls (if it takes the long path for [ vertices, then any node it has discovered is still [ vertices
away from the next intersection, so it must make at least [ more calls). Since there are d intersections?,
a standard Chernoff bound for iid Bernoulli random variables shows that the probability of finding ¢;
in at most (1 — ¢) %ld oracle calls is at most exp (—%62%@, and if we don’t find ¢;, then the best the
algorithm can do is guess, and get a 1/2 probability of being correct, yielding the desired result.

For the upper bound, we will consider this algorithm: each time we reach a new intersection (including
the start), choose an unexplored neighbor, and explore down that path for [ vertices, and if the next
intersection is not found, try one of the other unexplored paths from before.

At a new intersection, the algorithm has three unexplored paths:
1. The short path to the next intersection

2. The long path to the next intersection
3. The path to the previous intersection it didn’t take

So, notice that the algorithm we defined has a 1/3 chance of taking [ oracle calls to reach the next
intersection, a 1/3 chance of taking 2/, and 1/3 chance of taking 3. Using Hoeffdings inequality,
the probability the algorithm takes more than (1 + §)2Id oracle calls is at most exp(—2dd?), so the
algorithm succeeds with at least one minus this probability.

O

C Experimental details and further experiments

C.1 Training

For each CoT strategy and task, we train a Mistral causal language model [36, 37] with 4 hidden
layers, 4 attention heads, and intermediate size 128 with a context length of 400 for 200 epochs on
NVIDIA A100 GPU with 40GB memory. We sweep through the learning rate values in {1e-4, 3e-4,

3Including s, for which the same logic applies when getting from s to the next intersection.
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Figure 8: Best-of-N accuracy for parallel scaling of the model trained with DFS CoT strategy on
Bridge (5) task (left) across sequential scales (maximum CoT length) and (right) total CoT token
budget. Outputs are sampled with temperature 1.0 for parallel scaling.
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Figure 9: Evidence accuracy of Path model before and after RL iterations with different sequential
CoT budgets on the Bridge (3) task. Error bars represent 95% binomial confidence intervals.

le-3, 3e-3} and train the model for 200 epochs with a batch size of 1000. We have also experimented
with different weight decay values and learning rate schedules, but we found no significant difference
in the results and used 0.05 weight decay and a cosine learning rate schedule, with a 0.1 warm-up
ratio. We use the same hyperparameters for RL iterations, except that we fine-tune the model for 20
epochs at each iteration. Each pretraining experiment takes under 12 GPU hours, while fine-tuning
for RL takes under 3 GPU hours. Additionally, debugging and hyperparameter tuning for each
experiment took under 72 GPU hours.

C.2 Sequential scaling of walk strategies

Experiment setup To study sequential scaling of CoTs in a controlled setting, we also ran experi-
ments with a CoT strategy with tunable scale. A Walk-L CoT is generated by sampling a random
walk that starts at the source node, conditioned on visiting the target node within at most L steps.
Hence, models trained with Walk-L strategies at different scales L are exposed to successful traces of
random walk on the same task, but with different number of steps the walk is allowed to take to reach
the target. As L increases, the CoTs become longer, less optimal, and more exploratory.

29



Parallel and Sequential Scaling of
DeepSeek-R1-Distill-Qwen-32B

Parallel and Sequential Scaling of
Qwen3-32B

Parallel and Sequential Scaling of
s1-32B

1.0
0.9
OBE
o S e g
0.7<
L "
iti

818 1228 1637 2047
Sequential Scale

1.0 32

Accuracy

Kl
8
&
3
s
&

819 1228 1638 2048

409 818 1228 1637 2047
Sequential Scale | Scale

cal

Sequential

Figure 10: A comparison of parallel and sequential scaling for three LLMs tested on the (s, t1,t2)-
connectivity problem for a graph that is the disjoint union of two paths. Note the similar trend to
Figure 1.

Results After training models for the Bridge (5) task with Walk-L CoT strategies, we find that the
accuracy of the models consistently increases with L, which shows that the models trained on more
exploratory and longer walks perform better (See Figure 15).

C.3 Experiment with a smaller transformer

Experiment setup We also ran experiments using smaller transformer models with 2 hidden layers,
and a variant of DFS strategy called DFS-BT. In a CoT of DFS-BT strategy, we include the whole
DEFS trace, which is a walk in the DFS tree including the backtracking steps.

Results We find that small models trained on DFS-BT CoTs solve the task consistently, while small
models trained on DFS CoTs fail to solve the Bridge tasks of larger depths (See Figure 14), which
can be explained by the smaller model’s more limited expressivity.

C.4 LLM experimental details

For the AIME2024 experiment, we used H200 GPUs. Each run took approximately 1.5 hours, for a
total of about 24 H200 GPU-hours. For the graph connectivity experiment, we used vllm and 2 A100
GPUs (80 GB of memory each) for inference. The experiments to make each plot took less than four
hours each. Debugging and hyperparameter tuning took under 120 GPU hours. We constructed 32
random labelings of the bridge graph, and then, using prompts of the form Figure 13, create CoTs of
4096 tokens. Depending the model, we added the appropriate special tokens to make the input prompt
from the user, and to make the model use thinking mode during the CoT. Each model recommended
using temperature 0.6 for thinking, which we did. We used a custom logit processor to make the
model substitute the end thinking token and the eos token with the token for "wait", inspired by [7].
Then we truncate the CoT at intervals evenly spaced by tokens, and append the end of thinking token,
and “Answer: Node [start node label] is in the same connected component as node ” before using
the model to find the logits for the next token. The model is considered correct if the logit for the
correct node is higher than the logit for the incorrect node introduced in the initial prompt*. For
parallel scaling, we generated up to 64 distinct CoTs for each graph, and analytically calculated the
probability that a random subsample would vote for the correct or incorrect solution (or tie). All of
the results have a standard deviation of at most 0.08.

C.5 LLM additional experiments

In Figure 10 also tested the LLMs on a setting closer to the setting of Theorem 2, where the graph to
be explored is two disjoint paths, and we once again confirm the theory, and see similar trends to
those in Figure 1.

*With some tie breaking when the logits are within 1le—8 of each other. We found that techniques weighting
the confidence by the magnitude of the logits or their difference did not significantly change any results.
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Parallel and Sequential Scaling of S1-32B on AIME 2024
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Figure 11: A comparison of parallel and sequential scaling for s1-32B [7] on AIME2024 [35]. For
parallel scaling, answers are sampled with temperature 1.0 and aggregated by majority vote.
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Figure 12: Number of samples to get larger than 95% best-of-N accuracy by parallel scaling models
trained with different CoT strategies with temperature 1.0. The average over 5 runs is reported.

Prompt format

Given the following list of undirected edges in a graph (with nodes labeled O through 33), is node
0 in the same component as 10 or as 27?7 (it is connected to exactly one of the two) Think step by
step.

(11, 12), (23, 24), (6, 7), (25, 17), (4, 5), (27, 28), (9, 10), (2, 16), (13, 14), (2, 3), (5, 6),
(18, 17), (10, 11), (3, 4), (31, 32), (18, 19), (19, 33), (30, 31), (20, 21), (2, 9), (24, 25),
(15, 16), (12, 13), (7, 8), (19, 20), (1, 2), (32, 33), (29, 30), (14, 15), (28, 29), (1, 0), (8,
0), (21, 22), (19, 26), (22, 23), (26, 27)

Figure 13: Example prompt from the LLM experiments. The prompt includes basic instructions
for the task, along with the recommendation to think step by step (to avoid the model responding
immediately with a guess, and then spending the rest of the chain of thought trying to justify it).
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Figure 14: Decision and evidence accuracy of (left) models trained on CoT strategies for Bridge (5)
task, and (right) models with 2 hidden layers trained on CoT strategies, including DFS-BT and DFS,
for Bridge (5) task. Error bars represent 95% binomial confidence intervals.
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Figure 15: Decision and evidence accuracy of models trained on Walk CoT strategies for Bridge (5)
task. Error bars represent 95% binomial confidence intervals.

D Further discussion

While we make an effort to find the best models for graph connectivity with chain-of-thought (See
Figure 4) in our experiments, we do not have a guarantee that these are indeed the best models that
deploy chain of thought. In future work, this could be addressed by studying models learned with RL,
with a penalty on the length of the chain of thought, to encourage more optimal use of the sequential
scaling budget.

Additionally, the Vertex Query Model that we propose to abstract the power of chain-of-thought in
Section 3.2 is motivated by the globality barrier studied in [28], and is empirically validated, but it

does not have direct theoretical backing. An interesting future direction is to prove that bounded-depth
transformers on graph connectivity tasks are indeed effectively restricted by this model.
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E Further related work

Expressivity of transformers with CoT The representational power of transformers has been
studied in several works [31, 24, 33, 48, 49]. Recent work also highlights the expressivity and sample
efficiency gains of reasoning with chain-of-thoughts [50, 51, 52, 53, 32, 54, 55]. In particular, many
studies use graph-based tasks as a testbed for studying multi-step reasoning with CoTs [28, 30, 27].

Test-time scaling Extensive work focused on scaling inference-time compute optimally [12, 1, 56,
57], in search of inference-time scaling laws [2, 58, 59, 60]. A line of work has focused on studying
optimal sequential scaling [7, 21, 61, 62] by examining the role of CoT length [63, 64, 65, 66]. The
benefits of learning to search [67, 68, 69, 70] and problem-solving strategies like backtracking and
self-correction [71, 19, 72] by scaling the CoT length have also been demonstrated [73, 74, 75], as well
as the limits of these approaches [76, 14]. Another line of work has studied parallel scaling [15, 13]
by examining the behavior of majority voting or a best-of-n method over a diverse set of responses
generated in parallel [77, 78]. Finally, the role of reinforcement learning [79, 80, 81] in advancing
reasoning by improving the CoT quality and scaling it naturally [6, 20, 22, 39, 40] has been explored.
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