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Abstract Recent work has shown Monte-Carlo Tree Search (MCTS) as an effective approach for

Neural Architecture Search (NAS) in producing competitive architectures. However, the

performance of the tree search is highly sensitive to the node visiting order. If the initial

nodes are highly discriminative, good configurations can be efficiently found with minimal

sampling. In contrast, non-discriminative initial nodes require exploring an exponential

number of nodes before finding good solutions. In this paper, we present an iterative NAS

approach to jointly train the recognition model with MCTS and learn the optimal node

ordering of the tree. With our approach, the order of node visits in the tree is iteratively

refined based on the estimated performance of the nodes on the validation set. With this

approach, good architectures are more likely to naturally emerge at the beginning of the

tree, improving the search process. Experiments on two classification benchmarks and a

segmentation task show that the proposed method can improve the performance of MCTS,

compared to state-of-the-art MCTS approaches for NAS.

1 Introduction

Monte-Carlo Tree Search (MCTS) is a powerful approach for non-differentiable problems, partic-

ularly those involving discrete actions (Browne et al., 2012; Costa and Pedreira, 2023). However,

sampling efficiency is crucial for MCTS to minimize unnecessary exploration and achieve faster

convergence to good solutions (Świechowski et al., 2023). Poor sampling efficiency, especially with

large search spaces and hard-to-distinguish branches, can hinder its efficient application. MCTS

is a compelling approach for Neural Architecture Search (NAS) due to its inherent exploration-

exploitation mechanism and ability to handle imperfect evaluations. This is particularly important

in one-shot NAS methods, where the recognition model training and architecture search are

performed simultaneously.

One-shot methods based on weight-sharing (Pham et al., 2018), reduce the cost of evaluating

candidate architectures. Essentially, an over-parameterized model containing all possible architec-

tures, called "supernet", is trained. The supernet is then used to estimate the performance of an

architecture by inheriting the weights. This eliminates the need to train individual architectures.

However, shared weights can introduce bias and interference during supernet training and lead to

rank inconsistency for the sub-nets compared to standalone training performance. (Yu et al., 2019;

Bender et al., 2018; Zhao et al., 2021a). Jointly performing MCTS and supernet training may benefit

the search, by gradually reducing the number of sampled architectures with shared weights.

Several works have explored MCTS for NAS, with various designs and search methods (Wang

et al., 2021; Zhao et al., 2021b, 2024; Su et al., 2021; Roshtkhari et al., 2025). Some have used MCTS

only for the search phase (Wang et al., 2021; Zhao et al., 2021b), while others have utilized it for

both training and search (Su et al., 2021; Roshtkhari et al., 2025) as in our case.

Design of the search tree is crucial for NAS efficiency: Su et al. (2021) use a manual tree design,

considering each layer of the CNN as a level in the tree, with operation choices as branches,

while Roshtkhari et al. (2025) propose to learn the tree structure in unsupervised manner during
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supernet training. Wang et al. (2021) and Zhao et al. (2021b) partition the search space based on the

performance of a trained supernet.

In general, applying MCTS for NAS without additional constraints and regularization leads to

poor performance (Su et al., 2021). The manual tree design proposed by Su et al. (2021) requires

additional regularization to compensate for low sampling rates of nodes. This regularization (soft

independence assumption) undermines the joint contribution of operations in layers by sharing

reward information among nodes (Roshtkhari et al., 2025).

A promising solution is to improve branching quality by learning an optimized tree structure

from the data (Roshtkhari et al., 2025). As it is computationally prohibitive to sample the entire

tree with high frequency, an optimized tree should prioritize sampling regions with high ground

truth performance more frequently.

A reasonable approach is partitioning "good" and "bad" regions of the search space by clustering

based on estimated performance. However, the quality of this pre-ordered tree relies on accurate

rankings of architectures, which depend on the quality of the sampling, generating a typical

chicken-and-egg problem. Previous approaches (Wang et al., 2021; Zhao et al., 2021b) tackle this

problem by learning how to separate the search space while performing the architecture search. In

those works, the recognition model is given, assuming it already provides good estimations, which

renders the factorization of the search space based on static estimations. Nevertheless, when the

recognition model is trained while learning the search space hierarchy, the problem becomes much

more complex and does not allow for static solutions.

In this work, we propose a simple approach in which the tree structure is reorganized as the

supernet training progresses. At each iteration, MCTS is used to guide supernet training, and the

performance estimated from this supernet is used to refine and reorganize the search tree. We

show that, while initial performance estimates may not be a reliable measure for constructing the

search tree, an iterative application of MCTS and tree reorganization can gradually guide the search

towards high-performing architectures by gradually increasing their sampling rates.

The main contributions of our work are as follows:

• We present a new method of partitioning NAS search space into a search tree, based on perfor-

mance estimates obtained from the supernet. We show that by iterative application of MCTS

and tree reorganization, we can obtain competitive architectures without the prohibitive cost or

constraints of previous methods.

• We show that with a careful balance of exploration and exploitation, the number of iterations

needed is small and the overhead cost is negligible.

• We empirically validate our method for two computer vision tasks of image classification and

semantic segmentation and on three datasets. We show that compared to other MCTS-NAS

methods that perform supernet training and MCTS jointly, our approach achieves competitive

performance without regularization and with linear computational complexity.

2 Related Work

2.1 Monte-Carlo Tree Search for NAS

AlphaX (Wang et al., 2019) was a significant early work that utilized Upper Confidence applied

to Trees (UCT) (Auer et al., 2002) for MCTS-NAS. They proposed the use of MCTS to balance

exploration and exploitation and increase the sample efficiency for NAS. They train a predictive

model (Meta-DNN) to estimate the accuracy of architectures based on their encoding and guide

MCTS. However, training a high quality Meta-DNN, while reducing architecture evaluation cost,

requires sufficient data (architecture-prediction pairs) which adds computational overhead. Among

methods that factorize the search space manually, TNAS (Qian et al., 2022) proposed to improve
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exploration by partitioning it into two tree structures (operation and architecture). They utilized a

bi-level breadth-first search algorithm to navigate the search space more efficiently. However, the

proposed operation tree is unbalanced (Le et al., 2024) and the breadth-first search process requires

additional training epochs as the network deepens.

Su et al. (2021) apply MCTS on a macro search space, and construct the tree manually by

considering each layer of the CNN as a level of the tree and branching on operations. To compensate

for low sampling rates of tree leaves, they propose a regularization method (node communication).

However, this regularization assumes soft node independence (Roshtkhari et al., 2025), which

further couples operations that share weights by additionally sharing reward information among

them. Other works aim to learn the tree structure from data. Wang et al. (2021) uses performance

of architectures, with weights inherited from a pre-trained supernet, to partition search space

into "good" and "bad" regions. Zhao et al. (2021b) aimed to find architectures close to the Pareto

frontier for multi-objective NAS. They use hyper-volume to iteratively partition the search space

and MCTS to account for partitioning errors. However, both these methods decouple supernet

training from MCTS by relying on a fixed pre-trained supernet or benchmarks. Roshtkhari et al.

(2025) use supernet estimations to learn tree structure by hierarchal clustering of architectures

using their output (functional) distances.

2.2 NAS for Semantic Segmentation

The main focus of NAS for computer vision has been on image classification task with CNNs,

leaving other tasks (e.g. dense prediction) less developed (Mohan et al., 2023). NAS for semantic

segmentation is more challenging: Compared to classification, it requires higher computational

cost and memory since the input images and feature maps generally have higher resolution, and

the architectures are deeper and more complex to enable per pixel prediction. In the case of

medical images, data can be 3D (Ali et al., 2024), while some applications require real-time inference.

Therefore, a good trade-off between performance and efficiency is essential.

Furthermore, fewer benchmarks (Duan et al., 2021; Mehta et al., 2022; Zhao et al., 2024) are

available for segmentation task (Chitty-Venkata et al., 2023), adding to the computational cost of

evaluating NAS methods and reproducibility. Contrary to classification, the architectures require a

decoder or task-specific head, which can be searched separately (Chen et al., 2018a; Ghiasi et al.,

2019; Xu et al., 2019) or jointly (Guo et al., 2020a; Yao et al., 2020) with the encoder part. To improve

efficiency, many works use differentiable methods (Liu et al., 2019; Saikia et al., 2019; Xu et al., 2019;

Guo et al., 2020a), while others use reinforcement learning or evolutionary algorithm (EA) (Ghiasi

et al., 2019; Du et al., 2020; Wang et al., 2020b; Bender et al., 2020).

Auto-DeepLab (Liu et al., 2019), one of the most prominent NAS works for segmentation,

proposed to use a bi-level (hierarchical) search space (macro-level: resolution and channels ; micro-

level: cell or blocks) and applied DARTS iteratively to these two levels. Application of differentiable

approach resulted in significant reduction in computational cost compared to DPC (Chen et al.,

2018a), making NAS feasible for segmentation. DCNAS (Zhang et al., 2021) builds upon this,

constructing a densely connected search space and using path and channel level sampling to reduce

the computational cost. This enabled to directly search on the target task without using a proxy

task or dataset.

Several works aim for real-time applications by applying latency constraints (Shaw et al.,

2019; Chen et al., 2019; Lin et al., 2020). The latency of each architecture is often estimated and

incorporated into the loss function for a differentiable search. Other works apply multi-objective

NAS for efficient segmentation (Lu et al., 2022; Yu et al., 2024). Another approach is to extend the

application of zero-cost proxies developed for classification (Abdelfattah et al., 2021; Lee and Ham,

2024) to segmentation. SasWOT (Zhu et al., 2024) proposes to use EA and learn a zero-cost proxy

specifically for semantic segmentation. This zero-cost proxy is then used to evaluate architectures

at initialization, greatly reducing the computational cost of NAS.
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Figure 1: Overview of our iterative MCTS. At each iteration, the tree structure T ∗ is provided, and a

new supernet S is trained. With the trained supernet S∗, a new tree structure T is estimated

based on the performance (accuracy) of architectures on validation data using supernet.

These iterations are repeated until convergence.

3 Method

We propose an iterative MCTS algorithm where the tree structure is refined at each iteration using

accuracy estimates of the leaf nodes on a validation set. This progressive tuning of the tree structure

allows compensating for noisy and inaccurate estimation obtained from the supernet. Our iterative

algorithm is depicted in Fig. 1.

During the recognition model training, MCTS samples from the supernet, while estimating the

probabilities of each node, such that the architectures with higher estimated accuracy are generally

sampled more often. With the constructed MCTS, we estimate the accuracy of each architecture to

establish a comprehensive ranking. This ranking is then used to build a new search tree by simply

organizing the architectures based on their validation scores. Given the new tree structure, we can

repeat the first phase of training. This iterative procedure continues for a predefined number of

iterations. In the following subsections, we will explain each part of this algorithm in detail.

3.1 Initialization

In order to start the iterative procedure, we need to provide an initial tree structure, T𝑖𝑛𝑖𝑡 , and an

initial model for the supernet, S𝑖𝑛𝑖𝑡 . In our experiments, we initialize the supernet with single-path

uniform training: for each minibatch, we train the supernet by randomly sampling an architecture

𝑎 from the search space. With S𝑖𝑛𝑖𝑡 , we can compute the accuracy of each architecture on the

validation data. This allows us to rank the architectures and provides an initial structure for the

tree T𝑖𝑛𝑖𝑡 .

3.2 Training the Supernet by Sampling with MCTS

We define a supernet S as a recognition model that includes all operations and parameters required

to build any feasible architecture within our search space. We also use a tree structure T ∗ that
defines how the set of architectures is divided into smaller subgroups, going from entire search

space at root to leaf nodes representing individual architectures. Given a tree structure T ∗, each leaf
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node corresponds to an architecture 𝑎. Architecture 𝑎 is sampled by traversing T ∗ from the root

and making node selections among successors (children). A common method to balance exploration

and exploitation for node selection is to use UCT (Kocsis and Szepesvári, 2006). For each visited

node 𝑖 , two values are recorded: visit count 𝑛(𝑖) and the average reward of the node �̃�(𝑖). The UCT
value is then calculated as:

𝑈𝐶𝑇 (𝑖) = �̃�(𝑖) +𝐶

√︄
𝑙𝑜𝑔(𝑛𝑝 (𝑖))
𝑛(𝑖) (1)

and 𝑛𝑝 (𝑖) is the function representing the number of times 𝑖’s parent node was visited, and

𝐶 ∈ R+ is the constant that balances exploitation (the first term) and exploration (the second term).

As the node with the highest UCT score is generally selected among sibling nodes, we encourage

further exploration by applying Boltzmann sampling (Painter et al., 2024). Therefore, the probability

of a sampling node 𝑖 is calculated as:

𝑃 (𝑖) = 𝑒𝑥𝑝 (𝑈𝐶𝑇 (𝑖)/𝑇 )∑
𝑗 𝑒𝑥𝑝 (𝑈𝐶𝑇 ( 𝑗)/𝑇 )

(2)

where the summation is performed over all sibling nodes of 𝑖 . The temperature term𝑇 controls

the probability distribution, with 𝑇 → 0 corresponding to categorical distribution.

Using single-path approach (Guo et al., 2020b), the supernet S is trained on sampled architecture

𝑎 for one iteration. To avoid overfitting on training set, we use validation performance to calculate

the reward for each architecture. At each iteration, S is trained on one minibatch of training data

and then evaluated on one minibatch of validation data to yield performance 𝐴(𝑎). This value
is then backpropagated to update the rewards along the selected path in the tree. The reward is

calculated using a weighted moving average:

�̃�(𝑖) ←− 𝛽 · �̃�(𝑖) + (1 − 𝛽) · 𝐴(𝑎) (3)

where 𝛽 ∈ [0, 1] is the weighting factor. The process of sampling, training, evaluation, and

reward backpropagation is repeated for a specified number of epochs. Since a static tree is used,

the expansion and rollout phases of traditional MCTS are omitted. Once this phase is finished, the

trained supernet S∗ is passed to the next phase to update the tree structure. To select the final

architectures for evaluation, we use Equation 1 with 𝐶 = 0, since we do not need exploration in

this stage.

3.3 Updating the Tree Structure

Our goal is to leverage the trained supernet S∗ to construct an improved hierarchy that guides

exploration towards promising nodes. By placing superior nodes in preferred paths, fewer nodes

need to be explored, allowing the allocation of resources to these nodes and faster convergence

of search. To achieve this, we construct a binary tree that represents this hierarchical structure

based on the ranking of leaf nodes. Given a trained supernet S∗, we rank sampled architectures

based on their validation performance (accuracy). Since evaluating on the entire validation set is

computationally expensive, we approximate the performance by evaluating architectures on only

a few minibatches of validation data. With this ranking, a bottom-up approach then iteratively

merges the two nodes (architectures or existing clusters) with the lowest average ranks, and the

process is continued until a new tree, T ∗ is constructed.

3.4 Iterative MCTS

We treat the tree structure T as a heuristic, which provides a good starting point, but is updated

and reorganized at each iteration of MCTS as new information comes in. At each iteration of
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MCTS, with a good balance of exploration/exploitation, value estimates of the nodes are refined,

reflecting the algorithm’s learned understanding of the tree. Therefore, at each iteration, we update

T based on the newly acquired ranking. In section 4.1, we use the same ranking criteria for tree

initialization and analyze alternatives in section 4.1.1.

Algorithm 1 outlines our approach. To start iterative MCTS method, an initial tree structure

and supernet are provided to the algorithm (Section 3.1). The main loop is composed of a first

loop in which a branch of the tree is stochastically sampled based on node probabilities (Equation

2). This process selects an architecture 𝑎, which is then used for training the supernet S for one

minibatch. The probabilities of the tree 𝑃 are then updated based on the accuracy of the given

architecture on a validation minibatch. Finally, after several training iterations, the architectures

are ranked and used to update the tree structure, and the training of the supernet is started again

with the new tree structure.

In a static tree for MCTS, the UCT does allow for some exploration of initially misclassified

"bad" branches of the tree (by tuning hyperparameter 𝐶 in Equation 1). However, the hierarchy

does not have a chance to improve itself based on the information learned from this exploration; a

potentially good architecture can get permanently placed in a bad region. Manual tree design (Su

et al., 2021) or relying on potentially inaccurate supernet performance estimates to partition search

space (Wang et al., 2020a), also do not guarantee an optimized tree structure. We propose that with

well-balanced exploration and exploitation, good architectures can be identified and the tree can be

restructured iteratively to prioritize these architectures. To achieve this, we propose to re-rank

architectures and reorganize the search tree in each iteration of MCTS.

Algorithm 1: Simplified pseudo-code of our iterative MCTS.

𝑀 : number of MCTS iteration; 𝐾 : iteration of each MCTS; X𝑡 ,X𝑣 : minibatches of training

and validation data; S𝑖𝑛𝑖𝑡 : Initial supernet, T𝑖𝑛𝑖𝑡 : Initial tree structure.
𝑚 = 0, 𝑘 = 0

T ← T𝑖𝑛𝑖𝑡 , S ← S𝑖𝑛𝑖𝑡
while𝑚 ≤ 𝑀 do

𝑃 ← 𝑖𝑛𝑖𝑡 (T ) #initialize the tree probabilities with the new structure

while 𝑘 ≤ 𝐾 do
𝑖 ← 𝑖𝑟𝑜𝑜𝑡 #start from the root node

𝑝𝑎𝑡ℎ = [] #keep the entire path to backpropagate probabilities

while 𝑖 not 𝑙𝑒𝑎𝑓 do
𝑝𝑎𝑡ℎ.𝑎𝑑𝑑 (𝑖)
𝑎 = 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑃 (𝑖)) #sample based on the tree probabilities

𝑢𝑝𝑑𝑎𝑡𝑒 (𝑛(𝑎)) #update count for child node

𝑎 ← 𝑖∗
end
S .𝑡𝑟𝑎𝑖𝑛(X𝑡 , 𝑎) #train the supernet

𝐴𝑐𝑐 (𝑎) = S .𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (X𝑣, 𝑎) #estimate the accuracy of the architecture 𝑎

𝑃 ← 𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 (𝐴𝑐𝑐 (𝑎), 𝑝𝑎𝑡ℎ) #update the tree probabilities
end
T ← 𝑅𝑎𝑛𝑘 (𝐴𝑐𝑐) #rank the architectures based on accuracies and build the new tree

end
Output :Best architecture from T by sampling with 𝐶 = 0

4 Experiments
In this section, we first apply our iterative MCTS for NAS on two image classification search spaces:

Pooling search space (Roshtkhari et al., 2023) on CIFAR10 dataset and NAS-Bench-201 (Dong and
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Table 1: Comparison results on CIFAR-10 using pooling search space (Roshtkhari et al., 2023).

Accuracy

Method Best Average Search Time

Default (Resnet20) 90.52 ± 0.15 - -

DARTS (Liu et al., 2018) 89.23 ± 0.08 - 12

DARTS + GAEA (Li et al., 2020) 89.12 ± 0.10 - 12

Balanced Mixtures (Roshtkhari et al., 2023) 91.55 ± 0.12 - 6

Uniform Sampling 90.52 ± 0.15 90.40 ± 0.08 1.5

Boltzmann Sampling 90.88 ± 0.08 90.51 ± 0.12 3

MCTS-default 90.85 ± 0.12 90.57 ± 0.21 2

MCTS-prioritized (Su et al., 2021) 91.78 ± 0.11 91.42 ± 0.11 2

Iterative MCTS (ours) 91.83 ± 0.12 91.81 ± 0.02 ∼ 2

Best Architecture 92.02 ± 0.18 - -

Yang, 2020) on ImageNet-16-120 dataset, and perform ablation studies on these tasks. We then

show a promising application of our method to a semantic segmentation task in a trellis search

space inspired by Auto-DeepLab (Liu et al., 2019). In our experiments, to obtain a higher quality

ranking, we evaluate architectures on few minibatches of validation data. In ablation studies, we

show that this approach provides higher quality final architectures.

4.1 Image Classification
We performed experiments on two NAS benchmarks: the Pooling benchmark (Roshtkhari et al.,

2023) and NAS-Bench-201 (Dong and Yang, 2020). We compare our methods with non-hierarchical

and MCTS methods. Uniform sampling serves as a baseline for comparison. Boltzmann softmax

sampling (Cesa-Bianchi et al., 2017) is a simple method that offers a biased search by adjusting

uniform probability distribution, with a temperature hyperparameter controlling the balance of

exploration/exploitation (See Appendix A.2).

For comparison with MCTS methods, we consider MCTS-default (the manual design proposed

by Su et al. (2021)) and MCTS-prioritized (same manual design with their proposed additional

regularization). Additionally, for both benchmarks, we compare with the differentiable method

DARTS (Liu et al., 2018). For the Pooling benchmark, we also report results of DARTS+GAEA (Li

et al., 2020) and "Balanced Mixtures" (Roshtkhari et al., 2023), a method that learns non-hierarchical

search space partitioning with a specialized supernet per partition. For NAS-Bench-201, we compare

with various methods: GDAS (differentiable), ENAS (RL), RSPS (random search), and NASWOT

(zero-cost proxy).

The Pooling search space is a small yet challenging search space featuring Resnet-like (He et al.,

2015) architectures, with the goal of optimizing feature map sizes at each layer. Due to notable

low rank correlation between supernet estimates and ground truth, it is a suitable benchmark for

demonstrating the effectiveness of our approach. As presented in table 1, our method outperforms

its counterparts with similar or less search time. We also note that in this benchmark, several

methods achieve performance close to the upper bound, and therefore, significant net improvements

in accuracy is not possible. We report results on NAS-Bench-201 dataset for ImageNet-16-120 in

table 2. In this benchmark, our method outperforms other common NAS methods.

4.1.1 Ablation Studies.

Number of MCTS iterations. We analyze the optimal number of iterations for our method on

Pooling benchmark in figure 2 (left). For each additional iteration of MCTS, total training steps is
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Table 2: Comparison results on ImageNet-16-120 using NAS-Bench-201 (Dong and Yang, 2020). Results

for non-MCTS methods are taken from papers.

Accuracy

Method Best Average Relative Search Time

DARTS (Liu et al., 2018) - 16.4 3

ENAS (Pham et al., 2018) - 16.3 3.7

RSPS (Li and Talwalkar, 2020) - 31.1 2.1

GDAS (Dong and Yang, 2019) - 41.8 8

NASWOT (Mellor et al., 2021) - 38.3 -

Uniform Sampling 31.2 31.0 ± 0.2 3.8

Boltzmann Sampling 31.1 30.8 ± 0.3 4.5

MCTS-default 41.7 40.2 ± 0.4 4.1

MCTS-prioritized (Su et al., 2021) 41.7 41.4 ± 0.2 3.1

Iterative MCTS (ours) 42.2 41.9 ± 0.2 3.1

Best Architecture 47.3 - -

Figure 2: (left) Effect of the number of MCTS iterations on the quality of found architectures. Multiple

iterations of MCTS can find superior architectures compared to a single iteration, with

only a slight increase in training time. (right) Relative sampling frequency of the top-5

architectures. The x-axis corresponds to the number MCTS iterations used in our method.

For other methods, we use equivalent time during training. The first iteration corresponds

to the uniform sampling for warm-up or pretraining of various methods.

slightly increased to allow adequate sampling rate for nodes. Iterative MCTS is clearly superior to

non-iterative MCTS in terms of the found architecture, and there seems to be an optimal number

of iterations, beyond which the final result do not improve. The number of iterations and training

cost can be treated as a trade-off when the training budget is limited.

The effectiveness of iterative MCTS. To demonstrate that the iterative process helps in guiding

the search toward promising architectures, we calculated the sampling frequency of the top-5

architectures in the Pooling benchmark throughout the supernet training. In figure 2 (right),

we compare sampling frequency of several methods. The frequency is recorded and averaged

over 5 runs for each method. For fairness, we considered a fixed number of training iterations

for all methods. For Boltzmann and MCTS-default, where the search converges to suboptimal

configurations, the frequency unsurprisingly decreases. By increasingly sampling architectures

outside top-5, supernet is guided towards those architectures, leading to lower final architecture
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Table 3: (left) Comparison of ranking correlation between ground truth accuracy and supernet predic-

tion for top-10 architectures. (right) Comparison of final accuracy based on evaluation on 𝐵

minibatches of validation data and using moving average of accuracy (equation 3).

Method Kendall’s tau

Uniform Sampling 0.14

Boltzmann Sampling 0.11

MCTS-default 0.32

Iterative MCTS (ours) 0.41

Performance Metric Final Accuracy

Validation Accuracy (𝐵 = 1) 41.6

Validation Accuracy (𝐵 = 2) 42.1

Validation Accuracy (𝐵 = 3) 42.2

Moving Avg. Accuracy 40.5

Table 4: Comparison of searched architectures with various NAS methods for semantic segmentation

task on Cityscapes dataset. Search space consists of macro (network) level of Auto-DeepLab

(Liu et al., 2019). For consistency we report results from our own implementation.

method Best Average Time (GPU Days)

Uniform Sampling 53.11 50.42 ∼ 4

MCTS-prioritized (Su et al., 2021) 75.32 73.1 ∼ 3

Auto-DeepLab-S (Liu et al., 2019) 76.91 76.73 -

Iterative MCTS (ours) 77.11 77.07 ∼ 2.5

accuracy. Our method show gradual increase in sampling these architectures, demonstrating its

ability to improve sampling rate for good architectures.

Rank-preserving ability. While our method is able to concentrate training on promising archi-

tectures, we further analyze the ability of the supernet to distinguish and correctly rank these

architectures correctly. In other words, we would like to know if the trained supernet has high

enough quality to distinguish the top architectures. Calculating Kendall’s tau coefficient of top

architectures can indicate rank preservation (Zhang et al., 2024). In table 3 (left), we investigate

the rank correlation of the top-10 architectures in Pooling benchmark with ground truth ranking

by calculating Kendall’s tau coefficient. We note that compared Boltzmann and MCTS-default our

method achieves better rank correlation.

Ranking metric for tree reconstruction. At each iteration of MCTS, the performance of archi-

tectures need to be evaluated to calculate ranking. Evaluating on few minibatches of validation

data provides a balance of accuracy and computational cost. Alternatively (at𝑀 > 1) one can use

moving average from equation 3 which provides a smoother estimates and does not require further

validation. In table 3 (right) we compare various metrics for NAS-Bench-201.

4.2 Semantic Segmentation

To evaluate our approach for segmentation task, we perform our experiments on a search space

inspired by Auto-DeepLab (Liu et al., 2019). This search space is based on DeepLabV3+ (Chen et al.,

2018b), in which the encoder consists of a found architecture and the decoder is not altered. Auto-

DeepLab uses a bi-level search space (macro and micro) and gradient descent (DARTS) to optimize

both levels iteratively. In this work, we focus on the network skeleton (macro) portion of the search

space. This reduces the search space size from 10
19
to 2.9 × 104. For semantic segmentation, mean

Intersection Over Union (mIOU) is the standard performance metric; therefore we replace accuracy

𝐴(𝑎) in equation 3 with mIOU for this task. We report results of our implementations of several

methods in table 4 on Cityscapes (Cordts et al., 2016) dataset.
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5 Conclusion

In this paper, we present a novel MCTS approach for NAS. We developed an iterative method

that progressively refines the search space hierarchy based on the observations from the supernet.

Compared to previous applications of MCTS for NAS, the proposed approach does not use any

specific knowledge to refine the search, making it more general and flexible. Our proposed approach

iteratively updates the structure of the tree to favor high-accuracy architectures. We empirically

evaluated our method on two classification tasks (CIFAR-10 on Pooling benchmark, ImageNet-16-

120 on NAS-Bench-201) and a semantic segmentation on Cityscapes dataset.

Limitations. The proposed approach shows how to improve the performance of a supernet by

iteratively estimating the best sampling tree and the recognition model. However, the approach

assumes that the iterative refinement starts from a relatively good initialization of the supernet.

In our experiments, we use as initialization a supernet trained with uniform sampling which

performed adequately well. Nevertheless, if the initial recognition model ranking estimates are not

sufficiently correlated with the true architecture ranking, the self-refining approach may not lead

to improved results.
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A Implementation Details

A.1 Datasets and Hyperparameters

For all datasets in our experiments, we split training data 50/50 to use as training/validation. Unless

otherwise mentioned, our experiments were run 3 times to report average and standard deviations.

To tune hyperparameters, we performed either grid search or used similar hyperparameters when

comparing with other papers.

For all our experiments 𝛽 = 0.95. To train supernet on pooling search space (Javan et al.,

2023) for our experiments for classification task, we used SGD with learning rate 0.1 with cosine

annealing, weight decay 1𝑒 − 2 and batch size 256 and we train for 500 epochs. For experiments on

NAS-Bench-201 (Dong and Yang, 2020), we train for 50 epochs with SGD with learning rate 0.025

and cosine annealing. For image segmentation on Auto-DeepLab, we use same hyperparameters as

original paper, using SGD with initial learning rate 0.025 decayed by annealing and weight decay

0.0003. Furthermore, we utilize mixed-precision operations and FFCV (Leclerc et al., 2023) library

to accelerate training in our experiments.

For the benchmarks for classification, we directly reported the searched architecture perfor-

mance. For segmentation task, we retained all architectures in table 4 with same setting as Liu et al.

(2019).

A.2 Boltzmann Softmax Exploration (BSE)

Boltzmann sampling is one of the simplest reinforcement learning exploration strategies. The

probability of sampling architecture 𝑎 is defined as:

𝑃 (𝑎) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴(𝑎)/𝑇 ) (4)

where 𝐴(𝑎) is the reward (validation accuracy) and 𝑇 is the temperature, controlling explo-

ration/exploitation trade-off. In our experiments, we linearly decrease 𝑇 as 1→ 1/100.
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