
Iterative Monte Carlo Tree Search 1

for Neural Architecture Search 2

Anonymous1 3

1
Anonymous Institution 4

Abstract Recent work has shown Monte-Carlo Tree Search (MCTS) as an effective approach for 5

Neural Architecture Search (NAS) for producing competitive architectures. However, the 6

performance of the tree search is highly sensitive to the node visiting order. If the initial 7

nodes are discriminative, good configurations can be efficiently foundwithminimal sampling. 8

In contrast, non-discriminative initial nodes require exploring an exponential number of 9

nodes before finding good solutions. In this paper, we present an iterative for NAS approach 10

to jointly train with MCTS and learn the optimal order of the nodes of the tree. With our 11

approach,the order of node visits in the tree is iteratively refined based on the estimated 12

average accuracy of the nodes on the validation set. In this way, good architectures are 13

more likely to naturally emerge at the beginning of the tree, improving the search process. 14

Experiments on two classification benchmarks and a segmentation tasks show that the 15

proposed method can improve the performance of MCTS, compared to state-of-the-art 16

MCTS approaches for NAS. 17

1 Introduction 18

Monte-Carlo Tree Search (MCTS) is a powerful approach for searching in non-differentiable prob- 19

lems, particularly those involving discrete actions (Costa and Pedreira, 2023). However, sampling 20

efficiency is crucial for MCTS to minimize unnecessary exploration and achieve faster convergence 21

to good solutions (Świechowski et al., 2023). Poor sampling efficiency, especially with large search 22

spaces and hard-to-distinguish branches, can hinder its efficient application. MCTS is a compelling 23

approach for Neural Architecture Search (NAS) due to its inherent exploration-exploitation mecha- 24

nism and ability to handle imperfect evaluations. This is particularly important in one-shot NAS 25

methods, where the recognition model and architecture search are performed simultaneously. 26

One-shot methods based on weight-sharing (Pham et al., 2018), reduce the cost of evaluating 27

candidate architectures. Essentially, an over-parameterized model containing all possible architec- 28

tures, called "supernet", is trained. The supernet can then be used to estimate the performance of 29

an architecture by inheriting the weights. This eliminates the need to train individual architectures. 30

However, shared weights can introduce bias and interference during supernet training and intro- 31

duce rank inconsistency for the sub-nets compared to standalone training peformance. (Yu et al., 32

2019; Bender et al., 2018; Zhao et al., 2021a). Jointly performing MCTS and supernet training may 33

benefit the search, by gradually reducing the number of sampled architectures with shared weights. 34

Several works have explored MCTS for NAS, with various designs and search methods (Wang 35

et al., 2021; Zhao et al., 2021b, 2024; Su et al., 2021). Some have used MCTS only for the search 36

phase (Wang et al., 2021; Zhao et al., 2021b), while others have utilized it for both training and 37

search (Su et al., 2021) as in our case. Search tree design for NAS has is crucial for its efficiency: Su 38

et al. (2021) use a manual tree design, considering each layer of the CNN as a level in the tree, with 39

operation choices as branches. Wang et al. (2021) and Zhao et al. (2021b) propose partitioning the 40

search space based on the performance of a trained supernet. In general, applying MCTS for NAS 41

without additional constraints and regularization leads to poor performance (Su et al., 2021). The 42

manual tree design proposed by Su et al. (2021) requires additional regularization to compensate 43

Submitted to AutoML 2025 © 2025 the authors, released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

for low sampling rates of nodes. This regularization (soft independence assumption) undermines 44

the joint contribution of operations in layers by sharing reward information among nodes. 45

A promising solution is to improve branching quality by learning an optimized tree structure 46

from the data. As it is computationally prohibitive to sample all parts of the tree with high frequency, 47

an optimized tree should prioritize sampling regions with high ground truth performance more 48

frequently. A reasonable approach is clustering "good" and "bad" regions of the search space. 49

This can be achieved by a partitioning of the search space. Nevertheless, the effectiveness of the 50

pre-ordered tree relies on accurate rankings of architectures, which depend on the quality of the 51

sampling, generating a typical chicken-and-egg problem. Previous approaches (Wang et al., 2021; 52

Zhao et al., 2021b, 2024) tackle this problem by learning how to separate the search space while 53

performing the search. However, in those works, the recognition model is given, assuming it already 54

provides good estimations, which renders the separation of the search space static. Nonetheless, 55

when recognition model is trained while learning search space hierarchy, the problem becomes 56

much more complex and does not allow for static solutions. 57

In this work, we propose a simple approach in which the tree structure is reorganized as the 58

supernet training progresses. At each iteration, MCTS is used to guide supernet training, and the 59

performance estimated from this supernet is used to refine and reorganize the search tree. We 60

show that, while initial performance estimates may not be a reliable metric for constructing the 61

search tree, an iterative application of MCTS and tree reorganization can gradually guide the search 62

towards high-performing architectures by increasing their sampling rates. 63

The main contributions of our work are as follows: 64

• We present a new method of partitioning the the NAS search space into a search tree, based on 65

performance estimates obtained from the supernet. We show that by iterative application of 66

MCTS and tree reorganization, we can obtain competitive architectures without the prohibitive 67

cost or constraints of previous methods. 68

• We show that with a careful balance of exploration and exploitation, the number of iterations 69

needed is small and the overhead cost is negligible. 70

• We empirically validate our method for two computer vision tasks of image classification and 71

semantic segmentation on three datasets. We show that compared to other MCTS-NAS methods 72

that perform supernet training andMCTS jointly, our approach achieves competitive performance 73

with linear computational complexity. 74

2 Related Work 75

2.1 Monte-Carlo Tree Search for NAS 76

AlphaX (Wang et al., 2019) was a significant early work that utilized MCTS with Upper Confidence 77

applied to Trees (UCT) (Auer et al., 2002) for NAS. They proposed the use of MCTS to balance 78

exploration and exploitation and increase the sample efficiency for NAS. They train a predictive 79

model (Meta-DNN) to estimate the accuracy of architectures based on their encoding and guide 80

MCTS. However, training a high quality Meta-DNN, while reducing architecture evaluation cost, 81

requires sufficient data (architecture-prediction pairs) which adds computational overhead. Among 82

methods that factorize the search space manually, TNAS (Qian et al., 2022) proposed to improve 83

exploration by partitioning it into two tree structures (operation and architecture). They utilized a 84

bi-level breadth-first search algorithm to navigate the search space more efficiently. However, the 85

proposed operation tree is unbalanced (Le et al., 2024) and the breadth-first search process requires 86

additional training epochs as the network deepens. 87

Su et al. (2021) apply MCTS on a macro search space, and construct the tree manually by 88

considering each layer of the CNN as a level of the tree and branching on operations. To compensate 89

2

for low sampling rates of leaf nodes, they propose a regularization method (node communication). 90

However, the regularization assumes soft node independence, which further couples operations that 91

share weights by also sharing reward information among them. Other works aim to learn the tree 92

structure from data. Wang et al. (2021) uses performance of architectures, with weights inherited 93

from a pre-trained supernet, to partition search space into "good" and "bad" regions. Zhao et al. 94

(2021b) aimed to find architectures close to he Pareto frontier for multi-objective NAS. They used 95

hyper-volume to iteratively partition the search space and use MCTS to account for partitioning 96

errors. However, both these methods decouple supernet training from MCTS by relying on a fixed 97

pre-trained supernet or benchmarks. 98

2.2 NAS for Semantic Segmentation 99

Themain focus of NAS for computer vision has been on image classification task with CNNs, leaving 100

other tasks (e.g. dense prediction) relatively underdeveloped (Mohan et al., 2023). NAS for semantic 101

segmentation is more challenging: Compared to classification, it requires higher computational 102

cost and memory since the input images and feature maps generally have higher resolution, and 103

the architectures are deeper and more complex to enable per pixel prediction. In the case of medical 104

images, data can be 3D, while some applications require real-time inference. Therefore, a good 105

trade-off between performance and efficiency is essential. Furthermore, fewer benchmarks (Mehta 106

et al., 2022; Duan et al., 2021) are available for segmentation task (Chitty-Venkata et al., 2023), 107

adding to the computational cost of NAS. Contrary to classification, the architectures require a 108

decoder or task-specific head, which can be searched separately (Chen et al., 2018a; Ghiasi et al., 109

2019; Xu et al., 2019) or jointly (Guo et al., 2020a; Yao et al., 2020) with the encoder part. To improve 110

efficiency, many works use differentiable methods (Liu et al., 2019; Guo et al., 2020a; Saikia et al., 111

2019; Xu et al., 2019), while others use reinforcement learning or evolutionary algorithm (Ghiasi 112

et al., 2019; Du et al., 2020; Wang et al., 2020b; Bender et al., 2020). 113

Auto-DeepLab (Liu et al., 2019), one of the most prominent NAS works for segmentation, 114

proposed to use a bi-level (hierarchical) search space (macro:resolution and channels ; micro: cell 115

or blocks) and apply DARTS to search iteratively on them. They showed significant reduction in 116

computational cost compared to DPC (Chen et al., 2018a), making NAS feasible for segmentation. 117

DCNAS (Zhang et al., 2021) builds upon this, constructing a densely connected search space and 118

using path and channel level sampling to reduce the computational cost. This enables to directly 119

search on the target task without using a proxy task or dataset. Several other works aim for 120

real-time applications by applying latency constraints (Shaw et al., 2019; Chen et al., 2019; Lin et al., 121

2020).The latency of each architecture is often estimated and incorporated into the loss function for 122

a differentiable search. SasWOT (Zhu et al., 2024) proposes to use EA and learn a zero-cost proxy 123

specifically for semantic segmentation. This zero-cost proxy is then used to evaluate architectures 124

at initialization, greatly reducing the computational cost of NAS. 125

3 Method 126

We propose an iterative MCTS algorithm, in which at each iteration the tree structure is refined 127

based on accuracy estimates of the leaf nodes on a validation set. This progressive tuning of the 128

tree structure allows us to account for noisy and inaccurate estimation obtained from the supernet. 129

An illustration of our iterative algorithm is presented in Fig.1. 130

The MCTS is used to sample from the supernet during the recognition model training, while 131

estimating the probabilities of each node, such that the architectures with higher estimated accuracy 132

will generally be sampled more often. With the constructed MCTS, we estimate the accuracy of 133

each architecture, so that all architectures are ranked. This ranking is then used to build a new 134

search tree by simply separating the architectures based on their validation scores. Then, given the 135

new tree structure, we can repeat the first phase of training. This iterative procedure is continued 136

3

Supernet training with a
given tree structure

Estimation of the tree structure
based on the trained Supernet

Acc:91%

Acc:89%

Acc:86%

Acc:81%

Architectures
Ranking

Figure 1: Overview of our iterative MCTS. At each iteration, the tree structure T ∗ is provided, and a

new supernet S is trained. With the trained supernet S∗, a new tree structure is estimated T
based on the performance (accuracy) derived from supernet for architectures evaluated on

validation data. These iterations are repeated until convergence.

for a predefined number of iterations. In the following subsections, we explain each part of the 137

algorithm. 138

3.1 Initialization 139

In order to start the iterative procedure, we need to provide an initial structure for the tree T𝑖𝑛𝑖𝑡 140

and an initial model for the supernet S𝑖𝑛𝑖𝑡 . In our experiments, we initialize the supernet with 141

uniform training. That is, for each mini-batch, we train the supernet by randomly sampling an 142

architecture 𝑎 from the search space. With this initial supernet, we can compute the accuracy of 143

each architecture on the validation data. This allows us to rank the architectures and provides an 144

initial structure for the tree T𝑖𝑛𝑖𝑡 . 145

3.2 Training the Supernet by Sampling with MCTS 146

We define a supernet S as a recognition model that includes all operations and parameters required 147

to build any feasible architecture in our search space. We also use a tree structure T that defines 148

how the set of architectures is divided into smaller subgroups, down to single architectures at the 149

leaves of the tree. Given a tree structure T ∗, each leaf node corresponds to an architecture 𝑎. We 150

can sample 𝑎 by traversing T ∗ from the root node and making node selections among successors 151

(children). A common way to balance exploration and exploitation for node selection is to use UCT 152

(Upper Confidence Bound applied to Trees (Kocsis and Szepesvári, 2006)). For each visited node 𝑖 , 153

we record two values: the number of visits 𝑛(𝑖) and the average reward of the node 𝐴̃(𝑖). UCT is 154

then calculated as: 155

𝑈𝐶𝑇 (𝑖) = 𝐴̃(𝑖)
𝑛(𝑖) +𝐶

√︄
𝑙𝑜𝑔(𝑛𝑝 (𝑖))
𝑛(𝑖) (1)

where 𝑛𝑝 (𝑖) is the function showing the number of times 𝑖’s parent node was visited and 156

𝐶 ∈ R+ is the constant that balances exploitation (first term) and exploration (second term). As the 157

4

node with the highest UCT score is generally selected among sibling nodes, we encourage further 158

exploration by applying Boltzmann sampling (Painter et al., 2024). Therefore, the probability of a 159

sampling node 𝑖 is calculated as: 160

𝑃 (𝑖) = 𝑒𝑥𝑝 (𝑈𝐶𝑇 (𝑖)/𝑇)∑
𝑗 𝑒𝑥𝑝 (𝑈𝐶𝑇 (𝑗)/𝑇)

(2)

where the summation is performed over all sibling nodes of 𝑖 . The temperature term𝑇 controls 161

the probability distribution, with 𝑇 → 0 corresponding to categorical distribution. 162

Using single-path approach (Guo et al., 2020b), supernet S is trained on architecture 𝑎 for 163

one iteration. To avoid the issue of overfitting on training set, we use validation performance to 164

calculate the reward for each architecture. At each iteration, S is trained on one minibatch of 165

training data and then evaluated on one minibatch of validation data to yield performance 𝐴(𝑎). It 166

is then backpropagated to update the rewards along the selected path. We calculate the reward 167

based on a weighted moving average as: 168

𝐴̃(𝑖) ←− 𝛽 · 𝐴̃(𝑖) + (1 − 𝛽) · 𝐴(𝑎) (3)

where 𝛽 ∈ [0, 1] is the weighting factor. The process of sampling, training, evaluation, and 169

backpropagation is repeated for a number of epochs. To select final architectures for evaluation, we 170

use equation 1 with𝐶 = 0. Since we use a static tree, the expansion and rollout phases of traditional 171

MCTS are skipped. Once this phase is finished, the trained supernet S∗ is passed to the next phase 172

to update the tree structure. 173

3.3 Updating the Tree Structure 174

Our goal is to leverage the trained supernet S∗ to construct an improved hierarchy that guides the 175

exploration towards promising nodes. By placing superior nodes in preferred paths, the number of 176

nodes that need to be explored is reduced, allowing the allocation of resources to these nodes and 177

faster convergence. To achieve this goal, we construct a binary tree that represents the hierarchical 178

structure based on the ranking of leaf nodes. Given a trained supernet S∗, we use validation 179

performance (accuracy) to rank the architectures. As evaluating on the entire validation data is 180

expensive, we approximate this by evaluating architectures on a few minibatches of validation data. 181

With this ranking, a bottom-up approach then merges the two nodes with the lowest ranks, and 182

the process is continued until a new T ∗ is constructed. 183

3.4 Iterative MCTS 184

We treat the tree structure T as a heuristic, which provides a good starting point, but is updated 185

and reorganized at each iteration of MCTS with new information. At each iteration of MCTS, with 186

a good balance of exploration/exploitation, value estimates of the nodes are refined, reflecting the 187

algorithm’s learned understanding of the tree. Therefore, at each iteration, we update T based on 188

the newly acquired ranking. In section 4.1.1, we use the same ranking criteria for tree initialization 189

and analyze alternatives in section 4. The complete algorithm of our NAS approach is presented 190

in Algorithm 1. To begin our method, an initial tree structure and supernet are provided to the 191

algorithm. The main loop is composed of a first, loop in which a branch of the tree is stochastically 192

sampled based on the probabilities of each node (equation 2). This selects an architecture 𝑎 that is 193

used for a minibatch of training the supernet S . The probabilities of the tree 𝑃 are updated based 194

on the accuracy of the given architecture on a validation minibatch. Finally, after several training 195

iterations, the architectures are ranked and used to update the tree structure, and the training of 196

the supernet is started again with the new tree structure. 197

In a static tree, while using MCTS with UCT allows for some exploration of misclassified 198

"bad" branches of the tree (by tuning hyperparameter 𝐶 in equation 1), the hierarchy does not 199

5

have a chance to improve itself based on this exploration; a potentially good architecture can be 200

permanently placed in a bad region. Manual tree design Su et al. (2021) or relying on potentially 201

inaccurate supernet performance estimates to partition search spaceWang et al. (2020a) do not 202

guarantee an optimized tree. We propose that with a good balance of exploration and exploitation, 203

good architectures can be identified and the tree can be restructured iteratively to prioritize these 204

architectures. To achieve this, we propose to re-rank architectures and reorganize the search tree 205

in each iteration of MCTS. 206

Algorithm 1: Simplified pseudo-code of our iterative MCTS.

𝑀 : number of MCTS iteration; 𝐾 : iteration of each MCTS; X𝑡 ,X𝑣 : mini-batches of training

and validation data; S𝑖𝑛𝑖𝑡 : Initial supernet, T𝑖𝑛𝑖𝑡 : Initial tree structure.
𝑚 = 0, 𝑘 = 0

T ← T𝑖𝑛𝑖𝑡 , S ← S𝑖𝑛𝑖𝑡
while𝑚 ≤ 𝑀 do

𝑃 ← 𝑖𝑛𝑖𝑡 (T) #initialize the tree probabilities with the new structure

while 𝑘 ≤ 𝐾 do
𝑖 ← 𝑖𝑟𝑜𝑜𝑡 #start from the root node

𝑝𝑎𝑡ℎ = [] #keep the entire path to backpropagate probabilities

while 𝑖 not 𝑙𝑒𝑎𝑓 do
𝑝𝑎𝑡ℎ.𝑎𝑑𝑑 (𝑖)
𝑎 = 𝑠𝑎𝑚𝑝𝑙𝑒 (𝑃 (𝑖)) #sample based on the tree probabilities

𝑢𝑝𝑑𝑎𝑡𝑒 (𝑛(𝑎)) #update count for child node

𝑎 ← 𝑖∗
end
S .𝑡𝑟𝑎𝑖𝑛(X𝑡 , 𝑎) #train the supernet

𝐴𝑐𝑐 (𝑎) = S .𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (X𝑣, 𝑎) #estimate the accuracy of the architecture 𝑎

𝑃 ← 𝑏𝑎𝑐𝑘𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 (𝐴𝑐𝑐 (𝑎), 𝑝𝑎𝑡ℎ) #update the tree probabilities
end
T ← 𝑅𝑎𝑛𝑘 (𝐴𝑐𝑐) #rank the architectures based on accuracies and build the new tree

end
Output :Best architecture from T by sampling with 𝐶 = 0

4 Experiments 207

In this section, we first apply iterative MCTS to search on two image classification search spaces: 208

the Pooling search space (Roshtkhari et al., 2023) on CIFAR10 and NAS-Bench-201 (Dong and 209

Yang, 2020) on ImageNet-16-120, and perform ablation studies on these tasks. We then show a 210

promising application of our method to semantic segmentation task in a trellis search space inspired 211

by Auto-DeepLab (Liu et al., 2019). In our experiments, to obtain a higher quality ranking, we 212

evaluate architectures on few minibatches of validation data. In ablation studies, we show that this 213

approach provides higher quality final architectures. 214

4.1 Image Classification 215

We performed experiments on two NAS benchmarks: the Pooling benchmark (Roshtkhari et al., 216

2023) and NAS-Bench-201 (Dong and Yang, 2020). We compare our methods with non-hierarchical 217

and MCTS methods. Uniform sampling,can be considered as a baseline for comparison. Boltzmann 218

softmax sampling Cesa-Bianchi et al. (2017) is a simple method that offers a biased search by 219

adjusting uniform probability distribution, with a temperature hyperparameter controlling the 220

balance of exploration/exploitation. For comparison with MCTS methods we consider MCTS- 221

default (the manual design proposed by Su et al. (2021)) and MCTS-prioritized (same manual design 222

6

Table 1: Comparison results on CIFAR-10 using pooling search space (Roshtkhari et al., 2023).

Accuracy

Method Best Average Search Time

Default (Resnet20) 90.52 ± 0.15 - -

DARTS (Liu et al., 2018) 89.23 ± 0.08 - 12

DARTS + GAEA (Li et al., 2020) 89.12 ± 0.10 - 12

Balanced Mixtures (Roshtkhari et al., 2023) 91.55 ± 0.12 - 6

Uniform Sampling 90.52 ± 0.15 90.40 ± 0.08 1.5

Boltzmann Sampling 90.88 ± 0.08 90.51 ± 0.12 3

MCTS-default 90.85 ± 0.12 90.57 ± 0.21 2

MCTS-prioritized (Su et al., 2021) 91.78 ± 0.11 91.42 ± 0.11 2

Iterative MCTS (ours) 91.83 ± 0.12 91.81 ± 0.02 ∼ 2

Best Architecture 92.02 ± 0.18 - -

Table 2: Comparison results on ImageNet-16-120 using NAS-Bench-201 (Dong and Yang, 2020). Results

for non-MCTS methods are taken from papers.

Accuracy

Method Best Average Relative Search Time

DARTS (Liu et al., 2018) - 16.43 3

ENAS (Pham et al., 2018) - 16.32 3.7

RSPS (Li and Talwalkar, 2020) - 31.14 2.1

GDAS (Dong and Yang, 2019) - 41.84 8

NASWOT (Mellor et al., 2021) - 38.33 -

Uniform Sampling 31.2 31.0 ± 0.2 3.8

Boltzmann Sampling 31.1 30.8 ± 0.3 4.5

MCTS-default 41.7 40.21 ± 0.4 4.1

MCTS-prioritized (Su et al., 2021) 41.7 41.4 ± 0.2 3.1

Iterative MCTS (ours) 42.2 41.9 ± 0.2 3.1

Best Architecture 47.3 - -

with their posposed additional regularization) Additionally, for both benchmarks, we compare 223

with the differentiable method DARTS (Liu et al., 2018). For the Pooling benchmark, we also 224

report results of DARTS+GAEA (Li et al., 2020) and "Balanced Mixtures" (Roshtkhari et al., 2023), a 225

method that learns non-hierarchical search space partitioning. For NAS-Bench-201, we compare 226

with various methods: GDAS (differentiable), ENAS (RL), RSPS (random search), and NASWOT 227

(zero-cost proxy). 228

The Pooling benchmark is a small yet challenging search space of Resnet-like (He et al., 2015) 229

architectures, with the goal of optimizing featuremap sizes at each layer. Due to low rank correlation 230

between supernet estimates and ground truth, it is a suitable benchmark for demonstrating the 231

effectiveness of our approach. As presented in table 1, our method outperforms its counterparts 232

with similar or less search time. We also note that in this benchmark, several methods achieve 233

performance close to the upper bound, and therefore, net improvements in accuracy are very 234

challenging. We report results on NAS-Bench-201 dataset for ImageNet-16-120 in table 2. In this 235

benchmark, our method outperforms other common NAS methods. 236

7

Figure 2: (left) Effect of the number of MCTS iterations on the quality of found architectures. Multiple

iterations of MCTS can find superior architectures compared to a single iteration, with

only a slight increase in training time. (right) Relative sampling frequency of the top-5

architectures. The x-axis corresponds to the number MCTS iterations used in our method.

For other methods, we use equivalent time during training. The first iteration corresponds

to the uniform sampling for warm-up or pretraining of various methods.

4.1.1 Ablation Studies. 237

Number of MCTS iterations. We analyze the optimal number of iterations for our method for 238

Pooling benchmark in figure 2 (left). For each additional iteration of MCTS, total supernet training 239

steps is slightly increased to allow adequate sampling rates for nodes. Iterative MCTS is clearly 240

superior to non-iterative MCTS in terms of the found architecture, and there seems to be an optimal 241

number of iterations, beyond which the final result do not improve. The number of iterations and 242

training cost can be treated as a trade-off when the training budget is limited. 243

The effectiveness of iterative MCTS. To demonstrate that the iterative process helps in guiding 244

the search toward promising architectures, we calculated the sampling frequency of the top-5 245

architectures in the Pooling benchmark throughout the supernet training. In figure 2 (right), we 246

compare sampling frequency with those of several other methods. The frequency is recorded and 247

averaged over 5 runs for each method. For fairness, we considered a fixed number of training 248

iterations for all methods. For Boltzmann and MCTS-default, where the search converges to 249

suboptimal configurations, the frequency unsurprisingly decreases. By increasingly sampling other 250

architectures, supernet is guided towards those architectures, leading to lower final architecture 251

accuracy. Our method show gradual increase in sampling these architectures, demonstrating its 252

ability to improve sampling rate for good architectures. 253

Rank-preserving ability. While our method is able to concentrate training on promising archi- 254

tectures, we further analyze the ability of the supernet to distinguish and correctly rank these 255

architectures correctly. In other words, we would like to know if the trained supernet has high 256

enough quality to distinguish top architectures. In table 3 (left) we investigate the rank correlation 257

of the top-10 architectures in Pooling benchmark with ground truth ranking by calculating Kendall’s 258

tau coefficient. We note that compared Boltzmann and MCTS-default our method achieves better 259

rank correlation. 260

Ranking metric for tree reconstruction. At each iteration of MCTS, the performance of archi- 261

tectures need to be evaluated to calculate ranking. Evaluating on few minibatches of validation 262

data provides a balance of accuracy and computational cost. Alternatively (at𝑀 > 1) one can use 263

moving average from equation 3 which provides a smoother estimates and is require not further 264

validation. In table 3 (right) we compare various metrics for NAS-Bench-201. 265

8

Table 3: (left) Comparison of ranking correlation between ground truth accuracy and supernet pre-

diction for top-10 architectures. (right) Comparison of ranking based on evaluation on 𝐵

minibatches of validation data and using moving average of accuracy (equation 3).

Method Kendall’s tau

Uniform Sampling 0.14

Boltzmann Sampling 0.11

MCTS-default 0.32

Iterative MCTS (ours) 0.41

Performance Metric Final Accuracy

Validation Accuracy (B=1) 41.6

Validation Accuracy (B=2) 42.1

Validation Accuracy (B=3) 42.2

Moving Avg. Accuracy 40.5

Table 4: Comparison of searched architectures with various NAS methods for semantic segmentation

task on Cityscapes dataset. Search space consists of Macro (network) level of Auto-DeepLab

(Liu et al., 2019).

method Best Average Time (GPU Days)

Uniform Sampling 53.11 50.42 ∼ 4

MCTS-prioritized (Su et al., 2021) 75.32 73.1 ∼ 3

AutoDeepLab-S (Liu et al., 2019) 76.91 76.73 -

Iterative MCTS (ours) 77.11 77.07 ∼ 2.5

4.2 Semantic Segmentation 266

To evaluate our approach for segmentation task, we perform our experiments on a search space 267

inspired by Auto-DeepLab (Liu et al., 2019). This search space is based on DeepLabV3+ (Chen 268

et al., 2018b), in which the encoder consists of a found architecture and the decoder is not altered. 269

AutoDeepLab uses a two-level search space and gradient descent (DARTS) iteratively to optimize 270

both. Here, we focus on the network skeleton (macro) portion of the search space. This reduces the 271

search space size from 10
19
to 2.9 × 104. For semantic segmentation, mean Intersection Over Union 272

(mIOU) is the standard performance metric; therefore we replace accuracy 𝐴(𝑎) in equation 3 with 273

mIOU for this task. We report results of our implementations in table 4 on Cityscapes (Cordts et al., 274

2016) dataset. In table 4, we report the results of our own implementation for several methods. 275

5 Conclusion 276

In this paper, we present a novel MCTS approach for NAS. We developed an iterative method 277

that progressively refines the search space hierarchy based on the observations from the supernet. 278

Compared to previous applications of MCTS for NAS, the proposed approach does not use any 279

specific knowledge to refine the search, making it more general and flexible. Our proposed approach 280

iteratively updates the structure of the tree to favor high-accuracy architectures. We empirically 281

evaluated our method on two classification tasks (CIFAR-10 on Pooling benchmark, ImageNet-16- 282

120 on NAS-Bench-201) and a semantic segmentation on Cityscapes dataset. 283

Limitations. The proposed approach shows how to improve the performance of a supernet by 284

iteratively estimating the best sampling tree and the recognition model. However, the approach 285

assumes that the iterative refinement starts from a relatively good initialization of the supernet. 286

In our experiments, we use as initialization a supernet trained with uniform sampling which 287

performed adequately well. Nevertheless, if the initial recognition model ranking estimates are 288

not sufficiently correlated with the true architecture ranking, the self-refining approach might not 289

work. 290

9

References 291

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit 292

problem. Machine learning, 47:235–256. 293

Bender, G., Kindermans, P.-J., Zoph, B., Vasudevan, V., and Le, Q. (2018). Understanding and 294

simplifying one-shot architecture search. In International conference on machine learning, pages 295

550–559. PMLR. 296

Bender, G., Liu, H., Chen, B., Chu, G., Cheng, S., Kindermans, P.-J., and Le, Q. V. (2020). Can weight 297

sharing outperform random architecture search? an investigation with tunas. In Proceedings of 298

the IEEE/CVF conference on computer vision and pattern recognition, pages 14323–14332. 299

Cesa-Bianchi, N., Gentile, C., Lugosi, G., and Neu, G. (2017). Boltzmann exploration done right. 300

Advances in neural information processing systems, 30. 301

Chen, L.-C., Collins, M., Zhu, Y., Papandreou, G., Zoph, B., Schroff, F., Adam, H., and Shlens, J. 302

(2018a). Searching for efficient multi-scale architectures for dense image prediction. Advances in 303

neural information processing systems, 31. 304

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. (2018b). Encoder-decoder with 305

atrous separable convolution for semantic image segmentation. In Proceedings of the European 306

conference on computer vision (ECCV), pages 801–818. 307

Chen, W., Gong, X., Liu, X., Zhang, Q., Li, Y., and Wang, Z. (2019). Fasterseg: Searching for faster 308

real-time semantic segmentation. arXiv preprint arXiv:1912.10917. 309

Chitty-Venkata, K. T., Emani, M., Vishwanath, V., and Somani, A. K. (2023). Neural architecture 310

search benchmarks: Insights and survey. IEEE Access, 11:25217–25236. 311

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., and 312

Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. In Proceedings 313

of the IEEE conference on computer vision and pattern recognition, pages 3213–3223. 314

Costa, V. G. and Pedreira, C. E. (2023). Recent advances in decision trees: An updated survey. 315

Artificial Intelligence Review, 56(5):4765–4800. 316

Dong, X. and Yang, Y. (2019). Searching for a robust neural architecture in four gpu hours. In 317

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 1761– 318

1770. 319

Dong, X. and Yang, Y. (2020). Nas-bench-201: Extending the scope of reproducible neural architec- 320

ture search. arXiv preprint arXiv:2001.00326. 321

Du, X., Lin, T.-Y., Jin, P., Ghiasi, G., Tan, M., Cui, Y., Le, Q. V., and Song, X. (2020). Spinenet: 322

Learning scale-permuted backbone for recognition and localization. In Proceedings of the IEEE/CVF 323

conference on computer vision and pattern recognition, pages 11592–11601. 324

Duan, Y., Chen, X., Xu, H., Chen, Z., Liang, X., Zhang, T., and Li, Z. (2021). Transnas-bench- 325

101: Improving transferability and generalizability of cross-task neural architecture search. 326

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 327

5251–5260. 328

Ghiasi, G., Lin, T.-Y., and Le, Q. V. (2019). Nas-fpn: Learning scalable feature pyramid architecture 329

for object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern 330

recognition, pages 7036–7045. 331

10

Guo, J., Han, K., Wang, Y., Zhang, C., Yang, Z., Wu, H., Chen, X., and Xu, C. (2020a). Hit-detector: 332

Hierarchical trinity architecture search for object detection. In Proceedings of the IEEE/CVF 333

conference on computer vision and pattern recognition, pages 11405–11414. 334

Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., and Sun, J. (2020b). Single path one-shot 335

neural architecture search with uniform sampling. In Computer Vision–ECCV 2020: 16th European 336

Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVI 16, pages 544–560. Springer. 337

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition. corr 338

abs/1512.03385 (2015). 339

Javan, M., Toews, M., and Pedersoli, M. (2023). Balanced mixture of supernets for learning the cnn 340

pooling architecture. arXiv preprint arXiv:2306.11982. 341

Kocsis, L. and Szepesvári, C. (2006). Bandit based monte-carlo planning. In European conference on 342

machine learning, pages 282–293. Springer. 343

Le, N. M., Vo, A., and Luong, N. H. (2024). Zero-cost proxy-based hierarchical initialization for 344

evolutionary neural architecture search. In 2024 IEEE Congress on Evolutionary Computation 345

(CEC), pages 1–8. IEEE. 346

Leclerc, G., Ilyas, A., Engstrom, L., Park, S. M., Salman, H., and Madry, A. (2023). FFCV: Accelerating 347

training by removing data bottlenecks. In Computer Vision and Pattern Recognition (CVPR). 348

https://github.com/libffcv/ffcv/. commit xxxxxxx. 349

Li, L., Khodak, M., Balcan, M.-F., and Talwalkar, A. (2020). Geometry-aware gradient algorithms for 350

neural architecture search. arXiv preprint arXiv:2004.07802. 351

Li, L. and Talwalkar, A. (2020). Random search and reproducibility for neural architecture search. 352

In Uncertainty in artificial intelligence, pages 367–377. PMLR. 353

Lin, P., Sun, P., Cheng, G., Xie, S., Li, X., and Shi, J. (2020). Graph-guided architecture search for 354

real-time semantic segmentation. In Proceedings of the IEEE/CVF conference on computer vision 355

and pattern recognition, pages 4203–4212. 356

Liu, C., Chen, L.-C., Schroff, F., Adam, H., Hua, W., Yuille, A. L., and Fei-Fei, L. (2019). Auto-deeplab: 357

Hierarchical neural architecture search for semantic image segmentation. In Proceedings of the 358

IEEE/CVF conference on computer vision and pattern recognition, pages 82–92. 359

Liu, H., Simonyan, K., and Yang, Y. (2018). Darts: Differentiable architecture search. arXiv preprint 360

arXiv:1806.09055. 361

Mehta, Y., White, C., Zela, A., Krishnakumar, A., Zabergja, G., Moradian, S., Safari, M., Yu, K., and 362

Hutter, F. (2022). Nas-bench-suite: Nas evaluation is (now) surprisingly easy. arXiv preprint 363

arXiv:2201.13396. 364

Mellor, J., Turner, J., Storkey, A., and Crowley, E. J. (2021). Neural architecture search without 365

training. In International conference on machine learning, pages 7588–7598. PMLR. 366

Mohan, R., Elsken, T., Zela, A., Metzen, J. H., Staffler, B., Brox, T., Valada, A., and Hutter, F. (2023). 367

Neural architecture search for dense prediction tasks in computer vision. International Journal 368

of Computer Vision, 131(7):1784–1807. 369

Painter, M., Baioumy, M., Hawes, N., and Lacerda, B. (2024). Monte carlo tree search with boltzmann 370

exploration. Advances in Neural Information Processing Systems, 36. 371

11

https://github.com/libffcv/ffcv/

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. (2018). Efficient neural architecture search via 372

parameters sharing. In International conference on machine learning, pages 4095–4104. PMLR. 373

Qian, G., Zhang, X., Li, G., Zhao, C., Chen, Y., Zhang, X., Ghanem, B., and Sun, J. (2022). When nas 374

meets trees: An efficient algorithm for neural architecture search. In Proceedings of the IEEE/CVF 375

Conference on Computer Vision and Pattern Recognition, pages 2782–2787. 376

Roshtkhari, M. J., Toews, M., and Pedersoli, M. (2023). Balanced mixture of supernets for learning 377

the cnn pooling architecture. In International Conference on Automated Machine Learning, pages 378

8–1. PMLR. 379

Saikia, T., Marrakchi, Y., Zela, A., Hutter, F., and Brox, T. (2019). Autodispnet: Improving disparity 380

estimation with automl. In Proceedings of the ieee/cvf international conference on computer vision, 381

pages 1812–1823. 382

Shaw, A., Hunter, D., Landola, F., and Sidhu, S. (2019). Squeezenas: Fast neural architecture search 383

for faster semantic segmentation. In Proceedings of the IEEE/CVF international conference on 384

computer vision workshops, pages 0–0. 385

Su, X., Huang, T., Li, Y., You, S., Wang, F., Qian, C., Zhang, C., and Xu, C. (2021). Prioritized 386

architecture sampling with monto-carlo tree search. In Proceedings of the IEEE/CVF Conference 387

on Computer Vision and Pattern Recognition, pages 10968–10977. 388

Świechowski, M., Godlewski, K., Sawicki, B., and Mańdziuk, J. (2023). Monte carlo tree search: A 389

review of recent modifications and applications. Artificial Intelligence Review, 56(3):2497–2562. 390

Wang, L., Fonseca, R., and Tian, Y. (2020a). Learning search space partition for black-box opti- 391

mization using monte carlo tree search. Advances in Neural Information Processing Systems, 392

33:19511–19522. 393

Wang, L., Xie, S., Li, T., Fonseca, R., and Tian, Y. (2021). Sample-efficient neural architecture search 394

by learning actions for monte carlo tree search. IEEE Transactions on Pattern Analysis and Machine 395

Intelligence, 44(9):5503–5515. 396

Wang, L., Zhao, Y., Jinnai, Y., Tian, Y., and Fonseca, R. (2019). Alphax: exploring neural architectures 397

with deep neural networks and monte carlo tree search. arXiv preprint arXiv:1903.11059. 398

Wang, N., Gao, Y., Chen, H., Wang, P., Tian, Z., Shen, C., and Zhang, Y. (2020b). Nas-fcos: Fast 399

neural architecture search for object detection. In proceedings of the IEEE/CVF conference on 400

computer vision and pattern recognition, pages 11943–11951. 401

Xu, H., Yao, L., Zhang, W., Liang, X., and Li, Z. (2019). Auto-fpn: Automatic network architecture 402

adaptation for object detection beyond classification. In Proceedings of the IEEE/CVF international 403

conference on computer vision, pages 6649–6658. 404

Yao, L., Xu, H., Zhang, W., Liang, X., and Li, Z. (2020). Sm-nas: Structural-to-modular neural 405

architecture search for object detection. In Proceedings of the AAAI conference on artificial 406

intelligence, volume 34, pages 12661–12668. 407

Yu, K., Sciuto, C., Jaggi, M., Musat, C., and Salzmann, M. (2019). Evaluating the search phase of 408

neural architecture search. arXiv preprint arXiv:1902.08142. 409

Zhang, X., Xu, H., Mo, H., Tan, J., Yang, C., Wang, L., and Ren, W. (2021). Dcnas: Densely connected 410

neural architecture search for semantic image segmentation. In Proceedings of the IEEE/CVF 411

conference on computer vision and pattern recognition, pages 13956–13967. 412

12

Zhao, Y., Wang, L., and Guo, T. (2024). Multi-objective neural architecture search by learning search 413

space partitions. Journal of Machine Learning Research, 25(177):1–41. 414

Zhao, Y., Wang, L., Tian, Y., Fonseca, R., and Guo, T. (2021a). Few-shot neural architecture search. 415

In International Conference on Machine Learning, pages 12707–12718. PMLR. 416

Zhao, Y., Wang, L., Yang, K., Zhang, T., Guo, T., and Tian, Y. (2021b). Multi-objective optimization 417

by learning space partitions. arXiv preprint arXiv:2110.03173. 418

Zhu, C., Li, L., Wu, Y., and Sun, Z. (2024). Saswot: Real-time semantic segmentation architecture 419

search without training. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, 420

pages 7722–7730. 421

13

Submission Checklist 422

1. For all authors. . . 423

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s 424

contributions and scope? [Yes] The claims made in abstract and introduction (section 1) 425

reflect the paper’s contributions and scope accurately. 426

(b) Did you describe the limitations of your work? [Yes] Please see section 5. 427

(c) Did you discuss any potential negative societal impacts of your work? [N/A] There is no 428

societal impact for the presented work. 429

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them? (see 430

https://2022.automl.cc/ethics-accessibility/) [Yes] We confirm that our research 431

conforms to guidelines. 432

2. If you ran experiments. . . 433

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same 434

benchmarks, data (sub)sets, available resources, etc.)? [Yes] 435

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing, 436

search spaces, hyperparameter tuning details and results, etc.)? [Yes] See appendix ?? and 437

https://anonymous.4open.science/r/Iterative_MCTS-7034/ 438

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account 439

for the impact of randomness in your methods or data? [Yes] Unless otherwise specified, we 440

ran our experiments 3 times with random seeds and report mean and standard deviation. 441

(d) Did you report the uncertainty of your results (e.g., the standard error across random seeds 442

or splits)? [Yes] For the experiments that we implemented, we report standard deviations. 443

(e) Did you report the statistical significance of your results? [Yes] 444

(f) Did you use enough repetitions, datasets, and/or benchmarks to support your claims? [Yes] 445

We perform experiments on two image classification benchmark and test for semantic 446

segmentation task. 447

(g) Did you compare performance over time and describe how you selected the maximum 448

runtime? [Yes] 449

(h) Did you include the total amount of compute and the type of resources used (e.g., type of 450

gpus, internal cluster, or cloud provider)? [Yes] We included the GPU used for this exper- 451

iments and approximate run time in https://anonymous.4open.science/r/Iterative_ 452

MCTS-7034/ 453

(i) Did you run ablation studies to assess the impact of different components of your approach? 454

[Yes] See 4.1.1. 455

3. With respect to the code used to obtain your results. . . 456

(a) Did you include the code, data, and instructions needed to reproduce the main experimental 457

results, including all dependencies (e.g., requirements.txt with explicit versions), random 458

seeds, an instructive README with installation instructions, and execution commands (either 459

in the supplemental material or as a url)? [Yes] We have included the code for our main 460

experiments and run instructions at https://anonymous.4open.science/r/Iterative_ 461

MCTS-7034/ 462

14

https://2022.automl.cc/ethics-accessibility/
https://anonymous.4open.science/r/Iterative_MCTS-7034/
https://anonymous.4open.science/r/Iterative_MCTS-7034/
https://anonymous.4open.science/r/Iterative_MCTS-7034/
https://anonymous.4open.science/r/Iterative_MCTS-7034/
https://anonymous.4open.science/r/Iterative_MCTS-7034/
https://anonymous.4open.science/r/Iterative_MCTS-7034/
https://anonymous.4open.science/r/Iterative_MCTS-7034/

(b) Did you include a minimal example to replicate results on a small subset of the experiments 463

or on toy data? [Yes] See the repository. 464

(c) Did you ensure sufficient code quality and documentation so that someone else can execute 465

and understand your code? [Yes] 466

(d) Did you include the raw results of running your experiments with the given code, data, and 467

instructions? [Yes] We included the raw results. 468

(e) Did you include the code, additional data, and instructions needed to generate the figures 469

and tables in your paper based on the raw results? [Yes] 470

4. If you used existing assets (e.g., code, data, models). . . 471

(a) Did you cite the creators of used assets? [Yes] 472

(b) Did you discuss whether and how consent was obtained from people whose data you’re 473

using/curating if the license requires it? [N/A] 474

(c) Did you discuss whether the data you are using/curating contains personally identifiable 475

information or offensive content? [N/A] 476

5. If you created/released new assets (e.g., code, data, models). . . 477

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [N/A] 478

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g., 479

GitHub or Hugging Face)? [N/A] 480

6. If you used crowdsourcing or conducted research with human subjects. . . 481

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 482

cable? [N/A] 483

(b) Did you describe any potential participant risks, with links to institutional review board 484

(irb) approvals, if applicable? [N/A] 485

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 486

on participant compensation? [N/A] 487

7. If you included theoretical results. . . 488

(a) Did you state the full set of assumptions of all theoretical results? [N/A] No theoretical 489

results are presented in this paper. 490

(b) Did you include complete proofs of all theoretical results? [N/A] No theoretical results are 491

presented in this paper. 492

15

A Implementation Details 493

A.1 Datasets and Hyperparameters 494

For all datasets in our experiments, we split training data 50/50 to use as training/validation. Unless 495

otherwise mentioned, our experiments were run 3 times to report average and standard deviations. 496

To tune hyperparameters, we performed either grid search or used similar hyperparameters when 497

comparing with other papers. 498

For all our experiments 𝛽 = 0.95 and 𝐶 = 0.5. To train supernet on pooling search space 499

(Javan et al., 2023) for our experiments for classification task, we used SGD with learning rate 0.1 500

with cosine annealing, weight decay 1𝑒 − 2 and batch size 256 and we train for 500 epochs. For 501

experiments on NAS-Bench-201 (Dong and Yang, 2020), we train for 50 epochs with SGD with 502

learning rate 0.025 and cosine annealing. For image segmentation on Auto-DeepLab, we use same 503

hyperparameters as original paper, SGD with initial learning rate 0.025 decayed by annealing, 504

weight decay 0.0003. Furthermore we utilize mixed-precision operations and FFCV (Leclerc et al., 505

2023) library to accelerate training. 506

For benchmarks for classification we directly reported the searched architecture performance. 507

For segmentation task, we retained all architectures in table 4 with same setting as Liu et al. (2019). 508

16

	Introduction
	Related Work
	Monte-Carlo Tree Search for NAS
	NAS for Semantic Segmentation

	Method
	Initialization
	Training the Supernet by Sampling with MCTS
	Updating the Tree Structure
	Iterative MCTS

	Experiments
	Image Classification
	Ablation Studies

	Semantic Segmentation

	Conclusion
	Implementation Details
	Datasets and Hyperparameters

