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Abstract

Many pre-trained language models (PLMs) ex-
hibit suboptimal performance on mid- and low-
resource languages, largely due to limited expo-
sure to these languages during pre-training. A
common strategy to address this is to introduce
new tokens specific to the target languages, ini-
tialize their embeddings, and apply continual
pre-training on target-language data. Among
such methods, OFA (Liu et al., 2024a) proposes
a similarity-based subword embedding initial-
ization heuristic that is both effective and effi-
cient. However, OFA restricts target-language
token embeddings to be convex combinations
of a fixed number of source-language embed-
dings, which may limit expressiveness. To over-
come this limitation, we propose HYPEROFA,
a hypernetwork-based approach for more adap-
tive token embedding initialization. The hy-
pernetwork is trained to map from an external
multilingual word vector space to the PLM’s
token embedding space using source-language
tokens.1 Once trained, it can generate flexible
embeddings for target-language tokens, serving
as a good starting point for continual pretrain-
ing. Experiments demonstrate that HYPEROFA
consistently outperforms random initialization
baseline and matches or exceeds the perfor-
mance of OFA in both continual pre-training
convergence and downstream task performance.
We make the code publicly available.2

1 Introduction

Multilingual PLMs, trained on massive multilin-
gual corpora, have achieved impressive perfor-
mance across many high-resource languages (De-
vlin et al., 2019; Artetxe et al., 2020; Liang et al.,
2023; Üstün et al., 2024). However, such models
often perform suboptimally on languages that are
under-resourced in their pre-training data (Wu and

1We will use vector space and embedding space to refer to
the two different spaces for convenience.

2https://github.com/enesozeren/hyper-ofa

Dredze, 2020), and in extreme cases, they perform
poorly on entirely unseen languages (Adelani et al.,
2024), particularly when there is minimal lexical
overlap or shared vocabulary between these unseen
languages and the languages covered by the PLM
(Muller et al., 2021; Moosa et al., 2023; Liu et al.,
2024b; Xhelili et al., 2024).

A common strategy for adapting PLMs to such
under-resourced or unseen languages is to intro-
duce new, language-specific tokens, initialize their
embeddings, and continually pre-train the model on
data from the target languages (Tran, 2020).3 A key
challenge in this process lies in the initialization
of these new token embeddings. A naive approach
would be random initialization from a given simple
distribution, e.g., multivariate Gaussian, (Hewitt,
2021; de Vries and Nissim, 2021; Marchisio et al.,
2023). However, such an initialization fails to lever-
age any lexical or semantical knowledge captured
by the original source-language embeddings.

To address this, recent work has explored more
informed initialization strategies, using similarity-
based heuristics to better align the initialized target
embeddings with the existing embedding space,
thereby enhancing language adaptation and accel-
erating continual pre-training (Minixhofer et al.,
2022; Dobler and de Melo, 2023; Liu et al., 2024a;
Mundra et al., 2024; Yamaguchi et al., 2024a,b).
Among this line of work, for example, OFA (Liu
et al., 2024a) uses external multilingual word vec-
tors to compute similarities between source and
target tokens, then initializes target embeddings
as convex combinations of source embeddings,
weighted by these similarities. This approach en-
sures the target embeddings reside in the same
vector space as the source ones. However, the

3We simply use source tokens to refer to tokens belonging
to the source languages that are already covered in the PLM
vocabulary. Similarly, target tokens is used to refer to tokens
that belong to the target languages that one wants to adapt to
and are usually not covered by the PLM vocabulary.

https://github.com/enesozeren/hyper-ofa


similarity-based convex combination restricts the
relation between embeddings of source tokens and
target tokens to be linear, which might not be ex-
pressive enough considering the non-linearity of
Transformer (Vaswani et al., 2017).

To overcome this limitation, this paper presents
HYPEROFA, a hypernetwork-based initialization
method designed to enhance the expressiveness and
adaptability of embedding initialization. Rather
than depending on similarity heuristics, we explic-
itly learn a mapping from an external vector space
to the PLM’s embedding space via a hypernetwork.
The hypernetwork is trained to predict the embed-
ding of a source token, given external multilingual
word vectors of a small set of related words as
input. Training proceeds by minimizing the dis-
crepancy between the predicted and actual PLM
embeddings of source tokens. Once trained, the
hypernetwork is used to generate embeddings for
target tokens, providing a robust initialization for
continual pre-training on the target languages.

To evaluate HYPEROFA, we follow the experi-
mental setup of OFA, adapting both a monolingual
PLM, i.e., RoBERTa (Liu et al., 2019), and a mul-
tilingual PLM, i.e., XLM-R (Conneau et al., 2020),
to 22 languages covering high-, mid-, and low-
resource scenarios. We investigate two research
questions: (1) How well do the initialized embed-
dings perform on their own? and (2) How effec-
tive are they as a starting point for continual pre-
training? To answer these, we evaluate models
before and after continual pre-training via zero-
shot cross-lingual transfer on downstream tasks,
including sentence retrieval and sequence labeling.
Our empirical results show that HYPEROFA con-
sistently outperforms the random initialization and
achieves competitive or superior performance com-
pared to OFA. Our contributions are as follows:

• We propose HYPEROFA, a hypernetwork-
based method for initializing embeddings of
new tokens in target languages.

• We extensively evaluate HYPEROFA on adapt-
ing RoBERTa and XLM-R to many languages
and various downstream tasks.

• We show that HYPEROFA outperforms ran-
dom initialization and matches or exceeds the
performance of its counterpart OFA.

2 Related Work

Tokenizer and Vocabulary Manipulation Ma-
nipulating an existing PLM’s vocabulary and its
accompanying tokenizer is a common approach for
adapting it to new languages (Pfeiffer et al., 2021;
Alabi et al., 2022; Zeng et al., 2023; Cui et al.,
2024) or new domains (Lamproudis et al., 2022;
Liu et al., 2023a; Balde et al., 2024). Typically,
another tokenizer is trained on the target data us-
ing the same tokenization algorithm as used by the
original one, such as Byte-Pair Encoding (Gage,
1994; Sennrich et al., 2016), WordPiece (Schuster
and Nakajima, 2012; Wu et al., 2016), and Senten-
cePiece (Kudo and Richardson, 2018; Kudo, 2018).
Then, the new tokenizer is merged with the original
tokenizer, where unseen tokens are added, resulting
in a large vocabulary. Imani et al. (2023) success-
fully apply such a pipeline to extend the language
coverage of XLM-R (Conneau et al., 2020) to more
than 500 languages. Similarly, Liu et al. (2025)
adapts XLM-R to transliterated data by merging
romanized subwords into the vocabulary.

Target Embedding Initialization The embed-
dings for the new tokens have to be initialized
before the model can be used or continually pre-
trained. The simplest approach is to randomly ini-
tialize the new token embeddings (Artetxe et al.,
2020; de Vries and Nissim, 2021; Alabi et al., 2022;
Imani et al., 2023). To better leverage the already
encoded knowledge in the PLM, some work tries to
initialize the new target token embeddings as linear
combinations of embeddings of the source tokens,
weighted by similarities between target and source
tokens. An early work, Tran (2020), induces such
similarities from a parallel corpus. More recently,
another line of work explores the possibility of di-
rectly inducing such similarities from well-aligned
external word embeddings (Minixhofer et al., 2022;
Dobler and de Melo, 2023; Liu et al., 2024a; Yam-
aguchi et al., 2024a,b; Ye et al., 2024). However,
the similarity-based convex combination might re-
strict the expressiveness of the new token embed-
dings. Therefore, this work aims to improve the
initialization by breaking the linearity obstacle.

Hypernetworks Hypernetworks are neural net-
works designed to generate the weights of another
network (Ha et al., 2017; Chauhan et al., 2024). A
recent survey by Chauhan et al. (2024) highlights
their application across various domains such as
computer vision (von Oswald et al., 2020) and



natural language processing (NLP) (Volk et al.,
2023; Pinter et al., 2017; Schick and Schütze,
2020; Minixhofer et al., 2024). One of the earlier
works in initializing embeddings with hypernet-
works is MIMICK (Pinter et al., 2017), which fo-
cuses on predicting the out-of-vocabulary word em-
beddings with a hypernetwork. Similarly, Schick
and Schütze (2020) integrates a hypernetwork into
BERT (Devlin et al., 2019) to generate embeddings
for rare words. More recently, Minixhofer et al.
(2024) proposed a hypernetwork-based method for
zero-shot tokenizer transfer, enabling a language
model to detach from its tokenizer. Our work builds
upon the insights from this line of work and designs
a hypernetwork to map from the external word vec-
tor space to the PLM’s embedding space, allowing
for wise initialization of the new token embeddings
for effective continual pre-training.

3 Methodology

HYPEROFA builds upon certain aspects of OFA

(Liu et al., 2024a), e.g., factorized parameterization
(cf. §3.2) and external multilingual vector vectors
(cf. §3.3). The key differentiator is that we directly
predict the target token embeddings using a hyper-
network (cf. §3.4) instead of initialization based on
similarity-heuristics. For a clearer understanding,
we therefore follow the notations used by Liu et al.
(2024a) and introduce HYPEROFA in the following.
Figure 1 provides an overview of HYPEROFA.

3.1 Problem Setting
Given a model with a source tokenizer TOKs with
vocabulary V s, the goal is to replace the source
tokenizer with a target tokenizer TOKt with vo-
cabulary V t that supports a broader range of tokens
across various languages. Typically, |V s| < |V t|.
The core problem is to initialize the target embed-
dings Et ∈ R|V t|×D, where D is the embedding
dimension, which is the same as the dimension of
the source embeddings Es ∈ R|V s|×D.

3.2 Source Embedding Factorization
Since |V t| > |V s|, the number of embedding pa-
rameters grows significantly from V s×D to V t×D
in the target model. This can result in a large ra-
tio of model parameters in the embedding matrix,
limiting the efficiency. To address this, Liu et al.
(2024a) adopts a factorized parametrization to rep-
resent the embeddings, similar to Lan et al. (2020).

Factorization decomposes the Es into two
smaller matrices using the Singular Value Decom-

position (SVD) method, such that Es ≈ F sP ,
where F s ∈ R|V s|×D′

is the coordinate matrix
containing token-specific parameters, and P ∈
RD′×D is the primitive embedding matrix captur-
ing language-agnostic features. When D′ < D,
the total number of parameters of F s and P is
smaller than Es. Since P is expected to be shared
across languages, one only needs to initialize the
coordinate matrix F t ∈ R|V t|×D′

for TOKt while
reusing the same P . The original dimension can
be restored by multiplication: F tP ∈ R|V t|×D.

3.3 Matching External Word Vectors
OFA (Liu et al., 2024a) takes advantage of external
well-aligned multilingual vectors W to induce the
similarities between source tokens and target to-
kens.4 In contrast, we directly use these vectors to
train a hypernetwork to map from the vector space
to the embedding space, discarding the similarity-
based heuristics. To do this, we first need to create
corresponding pairs of tokens in V s∪V t and words
in W , which is achieved by a matching operation.
Specifically, a token in V s ∪ V t is matched with
a word in W if that word contains the token as a
subword (cf. Figure 1). This matching operation
results in si (resp. tj), a set of matched words for
each token i in V s (resp. each token j in V t). We
then represent the set of matched word vectors for
each token i (resp. j) as W{si} (resp. W{tj}).

3.4 Hypernetwork
To address the main limitation of OFA– use a con-
vex combination of source-token embeddings to
initialize the target embeddings – we propose a
hypernetwork approach to directly map from the
vector space to the embedding space, which intro-
duces non-linearity, and thus is more expressive.

After performing factorization (cf. §3.2) and
creating the set of matched words and tokens (cf.
§3.3), a hypernetwork HNθ with parameters θ is
introduced. The ultimate aim of the hypernetwork
is to generate the target-token embedding F j by
using the matched word vectors W{tj}, where j ∈
V t. Therefore, we need to properly train HNθ

so that it can map from the vector space to the
embedding space. To do this, we create a training
set for HNθ. Each item in the training set is a pair:
(W{si}, F s

i ), where W{si} and F s
i are the set of

4Liu et al. (2024a) use
−→

ColexNet+ (Liu et al., 2023b),
which are static word vectors that contain over 4M words
spanning more than 1K languages. The tokens in V t are

usually subwords of the word types covered by
−→

ColexNet+.



Figure 1: HYPEROFA pipeline. The source model (left) transfers weights to the target model (right). The target
embeddings are initialized by first copying embeddings for matching tokens, then generating embeddings via a
hypernetwork for tokens with matching external words, and finally randomly initializing the rest.

matched word vectors and coordinate vector in F s

for token i in V s, respectively.5 HNθ then takes
W{si} as input and is trained to predict F s

i .
A custom loss function is proposed for the train-

ing, which contains two training objectives: a
batch-wise contrastive loss Lc and a normalized L1
loss LL1. The contrastive loss Lc aims to improve
the similarity between the ground-truth coordinate
embeddings and the predictions:

Lc = E

[
−log

exp(sim(F s
i , F̂

s
i )/τ)

exp(sim(F s
i , F̂

s
i )/τ) + NEG

]

where NEG =
∑

k ̸=i exp(sim(F s
k, F̂

s
i ))/τ), sim

is cosine similarity, F̂
s
i = HNθ(W{si}) and τ is

temperature. The normalized L1 loss LL1 aims to
preserve magnitude consistency:

LL1 = E
[
∥F s

i − F̂
s
i∥1

]
The final loss is L(θ) = λ ·Lc+(1−λ) ·LL1 where
λ is a hyperparameter controlling the weight.

When designing the model architecture for HNθ,
there are certain requirements because of the input
– a set of vectors. First, the number of matched

5We exclude (W{si}, F s
i ) from the training set if si = ∅,

i.e., there are no matched words for the concerned token i.

word vectors may vary for different tokens, mean-
ing the model architecture must be capable of han-
dling variable-length inputs. Secondly, since the
order of the input matched word vectors should
not influence the prediction, the model should be
permutation-invariant. Considering these require-
ments, we used a BiLSTM (Schuster and Paliwal,
1997) for HNθ despite it not inherently satisfy-
ing the permutation-invariance requirement.6 To
address the BiLSTM’s sensitivity to input order,
data augmentation is implemented by randomly
shuffling the order of the word vectors during each
training epoch, effectively preventing the model
from overfitting to specific sequence arrangements.

3.5 New Token Initialization
The target coordinate embeddings, F t, are initial-
ized in three steps similar to OFA (Liu et al., 2024a)
(cf. Figure 1).

1. For tokens in V s ∩ V t, their embeddings in
F s are directly copied to F t.

2. For tokens that have at least one matched word
(cf. §3.3), their embeddings are predicted by
HNθ using the set of vectors W{tj} as input.

6We experimented with both Transformer and BiLSTM ar-
chitectures for the hypernetwork, but experiments have shown
that BiLSTM works better in our study (cf. Appendix §A.1)



3. For the remaining tokens, their embeddings
are randomly initialized from a normal distri-
bution N (E[F s,Var[F s]), similar to OFA.

4 Experimental Setup

4.1 HYPEROFA-Based Models
Following OFA (Liu et al., 2024a), we use the to-
kenizer of Glot500-m (Imani et al., 2023) as the
target tokenizer, which is trained by SentencePiece
(Kudo and Richardson, 2018; Kudo, 2018) and has
a vocabulary size of 401K. We consider three dif-
ferent dimensions for D′: 100, 200, 400 (cf. §3.2).
We create 6 models using HYPEROFA as follows:

HYPEROFA-mono-xxx These are RoBERTa
models (Liu et al., 2019) with an extended vocab-
ulary (from the original 50K to 401K). “xxx” de-
notes the embedding dimension of the model (100,
200, 400), and the "mono" suffix indicates that
the model is originally monolingual. The new to-
ken embeddings are predicted by a hypernetwork
trained specifically for each model (cf. §4.2) or
randomly initialized as a fallback (cf. §3.5).

HYPEROFA-multi-xxx These are XLM-R mod-
els (Conneau et al., 2020) with an extended vo-
cabulary (from the original 250K to 401K). “xxx”
denotes the embedding dimension of the model
(100, 200, 400), and the "multi" suffix indicates
that the model is originally multilingual. The new
token embeddings are predicted by a hypernetwork
trained specifically for each model (cf. §4.2) or
randomly initialized as a fallback (cf. §3.5).

4.2 Hypernetwork Setup
Hypernetwork Training Dataset For HYPER-
OFA-mono-xxx models, the hypernetwork training
dataset consists of 22K pairs of embeddings of
the source tokens and their corresponding sets of
matched word vectors, as 22K out of RoBERTa’s
50K vocabulary tokens match at least one word in

−→
ColexNet+ (cf. §3.4). Similarly, for XLM-R, the
training dataset contains 103K pairs, correspond-
ing to 103K tokens from its 250K vocabulary.

Hypernetwork Training As described in §3.4,
we use a BiLSTM architecture for hypernetworks.
The hyperparameters of training are explained in
the §A.2. Table 1 shows the hypernetwork param-
eter sizes used for each HYPEROFA-based model.
Notably, the hypernetworks have a substantial num-
ber of parameters compared to their correspond-
ing models. Preliminary experiments show that

LM Param Hypernetwork Param

HYPEROFA-mono-100 92M HN-R-100 22M
HYPEROFA-mono-200 97M HN-R-200 23M
HYPEROFA-mono-400 107M HN-R-400 87M

HYPEROFA-multi-100 113M HN-X-100 53M
HYPEROFA-multi-100 138M HN-X-200 54M
HYPEROFA-multi-400 188M HN-X-400 210M

Table 1: Number of parameters in HYPEROFA-based
models and their associated hypernetworks.

larger hypernetworks, when combined with strong
regularization (dropout and the data augmentation
methods), perform better than smaller hypernet-
works. Figure 2 shows a case comparison study,
which compares two hypernetworks for HYPER-
OFA-multi-400 model, one with 210M and one
with 8M parameters. During training of the two
hypernetworks, the larger one predicts embeddings
better than the smaller one, when measuring cosine
similarities to the true token embeddings in the val-
idation set. Also, as the dimension of the predicted
embedding increases, a hypernetwork with higher
capacity is necessary. Therefore, the hidden dimen-
sion of the BiLSTM is increased for embeddings
with higher dimensions (see Appendix Table 6).

4.3 Baselines

We consider the following baselines for comparison
with HYPEROFA. The details of how many tokens
are randomly initialized or wisely initialized in
each model are shown in Table 2.

OFA-mono-xxx RoBERTa models (Liu et al.,
2019) with an extended vocabulary (from the origi-
nal 50K to 401K) where the new token embeddings
are initialized with OFA (Liu et al., 2024a).

OFA-multi-xxx XLM-R models (Conneau et al.,
2020) with an extended vocabulary (from the orig-
inal 250K to 401K) where the new token embed-
dings are initialized with OFA (Liu et al., 2024a).

Random-mono-xxx RoBERTa models (Liu
et al., 2019) with an extended vocabulary (from
the original 50K to 401K). Embeddings of all
overlapping tokens are directly copied, while
embeddings of the remaining tokens are randomly
initialized from a Gaussian distribution with mean
and standard deviations of the source embeddings.

Random-multi-xxx XLM-R models (Conneau
et al., 2020) with an extended vocabulary (from the



original 50K to 401K). Embeddings of all overlap-
ping tokens are directly copied, while embeddings
of the remaining tokens are randomly initialized
from a Gaussian distribution with mean and stan-
dard deviations of the source embeddings.
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Figure 2: Comparison of large (210M parameters) and
small (8M parameters) BiLSTM-based hypernetworks
(HN-X-400) in terms of validation cosine similarity
between predicted and true embeddings over 100 epochs
for creating the HYPEROFA-multi-400 model.

Method Model Wise Random Total

HYPEROFA
RoBERTa 179K 195K 401K
XLM-R 84K 62K 401K

OFA
RoBERTa 179K 195K 401K
XLM-R 84K 62K 401K

Random RoBERTa 0 374K 401K
XLM-R 0 146K 401K

Table 2: Distribution of token embeddings initialized
using HYPEROFA, OFA, and random initialization meth-
ods. The “Wise” column indicates the number of to-
kens initialized using the respective wise initialization
method. The “Random” column indicates tokens initial-
ized randomly. The difference between the total tokens
(“Total”) and the sum of “Wise” and “Random” columns
represents token embeddings directly copied from the
source embedding matrix due to vocabulary overlapping.
This distribution holds consistently across all variants
with different embedding factorization dimensions (100,
200, 400). Many token embeddings in HYPEROFA and
OFA are wisely initialized.

4.4 Downstream Tasks
The performances of HYPEROFA-based models
and the baselines are evaluated by four datasets in
two downstream tasks: sentence retrieval and two
sequence labeling, introduced as follows.

Sentence Retrieval Retrieval performance is as-
sessed using the Sentence Retrieval Tatoeba (SR-T)
(Artetxe and Schwenk, 2019) and Sentence Re-
trieval Bible (SR-B) datasets. Following Liu et al.

(2024a), Top-10 accuracy is used as the evalua-
tion metric, where the correct translation must be
among the ten nearest neighbors of a query En-
glish sentence. Sentence-level representations are
obtained by averaging contextualized word embed-
dings from the model’s 8th layer.

Sequence Labeling For sequence labeling,
named entity recognition (NER) and part-of-speech
tagging (POS) are evaluated using WikiANN (Pan
et al., 2017) and Universal Dependencies (de Marn-
effe et al., 2021) datasets, respectively. Our evalua-
tion methodology follows Liu et al. (2024a), where
models are fine-tuned on the English training set.
The best checkpoint, selected based on validation
performance, is then used to report zero-shot cross-
lingual transfer performance on test sets in other
languages. F1 scores are reported for both datasets.

5 Results

To validate the effectiveness of HYPEROFA, we
evaluate HYPEROFA-based models and baselines
in two scenarios: before (cf. §5.1) and after (cf.
§5.2) the continual pre-training.

5.1 Before Continual Pre-Training

This evaluation aims to directly reflect the qual-
ity of the embeddings initialized with HYPEROFA.
Since the newly added tokens cover more than 500
languages (we use the Glot500-m tokenizer as the
target tokenizer), we evaluate HYPEROFA-based
models and baselines on all languages in down-
stream tasks. The results are presented in Table 3.

HYPEROFA and OFA consistently outperform
the random baselines, while showing compa-
rable performance to each other across down-
stream tasks. In all downstream tasks, the mod-
els with randomly initialized new embeddings per-
form the worst. This indicates that randomly initial-
izing the new token embeddings is suboptimal as no
encoded knowledge in the original embedding ma-
trix is explicitly leveraged. For the retrieval tasks
(SR-B and SR-T), HYPEROFA performs better than
OFA on all cases except when the embedding di-
mension is 400 in the mono setup. We hypothe-
size this might be because, with a fixed amount of
training data (22K pairs for mono models), learn-
ing higher-dimensional embeddings becomes more
challenging for the hypernetwork. This hypothesis
is supported by the fact that when more training
instances are included in the multi models (103



Models SR-B SR-T NER POS

Random-mono-100 3.5 4.6 23.4 22.5
OFA-mono-100 4.5 6.2 25.0 23.5
HYPEROFA-mono-100 5.0 6.4 24.9 22.8
Random-mono-200 3.7 5.2 24.9 23.1
OFA-mono-200 4.5 7.2 25.7 23.4
HYPEROFA-mono-200 4.8 7.5 25.3 23.4
Random-mono-400 4.1 5.3 25.8 23.0
OFA-mono-400 4.8 7.2 26.1 24.5
HYPEROFA-mono-400 4.7 6.3 25.8 23.0

Random-multi-100 5.1 7.2 34.7 41.5
OFA-multi-100 5.1 7.5 36.3 42.3
HYPEROFA-multi-100 5.2 7.6 37.6 42.3
Random-multi-200 5.7 10.0 38.1 47.3
OFA-multi-200 5.7 10.4 40.2 48.6
HYPEROFA-multi-200 6.0 10.6 38.3 48.3
Random-multi-400 5.6 21.0 41.6 53.7
OFA-multi-400 5.9 21.3 43.3 54.6
HYPEROFA-multi-400 6.1 21.3 43.5 54.1

Table 3: Performance of randomly initialized baselines,
OFA and HYPEROFA before continual pre-training. The
scores for OFA models are taken from Liu et al. (2024a)
directly. SR-B covers 98 languages, SR-T covers 369
languages, NER covers 164 languages, and POS covers
91 languages. Top-10 accuracy is reported for SR-B
and SR-T; F1 score is reported for NER and POS. All
metrics are average across languages.

pairs), HYPEROFA-mutli-400 models achieve com-
parable or even better results than OFA-multi-400
models across all downstream tasks.

5.2 After Continual Pre-Training

Continual pre-training is crucial because, even with
carefully initialized new token embeddings, the
embeddings and the backbone model must be fine-
tuned on data containing these new tokens. There-
fore, to validate how effective the new embeddings
with HYPEROFA are as a starting point for contin-
ual pre-training, we select 6 models and continually
pre-train them on a diverse set of languages.

Models and Training Due to resource con-
straints, we select 6 models out of 18 models for
continual pre-training. For the mono models, we
use Random-mono-100, OFA-mono-100, and HY-
PEROFA-mono-100; for the multi models, we use
Random-multi-400, OFA-multi-400, and HYPER-
OFA-multi-400. All six models are continually
pre-trained using hyperparameters similar to those

Model Phase SRT SRB POS NER

Random-mono-100 Before 4.4 3.6 29.1 23.3
After 9.5 7.0 51.1 40.0

OFA-mono-100 Before 5.9 5.0 30.2 24.0
After 15.2 9.8 56.8 45.7

HYPEROFA-mono-100 Before 6.0 5.1 30.0 23.5
After 11.3 9.9 56.3 43.4

Random-multi-400 Before 17.6 8.1 65.0 45.9
After 55.3 40.8 70.3 59.8

OFA-multi-400 Before 17.9 8.6 62.9 47.2
After 55.8 42.3 70.4 60.3

HYPEROFA-multi-400 Before 17.7 9.2 63.7 47.5
After 56.1 42.2 70.4 60.5

Table 4: Performance before and after continual pre-
training. Evaluation is conducted on the intersection
of the 22 continual pre-training languages and those
available in each downstream task. Specifically, SR-T
and SR-B are evaluated on 20 languages, POS on 9
languages, and NER on 14 languages. Metrics reported
are: Top-10 accuracy for SR-T and SR-B, F1 score for
POS NER. All metrics are averaged across the respec-
tive languages. HYPEROFA achieves consistently better
performance than the random baseline and competitive
performance compared with OFA.

in Liu et al. (2024a), with some key differences:
an effective batch size of 512 instead of 384 and
training on 4 NVIDIA H100 GPUs. The training is
conducted for 4,000 steps (approx. 1 epoch).

Training Data Due to constrained computing
resources, we are not able to continually train HY-
PEROFA-based models or other baselines on full
Glot500-c (Imani et al., 2023). Therefore, a subset
of languages from Glot500-c comprising 22 lan-
guages spanning high, mid, and low-resource cat-
egories is used for the continual pre-training. The
list of languages and their data size can be found
in Appendix Table 7. This dataset subset contains
1.1 billion tokens across 36 million sentences.

The benchmark results for before and after con-
tinual pre-training for the 6 models are presented
in Table 4. The metrics are calculated for the lan-
guages that are in the 22 continual pre-training
languages. And the training loss curves of the 6
models throughout the continual pre-training are
presented in Figure 3.

Multilingual XLM-R models consistently out-
perform their monolingual RoBERTa counter-
parts, highlighting the advantages of multi-
lingual pre-training. The first observation is
that all models based on XLM-R outperform the
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Figure 3: Training loss curves during the continual pre-
training of models initialized with HYPEROFA, OFA, or
random initialization methods.

RoBERTa-based models. This aligns with our ex-
pectations, as XLM-R already sees much multi-
lingual data during its pre-training stage, which
helps further adapt to other languages. In contrast,
RoBERTa is originally monolingual and therefore
lacks enough multilingual knowledge.

Within XLM-R models, the choice of embed-
ding initialization has minimal impact, suggest-
ing inherent robustness to vocabulary extension.
Different initialization (random, OFA, or HYPER-
OFA) methods do not produce substantial perfor-
mance differences in models based on XLM-R
across downstream tasks. The loss curves (cf. Fig-
ure 3) also show that different multilingual models
show a similar convergence trend throughout con-
tinual pre-training progression. This suggests that
multilingual models are already quite robust and
effective in adapting to new languages even when
new token embeddings are randomly initialized.

RoBERTa-based models benefit from wise ini-
tialization methods. Models with embeddings
initialized using OFA and HYPEROFA show no-
tably improved performance compared to those
with the random baseline in RoBERTa-based mod-
els across all downstream tasks. Additionally, OFA

and HYPEROFA also show faster convergence (at
the same training step but a lower loss) than the
random baseline, as shown in Figure 3. This high-
lights the significance of advanced embedding ini-
tialization techniques for monolingual models – a
better strategy can actively leverage the knowledge
encoded in the original embeddings, though mono-

lingual, and can be transferred to other languages.

HYPEROFA and OFA perform comparably
across downstream tasks, suggesting both are
viable strategies. We observe that HYPEROFA

achieves comparable or occasionally better results
than OFA. However, the difference is generally
small, with neither method showing a decisive ad-
vantage overall. This suggests that both approaches
are effective, with their relative strengths depend-
ing on the specific evaluation metric. However,
because of the capability of modeling non-linearity,
we expect HYPEROFA-based models can improve
when more training data (for hypernetworks and
continual pre-training) is available.

6 Conclusion

This study introduces HYPEROFA, a method for ex-
panding the vocabulary of PLMs to new languages
and initializing new token embeddings with a hy-
pernetwork. We show the effectiveness of HYPER-
OFA by evaluating the resulting models both before
and after the continual pre-training. The results
show that HYPEROFA consistently outperforms the
random initialization baseline and performs com-
petitively with OFA. These results highlight HY-
PEROFA as a promising approach, alongside OFA,
for efficient new token embedding initialization to-
wards effective and efficient continual pre-training.

Limitations

This study explores initializing new embeddings in
encoder-only models. While both methods are the-
oretically applicable to decoder-only models like
GPT (Radford et al., 2019) and encoder-decoder
models like T5 (Raffel et al., 2020), the effective-
ness in these settings remains untested, presenting
an open research direction.

Another limitation concerns the embedding di-
mensions used in this study. Due to the embed-
ding matrix factorization described in §3.2, the
dimensions are relatively low compared to those
in modern LLMs. While this approach reduces
computational costs, it leaves open the question of
how HYPEROFA would perform with much higher-
dimensional embeddings.

Finally, the continual pre-trained dataset used in
this study is relatively small compared to that of
Liu et al. (2024a) due to computational constraints.
Exploring the impact of larger datasets, especially
those having more languages, could provide deeper



insights into the strengths and weaknesses of the
proposed methods in different settings.
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A Experiments for Hypernetwork

A.1 Architecture: BiLSTM vs Setformer

As explained in the §3.4, there are two require-
ments for the model architecture; variable length
input, permutation invariant. To satisfy those re-
quirements, initially, an encoder only transformer
model (Vaswani et al., 2017) without positional
encoding layers (called as Setformer in this study)
was tested. However, after observing poor perfor-
mance, the approach shifted to a BiLSTM (Bidi-
rectional LSTM) architecture (Schuster and Pali-
wal, 1997) despite it not inherently satisfying the
permutation-invariance requirement. Experimental
results demonstrated that BiLSTM works better for
this task when compared to a transfomer encoder
model without positional encoding layer (Table 5).

Table 5 compares the two candidate hypernet-
work architectures, Setformer and BiLSTM, for ini-
tializing token embeddings for HYPEROFA-mono-
100 model. The model initialized with the BiLSTM
hypernetwork achieves better SR-T Top 10 accu-
racy (6.4), outperforming the Setformer variant.
This suggests that BiLSTM is more effective than
Setformer as a hypernetwork.

We attribute the reason for the poor performance
of the Setformer to the need of transformers that
require a large amount of data to learn effectively.
On the other hand, the BiLSTM architecture was
more efficient at learning the task with the available
data which is limited by the source vocabulary size.

LM Hypernetwork SR-T

HYPEROFA-mono-100 BiLSTM 6.4
HYPEROFA-mono-100 Setformer 5.2

Random-mono-100 - 4.6

Table 5: Comparison of Setformer (Transformer en-
coder without positional encodings) and BiLSTM as
hypernetworks both having 22M trainable parameters.
They are used for initializing token embeddings in HY-
PEROFA-mono-100, a RoBERTa-based model with a
new vocabulary and factorized embedding dimension of
100 (mono-100). The SR-T Top 10 Accuracy is reported
for the without continual pre-training set up. Random
initialization baseline performance is given at the last
row. BiLSTM performs better as a hypernetwork.

A.2 Hyperparameters

The hypernetworks follow a BiLSTM architec-
ture. All hypernetworks for HYPEROFA-mono-xxx
and HYPEROFA-multi-xxx models share the same
configuration: a maximum context size of 256, a
dropout rate of 0.4, and an Adam optimizer. The
learning rate starts at 1× 10−4 and decays linearly
by a factor of 0.95 every 10 epochs. Training was
conducted on two Nvidia A100 GPUs, with each
model requiring approximately 1 to 1.5 hours.

To ensure a healthy training, the hyperparame-
ters in the loss function, as explained in §3.4, were
set as follows: λ = 0.1 for all hypernetworks, and
T = 0.5 for the hypernetworks of HYPEROFA-
mono-xxx, and T = 0.25 for the hypernetworks of
HYPEROFA-multi-xxx.

All models were trained until the validation loss
converged. More details about the training data,
model parameter sizes are presented in Table 6.

A.3 Regularization

We applied multiple regularization and data aug-
mentation methods to ensure that hypernetworks
do not overfit.

We used high dropout rate of 0.4 since we have
seen that the large models with high regularization
performs better (see Figure 2). We also applied
data augmentation by shuffling word vector order
before each epoch to prevent model to overfit to
the order of the input word vectors.

Additionally, with 50% probability, the number
of word vectors is randomly limited to 50–100%
of the available vectors.
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LM Hypernetwork Training Data Layers Hid Dim Param Epoch

HYPEROFA-mono-100 HN-R-100 22K 2 800 22M 370
HYPEROFA-mono-200 HN-R-200 22K 2 800 23M 470
HYPEROFA-mono-400 HN-R-400 22K 2 1600 87M 400

HYPEROFA-multi-100 HN-X-100 103K 4 800 53M 120
HYPEROFA-multi-200 HN-X-200 103K 4 800 54M 230
HYPEROFA-multi-400 HN-X-400 103K 4 1600 210M 80

Table 6: Hypernetwork model details for predicting the target embeddings for HYPEROFA-mono-xxx and HY-
PEROFA-multi-xxx language models with different factorized dimensions. All hypernetworks have the BiLSTM
architecture. Epochs column indicated the converged epoch number for the hypernetwork.

B Continual Pre-training Dataset

The continual pre-training dataset was deliberately
kept smaller than that used by Liu et al. (2024a) due
to disk quota limitations in the HYPEROFA study.
The languages, their original sentence counts in
Glot500-c (Imani et al., 2023) dataset and the sen-
tence counts used in this study is listed in Table 7.
For continual pre-training 36M sentences (approx.
1.1B tokens) across 22 languages are used. To
categorize source category with respect to the vol-
ume of that language in Glot500-c, thresholds used:
high (>5M sentences), mid (>500K sentences), and
low (<500K sentences).

C Benchmark Language Coverage

In this section, we present the languages used in
benchmarks for the tables in our paper.

C.1 For Benchmark Performances in Table 3
SR-B Benchmark Languages:

mal_Mlym, aze_Latn, guj_Gujr, ben_Beng, kan_Knda,

tel_Telu, mlt_Latn, fra_Latn, spa_Latn, fil_Latn, nob_Latn,

rus_Cyrl, deu_Latn, tur_Latn, pan_Guru, mar_Deva,

por_Latn, nld_Latn, zho_Hani, ita_Latn, ind_Latn, ell_Grek,

bul_Cyrl, swe_Latn, ces_Latn, isl_Latn, pol_Latn, ron_Latn,

dan_Latn, hun_Latn, tgk_Cyrl, srp_Latn, fas_Arab, ceb_Latn,

heb_Hebr, hrv_Latn, fin_Latn, slv_Latn, vie_Latn, mkd_Cyrl,

slk_Latn, nor_Latn, est_Latn, ltz_Latn, eus_Latn, lit_Latn,

kaz_Cyrl, lav_Latn, epo_Latn, cat_Latn, tha_Thai, ukr_Cyrl,

tgl_Latn, sin_Sinh, gle_Latn, hin_Deva, kor_Hang, ory_Orya,

urd_Arab, sqi_Latn, bel_Cyrl, afr_Latn, nno_Latn, tat_Cyrl,

hau_Latn, sna_Latn, msa_Latn, som_Latn, srp_Cyrl,

mlg_Latn, zul_Latn, arz_Arab, nya_Latn, tam_Taml,

hat_Latn, uzb_Latn, sot_Latn, uzb_Cyrl, als_Latn, amh_Ethi,

sun_Latn, war_Latn, yor_Latn, fao_Latn, uzn_Cyrl,

smo_Latn, bak_Cyrl, ilo_Latn, tso_Latn, mri_Latn,

asm_Beng, hil_Latn, nso_Latn, ibo_Latn, kin_Latn,

hye_Armn, lin_Latn, tpi_Latn, twi_Latn, kir_Cyrl, pap_Latn,

nep_Deva, bcl_Latn, xho_Latn, cym_Latn, gaa_Latn,

ton_Latn, lat_Latn, srn_Latn, ewe_Latn, bem_Latn, efi_Latn,

bis_Latn, haw_Latn, hmo_Latn, kat_Geor, pag_Latn,

loz_Latn, fry_Latn, mya_Mymr, nds_Latn, run_Latn,

rar_Latn, fij_Latn, ckb_Arab, ven_Latn, zsm_Latn, chv_Cyrl,

sag_Latn, guw_Latn, bre_Latn, toi_Latn, che_Cyrl, pis_Latn,

oss_Cyrl, nan_Latn, tuk_Latn, tir_Ethi, yua_Latn, min_Latn,

khm_Khmr, tum_Latn, lug_Latn, tzo_Latn, mah_Latn,

jav_Latn, jpn_Jpan, lus_Latn, crs_Latn, ndo_Latn, snd_Arab,

yue_Hani, kua_Latn, hin_Latn, kal_Latn, tdt_Latn, mfe_Latn,

mos_Latn, kik_Latn, cnh_Latn, gil_Latn, pon_Latn, ori_Orya,

luo_Latn, nzi_Latn, gug_Latn, bar_Latn, bci_Latn, chk_Latn,

yap_Latn, ssw_Latn, quz_Latn, sah_Cyrl, tsn_Latn, quy_Latn,

bbc_Latn, wal_Latn, uig_Arab, pam_Latn, seh_Latn,

zai_Latn, gym_Latn, bod_Tibt, nde_Latn, fon_Latn, nbl_Latn,

kmr_Latn, guc_Latn, mam_Latn, nia_Latn, nyn_Latn,

cab_Latn, top_Latn, mco_Latn, tzh_Latn, plt_Latn, iba_Latn,

kek_Latn, sop_Latn, kac_Latn, qvi_Latn, cak_Latn, kbp_Latn,

ctu_Latn, kri_Latn, mau_Latn, tyv_Cyrl, btx_Latn, nch_Latn,

ncj_Latn, pau_Latn, toj_Latn, pcm_Latn, dyu_Latn, kss_Latn,

quc_Latn, yao_Latn, kab_Latn, tuk_Cyrl, ndc_Latn,

san_Deva, qug_Latn, arb_Arab, mck_Latn, arn_Latn,

pdt_Latn, gla_Latn, kmr_Cyrl, nav_Latn, ksw_Mymr,

mxv_Latn, hif_Latn, wol_Latn, sme_Latn, gom_Latn,

bum_Latn, mgr_Latn, ahk_Latn, tsz_Latn, bzj_Latn,

udm_Cyrl, cce_Latn, meu_Latn, cbk_Latn, bhw_Latn,

ngu_Latn, nyy_Latn, naq_Latn, toh_Latn, nse_Latn, alz_Latn,

mhr_Cyrl, djk_Latn, gkn_Latn, grc_Grek, swh_Latn,

alt_Cyrl, miq_Latn, kaa_Cyrl, lhu_Latn, lzh_Hani, cmn_Hani,

kjh_Cyrl, mgh_Latn, rmy_Latn, srm_Latn, gur_Latn,

yom_Latn, cfm_Latn, lao_Laoo, qub_Latn, ote_Latn,

ldi_Latn, ayr_Latn, bba_Latn, aln_Latn, leh_Latn, ban_Latn,

ace_Latn, pes_Arab, ary_Arab, hus_Latn, glv_Latn,

mai_Deva, dzo_Tibt, ctd_Latn, nnb_Latn, sxn_Latn,

mps_Latn, gkp_Latn, acr_Latn, dtp_Latn, lam_Latn,

poh_Latn, quh_Latn, tob_Latn, ach_Latn, npi_Deva,

myv_Cyrl, tih_Latn, gor_Latn, ium_Latn, teo_Latn, kia_Latn,

crh_Cyrl, enm_Latn, mad_Latn, cac_Latn, hnj_Latn,



Source Category Language Glot500-c Sentence Count Subsampled Sentence Count

High

eng_Latn 36,121,560 5,000,000
tur_Latn 29,182,577 5,000,000
ell_Grek 22,031,905 5,000,000
bul_Cyrl 21,822,051 5,000,000
ces_Latn 20,374,860 5,000,000
kor_Hang 6,348,091 5,000,000

Mid

kat_Geor 990,785 990,785
fry_Latn 925,801 925,801
zsm_Latn 849,033 849,033
khm_Khmr 565,794 565,794
jpn_Japn 507,538 507,538

Low

yue_Hani 483,750 483,750
tuk_Latn 312,480 312,480
uig_Arab 298,694 298,694
pam_Latn 292,293 292,293
kab_Latn 166,953 166,953
gla_Latn 124,953 124,953
mhr_Cyrl 91,557 91,557
swh_Latn 43,876 43,876
cmn_Hani 57,500 57,500
pes_Arab 18,762 18,762
dtp_Latn 1,355 1,355

Total Sentence Count 141,612,168 35,731,124

Table 7: Distribution of continued pre-trainig data. The table shows the original Glot500-c volume and sub-sampled
volume for each language, grouped by their source category (High, Mid, Low) which is assigned with respect to the
volume of that language in Glot500-c.

ikk_Latn, sba_Latn, zom_Latn, bqc_Latn, bim_Latn,

mdy_Ethi, bts_Latn, gya_Latn, agw_Latn, knv_Latn,

giz_Latn, hui_Latn, hif_Deva

SR-T Benchmark Languages:
mal_Mlym, aze_Latn, ben_Beng, tel_Telu, fra_Latn,

spa_Latn, nob_Latn, rus_Cyrl, deu_Latn, tur_Latn, mar_Deva,

por_Latn, nld_Latn, ara_Arab, ita_Latn, ind_Latn, ell_Grek,

bul_Cyrl, swe_Latn, ces_Latn, isl_Latn, pol_Latn, ron_Latn,

dan_Latn, hun_Latn, srp_Latn, ceb_Latn, heb_Hebr,

hrv_Latn, glg_Latn, fin_Latn, slv_Latn, vie_Latn, mkd_Cyrl,

slk_Latn, est_Latn, eus_Latn, lit_Latn, kaz_Cyrl, bos_Latn,

epo_Latn, cat_Latn, tha_Thai, ukr_Cyrl, tgl_Latn, gle_Latn,

hin_Deva, kor_Hang, urd_Arab, sqi_Latn, bel_Cyrl, afr_Latn,

nno_Latn, tat_Cyrl, ast_Latn, mon_Cyrl, arz_Arab, tam_Taml,

uzb_Cyrl, amh_Ethi, war_Latn, fao_Latn, hye_Armn,

oci_Latn, xho_Latn, cym_Latn, lat_Latn, kat_Geor, fry_Latn,

nds_Latn, zsm_Latn, bre_Latn, tuk_Latn, khm_Khmr,

jpn_Jpan, yue_Hani, gsw_Latn, lvs_Latn, kur_Latn, ido_Latn,

uig_Arab, pam_Latn, pms_Latn, wuu_Hani, yid_Hebr,

ina_Latn, kab_Latn, gla_Latn, cbk_Latn, hsb_Latn, mhr_Cyrl,

swh_Latn, cmn_Hani, pes_Arab, dtp_Latn, lfn_Latn, ile_Latn,

csb_Latn.

NER Benchmark Languages:
hbs_Latn, mal_Mlym, aze_Latn, guj_Gujr, ben_Beng,

kan_Knda, tel_Telu, mlt_Latn, fra_Latn, spa_Latn, eng_Latn,

rus_Cyrl, deu_Latn, tur_Latn, pan_Guru, mar_Deva,

por_Latn, nld_Latn, ara_Arab, zho_Hani, ita_Latn, ind_Latn,

ell_Grek, bul_Cyrl, swe_Latn, ces_Latn, isl_Latn, pol_Latn,

ron_Latn, dan_Latn, hun_Latn, tgk_Cyrl, fas_Arab, ceb_Latn,

heb_Hebr, hrv_Latn, glg_Latn, fin_Latn, slv_Latn, vie_Latn,

mkd_Cyrl, slk_Latn, nor_Latn, est_Latn, ltz_Latn, eus_Latn,

lit_Latn, kaz_Cyrl, lav_Latn, bos_Latn, epo_Latn, cat_Latn,

tha_Thai, ukr_Cyrl, tgl_Latn, sin_Sinh, gle_Latn, hin_Deva,

kor_Hang, urd_Arab, swa_Latn, sqi_Latn, bel_Cyrl,

afr_Latn, nno_Latn, tat_Cyrl, ast_Latn, mon_Cyrl, msa_Latn,

som_Latn, srp_Cyrl, mlg_Latn, arz_Arab, tam_Taml,

uzb_Latn, cos_Latn, als_Latn, amh_Ethi, sun_Latn, war_Latn,

div_Thaa, yor_Latn, fao_Latn, bak_Cyrl, ilo_Latn, mri_Latn,

asm_Beng, ibo_Latn, kin_Latn, hye_Armn, oci_Latn,

lin_Latn, kir_Cyrl, nep_Deva, cym_Latn, lat_Latn, kat_Geor,

fry_Latn, mya_Mymr, nds_Latn, pnb_Arab, ckb_Arab,

chv_Cyrl, que_Latn, bre_Latn, pus_Arab, che_Cyrl, oss_Cyrl,

nan_Latn, lim_Latn, tuk_Latn, min_Latn, khm_Khmr,

jav_Latn, vec_Latn, jpn_Jpan, snd_Arab, yue_Hani, sco_Latn,

ori_Orya, arg_Latn, kur_Latn, bar_Latn, roh_Latn, aym_Latn,

sah_Cyrl, lmo_Latn, ido_Latn, vol_Latn, uig_Arab, bod_Tibt,

pms_Latn, wuu_Hani, yid_Hebr, scn_Latn, ina_Latn,

xmf_Geor, san_Deva, gla_Latn, mwl_Latn, diq_Latn,

cbk_Latn, szl_Latn, hsb_Latn, vls_Latn, mhr_Cyrl, grn_Latn,

lzh_Hani, mzn_Arab, nap_Latn, ace_Latn, frr_Latn,

eml_Latn, vep_Latn, sgs_Latn, lij_Latn, crh_Latn, ksh_Latn,

zea_Latn, csb_Latn, jbo_Latn, bih_Deva, ext_Latn, fur_Latn.

POS Benchmark Languages:

mal_Mlym, ben_Beng, tel_Telu, mlt_Latn, fra_Latn,



spa_Latn, eng_Latn, rus_Cyrl, deu_Latn, tur_Latn, mar_Deva,

por_Latn, nld_Latn, ara_Arab, zho_Hani, ita_Latn, ind_Latn,

ell_Grek, bul_Cyrl, swe_Latn, ces_Latn, isl_Latn, pol_Latn,

ron_Latn, dan_Latn, hun_Latn, srp_Latn, fas_Arab, ceb_Latn,

heb_Hebr, hrv_Latn, glg_Latn, fin_Latn, slv_Latn, vie_Latn,

slk_Latn, nor_Latn, est_Latn, eus_Latn, lit_Latn, kaz_Cyrl,

lav_Latn, cat_Latn, tha_Thai, ukr_Cyrl, tgl_Latn, sin_Sinh,

gle_Latn, hin_Deva, kor_Hang, urd_Arab, sqi_Latn, bel_Cyrl,

afr_Latn, tat_Cyrl, tam_Taml, amh_Ethi, yor_Latn, fao_Latn,

hye_Armn, cym_Latn, lat_Latn, nds_Latn, bre_Latn,

hyw_Armn, jav_Latn, jpn_Jpan, yue_Hani, gsw_Latn,

sah_Cyrl, uig_Arab, kmr_Latn, pcm_Latn, quc_Latn,

san_Deva, gla_Latn, wol_Latn, sme_Latn, hsb_Latn,

grc_Grek, hbo_Hebr, grn_Latn, lzh_Hani, ajp_Arab,

nap_Latn, aln_Latn, glv_Latn, lij_Latn, myv_Cyrl, bam_Latn,

xav_Latn.

C.2 For Benchmark Performances in Table 4
SR-T Benchmark Languages:

tur_Latn, ell_Grek, bul_Cyrl, ces_Latn, kor_Hang,

zsm_Latn, kat_Geor, fry_Latn, khm_Khmr, yue_Hani,

tuk_Latn, uig_Arab, pam_Latn, kab_Latn, gla_Latn,

mhr_Cyrl, swh_Latn, cmn_Hani, pes_Arab, dtp_Latn

SR-B Benchmark Languages:
tur_Latn, ell_Grek, bul_Cyrl, ces_Latn, kor_Hang,

zsm_Latn, kat_Geor, fry_Latn, khm_Khmr, yue_Hani,

tuk_Latn, uig_Arab, pam_Latn, kab_Latn, gla_Latn,

mhr_Cyrl, swh_Latn, cmn_Hani, pes_Arab, dtp_Latn

NER Benchmark Languages:
eng_Latn, tur_Latn, ell_Grek, bul_Cyrl, ces_Latn,

kor_Hang, kat_Geor, fry_Latn, khm_Khmr, yue_Hani,

tuk_Latn, uig_Arab, gla_Latn, mhr_Cyrl

POS Benchmark Languages:
eng_Latn, tur_Latn, ell_Grek, bul_Cyrl, ces_Latn,

kor_Hang, yue_Hani, uig_Arab, gla_Latn

D Performance - Language Breakdown

In this section we show the benchmark results per
language before continual pre-training (checkpoint
0) and after (checkpoint 4000) for the 6 models
which had continual pre-training (see §5.2).



SR-B for mono-100 Models
Checkpoint 0 Checkpoint 4000

Random-mono-100 OFA-mono-100 HYPEROFA-mono 100 Random-mono-100 OFA-mono-100 HYPEROFA-mono 100

eng_Latn - - - - - -
tur_Latn 5.2 5.6 6.4 8.2 11.2 9.4
ell_Grek 3.8 4.6 5.2 6.8 13.0 12.6
bul_Cyrl 4.8 5.6 3.8 13.8 29.2 28.8
ces_Latn 4.6 7.2 6.4 18.0 17.2 23.0
kor_Hang 3.6 6.0 6.4 7.8 10.6 12.0
kat_Geor 2.8 4.4 4.6 7.0 8.6 10.2
fry_Latn 3.6 5.6 7.2 14.6 16.8 15.4
zsm_Latn 3.8 6.6 6.6 11.8 23.4 20.2
khm_Khmr 2.8 5.8 4.6 3.8 6.2 8.0
jpn_Japn - - - - - -
yue_Hani 1.8 2.4 2.8 4.2 5.8 5.8
tuk_Latn 4.2 4.8 6.8 5.4 6.4 6.0
uig_Arab 2.2 3.2 3.2 4.0 3.8 4.0
pam_Latn 4.2 5.4 5.6 5.2 6.0 6.4
kab_Latn 2.8 2.4 3.6 3.8 5.2 4.2
gla_Latn 2.8 3.8 4.8 4.4 4.4 4.4
mhr_Cyrl 3.6 6.8 7.0 4.2 6.8 6.6
swh_Latn 3.4 5.0 5.0 3.8 4.8 3.6
cmn_Hani 5.8 5.2 3.8 5.0 9.0 8.0
pes_Arab 4.8 7.0 6.4 2.8 3.6 4.0
dtp_Latn 1.8 2.2 2.6 4.6 3.8 4.6

Table 8: Acc at 10 values in SR-B benchmark for Mono 100 models initialized with 3 approaches. Bold values
highlight the best metric for each language.

SR-T for Mono 100 Models
Checkpoint 0 Checkpoint 4000

Random-mono-100 OFA-mono-100 HYPEROFA-mono 100 Random-mono-100 OFA-mono-100 HYPEROFA-mono 100

eng_Latn - - - - - -
tur_Latn 3.2 4.2 5.2 9.4 15.6 8.6
ell_Grek 2.0 2.3 2.4 4.9 16.4 13.5
bul_Cyrl 3.7 4.3 4.4 20.8 48.5 42.1
ces_Latn 4.0 4.7 5.3 19.8 30.4 19.8
kor_Hang 2.8 4.4 4.1 7.4 11.3 8.3
kat_Geor 3.4 5.9 6.2 8.7 14.3 11.7
fry_Latn 19.7 23.7 27.8 40.5 46.8 35.3
zsm_Latn 5.2 9.8 9.6 13.9 34.1 22.3
khm_Khmr 2.6 4.6 4.3 3.9 9.8 6.9
jpn_Japn - - - - - -
yue_Hani 1.8 5.3 4.4 4.7 7.3 4.9
tuk_Latn 7.4 11.3 7.9 15.3 18.2 13.3
uig_Arab 2.1 2.3 2.4 2.3 2.6 2.0
pam_Latn 1.6 2.3 3.0 3.4 3.5 2.8
kab_Latn 2.0 2.2 2.9 2.9 3.4 2.4
gla_Latn 3.4 4.5 4.1 4.1 4.7 4.2
mhr_Cyrl 2.4 3.2 2.5 2.8 4.1 3.5
swh_Latn 11.3 11.5 11.3 13.1 15.6 11.3
cmn_Hani 3.7 4.8 3.7 4.9 9.4 7.5
pes_Arab 2.9 4.2 4.3 2.6 2.9 2.1
dtp_Latn 3.1 3.3 4.0 3.9 5.1 3.5

Table 9: Acc at 10 values in SR-T benchmark for Mono 100 models initialized with 3 approaches. Bold values
highlight the best metric for each language.

NER for Mono 100 Models
Checkpoint 0 Checkpoint 4000

Random-mono-100 OFA-mono-100 HYPEROFA-mono 100 Random-mono-100 OFA-mono-100 HYPEROFA-mono 100

eng_Latn 75.9 75.3 75.4 80.9 80.5 80.6
tur_Latn 32.0 32.8 32.3 47.7 55.9 52.1
ell_Grek 10.7 10.2 9.8 37.0 47.2 45.0
bul_Cyrl 19.0 20.5 24.0 54.3 64.7 65.5
ces_Latn 36.1 37.8 37.4 59.6 61.9 61.4
kor_Hang 11.3 13.8 10.9 17.1 29.2 27.3
kat_Geor 11.9 14.6 14.0 25.9 34.8 30.9
fry_Latn 29.9 30.2 32.0 68.0 70.1 65.9
zsm_Latn - - - - - -
khm_Khmr 17.2 17.4 14.6 30.7 35.9 32.6
jpn_Japn - - - - - -
yue_Hani 7.7 7.4 6.0 9.2 14.3 12.1
tuk_Latn 24.4 25.2 26.9 41.7 40.6 40.0
uig_Arab 14.7 14.6 16.9 20.9 16.4 18.7
pam_Latn - - - - - -
kab_Latn - - - - - -
gla_Latn 25.7 24.9 20.3 45.0 51.5 39.3
mhr_Cyrl 9.4 11.1 8.6 21.6 36.2 36.1
swh_Latn - - - - - -
cmn_Hani - - - - - -
pes_Arab - - - - - -
dtp_Latn - - - - - -

Table 10: F1 scores in NER benchmark for Mono 100 models. Bold values highlight the best metric for the language.



POS for Mono 100 Models
Checkpoint 0 Checkpoint 4000

Random-mono-100 OFA-mono-100 HYPEROFA-mono 100 Random-mono-100 OFA-mono-100 HYPEROFA-mono 100

eng_Latn 94.8 94.9 94.9 95.8 95.8 95.8
tur_Latn 25.7 26.9 26.5 41.9 48.4 49.2
ell_Grek 16.8 18.3 17.2 54.0 75.3 76.5
bul_Cyrl 21.8 24.2 23.1 77.8 82.8 83.7
ces_Latn 25.3 27.0 26.2 78.0 79.4 80.4
kor_Hang 19.9 21.9 20.9 35.6 40.7 40.1
kat_Geor - - - - - -
fry_Latn - - - - - -
zsm_Latn - - - - - -
khm_Khmr 20.9 20.3 23.1 13.2 15.3 10.4
jpn_Japn - - - - - -
yue_Hani 16.8 17.5 17.5 32.7 32.6 30.7
tuk_Latn - - - - - -
uig_Arab - - - - - -
pam_Latn - - - - - -
kab_Latn 20.2 20.9 20.8 31.1 40.7 39.8
gla_Latn - - - - - -
mhr_Cyrl - - - - - -
swh_Latn - - - - - -
cmn_Hani - - - - - -
pes_Arab - - - - - -
dtp_Latn - - - - - -

Table 11: F1 scores in POS benchmark for Mono 100 models. Bold values highlight the best metric for the language.

SR-B for Multi 400 Models
Checkpoint 0 Checkpoint 4000

Random-multi-400 OFA-multi-400 HYPEROFA-multi 400 Random-multi-400 OFA-multi-400 HYPEROFA-multi 400

eng_Latn - - - - - -
tur_Latn 13.6 13.6 15.8 75.4 76.0 76.0
ell_Grek 6.2 6.6 8.2 50.0 49.6 50.8
bul_Cyrl 16.6 15.4 15.6 82.4 82.0 82.4
ces_Latn 15.8 18.4 17.8 73.4 74.6 74.4
kor_Hang 9.8 9.8 9.8 63.2 62.4 62.8
kat_Geor 3.0 4.8 6.2 43.2 44.2 43.8
fry_Latn 5.0 5.6 5.6 49.0 50.0 51.0
zsm_Latn 17.2 18.2 18.6 80.4 84.6 84.4
khm_Khmr 3.6 3.0 4.2 30.8 31.6 31.4
jpn_Japn - - - - - -
yue_Hani 3.0 3.2 3.4 13.6 13.0 12.8
tuk_Latn 5.6 4.4 5.4 46.0 54.4 54.6
uig_Arab 4.6 7.0 6.6 33.8 34.8 34.6
pam_Latn 5.2 4.2 4.4 20.4 21.0 23.2
kab_Latn 3.0 4.0 3.0 8.0 10.4 9.4
gla_Latn 4.0 3.6 4.0 28.6 27.4 25.8
mhr_Cyrl 3.2 3.8 3.6 20.0 25.0 25.2
swh_Latn 8.2 9.6 8.6 34.8 40.0 38.0
cmn_Hani 17.4 17.8 17.2 28.2 30.0 28.2
pes_Arab 14.2 16.4 22.2 28.6 30.4 29.6
dtp_Latn 2.6 2.6 3.4 5.2 5.2 4.6

Table 12: Acc@10 values in SR-B benchmark for Multi 400 models initialized with 3 approaches. Bold values
highlight the best metric for each language.

SR-T for Multi 400 Models
Checkpoint 0 Checkpoint 4000

Random-multi-400 OFA-multi-400 HYPEROFA-multi 400 Random-multi-400 OFA-multi-400 HYPEROFA-multi 400

eng_Latn - - - - - -
tur_Latn 22.8 22.2 23.0 87.7 87.8 87.4
ell_Grek 21.2 21.0 20.3 79.8 80.8 80.2
bul_Cyrl 34.4 35.7 36.1 88.3 88.1 88.2
ces_Latn 25.3 25.3 25.5 83.2 84.6 83.4
kor_Hang 21.1 21.3 21.4 79.3 79.1 78.9
kat_Geor 12.1 13.1 12.1 63.5 64.6 64.6
fry_Latn 35.3 33.5 33.0 84.4 86.7 83.8
zsm_Latn 31.4 32.2 32.7 90.5 91.4 90.7
khm_Khmr 5.0 4.6 5.3 51.8 52.6 52.4
jpn_Japn - - - - - -
yue_Hani 22.1 22.5 22.3 63.8 59.4 64.9
tuk_Latn 14.3 15.3 14.3 48.8 51.2 51.2
uig_Arab 7.0 8.0 7.8 54.2 56.3 57.2
pam_Latn 4.4 4.8 4.5 7.0 7.8 7.5
kab_Latn 2.5 3.6 3.1 7.9 7.4 8.9
gla_Latn 5.4 5.3 5.3 33.2 36.1 33.2
mhr_Cyrl 2.8 3.2 3.6 17.8 20.2 22.5
swh_Latn 21.0 20.5 20.5 35.4 36.4 36.2
cmn_Hani 33.1 33.5 32.9 65.0 60.7 62.5
pes_Arab 27.2 28.5 27.6 59.3 57.4 63.1
dtp_Latn 3.6 4.1 3.5 5.7 6.3 5.4

Table 13: Acc@10 values in SR-T benchmark for Multi 400 models initialized with 3 approaches. Bold values
highlight the best metric for each language.



NER for Multi 400 Models
Checkpoint 0 Checkpoint 4000

Random-multi-400 OFA-multi-400 HYPEROFA-multi 400 Random-multi-400 OFA-multi-400 HYPEROFA-multi 400

eng_Latn 78.1 78.4 77.9 81.3 81.2 81.3
tur_Latn 55.9 59.2 58.3 72.8 72.8 72.0
ell_Grek 58.1 56.8 59.6 70.6 69.3 70.2
bul_Cyrl 63.7 64.4 64.3 76.9 76.4 76.0
ces_Latn 61.7 61.2 61.5 75.9 75.8 76.0
kor_Hang 39.8 41.2 41.1 48.5 48.8 49.1
kat_Geor 48.9 52.1 53.1 62.2 62.3 62.9
fry_Latn 56.3 58.8 56.6 78.1 78.4 76.9
zsm_Latn - - - - - -
khm_Khmr 36.1 37.3 33.5 45.2 43.5 47.1
jpn_Japn - - - - - -
yue_Hani 20.7 20.0 23.8 16.2 23.8 21.0
tuk_Latn 30.2 34.3 35.5 56.7 57.9 55.7
uig_Arab 28.2 34.6 34.8 48.2 47.0 45.5
pam_Latn - - - - - -
kab_Latn - - - - - -
gla_Latn 37.5 39.2 38.0 56.8 55.9 61.7
mhr_Cyrl 27.8 23.7 27.5 48.3 51.0 51.1
swh_Latn - - - - - -
cmn_Hani - - - - - -
pes_Arab - - - - - -
dtp_Latn - - - - - -

Table 14: F1 scores in NER benchmark for Multi 400 models initialized with 3 approaches. Bold values highlight
the best metric for each language.

POS for Multi 400 Models
Checkpoint 0 Checkpoint 4000

Random-multi-400 OFA-multi-400 HYPEROFA-multi 400 Random-multi-400 OFA-multi-400 HYPEROFA-multi 400

eng_Latn 95.3 95.4 95.3 95.8 95.8 95.8
tur_Latn 62.4 61.5 62.4 71.4 71.4 71.3
ell_Grek 84.6 83.4 84.0 86.0 85.9 86.0
bul_Cyrl 85.9 85.6 86.1 87.8 88.0 88.0
ces_Latn 74.3 73.9 73.0 82.7 82.7 82.5
kor_Hang 52.0 52.2 52.5 52.4 52.6 52.5
kat_Geor - - - - - -
fry_Latn - - - - - -
zsm_Latn - - - - - -
khm_Khmr - - - - - -
jpn_Japn - - - - - -
yue_Hani 40.2 25.5 28.6 27.2 27.3 27.1
tuk_Latn - - - - - -
uig_Arab 58.8 57.5 57.9 69.2 68.9 68.9
pam_Latn - - - - - -
kab_Latn - - - - - -
gla_Latn 31.7 31.4 33.6 60.4 60.7 60.6
mhr_Cyrl - - - - - -
swh_Latn - - - - - -
cmn_Hani - - - - - -
pes_Arab - - - - - -
dtp_Latn - - - - - -

Table 15: F1 scores in POS benchmark for Multi 400 models initialized with 3 approaches. Bold values highlight
the best metric for the language.
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