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ABSTRACT

Evaluating models on large benchmarks can be very resource-intensive, especially during a
period of rapid model iteration. Existing efficient evaluation methods approximate the per-
formance of target models by assessing them on a small static coreset derived from publicly
available evaluation results of source models. However, these approaches rely on the assump-
tion that each target model has a high prediction consistency with source models, which doesn’t
generalize well in practice, leading to inaccurate performance estimates. To fill this gap, we pro-
pose TAILOREDBENCH, a method that provides customized evaluations tailored to each target
model. Specifically, a Global-coreset is first constructed as a probe to identify the most consis-
tent source models for the target models with an adaptive source model selection strategy. Af-
terwards, a scalable K-Medoids clustering algorithm is proposed to extend the Global-coreset to
tailored Native-coreset for each target model. According to the predictions on respective Native-
coreset, we estimate the overall performance of target models with a calibrated restoration strat-
egy. Comprehensive experiments on five benchmarks across over 300 models demonstrate that
compared to best performing baselines, TAILOREDBENCH achieves an average reduction of
24.8% in MAE of accuracy estimates, showcasing strong effectiveness and generalizability.

1 INTRODUCTION

Scaling up models to larger size has led to remarkable advancements in their capabilities (Touvron et al., 2023;
Ouyang et al., 2022), which also presents significant challenges for efficiently assessing them. For instance, Liang
et al. (2022a) reported that evaluating a model with approximately 10 billion parameters on the HELM leaderboard
can cost over $1,700 via APIs or more than 1,200 GPU hours. Moreover, such overhead needs to be multiplied
by X when determining optimal training configurations during the development phase or selecting the best model
and inference settings during the deployment phase among X candidates.

To achieve efficient evaluation, some studies (Vivek et al., 2024; Polo et al., 2024) have explored the following
paradigm: step 1. constructing example representations according to the predictions from a set of source models
(which are freely available for many popular leaderboards1,2,3) ; step 2. clustering the whole benchmark and
selecting the cluster centroids to form a coreset (typically no more than 100 examples); step 3. approximating the
performance of target models under evaluation on the whole benchmark based on their predictions on the coreset.
This paradigm is built upon the assumption that the predicted probability of the correct class is strongly correlated
across models for many dozens of examples from a given benchmark. Thus, if the source models’ predictions
on example a and b exhibit a similar trend, then such similarity is expected to generalize to the target model —
testing the target model solely on example a is sufficient to predict its result on b.

Nevertheless, we find that such generalizability between source and target models does not necessarily hold.
Following ANCHORPOINT (Vivek et al., 2024), we construct an M -dimensional representation vector based on
the correctness of M source models for each example and visualize them using t-SNE algorithm (Van der Maaten
& Hinton, 2008). The closer two examples are, the more similar the source models perform on them (Figure 1a).
Therefore, the cluster centroids (marked as stars) are selected to represent each cluster and form the coreset.
However, when representing the examples using the predictions of target models (Figure 1b), the examples in the
original coreset are no longer able to represent the corresponding clusters perfectly, indicating a moderate level of
prediction consistency among source and target models. This lack of generalizability results in the performance
of target models on the coreset failing to approximate their true performance accurately.

To address the aforementioned issue, we propose the TAILOREDBENCH method, which adaptively constructs
model-specific evaluation coreset through a hybrid of priors and posteriors, enabling accurate and efficient evalu-
ation. Specifically, we first construct a static G-set (Global-coreset) based on the metric of all the source models,

1https://huggingface.co/open-llm-leaderboard
2https://rank.opencompass.org.cn
3https://crfm.stanford.edu/helm

1

https://huggingface.co/open-llm-leaderboard
https://rank.opencompass.org.cn
https://crfm.stanford.edu/helm


058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

Under review as a conference paper at ICLR 2025

llama-3-8B

Qwen2-72B

GPT-4o

𝑥! 𝑥" 𝑥#…

0.72 0.85 0.50

0.62 0.90 0.78

0.89 0.95 0.67

…

…

…

… … …

…

Benchmark 𝒟

𝒟𝒮

Source Models 𝒮

�̇�!𝒮 �̇�"𝒮 �̇�%𝒮𝒟𝒮[ ]…|𝒟&𝑠 Embedding by 𝒮

Inertia=60596

(a) Hellaswag under the representation of DS .

Phi-3-mini

Mistral-7B

Yi-34B

0.78 0.62 0.47

0.87 0.86 0.60

0.93 0.76 0.77

…

…

…

… … …

…

𝒟𝒯

Target Models 𝒯

�̇�"𝒯 �̇�#𝒯 �̇�$𝒯𝒟𝒯[ ]…|𝒟%𝑠 Embedding by 𝒯

Inertia=74875

(b) Hellaswag under the representation of DT .

Figure 1: The t-SNE visualization results of the Hellaswag benchmark under the metrics of source (above) and
target (below) models’ predictions. The larger inertia (sum of the sample distances to their cluster centers) below
shows that the centroids obtained with the representations of source models are no longer capable to represent the
whole benchmark for target models.

grounded on the prior that models generally share a moderate prediction consistency as discussed above. By
applying an adaptive source model selection strategy, the predictions of target models on the G-set are used as
a probe to select a Native Source Model set for each target model that has stronger prediction consistency with
them. Based on this posterior, we design a scalable K-Medoids clustering technique to expand the G-set into an
N-set (Native-coreset) for each target model, according to the representations under the metric of corresponding
native source models. Finally, we approximate the overall performance of target models by employing a calibrated
restoration strategy based on their predictions on the N-set.

We conduct extensive experiments on five benchmarks across more than 300 models, involving tasks in the fields
of natural language and multi-modality. The experimental results demonstrate that compared to non-customized
efficient evaluation baselines, TAILOREDBENCH can more accurately reflects the true performance of models
(attain an average of 24.8% MAE degradation improvement on accuracy) under the same small-size inference
budgets (generally 20˜40 examples). Our contributions are summarized as follows:

1. We analyze that the existing efficient evaluation methods overestimate the prediction consistency across
models, thus the static coreset they construct based on all the source models may fail to assess the target
models accurately.

2. We propose TAILOREDBENCH method to conduct tailored evaluation on adaptively constructed N-set
for each target model to attain more accurate evaluation results.

3. We conduct comprehensive experiments and analyses on multiple settings to validate the excellent effec-
tiveness and strong generalizability of TAILOREDBENCH.

2 TAILOREDBENCH APPROACH

The TAILOREDBENCH method is founded on the principle of dynamically selecting the source models with high-
est prediction consistency and constructing N-set that can represent the whole benchmark for each target model.
The core designs throughout the process are constructing the G-set (§2.2), selecting the native source models
(§2.3), developing the N-set (§2.4), and estimating the overall performance (§2.5).

2
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Figure 2: Overview of TAILOREDBENCH.

2.1 TASK SET-UP

Let D = {(xk, yk)}Kk=1 represents a benchmark for evaluating, where xk is the input given to the model and yk
is the expected output. We define the set of target models to be evaluated as T = {ψm}Mm=1, and a distinct set of
source models as S = {φn}Nn=1, which we have access to their predictions across all examples in D. Our goal is
to accurately estimate the performance P̂ψm of each target model ψm and the ranking relationship across T with
minimal model inference cost.

2.2 CONSTRUCTING G-SET

The G-set is designed as a probe for each target model to identify a set of source models with the highest prediction
consistency. Thus, it is expected to be small yet representative of the benchmark and generalizable to any target
models. To this end, we embed each example based on the correctness of its answers from every source model
in the source model set, denoted as DS = {ẋSk }Kk=1, where the dot above means that ẋ is a vector, and the
superscript S indicates the model set that providing the correctness for each example, comprising the dimension
of the example vector. The correctness used for encoding can either be a continuous value which reflecting
the degree of model’s correctness on each example (e.g., model’s confidence) or a discrete binary value {0, 1}
indicating whether the model answered the question correctly, we will illustrate that our method naturally adapts
to various formats of correctness in §3.1. Based on the DS we obtained, we employ K-Medoids clustering and the
target function for obtaining G-set can be formulated as:

min
G

|G|∑
g=1

∑
ẋk∈Cg

DIST(ẋSg , ẋ
S
k )

where ẋSg =
([
cφn,xg

]N
n=1

)⊤
=


cφ1,xg
cφ2,xg

...
cφN ,xg

 , ẋSk =
(
[cφn,xk ]

N

n=1

)⊤
=


cφ1,xk
cφ2,xk

...
cφN ,xk


(1)

In Eq. 1, xg is the example in G = {xg}|G|g=1(G-set), Cg is the cluster whose centroid is g. xk represents the
example belongs to Cg , having stronger correlation with other examples from other clusters. cφn,xg and cψn,xk

3
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represent the correctness of models φn on example xg ∈ G and xk ∈ D, respectively. DIST is the distance we use
in clustering. In practice, we employ the Partitioning Around Medoids (PAM) algorithm (Kaufman & Rousseeuw,
2009), a typical K-medoids algorithm for the rapid and efficient optimization to solve this objective function.

2.3 ADAPTIVE NATIVE SOURCE MODEL SELECTION

To construct the Native Source Model Set Sψm for each target model ψm ∈ T , we propose an ADAPTIVE NATIVE
SOURCE MODEL SELECTION strategy. This approach dynamically selects a subset of source models that exhibit
the highest prediction consistency with the target model, ensuring that the subsequent tailored benchmark can
accurately estimate the model performance.

To implement this strategy, we begin by obtaining the prediction results of both source and target models on the
G-set G, which serves as a posterior. For each source model φn ∈ S and target model ψm ∈ T , we define their
correctness vectors on the G-set as:

φ̇G
n =

([
cφn,xg

]|G|
g=1

)⊤
=


cφn,x1

cφn,x2

...
cφn,x|G|

 , ψ̇G
m =

([
cψm,xg

]|G|
g=1

)⊤
=


cψm,x1

cψm,x2

...
cψm,x|G|

 (2)

Here, the superscript G indicates that correctness is evaluated on the examples in the G-set, and each correctness
vector captures the model’s performance across all examples in G. With the correctness vectors established, we
proceed to determine the threshold for the number of Native Source Models by computing the distances between
the correctness vectors of all models on the G-set:

dij = DIST(ϕ̇Gi , ϕ̇
G
j ) (3)

where i, j ∈ range(|S ∪T |) and ϕ represents any model. Next, we calculate the average prediction consistency d̄
across all model pairs, which serves as a threshold for selecting source and target model pairs with high prediction
consistency:

d̄ =
2

(N +M)(N +M − 1)

∑
i<j

dij (4)

where the summation is over all unique pairs i < j. Finally, we calculate the average number of source models
whose consistency with target model exceeds threshold d̄, denoted as n̄, to be the optimal number of source models
for the target models:

n̄ =

⌊
1

M
|{(φ̇G

n, ψ̇
G
m)|DIST(φ̇G

n, ψ̇
G
m) < d̄}|

⌋
(5)

In this expression, n̄ is adaptive and varies with different benchmarks and models, representing the near-optimal
number of Native Source Models for each target model.

2.4 DEVELOPING N-SET

After selecting Native Source Models, we leverage the existing result of Sψm to construct the most representative
N-set for each target model ψm. Meanwhile, we hope to construct the N-set based on G-set so as to sufficiently
utilize the target models’ existing predictions on the G-set. However, current K-Medoids Clustering algorithms are
inapplicable in this scalable scenario, for which we design a SCALABLE K-MEDOIDS CLUSTERING algorithm
that can extend the G-set into the N-set.

For each target model ψm, the example xk ∈ D is represented by a feature vector based on the correctness of the
Native Source Models Sψm .

ẋ
Sψm
k = [cφ1,xk , cφ2,xk , . . . , cφn̄,xk ]

⊤ (6)

Our Scalable K-Medoids Clustering algorithm proceeds as follows:

• Initialization: Fix the examples corresponding to the G-set G as part of the initial medoids. If the desired size
of the N-set is |N | and the G-set contains |G| examples, then randomly select |N | − |G| additional examples from
D \ G to complete the set of initial medoids.

• Assignment Step: Assign each example xk ∈ D to the cluster Cµ with the nearest medoid xµ:

xk ∈ Cµ where µ = argmin
µ

DIST
(
x
Sψm
µ , x

Sψm
k

)
(7)

• Medoid Update: For each cluster Cµ corresponding to a non-G-set medoid, update the medoid xµ by selecting
the example within Cµ that minimizes the total distance to all other examples in the cluster, where the medoids

4
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corresponding to G-set examples remain fixed and are not updated:

xµ = arg min
xi∈Cµ

∑
xj∈Cµ\xi

DIST
(
x
Sψm
i , x

Sψm
j

)
(8)

• Convergence Check: Repeat the assignment and medoid update steps until convergence, i.e., when the medoids
no longer change or a maximum number of iterations is reached.

By incorporating the G-set into the medoids and fixing them during updates, we ensure that the G-set examples
are integral to the clustering process, influencing the formation of clusters and the selection of additional N-set
examples.

2.5 ESTIMATING TRUE PERFORMANCE

After constructing the N-set Nψm for target model ψm, we evaluate ψm on the examples in Nψm\ G, since ψm
has already been evaluated on G. The most straightforward way to estimate the performance of target model based
on predictions on the N-set is to calculate the corresponding accuracy as an estimate of its overall performance.
However, this method can overlook the size of the cluster that each example in the N-set represents. To this
end, we apply a CALIBRATED RESTORATION strategy. Specifically, the performance P̂ψm of ψm on the entire
benchmark D is estimated by weighting the performance on the N-set according to the proportion of examples
represented by each cluster:

P̂ψm =

|N |∑
µ=1

(
|Cµ|
|D|

· cψm,xµ
)

(9)

In this way, the cluster size bias can be well calibrated and P̂ψm can be seen as an unbiased estimate of target
model ψm.

2.6 THE ELEMENT-WISE DISTANCE

Previous work employs correlation distance to estimate the consistency between examples, operating under the
assumption that scoring patterns between models or examples exhibit linear trends. However, this approach can
encounter limitations, particularly when attempting to establish linear relationships between discrete numerical
embeddings across different models, often resulting in a significant decline in performance. In contrast, the
TAILOREDBENCH utilizes element-wise distance metrics, such as Manhattan distance and cosine similarity, to
effectively capture individual discrepancies in correctness vectors without relying on a strict linear relationship.
Our experiments in Table 7 demonstrate that element-wise metrics outperform correlation distance in constructing
representative G-sets and N-sets, as well as in selecting Native Source Models. Consequently, we use Manhattan
distance as the primary DIST metric in the TAILOREDBENCH method.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Benchmarks and Models To evaluate the effectiveness and generalizability of TAILOREDBENCH, we conduct
experiments on five diverse benchmarks, involving tasks in the fields of natural language and multi-modality:

• ARC-Challenge (Clark et al., 2018): Consists of 1,172 grade-school science questions requiring scientific
reasoning. We collect the outputs of 153 models on this benchmark.

• HellaSwag (Zellers et al., 2019): Contains over 10,000 validation examples for commonsense inference. For
computational efficiency, we use the first 6,000 examples and gather the outputs of 139 models on this subset.

• GSM8K (Cobbe et al., 2021): Includes 1,319 grade-school math problems designed to test mathematical rea-
soning. We summarize the evaluation results of 150 models on this benchmark.

• Winogrande (Sakaguchi et al., 2021): Comprises 1,267 examples presenting challenging pronoun resolution
tasks in commonsense reasoning. We summarize the evaluation results of 150 models on this dataset.

• POPE (Li et al., 2023): Contains 5,127 examples aimed at evaluating hallucination in multimodal models. We
summarize the evaluation results of 99 models on this benchmark.

In our method, the correctness for each model can be either the output or the evaluation result on each specific ex-
ample, represented as either continuous scores or discrete values. For ARC-Challenge and HellaSwag benchmark,
we utilize continuous values representing the models’ confidence in the correct option. For GSM8K, Winogrande,

5
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Table 1: Results on ARC-Challenge benchmark. Values in bold underlined represent the best and the second-best
results respectively. If the bold value is not marked with ∗, it signifies that it is statistically significantly better than
the second-best value (p− value < 0.05). This applies to all tables below.

Inference Count
20 25 30 35 40

τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

RANDOM 0.626 0.078 0.659 0.065 0.676 0.067 0.694 0.062 0.712 0.057
ANCHOR POINTS 0.662 0.064 0.663 0.058 0.676 0.053 0.713 0.048 0.714 0.043
GP-IRT 0.589 0.046 0.620 0.046 0.662 0.036 0.681 0.036 0.695 0.029
TAILOREDBENCH 0.705 0.029 0.731 0.027 0.748 0.026 0.756 0.025 0.767 0.024

Table 2: Results on Hellaswag benchmark.

Inference Count
20 25 30 35 40

τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

RANDOM 0.811 0.083 0.836 0.077 0.850 0.066 0.863 0.060 0.871 0.058
ANCHOR POINTS 0.860 0.060 0.880 0.061 0.877 0.067 0.897 0.059 0.898 0.057
GP-IRT 0.724 0.062 0.776 0.053 0.810 0.043 0.827 0.038 0.849 0.032
TAILOREDBENCH 0.898 0.020 0.906 0.018 0.910 0.017 0.911 0.017 0.916 0.016

Table 3: Results on GSM8k benchmark.

Inference Count
20 25 30 35 40

τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

RANDOM 0.811 0.062 0.828 0.055 0.839 0.052 0.847 0.049 0.858 0.044
ANCHOR POINTS 0.786 0.087 0.791 0.079 0.796 0.073 0.800 0.071 0.799 0.071
GP-IRT 0.787 0.055 0.807 0.047 0.829 0.041 0.842 0.038 0.858 0.034
TAILOREDBENCH 0.851 0.041 0.853 0.039 0.862 0.036 0.866 0.035 0.879 0.032

Table 4: Results on Winogrande benchmark.

Inference Count
20 25 30 35 40

τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

RANDOM 0.373 0.078 0.408 0.067 0.446 0.062 0.470 0.055 0.492 0.052
ANCHOR POINTS 0.472 0.086 0.487 0.085 0.514 0.075 0.521 0.087 0.518 0.073
GP-IRT 0.263 0.041 0.313 0.038 0.353 0.038 0.392 0.036 0.419 0.034
TAILOREDBENCH 0.543 0.032 0.561 0.031 0.588 0.028 0.588 0.027 0.605 0.025

Table 5: Results on POPE benchmark.

Inference Count
20 25 30 35 40

τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

RANDOM 0.488 0.058 0.510 0.054 0.507 0.048 0.515 0.044 0.547 0.040
ANCHOR POINTS 0.474 0.040 0.483 0.038 0.518 0.034 0.547 0.033 0.556 0.031
GP-IRT 0.481 0.038 0.470 0.037 0.462 0.036 0.482 0.034 0.477 0.033
TAILOREDBENCH 0.509 0.043 0.526 0.041 0.531∗ 0.043 0.547∗ 0.038 0.551 0.039
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and POPE benchmark, we use discrete values in {0, 1} as the correctness, where 1 indicates a correct answer and
0 indicates an incorrect answer.

All models evaluated on ARC-Challenge, HellaSwag, GSM8K, and Winogrande are sourced from the Open LLM
Leaderboard (Beeching et al., 2023). The models and data for the POPE benchmark are obtained from the Open-
Compass Leaderboard (Contributors, 2023). For each benchmark, we randomly and evenly partition the models
into source and target model sets.

Baseline and Evaluation Metrics We compare our TAILOREDBENCH method against three baselines: Random
Sampling, Anchor Points (Vivek et al., 2024), and gp-IRT (Polo et al., 2024). The Random Sampling randomly
selects a subset of examples from the benchmark to estimate model performance, serving as a basic reference
point. Anchor Points uses K-Medoids to select a fixed set of representative examples based on the source models
to estimate the performance of target models. gp-IRT method employs an Item Response Theory model trained
on the predictions of the source models to estimate target models’ performance on the full benchmark. Similar to
our approach, we train the gp-IRT model using the predictions of the same set of source models and estimate the
performance of the same set of target models. We evaluate the performance of these methods with two metrics:
Kendall’s τ Correlation Coefficient and Mean Absolute Error (MAE). Kendall’s τ measures the ordinal association
between the estimated and true model rankings, effectively capturing how well our method preserves the relative
performance order of the target models. MAE quantifies the average absolute difference between the estimated
and true performance scores, assessing the precision of our method in estimating individual model performances.

3.2 EXPERIMENT ANALYSES

TailoredBench: Effective Ranking and Estimation of Model Performances. Tables 1 to 5 present a com-
prehensive comparison between our TAILOREDBENCH method and baseline approaches across all benchmarks.
Among these tables, bolded results indicate the best performance in each column, while underlined results repre-
sent the second-best performance. In our experiments, we allocated 10 examples to the G-set and averaged the
outcomes over 100 randomized trials to ensure statistical reliability. The objective is to evaluate and compare the
performance of our method against established baseline methods across varying inference counts. Specifically, the
inference count—defined as the number of examples in the N-set for our method—is varied between 20 and 40.
As presented in the accompanying tables, within the inference count range of 20 to 40, our method consistently
outperforms the baseline approaches based on Kendall’s τ metric. The improvement highlights our method’s su-
perior capability in accurately reconstructing the ranking of target models’ capabilities using a limited amount of
evaluation data.

Furthermore, our approach demonstrates consistent superiority over the baselines in terms of the Mean Absolute
Error (MAE) metric across all benchmarks. On average, our method achieves a 24.8% reduction in estimation
MAE loss, indicating a more precise estimation of the target models’ actual performance. Notably, compared to the
static AnchorPoints method, our MAE is typically reduced by half. This underscores our method’s effectiveness in
identifying a more representative N-set for each target model, thereby enhancing estimation accuracy. We further
calculated the accuracy of our method in ranking the performance between every pair of target models. The results
show that the accuracy reached 95.9% on the Hellaswag benchmark and 92.8% on the GSM8K benchmark.

The variance comparison between our method and the baselines is detailed in Appendix A, revealing that our
method exhibits significantly lower variance. This lower variance signifies a higher level of robustness and con-
sistency in our method’s performance compared to the baseline approaches.

Moreover, results marked with an ∗ in our tables denote instances where a one-sided Z-test is conducted on the
outcomes of 100 repeated experiments using our method versus 100 experiments with the baseline method. In
these cases, the p-value for the hypothesis that our method’s results are greater than those of the baseline exceeds
0.05. This indicates that, in these instances, we cannot statistically confirm that our method outperforms the
baseline.

𝜏 𝜏

Figure 3: Analyses of Native Source Model Quantity and Prediction
Consistency on GSM8k Benchmark.

Impact of Native Source Model Selec-
tion on Method Performance. In this
section, we analyze the impact of the
number of Native source models and the
prediction consistency between the Native
source models and the target models on
our method. In the left panel of Figure
3, we maintain the overall prediction con-
sistency between the Native source models
and the target models constant, while vary-
ing the proportion of the source models
designated as Native Source Models from
20% to 100% for the target models. It is
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evident that when the inference count ranges from 20 to 40, the performance of our method progressively im-
proves with the increase in the number of Native Source Models. This is because, as the feature length increases,
there is a greater possibility of reducing the noise impact caused by the prediction inconsistency between the
source and target models. Dually, in the right panel of Figure 3, we demonstrate the performance of our method
with a fixed number of Native Source Models, selecting those whose prediction consistency is ranked in the top
20%, 20%˜40%, up to 80%˜100% to the target model. The horizontal axis in this figure represents the Top Consis-
tency Percentile, corresponding to these prediction consistency ranking ranges. It can be observed that across all
inference counts, the performance decreases as the prediction consistency between the Native Source Models and
the target model diminishes. Additional results on more benchmarks are provided in Appendix B and C. In sum-
mary, both the number of native source models and their prediction consistency with the target model significantly
impact the performance of the method. This underscores the necessity of selecting source models that exhibit the
highest prediction consistency with the target model while balancing the effects of the number of selected source
models. Subsequently, we will demonstrate that TAILOREDBENCH can adaptively select an optimal set of Native
Source Models for each target model, achieving near-optimal results.

𝜏

Figure 4: Effect of the Number of Native Source Models in Our Method on GSM8k Benchmark.

TailoredBench Method Adaptively Selects Optimal Native Source Model Sets. Figure 4 illustrates the
performance of our method on the GSM8k benchmark when selecting Source Models with the top-k prediction
consistency to the target model as the Native Source Models. The results show that Kendall’s τ coefficient initially
increases and then decreases as the number of Native Source Models grows, while the MAE shows an initial
decrease followed by an increase. This phenomenon corresponds to what we observed in Figure 3. Specifically,
when only a small number of Native Source Models are selected, despite their high prediction consistency to
the target model, the limited quantity introduces more noise during the clustering of benchmarks constructed
from embeddings provided by these models, thereby reducing clustering performance. Increasing the number of
selected Native Source Models alleviates this issue and enhances performance until an optimal point is reached.

However, selecting too many Native Source Models gradually incorporates models with lower prediction con-
sistency to the target model, which degrades the method’s effectiveness. Our method effectively addresses this
problem by adaptively selecting the near-optimal number of Native Source Models for all benchmarks. For in-
stance, as shown in Figure 4, our approach selects the 40 Native Source Models for each target model on the
GSM8k benchmark, achieving nearly optimal performance. Further experiments pertaining to this section are
detailed in Appendix D.

Table 6: Impact of G-set Size on Performance Across Benchmarks.

|G-set| ARC-Challenge Hellaswag GSM8k Winogrande POPE
τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

5 0.711 0.029 0.912 0.018 0.842 0.042 0.613 0.031 0.534 0.044
10 0.748 0.027 0.910 0.017 0.862 0.036 0.588 0.028 0.531 0.043
15 0.747 0.026 0.913 0.016 0.845 0.041 0.598 0.029 0.546 0.041
20 0.740 0.026 0.913 0.017 0.842 0.042 0.610 0.029 0.529 0.039
25 0.722 0.027 0.908 0.018 0.851 0.040 0.639 0.030 0.533 0.042
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10 Examples are Sufficient for the Probe. We conducted an ablation study to examine the impact of the
number of examples in the G-set on our method’s performance. We fixed the number of examples in the N-
set at 30 and varied the number of examples in the G-set from 5 to 25, evaluating across all benchmarks. The
experimental results are presented in Table 6. We observe that, overall, as the number of examples in the G-set
increases, the Kendall’s τ coefficient exhibits a trend of initially increasing and then decreasing, while the MAE
first decreases and then increases. This result is reasonable because when the G-set contains a small number
of examples, it cannot fully capture the prediction consistency relationships between the source model set and
the target model set. This limitation hinders the selection of the most appropriate N-set for each target model,
leading to a decline in performance. As the number of examples in the G-set increases, this issue is gradually
alleviated. However, when the G-set contains too many examples, as illustrated in Figure 1, the G-set may not
be the most representative in the new feature space. Moreover, since the N-set includes few points beyond those
from the G-set, the N-set constructed for each target model becomes less representative, resulting in a decrease in
performance.

Element-Wise Distance Effectively Facilitates Handling Various Data Forms. Our method utilizes Element-
Wise Distance, specifically the manhattan distance, enabling it to process both continuous and discrete values
effectively. As shown in Table 3, the performance of the AnchorPoints method on the GSM8K dataset is substan-
tially lower than that of our method and even falls below that of the RANDOM method. We further conduct the
experiment on the distance in Table 7 under the inference count of 30, showing that the Element-wise Distance,
like cosine similarity and Manhattan distance, can outperform the correlation distance on all benchmarks.

Table 7: Performance Evaluation Across Different Distance Measures.

Distance ARC-Challenge Hellaswag GSM8k Winogrande POPE
τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

CORRELATION 0.745 0.031 0.895 0.022 0.819 0.051 0.519 0.072 0.511 0.053
COSINE 0.740 0.032 0.911 0.021 0.825 0.044 0.610 0.030 0.562 0.034
MANHATTAN 0.748 0.026 0.910 0.017 0.862 0.036 0.588 0.028 0.531 0.043

Performance with Larger Inference Count On the HellaSwag Benchmark. To further explore the capa-
bilities of our method when utilizing more examples, we conducted additional experiments on the HellaSwag
benchmark using the first 6,000 examples and more inference count. As shown in Table 8, when the inference
count is increased to 50, 100, and up to 150, our method more effectively ranks the performance of the target
models and accurately reconstructs their capabilities.

Table 8: Performance of our method on the Hellaswag benchmark with the higher inference count.

Inference Count 50 100 150
τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

RANDOM 0.887 0.053 0.920 0.038 0.935 0.030
ANCHORPOINTS 0.915 0.046 0.931 0.040 0.940 0.040
GP-IRT 0.869 0.026 0.915 0.015 0.936 0.012
TAILOREDBENCH 0.919 0.016 0.934 0.013 0.943 0.011

4 RELATED WORKS

Models Correlation in Predictive Consistency: Prior works (Miller et al., 2021; Awadalla et al., 2022; Liang
et al., 2022b) have demonstrated a certain level of correlation between in-distribution (ID) and out-of-distribution
(OOD) performances across diverse models and tasks. Building on this foundation, Baek et al. (2022) and Mehra
et al. (2024) advance this relationship by showing the phenomenon that the agreement between two models on
ID data is linearly correlated with their agreement on OOD data, where the accuracy holds the similar linear rela-
tionship, enabling accurate estimation of model’s OOD accuracy based solely on ID data. Our work extends this
phenomenon to address the challenge of benchmark compression, enabling the selection of more representative
subsets for benchmarks.

Coreset Selection for Efficient Benchmarking: As LLMs proliferate and version updates accelerate, the cost
of thoroughly evaluating each model across all benchmarks has become prohibitive, leading to methods that

9
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subsample the most representative subsets from each benchmark for more efficient evaluation. Vivek et al. (2024)
clusters examples directly using the confidence scores provided by source models, leveraging these scores to select
an optimal subset. Similarly, Polo et al. (2024) employs an Item Response Theory (IRT) model, trained on the
success matrix of each source model across various examples, to derive the latent representations of examples for
clustering. Perlitz et al. (2023) proposes Flash-HELM, which dynamically adjusts the sizes of randomly selected
subsets based on model ranking, where higher-ranked models are evaluated with greater precision. Prabhu et al.
(2024) proposes the Sort & Search (S&S) strategy, which leverages the difficulties of examples and dynamic
programming to select the coreset. Xu et al. (2024) aggregates all methods above and dynamically chooses the
optimal subset selection method for each benchmark but requires many examples to determine the best approach.
Despite these advancements, these methods often struggle with substantial distribution shifts between the source
and target models, caused by the discrepancy between their predictive consistency, potentially causing significant
distortion in estimating the target model’s performance. Extending the approach of Vivek et al. (2024), our work
alleviates this issue by dynamically selecting a native source model set with the highest prediction consistency
to the target model, ensuring the selection of a tailored coreset for each target model that best represents the
benchmark.

Scaling Approaches for Model Performance Estimations: Scaling law describes the relationship between
model properties (e.g., FLOPs used during training, model parameter size) and model capabilities. Recent works
(Hu et al., 2023; Ruan et al., 2024; Isik et al., 2024) have leveraged scaling laws to predict model performance on
various downstream tasks, reducing the computational cost of evaluating models on complex downstream tasks.
Zhang et al. (2024) simplifies those approaches by utilizing the relationships between model families and their
collaborative overall performance across tasks rather than fitting scaling laws. The aforementioned methods typ-
ically rely on overall model performance across several benchmarks and specific design factors (e.g., model size
or training data properties) to either fit scaling curves or investigate correlations between models on various tasks.
In contrast, our approach addresses a more general case by reducing the evaluation cost for multiple models on a
single benchmark, offering a more efficient performance estimation framework.

5 CONCLUSIONS

In this paper, we propose the TAILOREDBENCH method, which mainly includes an adaptive source model set
selection strategy, a scalable K-Medoids clustering algorithm and a calibrated restoration strategy. Abandoning
the one-size-fits-all approach, we have customized the evaluation on the constructed native coreset for each tar-
get model. This approach enables a more accurate reconstruction and ranking of the model’s performance on
the benchmark. Comprehensive experiments show that TAILOREDBENCH can achieve more accurate model
evaluation (an average of 24.8% estimation MAE loss degradation) with only twenty inference costs.

Limitations: A primary limitation of mainstream approaches in benchmark compression, including Vivek et al.
(2024), Polo et al. (2024), and our method, is their dependence on comprehensive evaluation results from existing
models across all examples within a benchmark. As described above, these results are typically readily accessible
through public leaderboards. However, for new benchmarks or certain private benchmarks, obtaining initial model
performance results is necessary, which introduces additional inference overhead. Nonetheless, we maintain that
this initial cost is justified, as it is offset by the significant resource savings achieved through numerous subsequent
rapid evaluations facilitated by our method.

Future Work: An important direction for future work involves the dynamic determination of the optimal sizes
for the G-set and N-set. While we have demonstrated that our method performs robustly across a variety of
G-set and N-set configurations, the ability to ascertain the most suitable sizes for a specific benchmark and its
corresponding source models would be highly beneficial. This advancement would enable users to better plan
their computational resources in advance, optimizing the balance between inference cost and performance.

10



580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Under review as a conference paper at ICLR 2025

REFERENCES

Anas Awadalla, Mitchell Wortsman, Gabriel Ilharco, Sewon Min, Ian Magnusson, Hannaneh Hajishirzi, and
Ludwig Schmidt. Exploring the landscape of distributional robustness for question answering models. arXiv
preprint arXiv:2210.12517, 2022.

Christina Baek, Yiding Jiang, Aditi Raghunathan, and J Zico Kolter. Agreement-on-the-line: Predicting the
performance of neural networks under distribution shift. Advances in Neural Information Processing Systems,
35:19274–19289, 2022.

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani, Omar San-
seviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard. https://huggingface.co/spaces/
open-llm-leaderboard-old/open_llm_leaderboard, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168, 2021.

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models. https:
//github.com/open-compass/opencompass, 2023.

Shengding Hu, Xin Liu, Xu Han, Xinrong Zhang, Chaoqun He, Weilin Zhao, Yankai Lin, Ning Ding, Zebin
Ou, Guoyang Zeng, et al. Predicting emergent abilities with infinite resolution evaluation. In The Twelfth
International Conference on Learning Representations, 2023.

Berivan Isik, Natalia Ponomareva, Hussein Hazimeh, Dimitris Paparas, Sergei Vassilvitskii, and Sanmi Koyejo.
Scaling laws for downstream task performance of large language models. arXiv preprint arXiv:2402.04177,
2024.

Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction to cluster analysis. John Wiley
& Sons, 2009.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object hallucination
in large vision-language models. arXiv preprint arXiv:2305.10355, 2023.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang,
Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language models. arXiv preprint
arXiv:2211.09110, 2022a.

Weixin Liang, Yining Mao, Yongchan Kwon, Xinyu Yang, and James Zou. On the nonlinear correlation of ml
performance across data subpopulations. In ICML 2022: Workshop on Spurious Correlations, Invariance and
Stability, 2022b.

Aman Mehra, Rahul Saxena, Taeyoun Kim, Christina Baek, Zico Kolter, and Aditi Raghunathan. Predicting the
performance of foundation models via agreement-on-the-line. arXiv preprint arXiv:2404.01542, 2024.

John P Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei Koh, Vaishaal Shankar, Percy Liang,
Yair Carmon, and Ludwig Schmidt. Accuracy on the line: on the strong correlation between out-of-distribution
and in-distribution generalization. In International conference on machine learning, pp. 7721–7735. PMLR,
2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Mad-
die Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe. Training language
models to follow instructions with human feedback. In Advances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/
2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html.

Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv, Liat Ein-Dor, Eyal Shnarch, Noam Slonim, Michal
Shmueli-Scheuer, and Leshem Choshen. Efficient benchmarking (of language models). arXiv preprint
arXiv:2308.11696, 2023.

11

https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html


638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

Under review as a conference paper at ICLR 2025

Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin. tinybench-
marks: evaluating llms with fewer examples. In Forty-first International Conference on Machine Learning,
ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.
net/forum?id=qAml3FpfhG.

Ameya Prabhu, Vishaal Udandarao, Philip Torr, Matthias Bethge, Adel Bibi, and Samuel Albanie. Lifelong
benchmarks: Efficient model evaluation in an era of rapid progress. arXiv preprint arXiv:2402.19472, 2024.

Yangjun Ruan, Chris J Maddison, and Tatsunori Hashimoto. Observational scaling laws and the predictability of
language model performance. arXiv preprint arXiv:2405.10938, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial winograd
schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-Ferrer,
Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin
Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne
Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor
Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
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A DEMONSTRATION OF METHOD EFFECTIVENESS WITH VARIANCE

In this section, we present visual comparisons of our method and other approaches, including their respective
variances, as illustrated in Figures 5 through 9. The results demonstrate that our method outperforms the baseline
methods on all datasets and exhibits greater robustness (with smaller variance).

𝜏

Figure 5: Demonstration of Method Effectiveness with Variance on ARC-Challenge Benchmark.

𝜏

Figure 6: Demonstration of Method Effectiveness with Variance on Hellaswag Benchmark.

𝜏

Figure 7: Demonstration of Method Effectiveness with Variance on GSM8k Benchmark.
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𝜏

Figure 8: Demonstration of Method Effectiveness with Variance on Winogrande Benchmark.

𝜏

Figure 9: Demonstration of Method Effectiveness with Variance on POPE Benchmark.

B MORE ANALYSIS ON THE IMPACT OF NATIVE SOURCE MODEL QUANTITY ON OUR
METHOD

In this section, we maintain the overall prediction consistency between the Native source models and the target
models constant, while varying the proportion of the source models designated as Native Source Models from
20% to 100% for the target models across various benchmarks. The results are illustrated in Figures 10 to 14,
indicating that, under the condition of maintaining the prediction consistency between the Native Source Models
and the target model, the number of Native Source Models significantly influences the method’s performance.

𝜏

Figure 10: Effect of Native Source Model Quantity in Our Method on ARC-Challenge Benchmark.
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𝜏

Figure 11: Effect of Native Source Model Quantity in Our Method on Hellaswag Benchmark.

𝜏

Figure 12: Effect of Native Source Model Quantity in Our Method on GSM8k Benchmark.

𝜏

Figure 13: Effect of Native Source Model Quantity in Our Method on Winogrande Benchmark.
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𝜏

Figure 14: Effect of Native Source Model Quantity in Our Method on POPE Benchmark.

C MORE ANALYSIS ON THE IMPACT OF NATIVE SOURCE MODELS’ PREDICTION
CONSISTENCY ON OUR METHOD

We demonstrate the performance of our method by selecting Native Source Models based on their prediction
consistency relative to the target model on various benchmarks, ranging from the top 20% to 80%˜100%. The
results are illustrated in Figures 15 to 19. The results present that, under the condition of a fixed number of Native
Source Models, the performance of the method significantly decreases as the prediction consistency between the
Native Source Models and the target model decreases.

𝜏

Figure 15: Effect of Native Source Models’ Prediction Consistency in Our Method on ARC-Challenge Bench-
mark.

𝜏

Figure 16: Effect of Native Source Models’ Prediction Consistency in Our Method on Hellaswag Benchmark.
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𝜏

Figure 17: Effect of Native Source Models’ Prediction Consistency in Our Method on GSM8k Benchmark.

𝜏

Figure 18: Effect of Native Source Models’ Prediction Consistency in Our Method on Winogrande Benchmark.

𝜏

Figure 19: Effect of Native Source Models’ Prediction Consistency in Our Method on POPE Benchmark.

D FURTHER ANALYSIS ON THE IMPACT OF THE NUMBER OF NATIVE SOURCE MODELS
ON OUR METHOD

This section presents the results of our method as the number of Native Source Models is incrementally increased
based on their prediction consistency with the target model. The results in Figures 20 to 23 show that, overall,
Kendall’s τ initially increases and then decreases as the number of Native Source Models increases, while the
MAE initially decreases and then increases with the increase in the number of Native Source Models.
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𝜏

Figure 20: Effect of the Number of Native Source Models in Our Method on ARC-Challenge Benchmark.

𝜏

Figure 21: Effect of the Number of Native Source Models in Our Method on Hellaswag Benchmark.

𝜏

Figure 22: Effect of the Number of Native Source Models in Our Method on Winogrande Benchmark.
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𝜏

Figure 23: Effect of the Number of Native Source Models in Our Method on POPE Benchmark.
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