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ABSTRACT

Multiplex Biological Networks (MBNs), which represent multiple interaction types be-
tween entities, are crucial for understanding complex biological systems. Yet, existing
methods often inadequately model multiplexity, struggle to integrate structural and sequence
information, and face difficulties in zero-shot prediction for unseen entities with no prior
neighbourhood information. To address these limitations, we propose a novel framework
for zero-shot interaction prediction in MBNs by leveraging context-aware representation
learning and knowledge distillation. Our approach leverages domain-specific foundation
models to generate enriched embeddings, introduces a topology-aware graph tokenizer to
capture multiplexity and higher-order connectivity, and employs contrastive learning to
align embeddings across modalities. A teacher–student distillation strategy further enables
robust zero-shot generalization. Experimental results demonstrate that our framework out-
performs state-of-the-art methods in interaction prediction for MBNs, providing a powerful
tool for exploring various biological interactions and advancing personalized therapeutics.

1 INTRODUCTION

Exploring complex interactions within biological networks is vital for advancing personalized medicine
and drug discovery. These interactions enable targeted therapies and the study of disease pathways, calling
for predictive models that are both precise and reliable. Moving beyond traditional single-layer analyses,
multiplex networks provide a powerful framework to capture the multi-dimensional nature of biological
systems, with each layer representing a distinct interaction type, providing a holistic picture of biological
connectivity across diverse contexts.

Current predictive models (Kipf & Welling, 2016; Hamilton et al., 2017; Shi et al., 2020; Zhu et al., 2018; Rao
et al., 2022; Tao et al., 2023; Dang & Vu, 2024), often rely on single-layer network analyses. Their limitations
can be summarized in three areas: (1) Handling Multiplex Data: Single-layer representations discard
relational heterogeneity and semantic distinctions between interaction types, overlooking context-dependent
reasoning where interactions may rely on both relation type and broader network context. (2) Integrating
Multimodal Information: These models have limited capacity to combine biological or chemical sequence
features with network topology, which is essential for capturing complex biological interactions. (3) Zero-
Shot Prediction: They struggle to predict interactions for unseen entities without prior neighborhood data,
restricting generalization to novel biochemical entities.

To address these shortcomings, we propose CAZI-MBN (Context-Aware and Zero-shot Interaction
prediction in Multiplex Biological Networks), a framework tailored for multiplex biological interaction
prediction. Its four key contributions include: (1) Multiplex-oriented representation learning, capturing
interaction-type-specific, context-aware patterns across layered networks. (2) Unified graph–sequence
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learning, leveraging domain-specific LLMs for biochemically informed representations. (3) Strategic
knowledge distillation, transferring latent knowledge from observed to unobserved regions to enable zero-
shot prediction. (4) A Mixture of Experts (MoE), adaptively modeling diverse interaction types and label
dependencies for multi-label prediction.

2 RELATED WORK

Domain-Specific LLMs. Pre-trained LLMs are advancing sequence analysis by applying NLP techniques
to biochemical data. ProtTrans (Elnaggar et al., 2021) and ESM-2 (Lin et al., 2023) leverage transformer
models for protein function and structure prediction, while ChemBERTa (Chithrananda et al., 2020) and
ChemBERTa-2 (Ahmad et al., 2022), trained on up to 77 million molecules (Kim et al., 2023), adapt BERT to
chemical SMILES. DNABERT (Ji et al., 2021) and DNABERT-2 (Zhou et al., 2023) extend these approaches
to genomic sequences.

Interaction Prediction and Graph Representation Learning. Interaction prediction in networks has
advanced through graph representation learning, which embeds nodes or subgraphs into vector spaces
preserving topology. Random-walk methods (Perozzi et al., 2014; Ribeiro et al., 2017; Dong et al., 2017;
Gao et al., 2018; Grover & Leskovec, 2016) gave way to Graph Neural Networks (GNNs) (Scarselli et al.,
2008; Wu et al., 2020; Zhang & Chen, 2018; Xia et al., 2024), including GCN (Kipf & Welling, 2016),
Graph Transformer (Shi et al., 2020), and GraphSAGE (Hamilton et al., 2017) for neighborhood aggregation.
Contrastive approaches like DGI (Veličković et al., 2018) further improve representations by maximizing
mutual information.

Multiplex Network Modeling. Multiplex networks can be modeled as Knowledge Graphs (KGs), which
enable semantic reasoning (Walsh et al., 2020; Mohamed et al., 2021; Chen et al., 2023; Chandak et al., 2023)
but flatten layered structures and lose interaction-type specificity, limiting zero-shot performance. Multi-layer
network models (Park et al., 2020; Jing et al., 2021; Gallo et al., 2023; Gu et al., 2024) instead preserve
intra- and inter-layer dependencies, supporting relation-aware learning and multiplex link prediction. Yet,
in MBNs (Xiang et al., 2021; Yu et al., 2022; Valdeolivas et al., 2019), integrating sequence features and
capturing complex biomedical dependencies across layers remains an open challenge.

Knowledge Distillation. Knowledge distillation (Hinton, 2015) trains a smaller "student" to emulate a
larger "teacher," enabling efficient deployment with minimal performance loss. It has proven effective in
computer vision (Chen et al., 2017) and NLP (Sanh, 2019). However, its potential to MBNs and zero-shot
generalization remains largely unexplored.

To summarize, existing approaches lack a systematic framework that unifies sequence embeddings with
multiplex structures. Single-layer methods overlook relational heterogeneity, multiplex models underuse
multimodal features, and most approaches rely on neighborhood data, with little effort devoted to exploring
zero-shot generalization.

3 PROBLEM STATEMENT

Definition: Multiplex Networks. A multiplex network is a graph G = {V, P,Eintra} = {G1, . . . ,GL}
where V is a set of nodes across layers, P is a set of entities, and Eintra represents the set of intra-layer
edges. Each layer Gi = {Pi, Vi, Ei} represents the graph of an interaction type in G, where Pi, Vi, and Ei

are respectively the entity set, node set, and edge set for layer i, for i = 1, . . . , L. In a multiplex network,
an entity (e.g. gene, compound, protein) can be present as nodes in multiple layers, while node sets and the
connectivity (edges) can differ from one layer to another. That is, P1, . . . , PL ∈ P are intersecting while
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V1, . . . , VL ∈ V and E1, . . . , EL ∈ E are disjoint. Each node v ∈ Vi corresponds to an entity p ∈ P . This
allows the representation of different types of relationships or interactions between the same set of entities.
An inter-layer graph Ginter = (V,Einter) can be formed by connecting the same entities in different layers
of G.

Supra-Adjacency Matrix. Given a multiplex network G, there is a set of adjacency matrices A =
{A1, A2, . . . , AL} where Ai ∈ R|Vi|×|Vi| is the layer-specific adjacency matrix for layer i. A encodes
the intra-layer links in G. Ginter can be represented by an inter-layer adjacency matrix C ∈ R|V |×|V |. The
supra-adjacency matrix, which encodes both intra-layer and inter-layer connections, is defined as

Â =
⊕

i∈{1,...,L}

Ai + C, (1)

where
⊕

denotes the direct sum. The illustration of an example multiplex network and its supra-adjacency
matrix can be found in Figure 1.
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Figure 1: Illustration of an example multiplex network and its supra-adjacency matrix. A1 and A2 are
the layer-specific adjacency matrices for layer 1 and 2, C is the inter-layer adjacency matrix, and Â is the
supra-adjacency matrix that represents the example multiplex network G.

Generalizing Interaction Prediction in Multiplex Networks: From Seen to Unseen Entities. Interaction
prediction in multiplex networks is a multi-label classification task, since entity pairs can share multiple
interaction types. Transductive settings predict missing links among seen entities, while zero-shot settings
require predicting interactions for entirely unseen entities with no prior known neighborhood.

4 METHODS

The proposed CAZI-MBN framework addresses multiplex biological interaction prediction in both trans-
ductive and zero-shot settings. It integrates domain-specific LLM embeddings (see Appendix A) with
topology-aware network representations. A Context-Aware Enhancement (CAE) module (see Appendix
C) captures inter-layer dependencies, while a MoE model enables multi-label prediction and knowledge
distillation supports zero-shot inference. The workflow is shown in Figure 2.

Training of the teacher model in CAZI-MBN is guided by a hybrid loss function:

L = Ldisc + Lreg + Lcls + β∥Θ∥2, (2)

where Ldisc and Lreg are the discriminator’s loss and the consensus regularizer’s loss from the CAE, Lcls is
a multi-label soft margin loss (see Appendix B), and β is the coefficient for l2 regularization applied to the
trainable parameters Θ. The student model is trained with the sum of a Mean Square Error (MSE) distillation
loss Ldistill and Lcls.
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(a) Overall Training Workflow: CAZI-MBN (KD)
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(b) Inference in Two Different Settings: Transductive and Zero-Shot 

Zero-Shot
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Figure 2: (a) The overall training workflow of CAZI-MBN. (b) Two inference settings in CAZI-MBN:
Transductive and zero-shot.

4.1 FEATURE REPRESENTATION

To represent the multimodal nature of MBN data, our approach integrates two complementary sources of
information: sequence-based embeddings derived from domain-specific pre-trained LLMs and topology-
based representations generated by a Unified Graph Tokenizer (UGT).

4.1.1 SEQUENCE EMBEDDING: DOMAIN-SPECIFIC LLMS

We use three pre-trained LLMs for sequence embeddings: ChemBERTa-2 (Ahmad et al., 2022) for
drug/metabolite SMILES, DNABERT-2 (Zhou et al., 2023) for gene sequences, and ESM-2 (Lin et al.,
2023) for proteins.

4.1.2 UNIFIED GRAPH TOKENIZER (UGT)

The UGT generates generates topology, multiplexity, and high-order connectivity-aware node embedding
from the supra-adjacency matrix Â by (1) constructing a smoothed high-order matrix Ã = Ā+Ā2+ · · ·+ĀO,
with Ā = D−1/2ÂD−1/2, and (2) projecting topology-aware embeddings. For node v ∈ V :

ev = Ãv,:,LN(U
√
Σ ∥ V

√
Σ), ev ∈ Rdu , (3)

where U, V ∈ R|V |×du and Σ ∈ Rdu×du are from the SVD of Ã.

4.2 CONTEXT-AWARE ENHANCEMENT (CAE)

The CAE module refines multiplex embeddings through node- and layer-level inter-layer attention combined
with contrastive learning (Figure 3 and Appendix C.). Each layer is encoded with a Graph Transformer, and
inter-layer attention enables nodes to adaptively attend to counterparts across interaction types. A contrastive
learning framework aligns embeddings by training a discriminator to distinguish real from perturbed edges,
while a consensus regularizer learns a shared embedding that maximizes agreement across true layers and
minimizes alignment with negative views. This design enhances generalization in complex biological systems
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by improving representation consistency and contextual relevance across the multiplex structure. A CAE
forward pass is outlined in Algorithm 1 in Appendix C.
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Figure 3: Illustration of the CAE module.

4.2.1 NODE-LEVEL CONTEXT-AWARE INTER-LAYER ATTENTION

Node-level context-aware inter-layer attention enables CAZI-MBN to adaptively weight an entity’s represen-
tations across layers. The weight a(p←q)

n quantifies how much node n in layer p attends to its counterpart in
layer q.

a(p←q)
n = softmax

 σ
(
θ(p) ·

(
H

(p)
n ⊗H

(q)
n

))
∑|L|

l=1,l ̸=p σ
(
θ(p) ·

(
H

(p)
n ⊗H

(l)
n

))
 , (4)

where θ(p) is a learnable weight vector, and σ(·)is a sigmoid activation function.

4.2.2 LAYER-LEVEL CONTEXT-AWARE CONSENSUS EMBEDDING

To capture the varying importance of interaction types, CAZI-MBN applies an attention module that aggregates
layer-specific node features into H and its negative counterpart H̃ . A context-aware contrastive learning-based
consensus regularizer then learns a consensus embedding Z ∈ R|P |×d by maximizing agreement with H and
minimizing disagreement with H̃ , using a cosine-similarity loss.

4.3 MIXTURE OF EXPERTS (MOE)

In MBNs, interaction prediction is a multi-label classification task since entity pairs can share multiple
interaction types (Figure 2). To handle label sparsity and interdependence, we use a MoE framework where
each expert captures distinct interaction patterns, and a gating network assigns weights based on the input.
For embedding h, experts fk(h)k = 1K produce logits, with weights a = softmax(Wgh + bg); the final
prediction is Ŷ =

∑
k = 1Kakfk(h).

4.4 KNOWLEDGE DISTILLATION

We apply knowledge distillation in CAZI-MBN to enable zero-shot interaction prediction (Figure 2). The
teacher leverages sequence and topology embeddings but depends on neighborhood context, while the

5



235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

student is topology-agnostic and relies only on sequence data. By minimizing the MSE between their latent
representations, the student approximates the teacher’s richer features, enabling effective zero-shot inference.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

5.1.1 DATASETS

To our knowledge, no standardized benchmark datasets currently exist for evaluating models in the context of
MBNs. To address this gap and provide reliable, well-validated benchmarks, we curated five MBNs from
high-quality data sources (Cannon et al., 2024; Zdrazil et al., 2024; Li et al., 2024; Peng et al., 2025; Han
et al., 2018) published in high-profile journals. A summary of the MBNs is provided in Table 1, with details
on data collection and preprocessing available in Appendix D.

Table 1: Dataset summary (ITs: Interaction Types)
Context # of Nodes ITs # of ITs

DGIdb Drug-Gene 1846 Interaction mechanisms 5
ChEMBL Compound-Bacteria 9368 Response phenotypes 3
PINNACLE Protein-Protein 7044 Interaction in different cell types 12
MetaConserve Protein-Metabolite 329 Conservation in bacteria strains 4
TRRUST Gene-Gene 2,862 Gene regulartory roles 3

5.1.2 BASELINES AND EVALUATION

We benchmark CAZI-MBN against 11 models across four categories: sequence-based (Chen & Guestrin,
2016), single-graph (Kipf & Welling, 2016; Hamilton et al., 2017; Shi et al., 2020; Veličković et al., 2018),
multiplex graph-based (Boccaletti et al., 2014; Park et al., 2020; Jing et al., 2021), and domain-specific
(Rao et al., 2022; Tao et al., 2023; Chen et al., 2019; Dang & Vu, 2024; Bai et al., 2023; Huang et al., 2021;
Cui et al., 2022; Fakhry et al., 2023) (Table 2). Since most are not designed for multiplex networks, we train
a separate classifier per interaction type. For zero-shot comparison, we also include knowledge-distilled
variants of models lacking native zero-shot capability.

Table 2: Benchmark models
Type Benchmark Models

Sequence-based MultiLayer Perceptron (MLP), eXtreme Gradient Boosting (XGB)
Single graph-based GCN , GraphSAGE, Graph Transformer, DGI

Multiplex graph-based MultiplexSAGE, DMGI, HDMI

Domain-Specific

(1) Drug-Gene & Compoud-Bacteria: CoSMIG, DGCL
(2) Protein-Protein: PIPR, xCAPT5
(3) Protein-Metabolite: DrugBAN, MolTrans
(4) Gene-Gene: DL-GGI, GENER

We evaluate performance with Area Under the Receiver Operating Characteristic Curve (AUROC), Area
Under the Precision-Recall Curve (AUPRC), and multi-label metrics including Hamming Score (HS) and
Subset Accuracy (SA). Each experiment is conducted over three repeated trials, and we report the mean and
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Standard Deviation (SD) of each metric. For details of the evaluation metrics and experimental settings, see
Appendix E.1 and Appendix E.2

5.2 EMPIRICAL ANALYSIS

We conduct a comprehensive evaluation of the proposed CAZI-MBN across five benchmark MBNs, under
both transductive (shown as "T" in the tables) and zero-shot (shown as "ZS" in the tables) settings.

For each of the 11 models, Tables 3, 4, 5, 6, and 7 report performance comparisons between CAZI-MBN and
the strongest single graph-based, multiplex graph-based, and domain-specific benchmarks, selected based
on AUROC. For detailed results of all benchmark models, refer to Appendix E.3.1. A minority interaction
type-specific analysis is provided in Appendix E.3.2, with detailed ablation studies discussed in Appendix
E.3.3. Figure 4 further illustrates the average performance drop across all metrics and datasets when each
module (LLMs, UGT, CAE, MoE, discriminator in CAE, consensus regularizer in CAE) is removed, in both
transductive and zero-shot settings. Additionally, a case study on IBD-related genes is presented in Appendix
E.3.4.

Table 3: Evaluation of transductive and zero-shot multiplex interaction prediction on DGIdb (top
model per category).

Setting Model AUROC AUPRC HS SA

T

Graph Transformer 0.505±0.007 0.514±0.005 0.493±0.004 0.508±0.003
HDMI 0.551±0.006 0.557±0.007 0.540±0.012 0.511±0.006
DGCL 0.519±0.005 0.531±0.004 0.527±0.007 0.512±0.006

CAZI-MBN 0.715±0.007 0.729±0.009 0.687±0.011 0.684±0.015

ZS

Graph Transformer 0.498±0.011 0.502±0.004 0.486±0.004 0.504±0.007
DMGI 0.524±0.008 0.528±0.016 0.529±0.004 0.502±0.006
DGCL 0.513±0.003 0.515±0.007 0.509±0.011 0.502±0.004

CAZI-MBN 0.671±0.008 0.709±0.011 0.688±0.009 0.663±0.014
*See Table 9 in Appendix E.3.1 for full results of all evaluated models.

Table 4: Evaluation of transductive and zero-shot multiplex interaction prediction on ChEMBL
(top model per category).

Setting Model AUROC AUPRC HS SA

T

DGI 0.651±0.019 0.719±0.005 0.738±0.012 0.673±0.011
HDMI 0.663±0.012 0.762±0.014 0.789±0.012 0.730±0.006
CoSMIG 0.661±0.021 0.732±0.011 0.755±0.009 0.702±0.025

CAZI-MBN 0.812±0.008 0.863±0.006 0.889±0.014 0.757±0.011

ZS

Graph Transformer 0.628±0.011 0.720±0.008 0.725±0.013 0.628±0.014
DMGI 0.652±0.021 0.745±0.015 0.756±0.007 0.711±0.009
CoSMIG 0.641±0.011 0.733±0.007 0.729±0.010 0.683±0.005

CAZI-MBN 0.791±0.018 0.839±0.015 0.857±0.011 0.723±0.009
*See Table 10 in Appendix E.3.1 for full results of all evaluated models.

We note the following observations: (1) CAZI-MBN consistently outperforms all benchmarks in AUROC
and AUPRC, achieving gains of 3.1–20.4% across five MBN datasets in both transductive and zero-shot
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Table 5: Evaluation of transductive and zero-shot multiplex interaction prediction on PINNACLE (top model
per category).

Setting Model AUROC AUPRC HS SA

T

Graph Transformer 0.701±0.007 0.704±0.015 0.700±0.005 0.726±0.024
HDMI 0.773±0.022 0.798±0.023 0.776±0.017 0.766±0.016
xCAPT5 0.781±0.011 0.804±0.014 0.726±0.012 0.752±0.015

CAZI-MBN 0.831±0.018 0.845±0.011 0.751±0.009 0.772±0.013

ZS

Graph Transformer 0.687±0.019 0.690±0.017 0.680±0.018 0.705±0.019
HDMI 0.748±0.025 0.776±0.021 0.757±0.024 0.742±0.014
xCAPT5 0.785±0.012 0.791±0.015 0.733±0.013 0.739±0.016

CAZI-MBN 0.812±0.013 0.820±0.008 0.748±0.010 0.763±0.011
*See Table 11 in Appendix E.3.1 for full results of all evaluated models.

Table 6: Evaluation of transductive and zero-shot multiplex interaction prediction on MetaConserve (top
model per category).

Setting Model AUROC AUPRC HS SA

T

DGI 0.668±0.020 0.673±0.019 0.665±0.010 0.669±0.010
HDMI 0.726±0.015 0.729±0.021 0.715±0.006 0.718±0.015
DrugBAN 0.737±0.010 0.714±0.012 0.710±0.019 0.711±0.008

CAZI-MBN 0.752±0.020 0.744±0.012 0.779±0.008 0.656±0.014

ZS

Graph Transformer 0.651±0.007 0.660±0.020 0.652±0.015 0.648±0.015
HDMI 0.709±0.017 0.710±0.014 0.704±0.014 0.707±0.009
DrugBAN 0.692±0.017 0.705±0.020 0.707±0.015 0.708±0.011

CAZI-MBN 0.738±0.015 0.722±0.010 0.749±0.020 0.653±0.009
*See Table 12 in Appendix E.3.1 for full results of all evaluated models.

Table 7: Evaluation of transductive and zero-shot multiplex interaction prediction on TRRUST (top model
per category).

Setting Model AUROC AUPRC HS SA

T

DGI 0.841±0.014 0.844±0.011 0.845±0.009 0.847±0.006
HDMI 0.878±0.008 0.879±0.014 0.883±0.005 0.881±0.004
GENER 0.867±0.012 0.868±0.006 0.865±0.010 0.869±0.006

CAZI-MBN 0.905±0.013 0.872±0.008 0.791±0.023 0.784±0.015

ZS

DGI 0.832±0.011 0.835±0.014 0.836±0.007 0.838±0.006
HDMI 0.868±0.006 0.869±0.010 0.872±0.006 0.870±0.004
GENER 0.857±0.007 0.858±0.008 0.855±0.006 0.859±0.007

CAZI-MBN 0.899±0.017 0.869±0.013 0.775±0.019 0.764±0.007
*See Table 13 in Appendix E.3.1 for full results of all evaluated models.
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Figure 4: Average metric-wise performance drop across all five datasets when each module is ablated.

settings, highlighting strong generalization. (2) Multiplex graph-based and domain-specific models (e.g.,
DMGI, HDMI, CoSMIG, xCAPT5, GENER) generally surpass single-graph baselines, emphasizing the
value of structural and biochemical context. (3) Interaction type-specific analysis (Appendix E.3.2) shows
CAZI-MBN excels on minority interaction types in zero-shot settings, demonstrating effective generalization
in data-scarce cases. (4) Ablation studies (Appendix E.3.3 and Figure 4) reveal that LLMs contribute
the largest gains (15–20% AUROC), followed by CAE (7–10%) and UGT/MoE (5–8%), validating the
modular design. (5) Case study (Table 17 in Appendix E.3.4) highlights CAZI-MBN’s biological validity,
recovering a high proportion of known interactions (82.7% DGIdb, 85.7% TRRUST, 75.1% PINNACLE,
62.5% MetaConserve) and literature-supported IBD-related links such as GAPDH–Omigapil (Foley et al.,
2024; Zhou et al., 2015; Özsoy et al., 2022), thereby demonstrating biologically coherent predictions in a
zero-shot setting.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We present CAZI-MBN, a framework for interaction prediction in multiplex biological networks (MBNs).
It integrates domain-specific LLMs, multiplex-aware embedding, context-aware attention with contrastive
learning, and knowledge distillation to enable zero-shot prediction. Empirically, CAZI-MBN achieves strong
performance on multiplex interactions and demonstrates robust generalization to unseen entities.

To our knowledge, this is the first framework specifically designed for zero-shot multiplex interaction
prediction. To support reliable evaluation, we also curated five high-quality MBN datasets, addressing the
lack of standardized benchmarks. CAZI-MBN shows promise for accelerating drug discovery and antibiotic
research by predicting interactions involving novel biochemical entities, and its flexible design is readily
applicable to other biomedical domains.

Nonetheless, the framework has limitations. In particular, it does not yet incorporate structural data (e.g.,
genomic, protein, or compound 3D information), which constrains fine-grained biological modeling. Future
work will integrate such structural information and extend the framework to more complex settings such as
cross-species networks.
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to accelerate discovery in areas such as drug development and precision medicine. We identify no direct
ethical risks and are committed to responsible dissemination, supporting the ethical use of biological data and
AI technologies.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, the source code of CAZI-MBN is provided in the supplementary materials and will
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DNABERT-2 (Zhou et al., 2023). DNABERT-2 is a domain-adapted language model designed for nu-
cleotide sequences, extending the capabilities of the original DNABERT by incorporating a deeper architecture
and pretraining on a larger corpus of genomic data. It tokenizes DNA sequences using k-mers and leverages
the transformer architecture to capture regulatory patterns and sequence dependencies across long genomic
regions. DNABERT-2 has demonstrated improved performance on a range of genomics tasks such as promoter
recognition, splice site prediction, and enhancer identification.

ChemBERTa-2 (Ahmad et al., 2022). ChemBERTa-2 is a transformer-based language model pre-trained on
SMILES strings representing chemical structures. It extends ChEMBERTa by employing a larger parameter
space and more comprehensive chemical corpora, enabling it to capture intricate molecular substructures,
functional groups, and reaction patterns. By treating SMILES as a specialized language, ChEMBERTa-2
facilitates downstream tasks such as molecular property prediction, reaction classification, and drug-likeness
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assessment. Its embeddings serve as chemically informed representations that integrate both syntactic and
structural aspects of small molecules.

ESM-2 (Lin et al., 2023). ESM-2 is a protein language model developed by Meta AI, pre-trained on
hundreds of millions of protein sequences using a masked language modeling objective. It models the
grammar of amino acid sequences and captures biologically relevant features such as structural motifs,
binding sites, and evolutionary conservation without explicit supervision. Compared to its predecessor,
ESM-2 offers deeper transformer layers and larger-scale training, enabling superior performance across
protein structure prediction, variant effect analysis, and protein-protein interaction tasks. Its embeddings
encode rich evolutionary and functional signals useful for downstream applications in proteomics and systems
biology.

B MULTI-LABEL SOFT MARGIN LOSS (MLSML)

The MLSML is defined as:

Lcls = −
1

N

N∑
i=1

NC∑
j=1

yij · log(σ(xij)) + (1− yij) · log(1− σ(xij)), (5)

where N is the number of samples, NC is the number of classes, yij is a binary indicator for the presence of
class j in sample i, xij is the raw model output for class j of sample i, and σ is the sigmoid function.

C THE CAE MODULE

A CAE forward pass is outlined in Algorithm 1. For each multiplex layer Gi, a Graph Transformer encodes
node features Xi into embeddings Hi. Negative sampling generates perturbed graphs G̃i and corresponding
embeddings H̃i. Context-aware node-level inter-layer attention refines Hi into Hatti , from which edge features
are extracted. A discriminator differentiates real edges from corrupted ones. Embeddings are then aggregated
across layers with attention, and a consensus regularizer produces updated embeddings Z.

The CAE module starts with layer-specific node embedding. For each multiplex layer Gi(i ∈ {1, . . . , L})
in the multiplex network, a Graph Transformer module first updates the layer-specific node embeddings
according to:

H
(l+1)
i = σ

(
LN

(
MHA

(
H

(l)
i

)
+H

(l)
i

)
·W (l)

i

)
, (6)

where LN represents layer normalization, H(l)
i ∈ R|Vi|×d denotes the feature matrix of multiplex layer Gi at

Graph Transformer layer l, W (l)
i is the layer-specific weight matrix, MHA performs multi-head self-attention

over the node features, and d represents the output dimension. To generate the layer-specific negative node
embedding H̃i, negative sampling is applied to Gi, and the same Graph Transformer module as defined in
Equation 6 processes the negative network G̃i.

The edge feature matrix Hedgei ∈ R|Ei|×2d and the negative edge feature matrix H̃edgei ∈ R|Ei|×2d are
constructed by concatenating the node features of adjacent nodes within Gi and G̃i, respectively. A high-level
graph summary vector si is computed to encapsulate the layer-level edge information for each Gi using
average pooling:

si = σ(AvgPool(Hedgei)), (si ∈ R2d) (7)

where σ is the logistic sigmoid nonlinearity.
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Algorithm 1 CAE Forward Pass
Input: Feature matrices Xi, graphs Gi, size L
for i = 1 to L do
G̃i ← NegSampling(Gi) {Negative sampling}
Hi ← GraphTransformer(Xi, Gi) {Feature matrix Xi}
Hatt_i ← ContextAwareAttention(Hi) {Context-aware inter-layer attention}
H̃i ← GraphTransformer(Xi, G̃i)
Hedgei ← GetEdgeFeature(Hatt_i, Gi) {Edge embedding}
H̃edgei ← GetEdgeFeature(H̃i, G̃i) {Negative edge embedding}
si ← σ(AvgPool(Hedgei))

logitdisci ← Discriminator(Hedgei , H̃edgei , si)
Ldisci ← BCE(Ydisci , logitdisci)

end for
H ← ATTENTION(Hatt_1, . . . ,Hatt_L)

H̃ ← ATTENTION(H̃1, . . . , H̃L)
Ldisc ← SUM(Ldisc1 , . . . ,LdiscL) {Discriminator’s loss}
Z ← ConsensusRegularizer(H, H̃) {Updated embeddings}
Lreg ← 1 + CosineSim(H,Z)− CosineSim(H̃, Z) {Regularizer’s loss}

The layer-specific BCE loss Ldisci can be calculated using the edge embedding matrix Hedgei , its summary
representation si, and its corresponding negative matrix H̃edgei :

Ldisci =
∑

ej∈Ei

logD(Hedgei,j , si) +
∑

eq∈Êi

log(1−D(H̃edgei,q, si)) (8)

where Hedgei,j specifies the feature vector for edge ej , Êi represents the edge set of G̃i, and D is a dis-
criminator function that evaluates patch-summary representation pairs. The discriminator D is defined
as:

D(Hedgei,j , si) = σ(Hedgei,jMisi) (9)

where σ signifies the logistic sigmoid function, and Mi ∈ R2d×2d is a trainable scoring matrix.

D DATASETS AND PREPROCESSING

D.1 DGIDB

The Drug–Gene Interaction Database (DGIdb) (Cannon et al., 2024) aggregates comprehensive information
on drug–gene interactions and gene druggability from diverse curated sources.

The multiplex nature of DGIdb reflects the biological complexity wherein a single drug–gene pair may exhibit
multiple modes of interaction. For example, a drug may function as an agonist under certain conditions, but
act as an inhibitor, modulator, or activator in others. These variations can arise due to factors such as dosage,
cellular context, or the presence of cofactors.

During preprocessing, entries lacking interaction type annotations were removed, and semantically similar
interaction types were merged to reduce redundancy.To emphasize higher-confidence associations, we
excluded interactions with scores falling in the lowest 15% quantile. Furthermore, to address class imbalance,
the four least prevalent interaction categories were combined into a single class, simplifying downstream
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modeling and evaluation. We retained five broad mechanism categories after preprocessing: agonist, activator,
modulator, inhibitor/blocker, and other.

D.2 CHEMBL

ChEMBL (Zdrazil et al., 2024) is a manually curated database of bioactive molecules with drug-like properties.
In ChEMBL, different Minimum Inhibitory Concentration (MIC) values for the same compound-bacteria
pair indicate that the bacterium may exhibit varying levels of susceptibility to the compound under different
experimental conditions or at different times. A compound bacteria pair with multiple MIC values might show
different response phenotype - Susceptible (S), Intermediate (I), or Resistant (R), based on environmental or
genetic factors. This variability can inform clinicians of potential shifts in bacterial resistance over time, the
need for adjusted drug dosages, or the importance of considering strain-specific responses when choosing
treatment strategies.

We preprocess ChEMBL into a multiplex network by (1) standardizing the standard units to “ug.mL-1”; (2)
defining cutoffs for S, I, and R:

• Susceptible (S): MIC ≤ 4;
• Intermediate (I): 4 < MIC ≤ 16;
• Resistant (R): MIC < 16.

D.3 PINNACLE

We curated the Protein Network-based Algorithm for Contextual Learning (PINNACLE) dataset from (Li
et al., 2024). The original dataset captures context-aware protein-protein interactions across 156 cell type
contexts spanning 62 tissues, derived from the Tabula Sapiens single-cell transcriptomic atlas. Protein-protein
interactions can differ across cell types because protein expression levels, post-translational modifications,
subcellular localizations, and interacting partners vary depending on the cellular environment. A protein
may be active in one cell type but absent or inactive in another, or it may participate in different pathways
depending on the cell’s functional role. These context-dependent variations are critical for understanding
cell-specific mechanisms of health and disease.

For our study, we selected 12 cell types specifically associated with Inflammatory Bowel Disease (IBD) to
construct a cell type-specific multiplex protein-protein interaction network. This enables us to investigate
cell-type-dependent protein interactions relevant to IBD pathogenesis and therapeutic targeting, capturing the
cellular heterogeneity of intestinal inflammation.

We selected the following cell types based on their established roles in IBD:

• Enterocytes (Enterocyte of epithelium of large intestine and Enterocyte of epithelium of small
intestine): These epithelial cells form the intestinal barrier and regulate nutrient absorption and
immune signaling, both of which are disrupted in IBD.

• Goblet cells (Small intestine goblet cell and Large intestine goblet cell): Goblet cells produce
mucins that maintain the protective mucus layer; their depletion is linked to barrier dysfunction and
increased inflammation in IBD.

• Paneth cells (Paneth cell of epithelium of small intestine and Paneth cell of epithelium of large
intestine): These cells secrete antimicrobial peptides and are often dysregulated or dysfunctional in
inflamed or chronically affected IBD tissue.

• CD4+ helper T cells (CD4-positive helper T cell): Key mediators of adaptive immunity and cytokine
signaling, CD4+ T cells are known to drive pathogenic responses in IBD.
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• CD8+ cytotoxic T cells (CD8-positive alpha-beta cytotoxic T cell): These cells contribute to
epithelial damage by directly killing intestinal epithelial cells in active IBD.

• Regulatory T cells (Tregs) (Regulatory T cell): Tregs suppress immune responses and maintain
tolerance; impaired Treg function is frequently observed in IBD patients.

• Memory T cells (CD4-positive alpha-beta memory T cell): These cells retain antigen-specific
memory and are implicated in the persistent immune activation characteristic of chronic IBD.

• B cells (B cell): B cells contribute to antigen presentation and cytokine production and can influence
both protective and pathogenic pathways in IBD.

• Memory B cells (Memory B cell): These cells are involved in long-term humoral responses and are
elevated in IBD-associated lymphoid aggregates and inflamed mucosa.

D.4 METACONSERVE

We curated a cell type-specific protein–metabolite MBN dataset, which we named MetaConserve, from (Peng
et al., 2025), which systematically mapped high-confidence ligand interactions in Escherichia coli using
affinity purification mass spectrometry and structural modeling. This dataset provides a valuable foundation
for exploring metabolite-mediated regulatory mechanisms at the host–microbe interface.

To investigate the evolutionary conservation of these protein–metabolite interactions in the context of IBD, we
selected four representative bacterial orders: Campylobacterales, Desulfovibrionales, Fusobacteriales, and
Veillonellales, all of which have been implicated in IBD pathogenesis. Campylobacterales (e.g., Campylobac-
ter concisus) are frequently enriched in inflamed mucosa and are associated with epithelial barrier disruption
and proinflammatory signaling. Desulfovibrionales are sulfate-reducing bacteria that produce hydrogen
sulfide, a genotoxic metabolite elevated in IBD patients and implicated in mucosal injury. Fusobacteriales,
particularly Fusobacterium nucleatum, are linked to mucosal inflammation and have been shown to exacerbate
disease through immune modulation and epithelial adhesion. Veillonellales are enriched in dysbiotic gut
microbiota and are associated with IBD disease activity and disrupted bile acid metabolism.

We leveraged conservation scores provided in the original dataset to identify protein–metabolite interactions
that are preserved across these four orders, retaining only those with a conservation score ≥ 2 to ensure
high-confidence evolutionary retention. These conserved interactions define four distinct interaction types in
our multiplex network, enabling a strain-aware investigation of microbial metabolic activity relevant to IBD
onset and progression.

D.5 TRRUST

The Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining (TRRUST) (Han
et al., 2018) dataset is a curated database of human and mouse transcriptional regulatory interactions. It
compiles experimentally validated regulatory relationships between transcription factors (TFs) and their target
genes, extracted through literature mining and manual curation. Each entry in TRRUST specifies the regulator
(TF), the target gene, the mode of regulation (activation or repression), and the supporting evidence. TRRUST
is widely used in systems biology and regulatory network analysis, offering a high-confidence resource for
studying gene regulatory mechanisms, constructing transcriptional networks, and evaluating computational
predictions of TF-target interactions.

In our experiments, we use the human transcriptional regulatory data from TRRUST. As a gene can exert
multiple regulatory effects on another gene, such as activation, repression, or an undefined role, and the
resulting network is modeled as a multiplex graph. This structure captures the complexity of transcriptional
regulation, where interactions may not be limited to a single regulatory type and can reflect more nuanced or
context-dependent mechanisms.
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E EXPERIMENTS AND EVALUATION

E.1 EVALUATION METRICS

Let there be N samples and Nc possible labels. We denote the ground-truth labels for sample i by a binary
vector yi = (yi,1, yi,2, . . . , yi,NC

) ∈ {0, 1}NC , and the predicted labels by ŷi = (ŷi,1, ŷi,2, . . . , ŷi,NC
).

Below, we briefly define several common evaluation metrics.

Area Under the ROC Curve (AUROC). For each label j, we can compute the Receiver Operating
Characteristic (ROC) curve by plotting the True Positive Rate (TPR) versus the False Positive Rate (FPR)
at various threshold settings. The area under this curve for label j is denoted AUROCj . The AUROC in
multi-label classification is calculated by macro-average:

AUROC =
1

NC

NC∑
j=1

AUROCj . (10)

Area Under the Precision-Recall Curve (AUPRC). For each label j, the Precision-Recall curve is
constructed by plotting Precision versus Recall at different thresholds. The area under this curve for label j is
AUPRCj . The macro-average of AUPRC for multi-label classification is:

AUPRC =
1

NC

NC∑
j=1

AUPRCj . (11)

Hamming Score (HS). The HS measures the fraction of correctly predicted labels across all samples and
all labels. Often, the Hamming Loss (HL) is defined first:

HL =
1

N ·NC

N∑
i=1

NC∑
j=1

1
(
yi,j ̸= ŷi,j

)
, (12)

where 1(·) is the indicator function, which is 1 if the condition is true and 0 otherwise. The Hamming Score
is then

HS = 1−HL = 1− 1

N ·NC

N∑
i=1

NC∑
j=1

1
(
yi,j ̸= ŷi,j

)
. (13)

Subset Accuracy (SA). SA, also known as Exact Match Ratio, measures the fraction of samples for which
all labels match exactly. Formally,

SA =
1

N

N∑
i=1

1
(
yi = ŷi

)
. (14)

Here, 1
(
yi = ŷi

)
is 1 if and only if every label is predicted correctly for sample i, and 0 otherwise.

E.2 EXPERIMENTAL SETTINGS.

We divide our dataset into training, validation, and test sets with proportions of 75%, 15%, and 15%,
respectively. Each experiment is repeated three times, and we report the mean and SD of each evaluation
metric.
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In the transductive setting, entities in the training, validation, and test sets overlap, meaning that all nodes
are present during training but the edges are partitioned. As a result, models can exploit topological context
from the training graph when making predictions, and the task is to infer unseen interactions among already
observed entities. This setting reflects scenarios where the biological entities are known, but their interaction
space is incomplete.

In contrast, the zero-shot setting enforces a strict disjoint entity-based split, where entities in the validation
and test sets are entirely excluded from the training graph. These entities do not appear as endpoints or
even as neighbors during training, ensuring that the model cannot rely on structural information about them.
Instead, predictions must be made solely from their intrinsic features (e.g., sequence embeddings), without
any prior connectivity. The task therefore involves predicting interactions among completely novel entities,
simulating realistic discovery scenarios where new drugs, genes, or proteins enter the system with no known
interactions. This strict separation guarantees that no information leakage occurs between training and test
sets in either setting.

Hyperparameters are selected via grid search, and models are trained using the Adam optimizer. All
experiments are conducted on a single NVIDIA A100 Tensor Core GPU with 80GB of RAM.

In zero-shot setting, where traditional graph-based models cannot inherently predict interactions involving
entities with no observed training interactions, we adopt knowledge-distilled variants of these models.
Specifically, the original graph-based models serve as teacher models, while a two-layer MLP acts as the
student model. This setup facilitates performance comparisons in zero-shot learning.

For benchmark models using node attributes, compounds are encoded with Morgan fingerprints from SMILES,
and genes/genomes/proteins with k-mer features (k = 6) from sequence data. The training deatils of CAZI-
MBN are presented in Table 8.

Table 8: Training details of CAZI-MBN.
Component Value/Detail

Optimizer Adam
Learning rate 1e-4
Batch size 256
Number of epoches 10000
Early stopping Yes
Order of UGT 5
UGT output dimension 128
Readout (CAE) SAGPool
Latent dimension (knowledge distillation) 32

E.3 SUPPLEMENTAL EXPERIMENTAL RESULTS

E.3.1 EMPIRICAL ANALYSIS

Tables 9, 10, 11, 12, and 13 present the performance comparisons between CAZI-MBN and all benchmark
models under both transductive ("T") and zero-shot ("ZS") settings across five MBNs. All metrics are reported
in Mean ± SD over three repeated trails.
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Table 9: Evaluation of transductive and zero-shot multiplex interaction prediction on DGIdb.
Setting Model AUROC AUPRC HS SA

T

XGB 0.350±0.010 0.389±0.011 0.579±0.011 0.421±0.011
MLP 0.284±0.013 0.375±0.005 0.609±0.009 0.407±0.011

GCN 0.482±0.010 0.493±0.005 0.511±0.003 0.491±0.003
GraphSAGE 0.447±0.005 0.467±0.003 0.527±0.006 0.473±0.006
Graph Transformer 0.505±0.007 0.514±0.005 0.493±0.004 0.508±0.003
DGI 0.503±0.002 0.507±0.004 0.510±0.003 0.500±0.003

MultiplexSAGE 0.532±0.007 0.539±0.004 0.549±0.005 0.507±0.005
DMGI 0.547±0.002 0.542±0.003 0.533±0.005 0.505±0.002
HDMI 0.551±0.006 0.557±0.007 0.540±0.012 0.511±0.006

CoSMIG 0.517±0.003 0.523±0.002 0.522±0.003 0.509±0.001
DGCL 0.519±0.005 0.531±0.004 0.527±0.007 0.512±0.006

CAZI-MBN 0.715±0.007 0.729±0.009 0.687±0.011 0.684±0.015

ZS

XGB 0.332±0.013 0.361±0.008 0.513±0.013 0.401±0.005
MLP 0.258±0.012 0.307±0.007 0.590±0.011 0.347±0.005

GCN 0.448±0.008 0.479±0.004 0.502±0.005 0.473±0.007
GraphSAGE 0.419±0.006 0.434±0.004 0.518±0.011 0.464±0.005
Graph Transformer 0.498±0.011 0.502±0.004 0.486±0.004 0.504±0.007
DGI 0.489±0.004 0.504±0.011 0.502±0.003 0.477±0.006

MultiplexSAGE 0.518±0.008 0.520±0.013 0.537±0.009 0.504±0.006
DMGI 0.524±0.008 0.528±0.016 0.529±0.004 0.502±0.006
HDMI 0.507±0.004 0.536±0.012 0.530±0.011 0.507±0.008

CoSMIG 0.509±0.012 0.514±0.005 0.516±0.013 0.500±0.020
DGCL 0.513±0.003 0.515±0.007 0.509±0.011 0.502±0.004

CAZI-MBN 0.671±0.008 0.709±0.011 0.688±0.009 0.663±0.014
*Benchmarks are grouped into four categories: (1) Sequence-based (XGB, MLP);(2) Single graph-based
(GCN, GraphSAGE, Graph Transformer, DGI); (3) Multiplex graph-based (MultiplexSAGE, DMGI,
HDMI); and (4) Domain-specific (others).
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Table 10: Evaluation of transductive and zero-shot multiplex interaction prediction on ChEMBL.
Setting Model AUROC AUPRC HS SA

T

XGB 0.515±0.013 0.607±0.018 0.699±0.007 0.587±0.012
MLP 0.531±0.005 0.629±0.012 0.657±0.009 0.613±0.010

GCN 0.632±0.014 0.700±0.008 0.709±0.004 0.641±0.012
GraphSAGE 0.631±0.005 0.698±0.012 0.734±0.006 0.663±0.005
Graph Transformer 0.644±0.015 0.715±0.010 0.741±0.005 0.657±0.012
DGI 0.651±0.019 0.719±0.005 0.738±0.012 0.673±0.011

MultiplexSAGE 0.653±0.007 0.709±0.011 0.712±0.005 0.705±0.019
DMGI 0.661±0.017 0.749±0.008 0.773±0.021 0.712±0.014
HDMI 0.663±0.012 0.762±0.014 0.789±0.012 0.730±0.006

CoSMIG 0.661±0.021 0.732±0.011 0.755±0.009 0.702±0.025
DGCL 0.659±0.014 0.712±0.005 0.739±0.007 0.698±0.0709

CAZI-MBN 0.812±0.008 0.863±0.006 0.889±0.014 0.757±0.011

ZS

XGB 0.481±0.023 0.542±0.012 0.608±0.014 0.574±0.009
MLP 0.487±0.012 0.539±0.006 0.621±0.012 0.581±0.018

GCN 0.612±0.013 0.702±0.007 0.633±0.006 0.607±0.011
GraphSAGE 0.624±0.009 0.713±0.018 0.640±0.006 0.611±0.008
Graph Transformer 0.628±0.011 0.720±0.008 0.725±0.013 0.628±0.014
DGI 0.619±0.010 0.709±0.022 0.708±0.007 0.634±0.019

MultiplexSAGE 0.638±0.007 0.718±0.012 0.711±0.008 0.699±0.009
DMGI 0.652±0.021 0.745±0.015 0.756±0.007 0.711±0.009
HDMI 0.648±0.015 0.735±0.011 0.726±0.004 0.716±0.011

CoSMIG 0.641±0.011 0.733±0.007 0.729±0.010 0.683±0.005
DGCL 0.631±0.019 0.702±0.018 0.693±0.007 0.675±0.012

CAZI-MBN 0.791±0.018 0.839±0.015 0.857±0.011 0.723±0.009
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Table 11: Evaluation of transductive and zero-shot multiplex interaction prediction on PINNACLE.
Setting Model AUROC AUPRC HS SA

T

XGB 0.650±0.007 0.644±0.007 0.651±0.005 0.660±0.023
MLP 0.676±0.008 0.668±0.008 0.656±0.011 0.666±0.016

GCN 0.659±0.010 0.670±0.012 0.666±0.014 0.679±0.021
GraphSAGE 0.692±0.017 0.677±0.008 0.686±0.005 0.693±0.025
Graph Transformer 0.701±0.007 0.704±0.015 0.700±0.005 0.726±0.024
DGI 0.688±0.009 0.695±0.010 0.698±0.006 0.684±0.020

MultiplexSAGE 0.752±0.020 0.775±0.022 0.763±0.009 0.749±0.018
DMGI 0.768±0.021 0.784±0.025 0.759±0.014 0.762±0.021
HDMI 0.773±0.022 0.798±0.023 0.776±0.017 0.766±0.016

PIPR 0.747±0.025 0.759±0.018 0.741±0.026 0.732±0.020
xCAPT5 0.781±0.011 0.804±0.014 0.726±0.012 0.752±0.015

CAZI-MBN 0.831±0.018 0.845±0.011 0.751±0.009 0.772±0.013

ZS

XGB 0.626±0.023 0.628±0.010 0.636±0.015 0.639±0.026
MLP 0.652±0.015 0.650±0.017 0.626±0.007 0.642±0.022

GCN 0.639±0.017 0.652±0.016 0.649±0.012 0.654±0.011
GraphSAGE 0.673±0.013 0.666±0.019 0.668±0.023 0.668±0.015
Graph Transformer 0.687±0.019 0.690±0.017 0.680±0.018 0.705±0.019
DGI 0.674±0.011 0.678±0.022 0.679±0.015 0.663±0.020

MultiplexSAGE 0.728±0.020 0.753±0.019 0.747±0.021 0.725±0.020
DMGI 0.744±0.020 0.762±0.024 0.738±0.025 0.738±0.022
HDMI 0.748±0.025 0.776±0.021 0.757±0.024 0.742±0.014

PIPR 0.721±0.011 0.740±0.018 0.716±0.019 0.711±0.020
xCAPT5 0.785±0.012 0.791±0.015 0.733±0.013 0.739±0.016

CAZI-MBN 0.812±0.013 0.820±0.008 0.748±0.010 0.763±0.011
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Table 12: Evaluation of transductive and zero-shot multiplex interaction prediction on MetaConserve.
Setting Model AUROC AUPRC HS SA

T

XGB 0.611±0.006 0.612±0.023 0.617±0.021 0.613±0.010
MLP 0.617±0.010 0.614±0.015 0.620±0.017 0.628±0.007

GCN 0.630±0.007 0.642±0.022 0.628±0.011 0.633±0.018
GraphSAGE 0.649±0.013 0.646±0.011 0.644±0.021 0.645±0.012
Graph Transformer 0.663±0.022 0.662±0.017 0.653±0.012 0.656±0.007
DGI 0.668±0.020 0.673±0.019 0.665±0.010 0.669±0.010

MultiplexSAGE 0.693±0.012 0.705±0.021 0.678±0.018 0.672±0.014
DMGI 0.717±0.008 0.716±0.017 0.719±0.015 0.720±0.013
HDMI 0.726±0.015 0.729±0.021 0.715±0.006 0.718±0.015

MolTrans 0.710±0.014 0.720±0.008 0.719±0.011 0.716±0.020
DrugBAN 0.737±0.010 0.714±0.012 0.710±0.019 0.711±0.008

CAZI-MBN 0.752±0.020 0.744±0.012 0.779±0.008 0.656±0.014

ZS

XGB 0.598±0.013 0.591±0.015 0.600±0.007 0.598±0.010
MLP 0.607±0.016 0.600±0.019 0.612±0.010 0.621±0.015

GCN 0.617±0.015 0.621±0.019 0.610±0.012 0.622±0.013
GraphSAGE 0.630±0.010 0.633±0.016 0.627±0.010 0.634±0.006
Graph Transformer 0.651±0.007 0.660±0.020 0.652±0.015 0.648±0.015
DGI 0.646±0.018 0.647±0.018 0.638±0.014 0.640±0.008

MultiplexSAGE 0.697±0.015 0.692±0.023 0.685±0.011 0.688±0.012
DMGI 0.702±0.012 0.701±0.015 0.698±0.017 0.695±0.009
HDMI 0.709±0.017 0.710±0.014 0.704±0.014 0.707±0.009

MolTrans 0.688±0.007 0.700±0.017 0.690±0.007 0.693±0.012
DrugBAN 0.692±0.017 0.705±0.020 0.707±0.015 0.708±0.011

CAZI-MBN 0.738±0.015 0.722±0.010 0.749±0.020 0.653±0.009
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Table 13: Evaluation of transductive and zero-shot multiplex interaction prediction on TRRUST.
Setting Model AUROC AUPRC HS SA

T

XGB 0.786±0.006 0.791±0.016 0.794±0.005 0.788±0.007
MLP 0.796±0.008 0.799±0.019 0.801±0.011 0.803±0.012

GCN 0.810±0.008 0.815±0.022 0.812±0.008 0.817±0.005
GraphSAGE 0.822±0.010 0.826±0.007 0.819±0.008 0.824±0.010
Graph Transformer 0.832±0.005 0.835±0.015 0.837±0.004 0.830±0.006
DGI 0.841±0.014 0.844±0.011 0.845±0.009 0.847±0.006

MultiplexSAGE 0.860±0.018 0.864±0.010 0.858±0.009 0.866±0.005
DMGI 0.871±0.013 0.874±0.007 0.869±0.008 0.872±0.008
HDMI 0.878±0.008 0.879±0.014 0.883±0.005 0.881±0.004

DL-GGI 0.857±0.006 0.862±0.012 0.854±0.007 0.860±0.005
GENER 0.867±0.012 0.868±0.006 0.865±0.010 0.869±0.006

CAZI-MBN 0.905±0.013 0.872±0.008 0.791±0.023 0.784±0.015

ZS

XGB 0.779±0.012 0.781±0.006 0.783±0.015 0.777±0.014
MLP 0.789±0.010 0.790±0.014 0.793±0.010 0.794±0.006

GCN 0.801±0.011 0.804±0.010 0.800±0.006 0.805±0.004
GraphSAGE 0.812±0.006 0.817±0.012 0.809±0.009 0.815±0.007
Graph Transformer 0.823±0.008 0.826±0.016 0.828±0.006 0.820±0.005
DGI 0.832±0.011 0.835±0.014 0.836±0.007 0.838±0.006

MultiplexSAGE 0.850±0.007 0.854±0.010 0.848±0.004 0.855±0.005
DMGI 0.861±0.008 0.864±0.012 0.858±0.005 0.860±0.008
HDMI 0.868±0.006 0.869±0.010 0.872±0.006 0.870±0.004

DL-GGI 0.848±0.006 0.852±0.006 0.844±0.008 0.851±0.006
GENER 0.857±0.007 0.858±0.008 0.855±0.006 0.859±0.007

CAZI-MBN 0.899±0.017 0.869±0.013 0.775±0.019 0.764±0.007
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E.3.2 INTERACTION TYPE-SPECIFIC ANALYSIS.

To assess performance at a more detailed level, we focus on minority interaction types across the five MBNs.
Accuracy is used as the evaluation metric, and CAZI-MBN is compared against the top-performing benchmark
in each category (sequence-based, single-graph-based, multiplex-graph-based, and domain-specific), based
on their accuracy for each minority interaction type.

Figure 5 presents the interaction type-specific prediction accuracy across five datasets in the zero-shot
setting. CAZI-MBN consistently outperforms the best benchmark models, demonstrating strong capability in
capturing subtle class distinctions and reinforcing its suitability for zero-shot prediction in complex biological
networks. This is particularly important in practical applications where rare or underrepresented interaction
types may be biologically significant.

Figure 5: Interaction type-specific performance analysis across five datasets, evaluated by prediction accuracy.

E.3.3 ABLATION STUDIES

To rigorously evaluate the individual contributions of each core component in the CAZI-MBN framework,
we conducted systematic ablation studies by selectively removing one module at a time while keeping the
rest of the architecture intact. This approach allows us to isolate the functional impact of each component on
overall model performance and to better understand how each contributes to the model’s capacity to learn
from multiplex biological interaction data.

A summary of the ablation configurations is provided in Table 14. The detailed results are reported in
Tables 15 and 16.

28



1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2026

Ablation studies further validate the necessity of CAZI-MBN’s modular architecture. Across all datasets,
CAZI-MBN consistently outperforms every ablated variant, and the most significant performance drops occur
when the pre-trained LLMs or the CAE module are removed. The LLMs capture fine-grained biochemical
semantics across drugs, genes, and proteins, while the CAE module introduces multiplex-aware, context-
sensitive attention and contrastive alignment that enhance cross-layer consistency. Together, these modules
form the backbone of CAZI-MBN’s representational power, enabling it to jointly model both sequence
information and heterogeneous interaction patterns.

CAZI-MBN was specifically designed to integrate high-quality biochemical sequence embeddings with
multiplex graph structure and to distill this joint information for generalization. This design choice is
particularly critical in the zero-shot setting, where models must predict interactions for entities with no
prior neighborhood context. The strong contribution of LLM-based embeddings to overall performance is
therefore not surprising, as they provide rich sequence-level semantics that directly support generalization.
Indeed, when compared against baselines that lack domain-specific LLMs, CAZI-MBN shows substantial
improvements in zero-shot prediction, confirming the importance of leveraging modality-specific pre-trained
models.

Taken together, these findings demonstrate that CAZI-MBN’s strength lies in its capacity to integrate comple-
mentary modalities, sequence-level semantics and relational structure, into coherent representations. This
synergy allows the framework to capture both fine-grained molecular details and higher-order dependencies
across interaction layers, yielding robust performance in transductive tasks and strong generalization in
zero-shot scenarios.

Table 14: Summary of ablation variants.
Variant Description

w/o UGT Remove UGT; use only LLM-derived features as input
w/o LLMs Replace LLM features with 6-mer and Morgan fingerprints
w/o CAE Replace CAE with a single GCN per interaction type
w/o MoE Replace MoE with a plain MLP per interaction type
w/o Ldis Discard discriminator
w/o Lreg Discard consensus regularizer and replace with attention-only fusion for Z
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Table 15: Ablation results in transductive setting across five MBNs.
Dataset Model AUROC AUPRC HS SA

DGIdb

w/o UGT 0.666±0.015 0.705±0.008 0.639±0.012 0.634±0.017
w/o LLMs 0.563±0.021 0.579±0.023 0.591±0.014 0.582±0.016
w/o CAE 0.601±0.014 0.635±0.018 0.613±0.016 0.602±0.012
w/o MoE 0.672±0.019 0.707±0.011 0.645±0.020 0.637±0.018
w/o Ldis 0.692±0.024 0.701±0.017 0.673±0.019 0.655±0.022
w/o Lreg 0.679±0.012 0.696±0.013 0.660±0.010 0.644±0.014

CAZI-MBN 0.715±0.007 0.729±0.009 0.687±0.011 0.684±0.015

ChEMBL

w/o UGT 0.768±0.010 0.815±0.006 0.844±0.010 0.740±0.013
w/o LLMs 0.655±0.016 0.691±0.020 0.710±0.013 0.612±0.019
w/o CAE 0.702±0.008 0.727±0.012 0.778±0.011 0.691±0.016
w/o MoE 0.735±0.014 0.781±0.017 0.797±0.009 0.701±0.009
w/o Ldis 0.790±0.023 0.824±0.017 0.859±0.011 0.728±0.012
w/o Lreg 0.731±0.014 0.811±0.015 0.826±0.012 0.715±0.016

CAZI-MBN 0.812±0.008 0.863±0.006 0.889±0.014 0.757±0.011

PINNACLE

w/o UGT 0.801±0.009 0.831±0.013 0.735±0.011 0.749±0.012
w/o LLMs 0.683±0.019 0.699±0.017 0.629±0.019 0.609±0.018
w/o CAE 0.719±0.014 0.738±0.015 0.685±0.008 0.654±0.014
w/o MoE 0.748±0.015 0.765±0.016 0.707±0.010 0.693±0.013
w/o Ldis 0.811±0.016 0.832±0.25 0.740±0.013 0.742±0.018
w/o Lreg 0.795±0.011 0.818±0.013 0.737±0.013 0.722±0.013

CAZI-MBN 0.831±0.018 0.845±0.011 0.751±0.009 0.772±0.013

MetaConserve

w/o UGT 0.721±0.015 0.705±0.010 0.699±0.012 0.661±0.011
w/o LLMs 0.610±0.018 0.620±0.022 0.641±0.020 0.601±0.021
w/o CAE 0.678±0.019 0.679±0.018 0.693±0.010 0.635±0.014
w/o MoE 0.702±0.016 0.719±0.020 0.729±0.008 0.642±0.010
w/o Ldis 0.731±0.011 0.720±0.009 0.737±0.014 0.625±0.018
w/o Lreg 0.727±0.015 0.719±0.014 0.743±0.011 0.637±0.014

CAZI-MBN 0.752±0.020 0.744±0.012 0.779±0.008 0.656±0.014

TRRUST

w/o UGT 0.813±0.013 0.829±0.011 0.722±0.010 0.714±0.015
w/o LLMs 0.731±0.024 0.738±0.015 0.655±0.012 0.642±0.018
w/o CAE 0.768±0.017 0.775±0.020 0.701±0.013 0.698±0.011
w/o MoE 0.792±0.014 0.799±0.016 0.727±0.019 0.720±0.012
w/o Ldis 0.857±0.009 0.812±0.014 0.733±0.013 0.730±0.020
w/o Lreg 0.831±0.012 0.840±0.012 0.728±0.011 0.722±0.013

CAZI-MBN 0.899±0.017 0.869±0.013 0.775±0.019 0.764±0.007
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Table 16: Ablation results in zero-shot setting across five MBNs for CAZI-MBN(KD).
Dataset Model AUROC AUPRC HS SA

DGIdb

w/o UGT 0.633±0.015 0.664±0.010 0.637±0.012 0.625±0.014
w/o LLMs 0.527±0.017 0.553±0.025 0.599±0.018 0.573±0.015
w/o CAE 0.589±0.019 0.607±0.020 0.618±0.009 0.604±0.012
w/o MoE 0.641±0.012 0.662±0.015 0.639±0.011 0.631±0.011
w/o Ldis 0.643±0.017 0.677±0.009 0.819±0.022 0.690±0.015
w/o Lreg 0.593±0.012 0.616±0.013 0.621±0.011 0.601±0.012

CAZI-MBN 0.671±0.008 0.709±0.011 0.688±0.009 0.663±0.014

ChEMBL

w/o UGT 0.744±0.016 0.787±0.014 0.811±0.010 0.699±0.017
w/o LLMs 0.644±0.021 0.673±0.027 0.689±0.014 0.591±0.015
w/o CAE 0.686±0.017 0.709±0.016 0.756±0.008 0.667±0.011
w/o MoE 0.718±0.010 0.765±0.012 0.791±0.011 0.707±0.013
w/o Ldis 0.772±0.023 0.810±0.019 0.815±0.017 0.693±0.025
w/o Lreg 0.718±0.013 0.746±0.014 0.775±0.010 0.686±0.014

CAZI-MBN 0.791±0.018 0.839±0.015 0.857±0.011 0.723±0.009

PINNACLE

w/o UGT 0.755±0.012 0.768±0.018 0.713±0.014 0.725±0.012
w/o LLMs 0.671±0.019 0.685±0.021 0.628±0.012 0.614±0.014
w/o CAE 0.708±0.016 0.715±0.014 0.691±0.010 0.667±0.016
w/o MoE 0.733±0.009 0.745±0.011 0.717±0.007 0.701±0.010
w/o Ldis 0.775±0.015 0.801±0.008 0.715±0.021 0.730±0.019
w/o Lreg 0.758±0.011 0.794±0.014 0.732±0.012 0.712±0.013

CAZI-MBN 0.812±0.013 0.820±0.008 0.748±0.010 0.763±0.011

MetaConserve

w/o UGT 0.692±0.011 0.699±0.013 0.719±0.012 0.631±0.014
w/o LLMs 0.609±0.017 0.634±0.015 0.651±0.016 0.591±0.012
w/o CAE 0.656±0.014 0.662±0.016 0.687±0.009 0.615±0.011
w/o MoE 0.703±0.015 0.717±0.018 0.708±0.011 0.642±0.009
w/o Ldis 0.719±0.022 0.693±0.025 0.716±0.014 0.633±0.016
w/o Lreg 0.713±0.014 0.700±0.015 0.735±0.011 0.629±0.013

CAZI-MBN 0.738±0.015 0.722±0.010 0.749±0.020 0.653±0.009

TRRUST

w/o UGT 0.848±0.013 0.826±0.016 0.741±0.015 0.726±0.012
w/o LLMs 0.742±0.018 0.749±0.021 0.662±0.010 0.655±0.014
w/o CAE 0.788±0.019 0.802±0.013 0.709±0.014 0.701±0.013
w/o MoE 0.824±0.014 0.834±0.015 0.729±0.013 0.740±0.015
w/o Ldis 0.867±0.019 0.831±0.029 0.732±0.020 0.735±0.011
w/o Lreg 0.851±0.012 0.818±0.011 0.729±0.013 0.716±0.014

CAZI-MBN 0.899±0.017 0.869±0.013 0.775±0.019 0.764±0.007
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E.3.4 CASE STUDY: INTERACTIONS INVOLVING IBD-RELATED GENES AND PROTEINS

To evaluate the effectiveness of our approach in real-world biological scenarios, we conducted a case study
focused on zero-shot multiplex interaction prediction involving IBD-related genes and their protein products.
The selected genes, GAPDH, PC, RPS14, OAT, and NDUFAB1, were chosen based on their established
functional relevance to IBD and their evolutionary conservation from E. coli orthologs, including gapA, accC,
rpsK, orn, and fabD. These genes represent a diverse set of biological functions, such as energy metabolism,
redox balance, immune regulation, and mitochondrial activity, all of which are closely associated with IBD
pathogenesis. This focused selection enables a robust evaluation of the model’s ability to predict novel,
biologically meaningful interactions involving entirely unseen entities.

The genes and their IBD-relevant roles are summarized as follows:

• GAPDH (ortholog: gapA): Known for its central role in glycolysis, GAPDH also regulates T-cell
function and cytokine production, highlighting its dual role in metabolism and immune modula-
tion (Sheng & Wang, 2009; Bas et al., 2004; Barber et al., 2005).

• PC (ortholog: accC): Pyruvate carboxylase plays a key role in gluconeogenesis and epithelial energy
metabolism, both of which are affected in IBD (Algieri et al., 2016; Ferrer-Picón et al., 2020; Tang
et al., 2015; Bos & Laukens, 2020).

• RPS14 (ortholog: rpsK): A ribosomal protein with emerging evidence linking it to immune and
stress response regulation in intestinal inflammation (Sallman & List, 2019; Zou & Zhang, 2021;
Lin et al., 2020; Das et al., 2024).

• OAT (ortholog: orn): Ornithine aminotransferase regulates amino acid metabolism and redox
balance, with links to epithelial injury in IBD (Ji et al., 2023; Smith et al., 2021; Lan et al., 2023;
Gobert et al., 2004).

• NDUFAB1 (ortholog: fabD): This mitochondrial protein supports fatty acid synthesis and electron
transport and is associated with epithelial barrier integrity (Guerbette et al., 2022; Rath et al., 2018;
Kim et al., 2021).

For each dataset-specific case study, a separate model was trained using a standard zero-shot setting. All
biological entities and interactions involving the five specified genes and their protein products were held
out as the test set. The remaining interactions and associated entities were randomly split into training and
validation sets using an 5:1 ratio. This setup ensures that the model does not encounter the held-out genes or
their associated links during training, enabling a clear evaluation of its zero-shot generalization ability.

Table 17 presents the zero-shot prediction performance of CAZI-MBN across four benchmark datasets,
reporting an overall, as well as per-gene and gene product-level interaction statistics. These results evaluate
the model’s ability to generalize to previously unseen entities, specifically those involving five held-out human
genes and their bacterial orthologs. None of these genes or their products were included in the training set,
allowing for a rigorous assessment of the model’s zero-shot capabilities in the context of sparse and novel
biological interactions.

CAZI-MBN recovered a substantial proportion of known interactions across all evaluated datasets, achieving
82.7% accuracy in DGIdb, 85.7% in TRRUST, 75.1% in PINNACLE, and 62.5% in MetaConserve. These
datasets collectively span a range of biological interaction types, including drug-gene interactions (DGIdb),
transcriptional regulatory links (TRRUST), cell-type-specific protein-protein interactions (PINNACLE),
and evolutionarily conserved co-occurrence patterns (MetaConserve). The model’s consistently strong
performance across these diverse settings underscores its robustness and flexibility in handling heterogeneous
biological data.

Closer inspection of individual genes reveals that CAZI-MBN maintains strong predictive performance even
for held-out genes with relatively few known interactions in the test sets. For example, PC (accC) and
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Table 17: Per-Gene/Protein Product Statistics Across Datasets
DGIdb TRRUST PINNACLE MetaConserve

GAPDH(gapA) 34 / 41 (82.9%) 2 / 3 (66.7%) 103 / 140 (73.6%) –
PC(accC) 2 / 2 (100%) 2 / 2 (100%) – –
RPS14(rpsK) 3 / 5 (60%) – 340 / 454 (74.9%) –
OAT(orn) 1 / 1 (100%) 2 / 2 (100%) 11 / 16 (68.7%) –
NDUFAB1(fabD) 3 / 3 (100%) – 46 / 57 (80.7%) 5 / 8 (62.5%)

Total 43 / 52 (82.7%) 6 / 7 (85.7%) 500 / 666 (75.1%) 5 / 8 (62.5%)
a Each cell shows: Predicted / Actual (Accuracy), where Predicted indicates the number of interactions

correctly predicted by the model, and Actual indicates the total number of known interactions involving
the given gene or its product. “–” indicates no active interaction with the gene or its product was found
in that dataset.

b Total interaction counts may not equal the sum of individual gene or gene product counts, as some
interactions involve multiple listed genes or their products.

OAT (orn) each exhibited low interaction frequency within DGIdb and TRRUST, yet the model successfully
recovered all known interactions for both cases in these datasets. This is noteworthy given that these genes
were entirely excluded from training, highlighting the model’s ability to generalize to novel genes and
their interaction profiles. Although these results reflect only test-time performance, they demonstrate that
CAZI-MBN can effectively capture biological relationships across different interaction types, including
drug-gene interactions, transcriptional regulation, cell-type specific protein-protein interactions, without
relying on prior exposure to the specific biological entities involved. Such flexibility is critical for modeling
MBNs, where each biological entity may participate in diverse biological processes and be subject to distinct
regulatory mechanisms. Overall, these findings highlight the strength of CAZI-MBN in generalizing across
both interaction types and gene contexts. Its capacity to make accurate predictions in a zero-shot setting
suggests its potential as a valuable tool for expanding known interaction networks, prioritizing novel gene
candidates, and supporting downstream biological discovery.

Several high-confidence predictions made by CAZI-MBN are further supported by existing biomedical
literature, reinforcing the biological plausibility of the model’s outputs. For example, the model predicts an
interaction between GAPDH and Omigapil (DGIdb, pred: 0.912), which is validated by evidence showing
that Omigapil inhibits the GAPDH–Siah1 apoptotic signaling pathway in neuromuscular disorders (Foley
et al., 2024; Zhou et al., 2015). Additionally, GAPDH has been shown to chaperone ribosomal protein
L13a, stabilizing the GAIT complex and modulating inflammation-related translation, which aligns with
predicted interactions between GAPDH and ribosomal proteins in PINNACLE (Jia et al., 2012). The model
also identifies numerous interactions involving RPS14 with other ribosomal proteins (e.g., RPL19, RPS17),
which are consistent with its role in ribosome assembly and immune-related translational control (Zhou et al.,
2015; Chan et al., 2018; Wang et al., 2022). These literature-backed findings confirm that CAZI-MBN is not
only capable of recovering known links but also makes biologically coherent predictions in a fully zero-shot
setting.

This case study highlights the effectiveness of multiplex-aware zero-shot learning frameworks in predicting
biologically meaningful interactions for novel or under-characterized entities. It reinforces CAZI-MBN’s po-
tential as a tool for accelerating hypothesis generation and advancing discovery across complex, multilayered
biological systems.
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