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Abstract

Across the Arcade Learning Environment, Rainbow achieves a level of performance
competitive with humans and modern RL algorithms. However, attaining this level
of performance requires large amounts of data and hardware resources, making
research in this area computationally expensive and use in practical applications
often infeasible. This paper’s contribution is threefold: We (1) propose an improved
version of Rainbow, seeking to drastically reduce Rainbow’s data, training time,
and compute requirements while maintaining its competitive performance; (2) we
empirically demonstrate the effectiveness of our approach through experiments
on the Arcade Learning Environment, and (3) we conduct a number of ablation
studies to investigate the effect of the individual proposed modifications. Our
improved version of Rainbow reaches a median human normalized score close to
classic Rainbow’s, while using 20 times less data and requiring only 7.5 hours of
training time on a single GPU. We also provide our full implementation including
pre-trained models.

1 Introduction

In 2013, the Deep Q-Networks (DQN) algorithm [Mnih et al., 2013] kicked off a flurry of develop-
ments in the classic Atari reinforcement learning (RL) benchmark. In this benchmark, the agent is
tasked with learning to play Atari 2600 games solely based on pixel inputs and rewards. While recent
methods such as Agent57, R2D2, NGU, and MuZero [Badia et al., 2020a, Kapturowski et al., 2019,
Badia et al., 2020b, Schrittwieser et al., 2020] can now achieve above-human level performance in
most or all games, a number of critical issues remain. Among these are the often vast data, time,
and compute requirements for training these agents. Agent57, the only RL algorithm to achieve
super-human performance on all 57 Atari games, required in the order of a century (78 billion frames)
of gameplay experience in order to beat the last game, Atari Skiing [Badia et al., 2020a].

Rainbow [Hessel et al., 2018], introduced in 2017 and itself based on DQN, represents an important
milestone in the development of the above-mentioned agents, acting as a foundation for Agent57 and
other algorithms [Badia et al., 2020a, Kapturowski et al., 2019]. In the past, Rainbow has also served
as a useful baseline for the development of new environments [Cobbe et al., 2020, Nichol et al., 2018].
In this paper, we revisit the Rainbow algorithm and review some of the original design choices. By
combining Rainbow with some more recent techniques and by simplifying the implementation, we
seek to strike a good balance between performance, data efficiency, training time, and implementation
complexity.

Aside from the Atari benchmark, reinforcement learning has further achieved remarkable accomplish-
ments in other domains, such as beating the human champions in some of the world’s most difficult
board games [Silver et al., 2016, 2017, 2018], as well as in strategic real-time combat video games
[Vinyals et al., 2019b, Berner et al., 2019]. Other prominent demonstrations of the effectiveness of
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RL are optimizing the energy consumption of data centers [Lazic et al., 2018], dexterous robotic
manipulation of physical objects [Akkaya et al., 2019, Andrychowicz et al., 2020], and designing
more efficient chip layouts [Mirhoseini et al., 2020] and neural architectures [Zoph and Le, 2017,
Pham et al., 2018]. In these domains too, however, RL-based approaches can suffer from the issues
of lacking data efficiency and requiring large amounts of compute resources, among others. Indeed,
some of the most remarkable results achieved in these tasks required up to hundreds or even thousands
of years worth of simulated environment interaction experience [Vinyals et al., 2019b,a, Berner et al.,
2019, Akkaya et al., 2019]. This severely limits the applicability of RL to many real-world tasks,
where gathering such large amounts of experience is often infeasible, and the required hardware
resources impose a substantial financial burden.

One prominent stream of research that addresses these issues is data-efficient RL. This area refers to a
set of algorithmic improvements to the RL agent that aim to enable it to learn from fewer environment
interaction steps and shorten the training time the RL agent requires in order to learn the desired
behavior. In recent years, this area has started to receive lots of attention within the RL community.
Therefore, we discuss the literature on data-efficient RL in more detail in Section 2.

Other, more practical approaches attempt to explicitly shorten the time required to reach the learning
objective by speeding up the RL training process itself. This can be achieved, for example, by
employing simple tricks that are commonly used in other areas of machine learning but have
previously rarely been used in RL. These include techniques to improve hardware utilization, mixed-
precision training [Micikevicius et al., 2018] and methods that aim to stabilize the training process.

1.1 Contributions

In this work, we integrate techniques from both streams of research into the established Rainbow agent
while re-evaluating a number of Rainbow’s original design choices. Among others, we investigate
what effect a larger batch size, a bigger network, a higher learning rate, spectral normalization, and
mixed precision have on the training speed and the RL agent’s overall performance. While most of
these tricks/enhancements have been studied individually in the context of RL, to the best of our
knowledge, our work is the first to study them jointly. We discuss their appearance in the literature in
more detail in Section 2.

To study these improvements, we rely on the well-established Atari benchmark. The Arcade Learning
Environment (ALE) has long been an important challenge for RL research [Bellemare et al., 2013,
Machado et al., 2018] and has particularly entered the spotlight since the introduction of Deep
Q-Networks (DQN) [Mnih et al., 2013, 2015]. DQN combines Q-Learning with deep convolutional
neural networks (CNNs) and experience replay to learn to play Atari games at human-level perfor-
mance, solely from pixels and with no prior human knowledge. Since its inception, a variety of
enhancements to the original DQN architecture have been proposed [van Hasselt et al., 2016, Wang
et al., 2016, Schaul et al., 2016, Sutton and Barto, 2018, Fortunato et al., 2018, Bellemare et al., 2017],
many of which have since been integrated into a single unified algorithm, Rainbow-DQN [Hessel
et al., 2018]. The introduction of Rainbow represents a critical milestone in the development of RL
algorithms, and it has ever since been one of the best-performing and most established algorithms for
Atari.

Overall, we make the following contributions in this paper:

• We propose an improved version of Rainbow, seeking to reduce wall-clock training time and
required hardware resources while improving data efficiency and maintaining competitive
performance.

• We empirically demonstrate the effectiveness of our approach on the Atari benchmark,
achieving a median human normalized score close to that of classic Rainbow-DQN while
using 20 times less data.

• We conduct a number of ablation studies to investigate the effect of the proposed modifica-
tions individually and in aggregate.
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2 Related Work

This section covers some recent directions of research in deep reinforcement learning that are
orthogonal to our work.

2.1 Data-efficient RL: the algorithmic solution

One prominent stream of research related to our work is data-efficient RL. Data-efficient RL aims to
learn from fewer environment interaction steps by leveraging the information at the agent’s disposal
more effectively. Recently, this has become an attractive area of research, as current RL algorithms
can be incredibly data-inefficient. In fact, data inefficiency has been identified as one of the major
obstacles towards widespread adoption of RL in the real world [Dulac-Arnold et al., 2019, 2020].
Different solutions have been proposed to mitigate this limitation. Three of the most promising ones
are (1) self-supervised learning, (2) model-based RL, and (3) data augmentation.

Self-supervised learning. Self-supervised methods in RL aim to learn more effective representations
of the environment by optimizing a self-supervised auxiliary objective in addition to the primary RL
objective. Self-supervised learning (SSL) is the driving force behind recent advances in NLP [Devlin
et al., 2018, Brown et al., 2020], computer vision [Chen et al., 2020, Grill et al., 2020] and speech
recognition [Baevski et al., 2020]. Only recently, SSL has started to receive widespread attention
from the RL community and shown to improve data efficiency considerably. Prominent examples are
Unreal [Jaderberg et al., 2017], CURL [Laskin et al., 2020a], SPR [Schwarzer et al., 2020], and SGI
[Schwarzer et al., 2021].

Model-based methods. Model-based RL algorithms, in contrast, learn an explicit model of the
environment and then use this model to derive a good policy by simulating experience, a process
known as planning [Sutton and Barto, 2018]. A major advantage, again, is more data-efficient
learning, but these methods have historically proven difficult in environments with large and complex
observation spaces [Moerland et al., 2020]. However, Schrittwieser et al. [2020] recently introduced
MuZero, a model-based RL algorithm that achieves state-of-the-art performance on the Arcade
Learning Environment [Bellemare et al., 2013]. Other prominent examples of model-based RL
methods include World Models [Ha and Schmidhuber, 2018], SimPle [Kaiser et al., 2019] and
Dreamer [Hafner et al., 2019, 2020]. A detailed overview of the model-based RL literature is given
by Moerland et al. [2020].

Data augmentation. Another option to improve data efficiency in RL is data augmentation, a well-
established technique in many ML domains, most notably for image-based tasks [Perez and Wang,
2017, Shorten and Khoshgoftaar, 2019]. Data augmentation aims to artificially increase the amount
of available training data by modifying existing observations in some meaningful way. For RL, this
simple technique has been shown to improve data efficiency considerably, as demonstrated by RAD
[Laskin et al., 2020b] and DrQ [Yarats et al., 2020].

2.2 Speeding up RL training: the practical solution

Both the approaches discussed in this section, as well as the data-efficient methods from the previous
section, deal with the same fundamental question: how to accelerate the training of reinforcement
learning agents. On the one hand, data-efficient methods implicitly shorten the training time by
cutting down the number of required training samples. The methods discussed in this section, on the
other hand, seek to shorten the required training time without fundamentally modifying the learning
algorithm. These methods are not unique to deep RL but rather are generally applicable to many deep
learning algorithms. We do not cover approaches that speed up training through parallelization since
these simply trade hardware requirements for training time and thus do not alleviate the financial
burden of training large models.

Larger batch sizes. For image-based RL tasks, agents are typically trained with relatively small
batch sizes [Mnih et al., 2015, Hessel et al., 2018]. However, prior work has demonstrated that, on the
procgen and ALE benchmarks, increasing the batch size can speed up the training time considerably
[Cobbe et al., 2020, Stooke and Abbeel, 2018].

Bigger networks. Compared to other branches of deep learning, the networks employed by deep
RL agents are relatively shallow [Mnih et al., 2015]. Replacing the standard network architecture
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with bigger networks has proven a fruitful direction in prior work [Espeholt et al., 2018, Cobbe et al.,
2020, Sinha et al., 2020, Bjorck et al., 2021].

Spectral normalization. Recently, Gogianu et al. [2021] proposed to apply Spectral Normalization
(SN), a technique that originates from the literature on Generative Adversarial Networks (GANs)
[Miyato et al., 2018, Kurach et al., 2019], to the RL setting. The authors observed that a Categorical
DQN agent (C51) [Bellemare et al., 2017] augmented with SN achieves similar results as a full
Rainbow DQN implementation [Hessel et al., 2018].

Mixed precision. Another prominent and well-established option to accelerate the training of neural
networks is mixed precision, initially proposed by Micikevicius et al. [2018]. In RL, Lam et al.
[2019] and Björck et al. [2021] were the first to integrate low/mixed precision and saw substantial
improvements in training time.

2.3 RL & the Atari benchmark: a lasting relationship

The Arcade Learning Environment (ALE) [Bellemare et al., 2013, Machado et al., 2018] is a lasting
and indispensable element of the RL researcher’s toolbox. It is also the focus of our work. Since
its inception, hundreds of RL algorithms have been developed, and the achieved scores have only
increased over time. The first model-free architecture to raise public interest on the Atari benchmark
was Deep Q-Networks (DQN) [Mnih et al., 2013, 2015]. Several enhancements to DQN have been
proposed. including Double DQN [van Hasselt et al., 2016], Dueling DQN [Wang et al., 2016],
Prioritized Experience Replay [Schaul et al., 2016], Multi-step Bootstrapping [Sutton and Barto,
2018], Noisy Nets [Fortunato et al., 2018], and Distributional RL [Bellemare et al., 2017].

Rainbow DQN, the architecture we leverage in this work, integrates all these enhancements into a
single unified framework and shows that they are largely compatible [Hessel et al., 2018]. A slightly
modified version of Rainbow introduced by van Hasselt et al. [2019] and referred to as Data-efficient
Rainbow trades off reduced computational efficiency in exchange for significantly improved data
efficiency.

R2D2 [Kapturowski et al., 2019] and Agent57 [Badia et al., 2020a], distributed RL algorithms, follow
in the lineage of Rainbow. Similar distributed training strategies were employed by Gorila [Nair et al.,
2015], Ape-X [Horgan et al., 2018], IMPALA [Espeholt et al., 2018] and Reactor [Gruslys et al.,
2018]. Like IMPALA, R2D2 also uses recurrent neural networks to take advantage of longer state
histories. Agent57 builds off of the methods developed in Kapturowski et al. [2019] but combines
them with two intrinsic reward-based exploration mechanisms: the curiosity-based Random Network
Distillation [Burda et al., 2019] and Never Give Up exploration [Badia et al., 2020b], aimed at
increasing long and short term state-space coverage, respectively. Additionally, a UCB bandit [Sutton
and Barto, 2018] algorithm is used to control the amount of exploration and the value of the discount
factor in each of the distributed actors.

3 Preliminaries

In this section, we briefly discuss the theoretical foundations of this work.

3.1 The RL framework

Markov decision process. The fundamental goal of RL is to learn how to behave in an unknown en-
vironment in order to maximize a scalar reward signal. In each step of this sequential decision-making
task, the agent observes the environment’s current state st, performs some action at, transitions to the
next state st, and obtains a reward rt [Sutton and Barto, 2018]. We assume the standard formulation
of the Markov Decision Process (MDP) with 〈S,A, R, P 〉 where

• S,A are state and action space, respectively

• R : S ×A×S → R is the reward function that assigns each transition from state st to state
st+1 via action at a real valued reward rt = R(st, at, st+1)

• P : S ×A → [0, 1] is the transition probability function that specifies a conditional proba-
bility p(st+1|st, at) of transitioning into state st+1 after executing action at in state st.
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The Goal of RL. The goal the agents pursues is to maximize its return, Gt =
∑T
k=t+1Rk, the sum

of all collected rewards. To achieve this, it learns a policy π that determines its behavior. The policy
π maps the perceived states to actions a ∼ π(a | s). The policy π can be either learned directly via
the policy gradient or indirectly via the Bellman equations. RL algorithms that directly learn the
policy are referred to as policy-based methods whereas algorithms that learn value functions are
known as value-based methods [Sutton and Barto, 2018].

Bellman equations. The state-value function vπ(s) = Ea∼π[r(s, a) + γvπ(s
′)] and action value

function qπ(s, a) = E[r(s, a) + γEa′∼π[qπ(s′, a′)]] determine how good it is to be in a certain state
and how good it is to perform a certain given a certain state, respectively [Sutton and Barto, 2018].

3.2 Q-learning: from tables to neural networks

Tabular Q-learning Q-Learning is a value-based RL algorithm that explicitly maintains a table
of Q-estimates for state-action pairs [Watkins and Dayan, 1992]. More generally, it falls under
temporal difference (TD) learning methods as it grounds value estimates for the current time step
in estimates at future steps. The Q-estimates are repeatedly updated according to: q(s, a) ←
q(s, a)+α[r+ γmaxa q(s

′, a)− q(s, a)]. While Q-Learning works well for small problems, storing
the table becomes intractable for larger state/action spaces [Sutton and Barto, 2018].

Deep Q-Network. DQN, proposed by Mnih et al. [2015], employ neural networks to represent the
Q-table. In contrast to tabular Q-learning, DQN scales large state and action spaces. Furthermore,
Mnih et al. [2015] introduced two additional enhancements to Q-Learning that are essential for
good performance when using function approximation, experience replay as well as a separate target
network that is updated periodically. Therefore, the learning objective becomes:

J(θ) = E(s,a,s′,r)∼D[(r + γmax
a′

qθ−(s, a
′)− qθ(s, a))2] (1)

where D represents the experience replay buffer, and θ and θ− are the neural networks that parame-
terize the Q-functions.

4 Our Approach

Our main goals in this work are to reduce Rainbow’s considerable hardware, training time, and data
requirements while maintaining a similar level of performance as the original agent. We achieve these
goals by combining a large Q-network architecture with an efficient high-throughput implementation
as well as by accelerating and stabilizing training through extensive hyper-parameter tuning and the
use of spectral normalization. Furthermore, we reduce the implementation complexity of Rainbow
by removing the distributional RL component. While distributional RL was essential for good
performance in Hessel et al. [2018] when training for over 40M frames, our improvements in learning
speed — leading to lower overall required training time — made distributional RL less vital.

Our implementation is available at https://github.com/schmidtdominik/Rainbow and in-
cludes a complete and highly customizable framework for preprocessing, training, and evaluation.
We further provide integrations for OpenAI’s gym, procgen, and gym-retro environments, as well
as pretrained models for all 53 tested Atari games.

In the rest of this section, we discuss the tricks we apply and describe the individual components
of our approach. First, we describe our evaluation methodology. Then, we describe the network
architecture we employ in this work and show how different variants thereof compare. Furthermore,
we discuss how we make use of spectral normalization and again compare a few variants. Also, we
address the tricks we employ to improve the hardware utilization of our agent.

4.1 Evaluation methodology

We evaluate our approach against the same set of 54 Atari games that were used in Hessel et al.
[2018], excluding the game Surround as it is not available via OpenAI gym. To this end, we closely
follow the evaluation procedure from Mnih et al. [2015] and Hessel et al. [2018]. All evaluation
runs lasted for 500k frames and each individual episode was no longer than 108k frames. The only
modification we made was that we performed the evaluation runs after training had concluded by
periodically saving model snapshots during training and later loading them for evaluation. Lastly, we
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re-evaluated the best-performing snapshot for each game. Each experiment was performed with three
random seeds.

Due to the high computational cost of training on the whole ALE, we limited our ablation studies to a
subset of 5 games (Asterix, Beam Rider, Freeway, Seaquest, and Space Invaders) as recommended
in Machado et al. [2018] and Bellemare et al. [2013]. This selection includes two human-optimal
games, two score-exploitable games, and one sparse reward game [Taïga et al., 2020]. Overall, this
selection intends to capture the large variety of the ALE in a small number of games.

We encountered one issue with comparability that occurs since Hessel et al. [2018] trained their agent
for 200M frames while we only trained for 10M frames: the frequency of evaluation snapshots is
the same (every 1M frames), but the total number is not. This means that for some games where
the performance fluctuates wildly during training, taking a larger number of agent snapshots could
increase the likelihood of taking at least one snapshot at a point of good performance. To support
this hypothesis, we separately stored and evaluated twice the number of agent snapshots (every 500k
training frames) and observed an approximately 10% increase in apparent performance. This suggests
that evaluation results from agents trained on the ALE and evaluated on a lower number of snapshots
than previous research may underestimate the true performance of their agent.

4.2 Larger and deeper Q-Network Architecture

First, we replace the small dueling network architecture, as introduced in Mnih et al. [2013] and
combined with dueling DQN in Wang et al. [2016], with the both larger and deeper IMPALA
CNN [Espeholt et al., 2018]. More specifically, we employ the large variant of the IMPALA CNN
(see Figure 1 in the supplementary material) with twice the number of channels, as modified in
Cobbe et al. [2020]. We additionally add a size 6 × 6 adaptive max-pooling layer between the
network’s convolutional and fully connected parts. This simple yet powerful modification makes
it straightforward to use our implementation with inputs of different resolutions (such as games
provided by procgen or gym-retro) without affecting the number of parameters in the network.
Like Cobbe et al. [2020] and Espeholt et al. [2018], we found that using this architecture substantially
increased learning speed (both in terms of wall-clock time and training steps), sample efficiency, and
final overall performance.

Figure 1: Comparison of the different network architectures. Dueling refers to the "Nature" dueling
architecture used in Hessel et al. [2018]. Each curve shows the median over three seeds of the
100-episode running average of episode returns as a function of environment interactions.

In our experiments, we compared values of 1, 2 and 4 for the channel multiplier. The results of these
experiments are shown in Figure 1. We found that a value of 2 yielded a good trade-off between data
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and computational efficiency. Consequently, we selected this network architecture for our subsequent
runs.

4.3 Spectral Normalization

Spectral normalization (SN), commonly used to stabilize the training of discriminators in GANs
[Miyato et al., 2018], is a method for controlling the Lipschitz constant of linear operators such as
convolutional or dense linear layers in neural networks. Spectral normalization can be efficiently
approximated via the power iteration method [Miyato et al., 2018, Gogianu et al., 2021].

In our experiments, we compared three different variants of applying spectral normalization to the
convolutional layers in the IMPALA CNN:

• none – no spectral normalization is performed.
• all – SN is applied to both convolutional layers in all six residual blocks.
• last – SN is applied to all convolutional layers in the final two residual blocks.

Figure 2: Comparison of the three variants of spectral normalization. Each curve shows the median
over three seeds of the 100-episode running average of episode returns as a function of environment
interactions.

Furthermore, we experimented with a fourth variant that applied SN to the final (noisy) linear layers
only. However, we quickly dismissed this variant due to bad overall performance. We hypothesize that
the drop in performance resulted from interference between spectral normalization and Noisy-Nets
DQN exploration.

Figure 2 shows the comparison of the three variants of spectral normalization over five games. Even
though the last variant was marginally faster in terms of training throughput, we eventually settled on
the all variant as it slightly outperformed the former.

Overall, we observed that spectral normalization has the largest effect at the beginning of training
across a number of games. It significantly reduces the time until initial learning progress is made.
This effect was most strongly observable in games such as Breakout, Seaquest and Tennis where
initial progress can be particularly slow.

4.4 Improving Hardware Utilization

We additionally employ several practical modifications to the training process that aim to decrease the
wall-clock training time — and thus the required computational budget — by maximizing hardware
utilization and training throughput:
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• Similarly to Cobbe et al. [2020], we increase the batch size from 32 to 256. As suggested
in Stooke and Abbeel [2018], we accordingly adjust the ε hyper-parameter for the Adam
optimizer to 0.005/b, where b is the batch size.

• Environment interactions need to be computed sequentially and can thus not be parallelized
across the time dimension. Thus, to batch environment simulation, we maintain e = 64
instances of the environment and take one step of this vectorized environment for every
k = 2 training steps. In our implementation, the parameters b and e can be freely chosen so
as to maximize GPU and CPU utilization and the agent’s performance. The average number
of times each environment transition is sampled from the replay buffer bke = 8 remains fixed
by setting k accordingly.

• We perform environment simulation steps and training steps in parallel to minimize idle
time on the GPU.

• We use mixed-precision training as provided by PyTorch’s amp package.

In aggregate, these modifications decrease the training time by a factor of 3.2, from 24 to approxi-
mately 7.5 hours, for training on 10M frames on a single Nvidia RTX 3090 GPU. Interestingly, the
increased batch size also considerably improves the performance on several games. Prior work has
observed a similar effect and attributed it to decreased gradient variance and thus more stable training
behavior [Cobbe et al., 2020]. Figure 3 shows the individual contributions of the modifications
compared to baseline.

Figure 3: Cumulative improvement in training throughput compared to the baseline.

4.5 Hyperparameter Tuning

Apart from the batch size, network size, and choice of spectral normalized layers, we also performed
a hyper-parameter search over learning rates and compared the Huber and mean-squared error (MSE)
loss functions.

Unlike Obando-Ceron and Castro [2021] we did not observe better performance through the use of the
MSE loss. However, the search over learning rates did prove fruitful. Increasing the learning rate by a
factor of 4 (to the same value used in DQN) significantly speeds up learning in our experiments, both
with the increased batch size and without. In addition, it considerably improves the final performance
the agent achieves. We hypothesize that the reason Hessel et al. [2018] settled on the lower learning
rate was that the benefit of better convergence when using a lower learning rate outweighed the
disadvantage of slower learning when training for much longer periods of time.

The full set of hyperparameters is listed in Appendix A in the supplementary material.

4.6 Distributional RL

Finally, in our experiments removing the distributional RL component from Rainbow did not signifi-
cantly affect our agent’s final performance or learning speed when trained for 10M frames. This is in
line with observations from the ablation studies in Hessel et al. [2018] that showed the main benefit
of distributional RL materialized only after training for about 40M frames. Thus, considering the
negligible performance improvement and substantial implementation complexity, we decided not to
include distributional RL in our final agent.

Similarly, the evaluation curves in Hessel et al. [2018] indicate that other components of Rainbow
such as Noisy-Nets DQN and Dueling DQN may only be important when training for long periods.
This may suggest that — given future improvements in data efficiency, leading to lower required

8



training time — it might be possible to further simplify the Rainbow agent with no penalties to
performance, in particular when working with a limited computational budget.

Additionally, we investigated replacing the C51 [Bellemare et al., 2017] variant of distributional RL
with QR-DQN [Dabney et al., 2018]. However, in our experiments, we could not observe a significant
difference.

5 Results

Table 1 compares the final aggregate scores of our approach to the ones of the original Rainbow-DQN
agent, as well as to standard DQN. The full scores and learning curves for each of the 53 games are
available in Table 1 and Figure 2 in the supplementary material.

Each of our training runs took approximately 7.5 hours on a single Nvidia RTX 3090 GPU or 10
hours on a single Nvidia 2080Ti GPU. These requirements make performing larger numbers of
experiments feasible, even with a more modest compute budget.

Our final agent was trained for only 10 million environment transitions and achieves a median human
normalized score (HNS) of 205.7, reaching above human-level performance on 39 out of 53 games.
In contrast, classic Rainbow achieves a median HNS of 70 (estimated) and 231 after training for 10
and 200 million transitions, respectively. Overall, their score after 200M transitions is equivalent
to super-human performance on 40 out of 53 games. The exact scores for classic Rainbow at 10M
frames were not published in Hessel et al. [2018]. Therefore, they were estimated from the provided
evaluation curves. In addition, published results in Castro et al. [2018] for the "Dopamine" Rainbow
implementation serve as another reference point (see Table 1, HNS of 50.4 for 10M and 145.8 for
200M). In any case, our approach outperforms the scores at 10M by a big margin and achieves scores
more similar to the ones obtained after 200M steps.

Rainbow [Castro
et al., 2018]

DQN [Mnih
et al., 2013]

Rainbow [Castro
et al., 2018]

Rainbow [Hessel
et al., 2018] Ours

training frames 10M 200M 200M 200M 10M
mean HNS 166.9 224.2 1161.6 1624.9 1174.2
median HNS 50.4 79.3 145.8 231.0 205.7
# games above human 19 24 38 40 39

Table 1: Comparison of human normalized scores averaged over the 53 tested games (and 3 random
seeds) for our agent, two implementations of Rainbow, and DQN. Random and human scores used
for computing the HNS were taken from Mnih et al. [2015] where available, otherwise from Badia
et al. [2020a]. The full results are provided in the supplementary material.

6 Conclusion

In this paper, we addressed one of the fundamental questions in reinforcement learning: how to
accelerate the training of RL agents? To achieve this, we employed a variety of tricks that speed
up the RL training procedure and empirically investigated how they affect training speed as well as
overall performance on the Atari benchmark. While most of these enhancements have been studied
individually in the context of RL, our work is, to the best of our knowledge, the first to study them
jointly. Our improved training procedure significantly reduces the training time and data required by
the RL agent while maintaining competitive performance. Furthermore, we conducted a number of
ablations to understand what effect the individual modifications have on the training process. Overall,
the results we presented may serve as a practical guide for speeding up the training of RL agents.
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A Full Results

Figure 4: Learning curves for our Rainbow implementation for each of the selected Atari environ-
ments. Each curve represents the median 100-episode running average of episode returns over three
seeds.
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YarsRevenge 3,092.9 54,576.9 10,536.7 18,089.9 45,542.0 102,557.0 98,908.0
Zaxxon 32.5 9,173.3 4,521.1 4,976.7 14,603.0 22,209.5 18,832.6

training frames 10M 200M 200M 200M 10M
mean HNS 0 100 166.9 224.2 1161.6 1624.9 1174.2
median HNS 0 100 50.4 79.3 145.8 231.0 205.7
# games above human 0 0 19 24 38 40 39

Table 2: Evaluation scores for all 53 tested Atari games (averaged over 3 random seeds). Random
and human scores are from Mnih et al. [2015] where available, otherwise from Badia et al. [2020a].
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B Hyperparameters

B.1 Hyperparameters for Rainbow

This section lists the hyperparameters used in our experiments. Parameters that differ from the ones
used in Hessel et al. [2018] are marked with an asterisk. As in previous work, the unit "frames" refers
to the number of environment steps taken by the wrapped environment, including frame-skipping.
For noisy-nets DQN we implemented the "factorized Gaussian noise" variant, with noise vectors
generated on the GPU.

Parameter Value
Discount factor γ 0.99
Q-target update frequency 32,000 frames
Importance sampling β0 for PER 0.45
n in n-step bootstrapping 3
Initial exploration ε 1.0
Final exploration ε 0.01
*Exploration ε decay time 500,000 frames
σ0 for noisy linear layers 0.5
*Learning rate 0.00025
*Adam ε parameter 0.005/batch size
Gradient clip norm 10
Loss function Huber
*Batch size 256
*Parallel environments 64
Replay Buffer Size 1M transitions
Training starts at 80,000 frames
*Q-network architecture IMPALA-large with 2x channels

B.2 Environment pre-processing hyperparameters

This section lists the settings for preprocessing environments from gym, gym-retro and procgen.
All environments used a time limit of 108k frames (30 minutes of emulator time). Image downscaling
was performed with area interpolation. For gym environments, we max-pooled consecutive frames
and used 0-30 noop actions at the beginning of each episode as in Hessel et al. [2018].

Parameter Environment Value
gym yes

Grayscale retro no
procgen no
gym 4

Frame-skipping retro 4
procgen 1
gym 4

Frame-stacking retro 4
procgen 4
gym 84 × 84

Resolution retro 72 × 96
procgen 64 × 64
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B.3 Network Architecture

Figure 5: The unmodified small (left) and large (right) IMPALA CNN network architecture [from
Espeholt et al., 2018].
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