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ABSTRACT

Large language models (LLMs) have displayed an impressive ability to harness
natural language to perform complex tasks. In this work, we explore whether
we can leverage this learned ability to find and explain patterns in data. Specif-
ically, given a pre-trained LLM and data examples, we introduce interpretable
autoprompting (iPrompt), an algorithm that generates a natural-language string
explaining the data. iPrompt iteratively alternates between generating explana-
tions with an LLM and reranking them based on their performance when used as
a prompt. Experiments on a wide range of datasets, from synthetic mathematics to
natural-language understanding, show that iPrompt can yield meaningful insights
by accurately finding groundtruth dataset descriptions. Moreover, the prompts
produced by iPrompt are simultaneously human-interpretable and highly effec-
tive for generalization: on real-world sentiment classification datasets, iPrompt
produces prompts that match or even improve upon human-written prompts for
GPT-3. Finally, experiments with an fMRI dataset show the potential for iPrompt
to aid in scientific discovery.

1 INTRODUCTION

Large language models (LLMs) have attained an extraordinary ability to harness natural language
for solving diverse natural-language problems (Devlin et al., 2018), often without the need for fine-
tuning (Brown et al., 2020; Sanh et al., 2021). Moreover, LLMs have demonstrated the capacity to
excel at real-world problems, such as mathematics (Lewkowycz et al., 2022) and scientific question
answering (Sadat & Caragea, 2022).

In this work, we probe whether we can leverage the learned skills of an LLM to find and explain
patterns in a dataset. To do so, we invert the typical problem of fitting an LLM to data and instead ask
whether we can use a fixed LLM to produce a natural-language string explaining dataset patterns.
Our approach to this problem centers around prompting. Prompting has emerged as an effective
method for adapting LLMs to perform new tasks (Liu et al., 2021a). A prompt string is combined
with each example in a dataset before querying an LLM for an answer.

While prompts were initially constructed manually, recent work has shown success in autoprompt-
ing, i.e. automatically finding a prompt via optimization (Shin et al., 2020; Li & Liang, 2021).
However, previous work on learning natural language prompts Shin et al. (2020) does not produce
prompts that are meaningful to humans.

Our approach, interpretable autoprompting (iPrompt), extends autoprompting to generate a seman-
tically meaningful natural-language prompt that explains a key characteristic of the data (see Fig. 3).
For example, given a dataset of examples of addition, e.g. 2 5) 7 ... 3 1) 4, we use an LLM
to yield the natural-language description Add the inputs. iPrompt is an iterative algorithm that al-
ternates between (i) proposing candidate explanations with an LLM, (ii) reranking the candidates
based on their performance when used as a prompt, and (iii) exploring new candidates.

To evaluate iPrompt, we curate a diverse collection of datasets written in natural language (Table 1),
where our goal is to accurately infer a ground-truth pattern. The dataset includes a number of syn-
thetic math datasets, as well as language tasks from the Natural Instructions V2 dataset (Wang et al.,
2022). We find that iPrompt outperforms baseline autoprompting methods in successfully finding
a correct description across these datasets. Moreover, the generated descriptions are interpretable,
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Figure 1: Interpretable autoprompting (iPrompt) inverts the standard prediction problem to instead
find a natural-language explanation of the data using a fixed, pre-trained large language model
(LLM).

Table 1: Dataset Explanation Task. For full details on each dataset, see Appendix A.1.
Collection # Description Dataset names

Inverse synthetic
math

10 Simple mathematical
functions

Add two, Subtract two, Multiply two,
Divide two, Max two, First number,

Square, Exponentiate, Double, Fibonacci
Inverse Allen NLI
(Wang et al., 2022)

10 Diverse language tasks Country capital, Antonyms, Check edibility,
Rhyme generation, Country currency,

Check prime, Check vegetarian, Find typo,
Gender classification, SQL query generation

Sentiment 4 Sentiment classification SST-2, RottenTomatoes, IMDB,
Financial Phrasebank

Natural-language fMRI
(Huth et al., 2016)

20 Find an underlying category
from a list of words

that excite an fMRI voxel

Extracting a pattern from a set of
words, each corresponding

to a different voxel

allowing human auditing and enabling strong generalization performance when used as a prompt in
a new setting (i.e. when used for a different LLM). On real-world sentiment classification datasets,
iPrompt even produces prompts that match or improve upon human-written prompts for GPT-3. Fi-
nally, we qualitatively explore iPrompt in a neuroscience task, in which we seek to understand the
mapping of semantic concepts in the brain from fMRI imaging (data from Huth et al. (2016)).

2 DATASET EXPLANATION TASK

Task definition Given a dataset comprised of input-output string pairs {(x1, y1), . . . (xN , yN )},
the goal is to produce a “semantically meaningful” natural-language string that explains the relation-
ship between x and y. We require that a string consists of human-understandable text rather than a
sequence of incongruous tokens. For example, in the task shown in Fig. 3, the task is to recover text
synonymous to Add the inputs given samples of data performing addition.

Datasets Table 1 shows the four collections of datasets we study: (1) Inverse Synthetic Math with
datasets that require inferring an underlying mathematical function of one or two numbers; (2) In-
verse Allen NLI (ANLI), a selection of crowdsourced language tasks (Wang et al., 2022) with easily
verifiable descriptions (e.g. Find a country’s capital); (3) Sentiment, consisting of four real-world
sentiment classification tasks and (4) fMRI, a dataset involving brain responses to natural language,
motivated by the goal of recovering unknown explanations. In addition to data examples, the first
two collections contain a ground-truth description and simple rules to test whether an extracted de-
scription matches the ground-truth one. For example, when adding two numbers (Fig. 3), the rule
checks whether a description contains any of the keywords add, sum, or +.

The examples in each task do not directly contain the task description. For example, when inferring
the Add two numbers task, the examples do not contain a plus sign or any synonyms of the word add
such as combine. For classification tasks such as Check edibility or Check prime, the label provided
in the example text is simply yes/no rather than the given labels, e.g. edible/non-edible.
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Figure 2: Model accuracy depends on having an accurate prompt for large models (GPT-J 6B and
GPT-3). The model is given the prompt Return the of the inputs., where is filled in with
the shown prompt keyword before querying the output given two inputs numbers in a string. Darker
indicates a higher accuracy, and high accuracy along the diagonal indicates that the correct prompt
induces the highest accuracy.

Evaluation We evaluate dataset explanation on two criteria: closeness to the ground-truth prompt
and ability to generalize as a prompt for other models. To evaluate similarity to the ground truth,
we score a ranked list of prompts based on mean reciprocal rank (MRR). Given a set of datasets
D = {D1, ...,DN}, we compute: MRR = 1

|D|
P|D|

i=1
1

ranki
, where ranki is the one-indexed rank of

the first correct explanation. We evaluate correctness based on whether the generated explanation
contains one of a set of problem-specific keywords. To measure generalization, we use the top-
ranked string as a zero-shot prompt for a different language model, and evaluate whether that model
is able to solve the task.

3 AUTOPROMPTING METHODS

In this section, we detail approaches for tackling the general problem of autoprompting before in-
troducing our method for interpretable autoprompting (iPrompt) in Sec. 3.2.

We specify autoprompting as a discrete search problem. Given a dataset of n input-output pairs
{(x1, y1), ..., (xn, yn)} and a pre-trained LLM f that returns the log-probability of a given string,
the goal of autoprompting is to find a natural-language explanation ŝ maximizing:

ŝ = argmax
s2S

nX

i=1

f
�
render(s, xi, yi)

�
(1)

The render function is a problem-specific function that renders a natural language string from the
prompt s and each example in the dataset (xi, yi). We use S to indicate the set of fluent strings,
under some notion of syntactic fluency. Solving this search problem exactly is intractable.

A core assumption of this objective is that semantically accurate prompts lead a model to assign
higher probability to the data. To check this assumption, we analyze four datasets from the inverse
synthetic math collection that share common structure for the inputs and prompts: each dataset
admits a prompt of the form Return the of the inputs., then is given two input numbers and
queried for the output.

Fig. 2 shows the accuracy of different models at performing these tasks when given different input
prompts.1 For small models, the prompts are unsuccessful, but for large models (e.g. GPT-J 6B and
GPT-3), the model is accurate if and only if given the correct prompt.2 This result provides evidence
that, at least for large models, the search for a prompt that maximizes performance correlates well
with the underlying task.

1The accuracy is normalized for each task using softmax in order to visualize the effect of differing prompts.
2For details on each model, see Table A3.
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Figure 3: Overview of iPrompt.

3.1 BASELINE METHODS

AutoPrompt AutoPrompt (Shin et al., 2020) targets the objective posed in Eq. (1) using a gradient-
based local search. AutoPrompt searches for ŝ following the gradients of the objective Eq. (1) with
respect to individual tokens in ŝ. By iteratively computing these gradients, it can discretely change
individual words in ŝ and then check whether or not the newly updated ŝ improves the objective
score. The use of gradients allows AutoPrompt to find an effective prompt ŝ, but makes it difficult
to find answers that satisfy the fluency constraint S .

Average-output suffix decoding LLMs themselves can be directly used to predict prompt strings.
We can give the model a prompt that includes examples such as the following context string:
In: 2 5| {z }

xi

Out: 7.| {z }
yi

To compute the output from the input,| {z }
template

, and sample the output for the blank to re-

cover a prompt ŝ. Sampling directly from f helps ensure that the generated explanation is fluent and
semantically meaningful. We decode the output using beam search to find the highest-probability
outputs for multi-token prompts.3 To improve on this approach, we place several examples into the
model’s context, and then average the model’s output logits across all the examples in the dataset
before decoding the output, an approach we refer to as average-suffix decoding. However, this
technique is insufficient to find high-scoring prompts.

3.2 PROPOSED METHOD: IPROMPT

Our method, iPrompt shown in Fig. 3, is a iterative local search algorithm that alternates between
three steps: (i) proposing candidate prompts, (ii) reranking candidate prompts, (iii) exploration:

(i) Proposal: Candidate prompts are generated by extending the zero-shot LLM generation. Given
a data instance as a prefix, we sample a number of candidate prompts.4 The maximum length of
each candidate is pre-specified and fixed. For example, in the add-two-numbers task (Fig. 3), we
may generate four candidates: {Combine the numbers, Return the output, Sum in order, Compute
the output}.

3Here we prefer beam search here over alternatives such as nucleus sampling (Holtzman et al., 2019) as we
are interested in finding an accurate prompt description with as few samples as possible.

4One could use either average suffix decoding or suffix decoding with a single sample. For computational
efficiency, we use suffix decoding with only a single sample. We also add randomly decode the output rather
than using beam-search, as our iterative procedure can recover from initially finding inaccurate candidates.
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(ii) Reranking: Given candidates, the objective Eq. (1) is evaluated for each candidate prompt s. The
top few candidates which maximize the objective are kept, e.g. narrowing down the candidates to
{Combine the numbers, Sum in order}.

(iii) Exploration: Each of the top candidates from reranking is truncated at a random position. These
truncated candidates are used as a prefix string when generating new candidate prompts via suffix
decoding. For example, we may randomly select the start of the previous candidates and fill in the
endings: {Combine the , Sum } ! {Combine the numbers, Combine both arguments, Sum
the numbers, Sum all inputs}
The algorithm is repeated until identifying a suitably strong ŝ, e.g. selecting Sum the numbers. Step
(i) and (iii) ensure that prompts remain fluent, while step (ii) improves the score of the prompts on
the objective. Computationally, iPrompt only requires running inference on the pre-trained LLM,
yielding a significantly lower memory requirement than methods such as AutoPrompt, which require
access to the LLM’s gradients.

4 RESULTS

Accuracy of prompts Table 2 compares prompting methods based on the set of candidate descrip-
tions they generate using GPT-J (a 6-billion parameter model) as the LLM (Wang & Komatsuzaki,
2021). The MRR rows show that iPrompt considerably increases the mean reciprocal rank (MRR)
(Sec. 2) over the baselines, implying that iPrompt can more effectively generate descriptions that
accurately reflect the underlying data pattern. The “top-prompt correctness” rows show the percent-
age of datasets for which the top-ranked candidate prompt produced by each method is labeled as
accurate by manual inspection (see all prompts in Appendix A.2). On the ANLI datasets, iPrompt
again outperforms the baselines, although all methods perform poor in an absolute sense ( 30%).
The zero-shot results show the accuracy of GPT-J when using the top prompt found by each model;
for the math datasets the iPrompt prompt elicits an improvement over the baselines, but for the ANLI
datasets all prompts induce poor performance.5

Table 2: Accuracy for dataset explanation measured via (i) MRR, (ii) top-prompt correctness, and
(iii) zero-shot accuracy on unseen examples. All experiments are on GPT-J 6B. For all metrics,
higher is better.

iPrompt AutoPrompt Average suffix

Math
MRR 0.71 0.30 0.07
Top-prompt correctness 80% 30% 20%
Zero-shot acc. 51.5% 41.6% 10.0%

ANLI
MRR 0.30 0.17 0.01
Top-prompt correctness 30% 0% 10%
Zero-shot acc. 4.7% 1.9% 5.1%

Qualitative assessment of top prompts Table 4 shows the top-ranked prompt generated by each
method for selected datasets. iPrompt often finds a prompt that is somewhat indicative of the un-
derlying relationship, even if the phrasing is not perfect. For example, for the add two numbers
dataset, it finds Write a function int add(. For difficult datasets, the iPrompt string sometimes simply
returns the classes of the output (e.g. yes or no?) rather than capturing the underlying relationship.
The prompts found by iPrompt also read as coherent strings compared to AutoPrompt, which re-
turns an incoherent set of tokens. See all found prompts, including for average-suffix decoding in
Appendix A.2.

Generalization of generated prompts to new models. Table 3 shows the generalization accuracy
when using the prompts generated using GPT-J (Table 4) and testing them on different LLMs.6 The

5Here, we restrict generated prompts to 6 tokens (see a full discussion of experimental details in Ap-
pendix A.3).

6Accuracy is computed following Brown et al. (2020); Raffel et al. (2020): using exact matching with beam
search, a beam width of 4, and a length penalty of ↵ = 0.6.
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Table 3: Generalization accuracy (zero-shot) when testing the prompts generated with GPT-J as the
LLM across different models. iPrompt yields strong performance, usually improving over Auto-
Prompt despite maintaining interpretability, and sometimes performing close to the human-written
prompt. Numbers within 2% of the top accuracy (excluding human-written prompts) for each model
are shown in bold.

Human-written iPrompt AutoPrompt Average Suffix No prompt

Math
OPT 6.7B 12.7 19.3 18.9 4.5 8.4
GPT 20B 76.1 54.4 23.2 21.3 8.5
GPT-3 175B 76.0 62.1 40.8 16.9 28.4

ANLI
OPT 6.7B 10.7 6.7 4.7 8.5 7.9
GPT 20B 31.0 14.2 5.6 13.7 4.0
GPT-3 175B 37.6 11.7 2.7 13.4 7.7

Table 4: Examples of generated prompts.
> Human-written prompt iPrompt AutoPrompt

ANLI

> Generate an SQL statement from a
question asking for certain data.

Write an SQL to produce output ributed grandfatherExceptionap-
propri intent Lara

> You are given a country name and
you need to return the currency of the
given country.

Select currency code for a new renciesthethe Dmitrythe mortg

> Return whether the input food dish
is vegetarian (yes or no).

yes or no? This is Novthethethethethe

> In this task, you are given an ad-
jective, and your job is to generate its
antonym. An antonym of a word is a
word opposite in meaning to it.

What is the opposite of 1 prevailingthethe weakestthe wins

Math

> Return the sum of the inputs. Write a function int add( addedthe +the use worked
> Return the product of the inputs. When you multiply two ( multiplythethe the Multiple
> Return the difference of the inputs. If n > m then subtract opposably exactly subtractFor

YEAR
> Return the maximum of the inputs. Which number has a bigger value NumberthetheJusticeJaDefault
> Return the first of the inputs. The first digit of both values greater name sorting indiscrim to

numbers
> Square the input to get the output. Write a function that calculates

square
multiplythe hypot Norttheirl

> Given an input x, return 2*x. write a function called double
that

ADDthe introducedpareat con-
traceptives

Rotten Tomatoes > Answer Yes if the input is positive
and No if the input is negative.

a fast, funny, highly enjoyable
film. Answer: Yes 3.1/

suke Medals; does CFR Sab”]=>
NormalConstructed Umbunit sat-
isfy Good·ram

SST-2 > Answer Yes if the input is positive
and No if the input is negative.

life Answer: Yes (because it’s
about life) This

RALauntletICEidatedWhetherBF
Holy Kubrick incorporatedher-
ent#$ Not=-=- SPECIAL Pyth

same prompts effectively improve accuracy across different models compared to having no prompt.
The gap between iPrompt and AutoPrompt is larger for larger models (i.e. GPT 20B and GPT-3),
suggesting that by generating fluent prompts iPrompt better captures a generalizable description of
the task. Human-written prompts still outperform the autoprompting methods on this task.

Investigating iPrompt in sentiment classification Finally, we study the more difficult task of
prompting for sentiment classification, using four popular datasets (Socher et al., 2013; Malo et al.,
2014; Pang & Lee, 2005). The aim is to find a dataset-specific prompt that can describe a particular
sentiment classification setting. To accommodate for a complex input-output relationship, we allow
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Table 5: Zero-shot accuracy on sentiment classification datasets using prompts generated with the
GPT-J 6B models. Evaluation is performed both on the original GPT-J 6B parameter model and
testing generalization to GPT-3. The model needs to produce the correct answer (Yes, No, or Maybe)
out of the entire vocabulary (without rank-eval). Values are averaged over three random seeds for
prompt-generation; errors are standard errors of the mean.

Human-written iPrompt AutoPrompt No prompt

GPT-J 6.7B

Financial phrasebank 24.3 62.4 ± 0.1 6.8 ± 2.9 0.0
Rotten Tomatoes 44.4 70.5 ± 1.4 57.1 ± 3.4 0.0
SST-2 53.6 82.8 ± 1.9 40.0 ± 7.9 0.0
IMDB 32.5 21.3 ± 9.3 12.1 ± 0.9 3.5

GPT-3 175B

Financial phrasebank 54.1 65.0 2.7 0.4
Rotten tomatoes 58.6 52.5 37.5 0.9
SST-2 60.4 83.6 5.2 0.6
IMDB 79.0 1.3 0.9 1.1

each method to generate up to 16 tokens (our manually-written sentiment classification prompts
range from 13-16 tokens). We use Yes and No as positive and negative labels, and require the LLM
to generate the proper output, as opposed to simply ranking the two options.

Table 5 shows the zero-shot performance of the prompts elicited by different methods. Prompts are
generated using GPT-J 6B and evaluated using both GPT-J 6B and GPT-3. iPrompt outperforms not
only AutoPrompt, but also the manually-written prompt on three of the four datasets. The exception
is the IMDB dataset, which has extremely long examples and may not be well suited for the zero
shot setting. Accuracy is measured on the test set when available; otherwise, it is measured on a
held-out 25% of the train set.7

Table 4 shows an example of comparing the prompts from the Rotten Tomatoes dataset, for which
iPrompt and AutoPrompt induce similar zero-shot accuracy. Here and in other cases, iPrompt some-
times discovers a prompt that is a paraphrase of an example one would find in the training set or a
prototypical example for a class.

5 SCIENTIFIC INVESTIGATION INTO FMRI NATURAL-LANGUAGE DATASET

We now explore using iPrompt in a (very simplified) neuroscience experimental setup (Sec. 5). A
central challenge in neuroscience is understanding how and where semantic concepts are represented
in the brain. A recent seminal study (Huth et al., 2016) explores this question by investigating
where different natural-language categories are represented in the human neocortex. Specifically,
the authors collect functional MRI (fMRI) responses as human subjects listen to hours of narrative
stories. They then build a predictive model of these responses for each voxel (i.e. a small region in
space) in the brain, which takes as input the words contained in the stories (and other features). To
interpret these individual voxel models, they cluster the words in the narrative stories into 12 groups
and manually annotate them, resulting in 12 categories, such as tactile, visual, and professional.
Finally, they view the spatial mapping of these 12 concepts (projected onto low dimensions) across
the brain using their individual voxel models.

We revisit a small piece of this study’s analysis through the lens of iPrompt. Specifically, we ask
whether iPrompt could generate plausible categories that are well-represented across the brain but
differ from the manually identified 12. We begin by fitting a predictive model for each voxel, follow-
ing the pipeline of the original study (details in Appendix A.5). We then use the resulting models to
identify a list of the top-15 words which most excite each voxel. For example, the top-15 words that
excite the best-predicted voxel are: sheet, edges, diameter, strips, cardboard, copper, steel, colored,
coloured, leaf, wire, cap, paper, shaped, tin. To identify a plausible semantic category, we construct
a template string as follows: The following list of words all belong to the same semantic category:

\n\n sheet, edges, ..., shaped, tin. We then use iPrompt (again with a GPT-6B parameter model)
7Different from the other experiments in this paper, we initialize AutoPrompt with random tokens instead

of all the, as we find AutoPrompt fails to find an effective solution for longer prefix lengths when all tokens are
initialized to the.
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Figure 4: Representations of the iPrompt-elicited concepts material (blue) and color (red) across
the surface of the neocortex are spatially clustered and smooth. Only the top 10,000 best-predicted
voxels are shown, remaining voxels are shown in black. Plotted with pycortex (Gao et al., 2015).

to generate a category by filling in the blank (restricted to a single token). To make iPrompt more
effective, for each voxel we use iPrompt on a set of examples consisting of 15 permutations of the
top-15 words, allowing the model to find patterns that are not overly sensitive to the word-ordering.

Given the top categories for each voxel, we analyze the mapping of recurring categories across the
neocortex. We aggregate the top-15 inferred categories8 over the top-15 best-predicted voxels and
find that the most frequently inferred categories are: material, color, surface, text,
& fabric. Interestingly, these are sensible quantities that different voxels could reasonably be
selective for. We spatially map each of these identified categories (e.g. material) across the 10,000
best-predicted voxels by using the LLM in a second way. For each voxel, we condition the LLM
(again GPT-6B) on the top-15 words list, and evaluate the predicted probability for each category,
i.e. The following list of words all belong to the same semantic category: sheet, edges, ..., shaped, tin
The semantic category they all belong to, in one word, is . The higher this predicted probability,
the more selective we infer that a voxel is for the category. Fig. 4 shows these predicted probabilities
for the top-two inferred categories (material and color) across the cortex of a human subject.

While there is no groundtruth for this semantic map, one noteworthy feature of the resulting map
is that it is spatially smooth (quantitatively, Fig. A2 shows that the variance of the map among
neighboring pixels is significantly lower than we would expect by shuffling the map’s values). This
is non-trivial, as nowhere in the modeling process was spatial information incorporated: each voxel
was modeled independently and the displayed prediction was queried independently. We expect
the underlying map to be smooth, both due to local connectivity in brain regions and also because
the BOLD signal measured by fMRI does not have perfect spatial resolution. Thus, the fact that
our inferred map is smooth suggests that (i) something about these categories is genuinely captured
by the representation in the human brain, and (ii) that the iPrompt approach was able to reflect at
least some of it. Beyond the two categories shown, the five categories generated by iPrompt exhibit
spatial smoothness across the neocortex (Fig. A2).

6 RELATED WORK

Prompting and autoprompting. With the advent of large-scale models, prompting (i.e. finding
the right prompt to use to query an LLM for a given task) has exploded as an area of inquiry, often
yielding impressive improvements in performance (Brown et al., 2020; Petroni et al., 2019; Liu
et al., 2021a) and spurring a line of work aiming to make prompting easier (Strobelt et al., 2022; Lu

8We apply stemming and remove stopwords before choosing the best categories.
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et al., 2022; Bach et al., 2022; Logan IV et al., 2022). Recently, autoprompting (i.e. automatically
searching for a prompt or prompt-embedding via optimization) has emerged, with methods such
as prefix-tuning (Li & Liang, 2021), P-tuning (Liu et al., 2021b), prompt-tuning with rules (Han
et al., 2021), knowledgeable prompt tuning (Hu et al., 2021) and many more (Liu et al., 2021a).
These strategies use gradient descent to find a set of “adapter” parameters that maximize model
performance, but do not require that the new parameters map back to tokens in discrete space,
rendering them uninterpretable.

A few methods tackle the more difficult problem of searching for prompts that can be expressed in
natural language tokens. The closest related work is AutoPrompt (Shin et al., 2020), which performs
autoprompting via input gradients (see Sec. 3). Similarly, adversarial triggers (Wallace et al., 2019)
use autoprompting to identify adversarial inputs which can be used to change a model’s prediction.
These methods effectively alter a model’s predictions, but do not constrain the discovered prompts to
be semantically meaningful, resulting in prompts that are difficult to interpret (Webson & Pavlick,
2021). Another related work directly finetunes an LLM to describe the difference between two
datasets (Zhong et al., 2022).

Alternative methods for neural-network interpretation A popular method for interpreting neu-
ral networks is to inspect an LLM’s individual predictions via feature importances (Lundberg et al.,
2019; Ribeiro et al., 2016), feature-interaction importances (Singh et al., 2019; Tsang et al., 2017),
extractive rationales (Zaidan & Eisner, 2008; Sha et al., 2021), or natural-language explanations
for individual predictions (Hendricks et al., 2016; Camburu et al., 2018). These works can provide
meaningful insights for individual predictions, but it is difficult to parse them into an understanding
of an entire dataset. Alternatively, one can investigate whether an LLM’s learned representations
via probing (Conneau et al., 2018; Liu & Avci, 2019) or by directly analyzing a model’s internal
weights and activations (Wang et al., 2021; Olah et al., 2018; Meng et al., 2022). However, these
approaches are limited in their ability to generate previously unknown descriptions of data. A dif-
ferent approach involves distilling information into a transparent model, e.g. Tan et al. (2018); Ha
et al. (2021); Singh & Gao (2022).

Problems related to interpretable autoprompting The problem statement presented in this work
closely resembles the widely studied problems of symbolic regression (Augusto & Barbosa, 2000;
Schmidt & Lipson, 2009), program synthesis (Gulwani et al., 2017; Manna & Waldinger, 1980),
text/table summarization (Kryściński et al., 2019; Liu et al., 2018), and pattern discovery in data-
mining (Hand, 2007). In these cases, data examples are given with the goal of inferring a symbolic
expression, program, or text summary that is consistent with the data. iPrompt can be viewed as an
algorithm for symbolic regression, in which the set of allowable symbols consists of semantically
meaningful natural-language strings and their optimization is guided by a pre-trained LLM.

7 CONCLUSION AND DISCUSSION

iPrompt makes a meaningful step towards finding natural-language prompts that are both (i) se-
mantically meaningful and (ii) yield strong generalization performance. Nevertheless, the search
algorithms used in this work are computationally intensive and fail to recover descriptions of com-
plex datasets. Future work could explore algorithmic variants that make interpretable autoprompting
more efficient and accurate.

Besides algorithmic improvements, future work could explore using iPrompt in different ways. One
such direction could elicit targeted information from data via the use of a template. For example,
one may use iPrompt to extract feature importance by prepending the learned prompt with the string
“To get the answer from the inputs, the most important inputs are ”. As another example, in a
scientific study such as the fMRI study in Sec. 5, a scientist interested in a particular topic (e.g. fear)
may investigate that particular topic by making a more specific template (e.g. How are these words
related to the concept of “fear”?).

While we focus on text, iPrompt could be applied more generally in any setting where an LLM
performs well and takes input in a human-understandable form. For example, in computer vision,
an interpretable autoprompt may look like a mask of an image, and in vision-language models, an
interpretable prompt may be a description of a vision task, e.g. find the largest shape in this image.
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