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ABSTRACT

Vision-Language Models (VLMs) demonstrate impressive performance in under-
standing visual content with language instruction by converting visual inputs to
vision tokens. However, redundancy in vision tokens results in the degenerated
inference efficiency of VLMs. While many algorithms have been proposed to
reduce the number of vision tokens, most of them apply only unimodal information
(i.e., vision/text) for pruning and ignore the inherent multimodal property of vision-
language tasks. Moreover, it lacks a generic criterion that can be applied to different
modalities. To mitigate this limitation, in this work, we propose to leverage both
vision and text tokens to select informative vision tokens by the coverage criterion.
We first formulate the subset selection problem as a maximum coverage problem.
Afterwards, a subset of vision tokens is optimized to cover the text tokens and the
original set of vision tokens, simultaneously. The proposed method MMTok is
extensively evaluated on benchmark datasets with different VLMs. The compari-
son illustrates that vision and text information are complementary, and combining
multimodal information can surpass the unimodal baseline with a clear margin.
Moreover, under the maximum coverage criterion on the POPE dataset, our method
achieves a 1.87× speedup while maintaining 98.7% of the original performance
on LLaVA-NeXT-13B. Furthermore, with only four vision tokens, 87.7% of the
original performance is still preserved on LLaVA-1.5-7B. These results highlight
the effectiveness of coverage in token selection.
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Figure 1: MMTok achieves better performance across multiple benchmarks.

1 INTRODUCTION

By converting the visual input to vision tokens, Vision-Language Models (VLMs) can leverage
powerful Large Language Models (LLMs) to understand visual content as text (Liu et al., 2024b;
Li et al., 2024b; Team et al., 2023). Unlike discrete text tokens, where the information is highly
compressed, current vision encoders extract vision tokens directly from the original input patches,
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which are redundant according to previous studies (Bolya et al., 2022; He et al., 2022) and their count
can far exceed that of text tokens. For example, given “Describe the image” with less than 10 text
tokens, 2, 880 vision tokens can be obtained from a single image in LLaVA-NeXT (Liu et al., 2024a).

Since LLMs are built on self-attention layers (Vaswani et al., 2017) that have a quadratic computational
cost to the total number of tokens, the large volume of vision tokens can significantly challenge the
inference efficiency of VLMs. To accelerate inference, many works (Shang et al., 2024; Yang et al.,
2025a; Zhang et al., 2024) have been proposed to sample a subset of vision tokens for inference
with LLMs without compromising performance. While some work adopts an additional training
process (Yang et al., 2025a) to enable vision token selection, in this work, we will focus on the
training-free paradigm to reduce optimization efforts. Our experiments also confirm that the proposed
training-free method can even outperform baselines with fine-tuning.

Despite different architectures of VLMs (Team, 2024; Bai et al., 2025; Guo et al., 2025), the leading
performance is from the one containing a separated vision encoder to obtain vision tokens (Bai et al.,
2025). In that architecture, both vision tokens and text tokens are available for token selection before
applying LLMs. However, most of the existing work relies on unimodality for pruning while the
multimodal information has not been explored sufficiently (Zhang et al., 2024; Yang et al., 2025a;
Alvar et al., 2025). For example, SparseVLM (Zhang et al., 2024) mainly considers text tokens from
language instruction to guide the pruning of vision tokens, while VisionZip (Yang et al., 2025a)
heavily depends on the [CLS] vision token to select informative vision tokens. By investigating
vision-language tasks, we find that given the same image, the answers can be different due to user-
specific text queries, while the same text instruction can be applied for different images, i.e., caption
tasks. Therefore, a unimodal method is hard to capture sufficient information about target tasks,
implying a suboptimal performance for token selection.

In order to leverage both vision and text information to obtain informative vision tokens, in this work,
we propose a multimodal strategy for efficient inference. First, we formulate the token selection
problem as a maximum coverage problem, which aims to cover the target tokens with a subset of
source tokens. While the source tokens are vision-only, the target ones can come from either text or
vision, respectively. Therefore, the framework can explicitly combine the information from different
modalities. Then, we optimize the coverage problem by maximizing a submodular function defined
on the similarity between target and source tokens. Although the original problem is NP-hard (Khuller
et al., 1999), a simple greedy algorithm can observe an approximate solution that is not worse than
(1− 1/e) of the optimal solution (Nemhauser et al., 1978). The main contributions of this work are
summarized as follows.

• We introduce the maximum coverage problem for vision token selection. The problem can be
formulated as maximizing a submodular function, which has an efficient algorithm to obtain a
near-optimal solution with a theoretical guarantee.

• We apply the coverage criterion to cover both the text tokens and the entire set of vision tokens
with a subset of selected vision tokens. The text-vision and vision-vision coverage explicitly help
explore multimodal information for selection.

• Experiments are conducted on benchmark datasets with diverse VLMs. The superior performance
of the proposed method demonstrates the effectiveness of the proposed coverage criterion for
the subset selection of vision tokens. For example, the proposed MMTok can achieve overall
best performance under different settings as illustrated in Figure 1 (b) and shows the potential to
compress to an extremely small number of vision tokens as in Figure 1 (a).

2 RELATED WORK

VLMs, such as LLaVA (Liu et al., 2023), InstructBLIP (Dai et al., 2023), and Qwen (Bai et al., 2025),
have become a cornerstone for multimodal understanding by integrating large-scale vision encoders
(e.g., CLIP-ViT (Radford et al., 2021b)) with pre-trained language models. These models achieve
strong performance by representing images as sequences of visual tokens, but their inference cost
grows quadratically with token count, highlighting the need for more efficient processing.

Many vision token selection methods have been proposed recently, but most of them rely only on
unimodal information for pruning (Yang et al., 2025a; Shang et al., 2024; Chen et al., 2024a; Zhang
et al., 2024; Alvar et al., 2025). For example, VisionZip (Yang et al., 2025a) and FastV (Chen et al.,
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Figure 2: Overview of MMTok framework. Our method optimizes two maximum coverage prob-
lems simultaneously to leverage text-vision and vision-vision similarity for vision token selections.

2024a) prune tokens using pre-trained attention signals, either ranking by [CLS] token attention
(VisionZip) or discarding low-attention vision tokens in deeper layers (FastV). Besides ranking,
DivPrune (Alvar et al., 2025) uses a diversity-based criterion but only has vision tokens to maximize
the intra-set diversity. These methods rely on vision information and may miss query-related
semantics (Jain & Wallace, 2019; Wiegreffe & Pinter, 2019). SparseVLM (Zhang et al., 2024) instead
uses text-to-vision attention for scoring, yet ignores the information from the whole image. To
mitigate the gap between existing unimodal algorithms and target multimodal tasks, we propose a
coverage-based criterion to leverage both vision and text information sufficiently to select vision
tokens effectively.

3 THE PROPOSED METHOD

To leverage the power of pre-trained models, many existing VLMs adopt a pre-trained vision encoder
to extract vision tokens from images and then concatenate them with text tokens as input for the pre-
trained LLMs. Although the simple architecture demonstrates promising performance, the inference
efficiency can be challenging. Concretely, given an image, a pre-defined number of vision tokens
will be obtained as {v1, . . . ,vn}. Even for a small 336× 336 image, n is 576 with the ViT-L-336px
from CLIP (Radford et al., 2021a), which is much larger than that of the text tokens from the text
query (Liu et al., 2023). The large n will significantly slow down the inference of LLMs, which relies
on the self-attention operations, and the complexity is quadratic to the total number of tokens.

To accelerate the inference of VLMs, we propose to select an informative subset of vision tokens
{vs}s∈S to reduce the number of input tokens for LLM in VLM, where N = {1, . . . , n}, S ⊆ N ,
and |S| ≪ n. Figure 2 illustrates the framework of our method, and we will elaborate it as follows.

3.1 VISION TOKEN SELECTION BY COVERAGE MAXIMIZATION

Unlike most of the existing work, we apply coverage as the main criterion for token selection. Given
a similarity matrix M ∈ Rm,n defined between target tokens and source tokens, where m denotes
the number of target tokens and n is the number of source tokens, a subset S will be selected to
maximize the similarity between the target and selected tokens as

f(S;M) =
1

m

m∑
i=1

maxMi,S ; S∗ = argmax
S

f(S;M) (1)

3
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a.k.a. covering the target tokens by an appropriate subset of source tokens. We first find that Eq. 1 is
a popular submodular function (Leskovec et al., 2007).

Proposition 1. (Leskovec et al., 2007) For all subsets A ⊆ B ⊆ N and s ∈ N \ B,

f(A ∪ {s})− f(A) ≥ f(B ∪ {s})− f(B)

Maximizing submodular functions in general is NP-hard (Khuller et al., 1999), but a simple greedy
algorithm can achieve a good approximation.

Proposition 2. (Nemhauser et al., 1978) Let S denote the subset obtained by the greedy algorithm,
then we have

f(S) ≥ (1− 1/e) max
A:|A|=|S|

f(A)

We elaborate on how to apply the coverage function for token selections in the following subsections.

3.1.1 MAXIMUM TEXT-VISION COVERAGE

First, we consider covering the semantics from text tokens with source vision tokens, which aims to
find the vision tokens related to the text input (e.g., query). Let {t1, . . . , tm} denote the text tokens
from the query. A similarity matrix between text and vision tokens can be obtained as

M tv
i,j = t⊤i vj

where M tv ∈ Rm×n and ∀i, j, ∥ti∥2 = ∥vj∥2 = 1. To align the semantic similarity between text
and vision, we adopt the vision tokens after the projection layer (i.e., those concatenated with text
tokens as input for LLMs). After obtaining the appropriate similarity matrix, a subset of vision tokens
can be selected to maximize the similarity between all text tokens and selected vision tokens for
coverage as

S ′ = argmax
S

f(S;M tv)

According to Proposition 2, a greedy algorithm as summarized in Alg. 1 can approximate the optimal
solution. It should be noted that the proposed Alg. 1 contains only simple operations (e.g., addition,
matrix multiplication, etc.) and thus is efficient for implementation.

Algorithm 1 A Greedy Algorithm to Cover
Text Input with Vision Tokens

1: Input: Similarity Matrix M tv , k
2: Initialize S = ∅
3: for i = 1, · · · , k do
4: for s ∈ N \ S do
5: Compute g(s) = f(S ∪ s;M tv)
6: end for
7: Obtain si = argmaxs g(s)
8: S = S ∪ si
9: end for

10: return S

Algorithm 2 MMToK: A Greedy Algorithm for Mul-
timodal Coverage

1: Input: Similarity Matrices M tv′
, Mvv′

, k
2: Initialize S = ∅
3: for i = 1, · · · , k do
4: for s ∈ N \ S do
5: Compute g(s) = f(S ∪ s;M tv′

,Mvv′
)

6: end for
7: Obtain si = argmaxs g(s)
8: S = S ∪ si
9: end for

10: return S

3.1.2 MAXIMUM VISION-VISION COVERAGE

Although text-vision coverage can explore vision information according to text, it may be insufficient
due to vague text, e.g., “Please describe the image”. Therefore, we propose to cover all vision
information with a limited number of vision tokens. Concretely, a vision-vision similarity matrix can
be generated as

Mvv
i,j = v

′⊤
i v

′

j

where Mvv ∈ Rn×n. Unlike M tv that adopts vision tokens after the projection layer to align with
text tokens, those before projection are more appropriate to capture similarity between vision tokens
without mixing text information. We have v′ to distinguish it from the one after projection (i.e., v).

4
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Then, we can apply the greedy algorithm to select a subset of vision tokens to cover the main informa-
tion implied by the whole set of vision tokens. Obviously, vision-vision coverage is complementary
to text-vision coverage, which is also confirmed by our ablation study. The remaining challenge is to
combine the two maximum coverage problems, which is described in the next subsection.

3.1.3 MAXIMUM MULTIMODAL COVERAGE

The maximum coverage problem can be applied to the original text and vision tokens simultaneously.
However, M tv and Mvv have different shapes and similarity measurements. Therefore, their values
must be aligned before fusion. To calibrate the similarity between different modalities, the score for
each row, i.e., that for target tokens, is first normalized by a softmax operation as

M tv′

i,j =
exp(M tv

i,j/τt)∑n
j=1 exp(M

tv
i,j/τt)

; Mvv′

i,j =
exp(Mvv

i,j /τv)∑n
j=1 exp(M

vv
i,j /τv)

where the softmax operation normalizes each row to a distribution over all vision tokens. τt and τv
aim to further normalize the distribution shape for text-vision and vision-vision, respectively.

After calibration, the final objective for multimodal coverage can be written as

f(S;M tv′
,Mvv′

) = f(S;M tv′
) + αf(S;Mvv′

) (2)

where α is used to weigh the importance of vision-vision coverage. Incorporating text-vision coverage
with vision-vision coverage, the function in Eqn. 2 is still a submodular function as follows.
Corollary 1. The sum of two submodular functions is a submodular function.

Proof. It comes from the addition property of inequalities directly.

With Corollary 1, we can apply a similar greedy algorithm to obtain the near-optimal solution for the
multimodal scenario efficiently. The detailed algorithm is summarized in Alg. 2.

4 EXPERIMENTS

To evaluate the performance of the proposed method, MMTok, we conduct experiments on diverse
benchmark datasets and VLMs with different architectures. For a fair comparison, we conduct
experiments on the datasets adopted in VisionZip (Yang et al., 2025a), which contains GQA (Hudson
& Manning, 2019), MMBench (Liu et al., 2024c), MME (Fu et al., 2023), POPE (Li et al., 2023b),
ScienceQA(IMG) (Lu et al., 2022), VQAv2-Test-Dev (Goyal et al., 2017), TextVQA (Singh et al.,
2019), MMMU (Yue et al., 2024), and SeedBench (Li et al., 2023a). Meanwhile, five VLMs
are applied for comparison, that is, LLaVA-1.5-7B (Liu et al., 2023), LLaVA-1.5-13B (Liu et al.,
2023), LLaVA-NeXT-7B (Liu et al., 2024a), LLaVA-NeXT-13B (Liu et al., 2024a), and a recent
model Qwen-2.5-VL-7B (Bai et al., 2025). Finally, we compare our method with state-of-the-art
vision token pruning algorithms, including FastV (Chen et al., 2024a) (a vision-based method),
SparseVLM (Zhang et al., 2024) (a language-based method), VisionZip (Yang et al., 2025a) (a
[CLS]-importance-based method), and DivPrune (Alvar et al., 2025) (a diversity-based method). We
also include a fine-tuning-based method, VisionZip , in the comparison. We obtain the result of
DivPrune through its official code, and that for other baselines is directly from (Yang et al., 2025a).
Evaluation is implemented within the Lmms-eval framework (Li et al., 2024a) with the details
elaborated as follows.

Implementation Details The proposed method relies on an appropriate similarity for coverage
optimization. Since different layers may demonstrate different similarity measurements (Liu et al.,
2023), we have the vision tokens before the projection layer to compute vision-vision similarity,
while those after the projection layer are for text-vision coverage. It is because the latter layer aligns
better with text. We find that our method is not sensitive to hyperparameters, as shown in the ablation
study. Therefore, we fix τt = 0.02, τv = 0.2, and α = 0.5 for all experiments if not specified.

4.1 PERFORMANCE COMPARISON ON DIVERSE TASKS

LLaVA-1.5-7B First, we compare our method with baselines using LLaVA-1.5-7B, which is a
popular benchmark for vision token selection. The model has a fixed number of vision tokens for
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Method GQA MMB MME POPE SQA VQAV2 VQAText MMMU SEED Avg.

Total 576 Tokens
LLaVA-1.5-7B 61.90 64.70 1862.00 85.90 69.50 78.50 58.20 36.30 58.60 100%

Retain 192 Tokens ↓ 67%
FastV 52.70 61.20 1612.00 64.80 67.30 67.10 52.50 34.30 57.10 89.6%

SparseVLM 57.60 62.50 1721.00 83.60 69.10 75.60 56.10 33.80 55.80 95.5%
VisionZip 59.30 63.00 1782.60 85.30 68.90 76.80 57.30 36.60 56.40 97.9%
DivPrune 59.97 62.54 1762.23 87.00 68.66 76.87 56.97 35.44 58.71 98.0%

VisionZip 60.10 63.40 1834.00 84.90 68.20 77.40 57.80 36.20 57.10 98.4%

MMTok 60.07 63.40 1773.86 86.42 68.76 77.11 57.68 36.33 59.21 98.7%
Retain 128 Tokens ↓ 78%

FastV 49.60 56.10 1490.00 59.60 60.20 61.80 50.60 34.90 55.90 84.4%
SparseVLM 56.00 60.00 1696.00 80.50 67.10 73.80 54.90 33.80 53.40 92.9%
VisionZip 57.60 62.00 1761.70 83.20 68.90 75.60 56.80 37.90 54.90 96.8%
DivPrune 59.25 62.03 1718.22 86.72 68.66 75.96 56.06 35.56 56.98 96.9%

VisionZip 58.90 62.60 1823.00 83.70 68.30 76.60 57.00 37.30 55.80 97.7%

MMTok 59.29 62.29 1779.14 86.25 68.82 76.35 57.03 35.67 58.59 97.8%
Retain 64 Tokens ↓ 89%

FastV 46.10 48.00 1256.00 48.00 51.10 55.00 47.80 34.00 51.90 75.6%
SparseVLM 52.70 56.20 1505.00 75.10 62.20 68.20 51.80 32.70 51.10 86.9%
VisionZip 55.10 60.10 1690.00 77.00 69.00 72.40 55.50 36.20 52.20 93.2%
DivPrune 57.78 59.28 1674.40 85.56 68.07 74.11 54.69 35.56 55.13 94.8%

VisionZip 57.00 61.50 1756.00 80.90 68.80 74.20 56.00 35.60 53.40 95.0%

MMTok 58.29 61.17 1715.33 85.77 69.16 75.20 56.01 36.11 57.15 96.6%

Table 1: Performance Comparison on LLaVA-1.5-7B. More details in Appendix Table 16.

Method LLaVA-1.5-7B (2023) LLaVA-1.5-13B (2023) LLaVA-NeXT-7B (2024a) LLaVA-NeXT-13B (2024a)

576 tokens 576 tokens Upper(Up.) 2880 tokens Upper(Up.) 2880 tokens

Compress Ratio ↓ 67% ↓ 78% ↓ 89% ↓ 67% ↓ 78% ↓ 89% ↓ 78% ↓ 89% ↓ 94% ↓ 78% ↓ 89% ↓ 94%

Remain Token 192 128 64 192 128 64 Up. 640 Up. 320 Up. 160 Up. 640 Up. 320 Up. 160

VisionZip 97.9% 96.8% 93.2% 97.9% 97.0% 93.7% 97.5% 94.5% 90.4% 97.7% 94.7% 91.4%
DivPrune 98.0% 96.9% 94.8% 98.2% 96.9% 95.3% 97.1% 95.1% 92.4% 97.1% 94.5% 92.0%

VisionZip 98.4% 97.7% 95.0% 98.7% 97.4% 94.8% 98.9% 97.6% 95.0% 98.8% 97.8% 94.6%

MMTok 98.7% 97.8% 96.6% 98.7% 97.5% 96.4% 98.7% 97.3% 95.1% 98.2% 96.4% 95.1%

Table 2: Comparison on LLaVA-1.5 and LLaVA-NeXT. Details are in Appendix Tables 16 to 19.

arbitrary visual inputs. As shown in Table 1, given the original 576 tokens, MMTok achieves the best
performance (preserving on average 98.7/97.8/96.6% original performance of LLaVA-1.5-7B), when
retaining only 192/128/64 tokens (reducing by 67/78/89% of tokens compared to 576), respectively.
Specifically, our method outperforms DivPrune by 1.8% when using a budget of 64 tokens. Although
the gap decreases with more tokens as expected, MMTok still surpasses all baselines without fine-
tuning by at least 0.7% with 192 tokens. In addition, compared to the fine-tuning method, the
proposed method is 1.6% better than VisionZip with 64 tokens, which shows the potential of the
training-free strategy. Since VisionZip and DivPrune show much better performance than FastV and
SparseVLM, we will include only them for comparison in the following experiments.

LLaVA-1.5-13B The average performance over all benchmark datasets and token budgets is reported
in Table 2, while detailed results can be found in Appendix Table 17. Although the model is larger,
the observation is similar to the above 7B counterpart, where our method consistently outperforms
the baselines with a clear margin.

LLaVA-NeXT 7B and 13B In addition to models that have a fixed number of vision tokens, we
further evaluate our method on LLaVA-NeXT (Liu et al., 2024a), which dynamically samples up
to five images and processes them individually, resulting in up to 2880 vision tokens. To align the
comparison with real applications, we keep the dynamic settings as VisionZip (Yang et al., 2025a) and
have token selection performed in a fixed ratio. For example, with a maximum budget of 160 tokens,
we retain 32 tokens per image in up to five images (32× 5 = 160). The retained number of tokens
becomes 128 if only four images are sampled by the VLMs according to the ratio of 160/2, 880.
The same setting is used for all baselines as a fair comparison. As shown in Table 2, our method
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retains more than 95% of the original performance using only 5.5% of the tokens with a budget of
160 tokens, indicating substantial redundancy in vision tokens and the effectiveness of the proposed
strategy. Detailed results can be found in Appendix Tables 18 and 19.

Method GQA MMB MME POPE VQAText SQA OCRBench Avg.†
Acc. ↑ Acc. ↑ P+C ↑ F1 ↑ Acc. ↑ Acc. ↑ Acc. ↑ ↑

Dynamic Resolution (MinPix = 256 × 28 × 28, MaxPix = 2048 × 28 × 28), Upper Bound (100%)
Avg. Tokens T̄ 358.5 276.9 867.6 359.6 976.5 323.0 652.8

Qwen-2.5-VL-7B 60.48 83.25 2327 86.16 77.72 87.46 83.80 100%

Fixed Resolution (MinPix = MaxPix = 2048 × 28 × 28), Upper Bound (100%)
Qwen-2.5-VL-7B 58.59 83.59 2339 86.09 76.64 86.91 76.60 99.3%

Retain 20% T̄ 71.7 55.4 173.5 71.9 195.3 64.6 130.6 ↓ 80%
VisionZip 56.80 80.33 2174 83.38 70.43 84.23 59.50 94.2%
DivPrune 56.70 76.98 2163 80.59 65.86 80.91 48.10 91.5%
MMTok 58.09 79.30 2217 82.38 70.49 81.61 59.60 94.6%

Retain 10% T̄ 35.9 27.7 86.8 36.0 97.7 32.3 65.3 ↓ 90%
VisionZip 52.47 75.60 2003 78.90 63.78 82.30 36.90 87.5%
DivPrune 53.43 72.85 1957 74.99 59.59 79.57 37.30 84.7%
MMTok 55.09 74.74 2051 78.75 63.90 80.47 43.60 88.5%

Retain 5% T̄ 17.9 13.8 43.4 18.0 48.8 16.2 32.6 ↓ 95%
VisionZip 46.28 67.53 1677 66.38 54.49 79.57 19.70 75.4%
DivPrune 49.01 65.89 1739 68.45 52.02 77.05 24.90 76.3%
MMTok 50.66 65.89 1796 71.35 55.95 77.19 30.70 79.0%

0 Token ↓ 100%
Qwen-2.5-VL-7B 31.84 20.10 935 0.00∗ 38.93 71.10 1.80 33.8%

Table 3: Comparison on Qwen-2.5-VL-7B. Avg.† are computed over 5 datasets. *When no visual
tokens are provided, Qwen-2.5-VL outputs "No" for all questions, leading to 0% F1. More detailed
results are in Appendix Table 20.

Qwen-2.5-VL-7B Finally, we compare different algorithms on a more advanced VLM, that is, Qwen-
2.5-VL-7B. Unlike previous work, it adopts dynamic resolution and a token-merging layer. Those
strategies help reduce the total number of vision tokens while demonstrating better performance. For
example, on POPE the average number of input tokens is only 359.6 in Qwen, significantly less than
2880 tokens in LLaVA-NeXT. Therefore, it is more challenging to apply the token selection algorithm
in this stronger model. Following experiments for LLaVA-NeXT, we conduct the evaluation under
dynamic resolution for all methods. Due to distinct image pre-processing strategies in Qwen, we
include 7 image datasets in this comparison. Since ScienceQA(SQA) is a low-IC dataset that will be
discussed in Section 4.2 and all baselines perform poorly on OCRBench, the average performance is
computed across the remaining 5 datasets. For MMTok, we reduce τt to 0.01 for all datasets while
other parameters remained.

First, we compare the dynamic resolution to the fixed number of tokens in Qwen as shown in the first
two rows of Table 3. Although the model can use a fixed number of about 2,048 vision tokens for
different tasks, the performance is worse than that of the dynamic strategy, which has much fewer
tokens. It shows that vision tokens are quite redundant for VLM tasks, and the sophisticated strategies
in Qwen already compress the number to hundreds, providing even better performance. Based on
the challenging dynamic setting, we further investigate whether token selection is still valuable.
From Table 3, we can find that our MMTok can preserve nearly 95% of the original performance
while further reducing the number of vision tokens to 20%. This observation demonstrates that
even for models with token compression, the remaining tokens can still be redundant. The proposed
method MMTok can effectively explore the most informative tokens and further reduce the number of
vision tokens from hundreds to tens. Furthermore, our method is better than VisionZip with different
budgets, which confirms the efficacy of our proposed multimodal coverage strategy. Finally, we can
observe that even without any vision tokens, Qwen’s performance on SQA is still close to its version
with all tokens. This reminds us to investigate the contribution of vision to vision-language tasks in
the next subsection, which can help to better evaluate the performance of token selection methods.

4.2 COMPARISON ON HIGH IC TASKS WITH LIMITED VISION TOKENS

Although multimodal tasks rely on images for answers, the contribution of vision varies. Table 4
summarizes the performance with/without vision tokens on different datasets. It is interesting
to observe that even without any vision tokens, LLaVA-1.5 still preserves 92% of the original
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performance on MMMU and 91% on ScienceQA. Those tasks may fail to help adequately assess
the efficacy of vision token selection. To mitigate the issue, we introduce Image Contribution (IC)
to quantify the relative performance gain from all vision tokens, IC = (PerfAll − Perf0)/Perf0 and
summarize IC values in Table 4. According to the table, we can identify 5 and 6 high-IC datasets for
LLaVA and LLaVA-NeXT, respectively. Then, we compare different algorithms on those datasets in
Table 5. To evaluate the performance with an extremely aggressive compression ratio, we extend the
experiments from 64 tokens to 2 tokens. The comparison shows that our method can substantially
preserve the informative vision tokens for VL tasks. Moreover, we illustrate the performance ratio
compared to the original result in Figure 1. On POPE, our method maintains about 80% original
performance with only 2 vision tokens, showing the importance of appropriate vision tokens. More
results can be found in Appendix Tables 21 and 22.

Dataset LLaVA-1.5-7B LLaVA-NeXT-7B

All / Zero IC All / Zero IC

MMB 64.7/19.33 2.347 67.9/17.87 2.801
POPE 85.9/44.64 0.924 86.4/25.84 2.344
MME 1862/970.89 0.918 1842/867 1.125
SEED-I 66.14/37.03 0.786 70.2/37.43 0.875
GQA 61.9/37.65 0.644 64.2/38.23 0.679
TextVQA 58.2/41.66 0.397 61.3/37.77 0.623
SQA 69.5/63.51 0.094 70.2/64.60 0.087
MMMU 36.3/33.33 0.089 35.1/31.56 0.112

Table 4: Demonstration of Image Contri-
bution (IC).

Model/Method Different Token Budgets

64 32 16 8 4 2

LLaVA-1.5-7B (MMB, POPE, MME, SEED, GQA)
VisionZip 90.0% 83.5% 69.7% 48.9% 43.8% 43.0%
DivPrune 93.1% 89.6% 81.4% 68.4% 54.3% 50.1%
MMTok (Ours) 94.7% 91.0% 86.4% 79.8% 71.4% 62.1%

LLaVA-NeXT-7B (MMB, POPE, MME, SEED, GQA, TextVQA)
VisionZip 93.2% 87.5% 76.8% 52.6% 39.4% 38.5%
DivPrune 94.2% 89.7% 85.7% 79.9% 71.0% 57.8%
MMTok (Ours) 95.7% 92.8% 89.6% 85.2% 79.2% 71.0%

Table 5: Comparison on high-IC tasks with different
token budgets.

4.3 ABLATION STUDY

We conduct comprehensive ablation studies to demonstrate each component in MMTok. All experi-
ments are performed on LLaVA-1.5-7B with 64 tokens unless otherwise specified.

Multimodal GQA MMB MME POPE SQA VQAText MMMU SEED Avg.
Coverage Acc. ↑ Acc. ↑ P+C ↑ F1 ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ ↑

Total 576 Tokens (100%)
LLaVA-1.5-7B 61.9 64.7 1862 85.9 69.5 58.2 36.3 58.6 100.0%

Retain 64 Tokens ↓ 88.9%
T-V (M tv) 56.82 59.62 1632.47 83.56 68.72 51.97 35.33 56.36 93.8%
V-V (Mvv) 58.14 59.88 1662.34 83.43 67.67 53.93 35.33 56.90 94.7%

Softmax T-V (M tv′
) 56.66 58.85 1674.11 83.69 68.57 52.01 35.33 56.37 93.9%

Softmax V-V (Mvv′
) 57.97 60.31 1684.33 84.31 68.07 55.90 35.89 56.88 95.7%

MMTok (M tv′
+Mvv′

) 58.29 61.17 1715.33 85.77 69.16 56.01 36.11 57.15 96.7%

Table 6: Ablation on multimodal coverage in MMTok. The best performance with token selection
is highlighted in bold and the second-best is underlined.

Model Upper Total POPE GPU Memory POPE SEED TextVQA MME MMB GQA Avg.
Token Infer T(s) Infer T(s) Util. (+25.42 GB) F1 Acc. Acc. P+C Acc. Acc. (%)

H100 Single GPU Performance, Upper 2880 Tokens

LLaVA-NeXT-13B 2880 15204 1705 86.7% 4.59 86.22 71.89 64.33 1900.86 69.16 65.38 100.0
VisionZip Upper 160 7551 866 52.4% 1.92 76.32 61.18 58.33 1738.24 64.78 57.77 89.6
DivPrune Upper 160 8186 1060 50.9% 1.23 82.16 63.80 54.65 1699.83 64.78 59.34 90.5

MMTok Upper 160 7768 913 58.0% 1.78 85.11 65.45 55.91 1811.35 65.89 61.94 93.7

Table 7: Comparison of Inference Efficiency. All results are reproduced under the same hardware
and evaluation settings. The initial memory usage for loading the model is 25.42GB.

Unimodal Coverage vs. Multimodal Coverage The proposed method contains both text-vision
coverage (T-V) and vision-vision coverage (V-V). We evaluate each component separately in Table 6.
Compared with the original similarity matrix, the softmax variant can obtain a similar or even better
performance, which shows that calibration on similarity matrices will not hurt the performance. Then,
combining coverage optimization on different modalities shows an improvement of about 1% over
unimodal coverage, which demonstrates the complementarity between T-V and V-V coverages for
diverse tasks. More ablation experiments can be found in Appendix.
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Inference Efficiency Besides effectiveness, we examine efficiency in real scenarios. To mimic
real applications, we report the total running time on different datasets in Table 7. First, we profile
the computational cost on POPE. Obviously, all token selection methods help reduce the utility
percentage of the GPU by about 30%, which shows that pruning is helpful for inference. Then, with
a fixed memory cost of 25.42GB for model loading, these methods can also help reduce the usage of
running-time memory by more than 58.2% compared to the baseline. This reduction in computation
and memory helps significantly improve the inference time on POPE, where both VisionZip and
our method can reduce the running time by about 50%. DivPrune runs a little bit slower due to a
different strategy for handling multiple crops in its official code. Although our method introduces
two subproblems, that is, T-V and V-V to optimize, the running time is almost the same as the
fast unimodal method, i.e., VisionZip, which confirms the efficiency of MMTok. The running time
accumulated over 6 tasks demonstrates a similar phenomenon, where the performance of MMTok is
better than VisionZip by 4.1%. This further demonstrates the efficacy and efficiency of our proposal.

Visualization While MMTok will leverage text information for vision token selection, the vision-
vision coverage in our framework can help reuse the selected vision tokens for multi-turn conversation
as shown in Figure 3. We can observe that MMTok selects tokens with text from Q1 but vision-vision
coverage helps the following questions to be answered correctly with the selected vision tokens.

In addition, we also demonstrate how the answer changes with the number of selected tokens in
Figure 4. Given a simple question as in the first example, only 8 vision tokens can obtain the right
answer. However, for the challenging question as in the last example, the answer changes even with
16 tokens. The phenomenon implies that the appropriate number of vision tokens also depends on the
hardness of the questions. Hardness-aware vision token selection is an interesting future direction.

Figure 3: Multi-turn conversation by ap-
plying MMTok only with text from Q1.

Figure 4: Answer changes with different number
of tokens. Hard questions need more vision tokens.

5 CONCLUSION

In this work, we propose a multimodal coverage framework, MMTok, to guide vision token selection
to accelerate the inference of VLMs in a training-free manner. Extensive experiments on benchmark
datasets and representative VLMs demonstrate that our method outperforms the unimodal baselines
without compromising efficiency. While text input may carry limited semantic information as a
target for vision tokens to cover, a lightweight agent VLM can be leveraged to provide additional
meaningful text tokens to guide the selection of the vision tokens, which will be an interesting future
direction.
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A LLM USAGE STATEMENT

We did not use LLM at all during the idea and writing stage of this work.

B EXPERIMENTS

B.1 ADAPTIVE TEMPERATURE τav

To further improve the calibration between M tv′
and Mvv′

, an adaptive visual temperature can be
applied for each example. Concretely, when fixing τt, the maximal similarity between the target text
tokens and the whole set of vision tokens can be obtained as f(N ;M tv′

), letting S = N . The desired
temperature τv should lead to a similar magnitude for the vision-vision similarity. The optimization
problem can be cast as

min
τa
v

|f(N ;M tv′
)− f(N ;Mvv′

)|

For the default f , it is monotone to τav , which can be solved efficiently by bisection search. However,
the diagonal elements in Mvv′

can mislead the optimization due to their fixed value of 1. To mitigate
the issue, the k-th largest value is applied to search for the temperature as

min
τa
v

|f(N ;M tv′
)− fk(N ;Mvv′

)|; fk(N ;Mvv′
) =

1

n

n∑
i=1

max
k

Mvv′

i,:

Moreover, fk is not guaranteed to be a monotone function to τav , and we can search the value in
(τt, τv] as suggested in (Qian et al., 2023), where it shows that the temperature between vision-vision
should be higher than that between text-vision due to the modality gap.

We perform the evaluation on high IC tasks in Table 8. As discussed above, the second largest
value is adopted for searching the temperature in the set of {0.05, 0.1, 0.15, 0.2}. While the variant
with adaptive temperature, i.e., MMTokAdapt, shows a slightly better performance with a budget of
16 tokens, the results over different tasks are almost the same, demonstrating that our method is
insensitive to hyperparameters.

Method GQA MMB POPE MME SEED Avg.
Acc. ↑ Acc. ↑ F1 ↑ P+C ↑ Acc. ↑ ↑

Upper Bound: LLaVA-1.5-7B (576 Tokens)
LLaVA-1.5 7B 61.9 64.7 85.9 1862 58.6 100%

Retain 16 Tokens ↓ 97.2%
MMTok 53.31 54.30 79.79 1550.65 56.67 88.6%

MMTokAdapt 53.31 54.30 79.83 1565.10 56.66 88.7%

Table 8: Fixed vs. Adaptive Temperature. Evaluation on LLaVA-1.5 7B with adaptive temperature
τav ∈ {0.05, 0.1, 0.15, 0.2}.

B.2 POOLING STRATEGY FOR TEXT

Given an LLM, each word can be tokenized into multiple tokens. To recover the semantic information
of words, we may aggregate tokens from the same word. In this experiment, we explore different
pooling strategies when computing T-V similarity. Concretely, we consider the pooling process
either before or after computing the similarity matrix, where Max-pooling selects the token with
the maximum feature value or similarity, Mean-pooling averages similarity over all tokens, and
First-pooling simply retains the first token of a word. As shown in Table 9, there is no pooling
strategy that consistently yields the best performance across all eight datasets. Therefore, our method
does not apply word pooling for simplicity.

B.3 MMTOK FOR REASONING TASK

To demonstrate the efficacy of MMTok on reasoning task, we conduct the experiments on the MMStar
dataset Chen et al. (2024b). In Table 10, we can observe that vision token selection can also help
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Pooling Position GQA MMB MME POPE SQA VQAText MMMU SEED Avg.
Method Acc. ↑ Acc. ↑ P+C ↑ F1 ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ ↑

MMTok on LLaVA-1.5-7B with 64 Tokens (Baseline)
None - 58.29 61.17 1715 85.77 69.16 56.01 36.11 57.15 100.0%

Pre-Pooling (Before Similarity Calculation)
Mean Pre 58.01 61.00 1703 85.75 69.11 55.73 36.00 57.13 99.7%
Max Pre 58.26 61.17 1704 85.64 68.82 55.82 35.89 56.94 99.7%
First Pre 58.39 61.34 1709 85.67 68.77 55.76 36.11 56.90 99.8%

Post-Pooling (After Similarity Calculation)
Mean Post 58.20 61.00 1690 85.67 68.77 55.77 36.22 57.16 99.7%
Max Post 58.36 61.00 1711 85.61 68.77 55.68 36.22 57.04 99.8%
First Post 58.39 61.34 1709 85.67 68.77 55.76 36.11 56.90 99.8%

Table 9: Word token pooling strategies for token selection on LLaVA-1.5-7B. Pre-pooling aggre-
gates subword tokens before similarity computation, while post-pooling applies pooling afterward.
We evaluate three methods: Mean (average pooling), Max (maximum pooling), and First (first
subword). The baseline applies no pooling. The best is in bold and the second-best is underlined.

reasoning tasks. It should be noted that the major issue on these challenging tasks is that the original
performance without selection is already quite low. Therefore, it is hard to show the significant
difference when the upper-bound is limited. Nevertheless, our method is still better than baselines
with a clear margin and by selecting 32 out of 576 tokens, MMTok is able to recover the performance
of the baseline.

Method MMStar Metrics

Coarse Fine-Grained Instance Logical Math Sci&Tech Average

Baseline
LLaVA-1.5-7B 63.63 25.63 38.89 28.92 26.60 18.48 33.69

64 Tokens
VisionZip 55.27 22.92 39.32 27.95 24.76 24.62 32.47
DivPrune 56.35 19.50 36.72 27.73 26.70 18.94 30.99

Ours 59.08 22.66 39.51 29.66 28.39 20.66 33.33

32 Tokens
VisionZip 48.58 19.04 39.73 29.69 22.91 21.95 30.32
DivPrune 54.82 21.07 37.03 27.82 24.18 19.32 30.71

Ours 59.56 25.71 40.49 29.94 27.92 17.37 33.50

16 Tokens
VisionZip 43.76 21.34 32.58 25.97 23.18 19.96 27.80
DivPrune 49.99 21.45 38.37 28.45 21.54 18.58 29.73

Ours 56.32 21.58 39.48 30.22 23.98 15.16 31.12

8 Tokens
VisionZip 27.93 21.26 25.71 21.84 20.18 17.83 22.46
DivPrune 47.25 21.05 33.89 25.75 20.32 16.76 27.50

Ours 54.11 21.26 35.09 29.56 20.34 15.04 29.23

0 Tokens
Baseline 31.85 19.10 23.77 23.61 14.28 16.11 21.45

Table 10: Comparison on MMStar with LLaVA-1.5-7B.

B.4 MMTOK VS. RESIZING

Resizing image resolution is an effective way to reduce the total number of tokens as shown in
Yang et al. (2025b). We compare the resize strategy with token budgets in Table 11. It shows that
selecting vision tokens from the original large image can be more effective than resizing under the
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same token budget. This is because resizing would ignore the redundancy between vision tokens.
More importantly, we observe that incorporating with resizing, MMTok can work better than the
counterpart with the same token budget on full images. For example, with about 10% original tokens,
MMTok with resizing can achieve 2170 on MME while that on original image is only 2051. Exploring
resizing with token selection sufficiently can be our future work.

Model Image Resize Ratio Token Avg. MME P+C ↑
Qwen2.5-VL-7B 1 867.6 2327

MMTok 1 86.8 2051
MMTok 1 173.5 2217

Resize image to fixed ratio of original height and width, respectively
Qwen2.5-VL-7B 1/2 459.1 2274
Qwen2.5-VL-7B 1/4 349.6 2238
Qwen2.5-VL-7B 1/8 276.0 1793

Retain 55% Tokens on 1/4 Resized Image
MMTok 1/4 192.3 2254

Retain 40% Tokens on 1/4 Resized Image
MMTok 1/4 139.8 2215

Retain 25% Tokens on 1/4 Resized Image
MMTok 1/4 87.4 2170

Table 11: Comparison with resize strategy on MME with Qwen2.5-VL-7B. The original image is
denoted as resize ratio of 1. Qwen has a default minimal number of vision tokens as 256 to obtain
meaningful results.

B.5 INFERENCE EFFICIENCY FOR QWEN2.5-VL-7B

Besides the evaluation in Table 7, we also evaluate the inference efficiency of Qwen2.5-VL-7B in
Table 12 using the MME task. We find that vision token selection can also accelerate the inference of
state-of-the-art VLMs.

Model Token Inference GPU. Memory
Avg. Time(s) util. (+15.87GB)

1 × A6000 GPU Performance on MME

Qwen2.5-VL-7B 867.6 675 77.0% 3.05

VisionZip 86.8 508 66.3% 0.41
DivPrune 86.8 423 55.1% 0.71
MMTok 86.8 419 60.0% 0.71

Table 12: Comparison of Inference Efficiency on Qwen2.5-VL-7B. The initial memory usage for
loading the model is 15.87GB.

B.6 EFFICIENCY EFFECT OF THE NUMBER OF INPUT OR SELECTED VISION TOKENS

In MMTok, the similarity matrix can be constructed efficiently using the pytorch built-in libraries.
Then, for token selection, MMTok proposes a greedy algorithm only with max operations and can
run in O(kn) to pick k vision tokens, where n is the total number of vision tokens. Therefore, our
method can scale well with vision tokens and with the number of selected vision tokens. In Table 13,
we show the running time of MMTok with the varying number of input and selected vision tokens.
We find that with the same number of input tokens, the running time is almost linear in the number of
selected tokens, which confirms our analysis. Moreover, even with 2880 input tokens, the running
time of MMTok is less than 7ms, which is negligible for real applications. It should also be noted
that even for 2880 input tokens, the computation only costs about 13.93 GFLOPs.
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#Input #Select Time(ms) #Input #Select Time(ms) #Input #Select Time(ms)

2880 160 6.417 1728 96 3.862 576 32 1.267
2880 80 3.733 1728 48 2.247 576 16 0.774

Table 13: Running time (ms) of MMTok with different numbers of input and selected vision tokens
on LLaVA-NeXT-7B. The reported result is averaged over 100 runs on a A6000 GPU.

B.7 TOKEN SELECTION IN DECODER

Following the common practice, token selection has been conducted mainly after the vision encoder.
In fact, token selection can also happen in the decoder. We conduct a preliminary experiment on the
decoder in Table 14. We try to further select the vision tokens from 160 to 80 for an intermediate
layer (i.e., L-24) of the decoder in LLaVA-Next on MME. We can find that it can keep the similar
performance and further improve the token efficiency.

Model Upper Tokens MME P+G ↑
LLaVA-Next-13B 2880 1901

MMTok 160 1811
MMTok 160⇒80 (L24) 1846
MMTok 80 1717

Table 14: Comparison with vision token selection during decoding. We have an additional vision
token selection in the 24th layer of decoder.

C IMPROVED MMTOK

Since LLaVA-1.5 does not fine-tune the vision tower and also does not mask padding patches,
we explicitly exclude padding patches from the candidate token set and fix an overflow bug that
wasted one token. As shown in Table 15, these changes substantially improve accuracy while using
fewer tokens.

D SELECTED TOKENS VISUALIZATION

To provide an intuitive understanding of our token selection process, we visualize the selected tokens
and their nearest words in Figure 5 and compare them with the diversity-based method, DivPrune.
From the columns (b) and (c), we can observe that MMTok selects top patches according to the word
to patch similarity, which aligns well with the question semantically. In contrast, as shown in columns
(d) and (e), DivPrune selected top patches without any close semantic relation to the question. This
further demonstrates that MMTok can help significantly reduce the number of tokens without losing
the semantic relation to the questions, so as to provide better performance.

E COMPLETE EMPIRICAL RESULTS

This section shows per-dataset results for all models and token budgets, including LLaVA-1.5
(7B/13B) (Tables 16 and 17), LLaVA-NeXT (7B/13B) (Tables 18 and 19), and Qwen-2.5-VL (7B
Table 20). We report both raw scores and percentage retention relative to the full-token setting. We
also report results with an extremely low number of tokens on LLaVA-1.5-7B and LLaVA-NeXT-7B
(Tables 21 and 22).
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Method GQA MMB MME POPE SEED-I Avg
Acc. ↑ Acc. ↑ P+C ↑ F1 ↑ Acc. ↑ ↑

Vanilla Baseline (576 tokens)
LLaVA-1.5-7B 61.9 64.7 1862 85.9 66.14 100.0%

32 Tokens
MMTok 55.95 58.59 1625 82.95 59.81 91.0%

MMTok++ 56.61 58.76 1636 83.44 59.85 91.6%

16 Tokens
MMTok 53.31 54.30 1551 79.79 56.67 86.4%

MMTok++ 54.05 54.98 1581 80.79 57.13 87.5%

8 Tokens
MMTok 49.06 49.06 1355 78.46 52.74 79.8%

MMTok++ 50.80 49.31 1395 79.75 53.59 81.4%

4 Tokens
MMTok 43.93 36.94 1290 74.84 48.10 71.4%

MMTok++ 45.08 40.21 1294 76.36 49.34 73.6%

2 Tokens
MMTok 40.58 25.69 1122 68.95 42.89 62.1%

MMTok++ 42.18 31.36 1237 72.97 45.27 67.3%

0 Tokens
Baseline 37.65 19.33 971 44.64 37.03 50.2%

Table 15: Evaluate MMTok++ on LLaVA-1.5-7B with Extremely Less Token Budgets.
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Figure 5: Visualization of Selected Tokens. Compared with the diversity-based method, DivPrune,
our method selected token coverage the necessary token associate to language context.
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Method GQA MMB MME POPE SQA VQAV2 VQAText MMMU SEED Avg.
Acc. ↑ Acc. ↑ P+C ↑ F1 ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ ↑

Upper Bound, 576 Tokens (100%)
LLaVA-1.5
Vanilla 7B

61.9 64.7 1862 85.9 69.5 78.5 58.2 36.3 58.6 100%100% 100% 100% 100% 100% 100% 100% 100% 100%

Retain 192 Tokens ↓ 66.7%
FastV

(2024a)
52.7 61.2 1612 64.8 67.3 67.1 52.5 34.3 57.1 89.6%85.1% 94.6% 86.6% 75.4% 96.8% 85.5% 90.2% 94.5% 97.4%

SparseVLM
(2024)

57.6 62.5 1721 83.6 69.1 75.6 56.1 33.8 55.8 95.5%93.1% 96.6% 92.4% 97.3% 99.4% 96.3% 96.4% 93.1% 95.2%

VisionZip
(2025a)

59.3 63.0 1782.6 85.3 68.9 76.8 57.3 36.6 56.4 97.9%95.8% 97.4% 95.7% 99.3% 99.1% 97.8% 98.5% 100.8% 96.2%

DivPrune
(2025)

59.97 62.54 1762.23 87.00 68.66 76.87 56.97 35.44 58.71 98.0%96.9% 96.7% 94.6% 101.3% 98.8% 97.9% 97.9% 97.6% 100.2%

VisionZip
(2025a)

60.1 63.4 1834 84.9 68.2 77.4 57.8 36.2 57.1 98.4%97.1% 98.0% 98.5% 98.8% 98.1% 98.6% 99.3% 99.7% 97.4%

60.07 63.40 1773.86 86.42 68.76 77.11 57.68 36.33 59.21MMTok
(Ours) 97.0% 98.0% 95.3% 100.6% 98.9% 98.2% 99.1% 100.1% 101.0% 98.7%

Retain 128 Tokens ↓ 77.8%
FastV

(2024a)
49.6 56.1 1490 59.6 60.2 61.8 50.6 34.9 55.9 84.4%80.1% 86.7% 80.0% 69.4% 86.6% 78.7% 86.9% 96.1% 95.4%

SparseVLM
(2024)

56.0 60.0 1696 80.5 67.1 73.8 54.9 33.8 53.4 92.9%90.5% 92.7% 91.1% 93.7% 96.5% 94.0% 94.3% 93.1% 91.1%

VisionZip
(2025a)

57.6 62.0 1761.7 83.2 68.9 75.6 56.8 37.9 54.9 96.8%93.1% 95.8% 94.6% 96.9% 99.1% 96.3% 97.6% 104.4% 93.7%

DivPrune
(2025)

59.25 62.03 1718.22 86.72 68.66 75.96 56.06 35.56 56.98 96.9%95.7% 95.9% 92.3% 101.0% 98.8% 96.8% 96.3% 98.0% 97.3%

VisionZip
(2025a)

58.9 62.6 1823 83.7 68.3 76.6 57.0 37.3 55.8 97.7%
95.2% 96.8% 97.9% 97.4% 98.3% 97.6% 97.9% 102.8% 95.2%

59.29 62.29 1779.14 86.25 68.82 76.35 57.03 35.67 58.59MMTok
(Ours) 95.8% 96.3% 95.5% 100.4% 99.0% 97.3% 98.0% 98.3% 100.0% 97.8%

Retain 64 Tokens ↓ 88.9%
FastV

(2024a)
46.1 48.0 1256 48.0 51.1 55.0 47.8 34.0 51.9 75.6%74.5% 74.2% 67.5% 55.9% 73.5% 70.1% 82.1% 93.7% 88.6%

SparseVLM
(2024)

52.7 56.2 1505 75.1 62.2 68.2 51.8 32.7 51.1 86.9%85.1% 86.9% 80.8% 87.4% 89.4% 86.9% 89.0% 90.1% 87.2%

VisionZip
(2025a)

55.1 60.1 1690 77.0 69.0 72.4 55.5 36.2 52.2 93.2%89.0% 92.9% 90.8% 89.6% 99.3% 92.2% 95.4% 99.7% 89.1%

DivPrune
(2025)

57.78 59.28 1674.4 85.56 68.07 74.11 54.69 35.56 55.13 94.8%93.3% 91.6% 89.9% 99.6% 97.9% 94.4% 94.0% 98.0% 94.1%

VisionZip
(2025a)

57.0 61.5 1756 80.9 68.8 74.2 56.0 35.6 53.4 95.0%92.1% 95.1% 94.3% 94.2% 99.0% 94.5% 96.2% 98.1% 91.1%

58.29 61.17 1715.33 85.77 69.16 75.20 56.01 36.11 57.15MMTok
(Ours) 94.2% 94.5% 92.1% 99.9% 99.5% 95.8% 96.3% 99.5% 97.5% 96.6%

Table 16: Performance Comparison on LLaVA-1.5-7B. The vanilla number of visual tokens is
576. The first line of each method shows the raw benchmark accuracy, and the second line is the
proportion relative to the upper limit. The last column is the average value.
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Method GQA MMB MME POPE SQA VQAV2 VQAText MMMU SEED-I SEED∗ Avg.
Acc. ↑ Acc. ↑ P+C ↑ F1 ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ ↑

Upper Bound, 576 Tokens (100%)
LLaVA-1.5
Vanilla 13B

63.2 67.7 1818 85.9 72.8 80.0 61.3 36.4 66.9 61.6
100%

100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Retain 192 Tokens ↓ 66.7%

VisionZip
(2025a)

59.1 66.9 1754 85.1 73.5 78.1 59.5 36.4 65.2 61.20†
97.9%

93.5% 98.8% 96.5% 99.1% 101.0% 97.6% 97.1% 100% 97.5% 99.4%

DivPrune
(2025)

59.42 66.58 1781.50 86.76 73.03 77.98 58.46 36.56 65.72 60.83
98.2%

94.0% 98.3% 98.0% 101.0% 100.3% 97.5% 95.4% 100.4% 98.2% 98.8%

VisionZip
(2025a)

61.6 67.1 1790 84.5 72.7 78.6 59.9 36.4 66.1 –
98.7%

97.5% 99.1% 98.5% 98.4% 99.9% 98.3% 97.7% 100% 98.8% –

59.67 67.70 1784.16 86.15 73.62 78.30 59.64 36.78 65.49 61.17MMTok
(Ours) 94.4% 100.0% 98.1% 100.3% 101.1% 97.9% 97.3% 101.0% 97.9% 99.3%

98.7%

Retain 128 Tokens ↓ 77.8%

VisionZip
(2025a)

57.9 66.7 1743 85.2↓ 74.0 76.8 58.7 36.1 63.8 59.74†
97.0%

91.6% 98.5% 95.9% 99.2% 101.6% 96.0% 95.8% 99.2% 95.4% 97.0%

DivPrune
(2025)

58.89 66.07 1748.56 86.53 72.48 77.10 58.17 35.56 64.22 59.49
96.9%

93.2% 97.6% 96.2% 100.7% 99.6% 96.4% 94.9% 97.7% 96.0% 96.6%

VisionZip
(2025a)

60.1 67.6 1736 83.8 73.0 77.6 59.2 35.4 64.9 –
97.4%

95.1% 99.9% 95.5% 97.6% 100.3% 97.0% 96.6% 97.3% 97.0% –

58.98 67.18 1756.20 86.22 73.38 77.57 59.22 35.44 64.26 60.11MMTok
(Ours) 93.3% 99.2% 96.6% 100.4% 100.8% 97.0% 96.6% 97.4% 96.1% 97.6%

97.5%

Retain 64 Tokens ↓ 88.9%

VisionZip
(2025a)

56.2 64.9 1676 76.0 74.4 73.7 57.4 36.4 60.4 57.13†
93.7%

88.9% 95.9% 92.2% 88.5% 102.2% 92.1% 93.6% 100% 90.3% 92.7%

DivPrune
(2025)

57.66 64.60 1777.93 84.80 72.09 75.20 57.11 35.22 62.44 57.70
95.3%

91.2% 95.4% 97.8% 98.7% 99.0% 94.0% 93.2% 96.8% 93.3% 93.7%

VisionZip
(2025a)

58.1 65.6 1671 81.6 72.3 75.2 58.5 35.3 61.4 –
94.8%

91.9% 96.9% 91.9% 95.0% 99.3% 94.0% 95.4% 97.0% 91.8% –

58.42 65.72 1763.39 84.39 72.98 76.55 58.40 35.22 63.39 59.51MMTok
(Ours) 92.4% 97.1% 97.0% 98.2% 100.2% 95.7% 95.3% 96.8% 94.8% 96.6%

96.4%

Table 17: Performance Comparison on LLaVA-1.5-13B. The vanilla number of visual tokens is
576. The first line of each method shows the raw benchmark accuracy, and the second line is the
proportion relative to the upper limit. SEED-I represents SEED-IMG, SEED represents SEED-ALL.
Following (Yang et al., 2025a), Avg. is based on SEED-I instead of SEED.
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Method GQA MMB MME POPE SQA VQAV2 VQAText MMMU SEED-I Avg.
Acc. ↑ Acc. ↑ P+C ↑ F1 ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ ↑

Avg. Images n̄ 4.90 4.12 4.53 4.90 3.85 4.98 4.98 4.07 4.72

Avg. Tokens (n̄ ∗ 576) 2822.4 2373.12 2609.28 2822.40 2217.60 2868.48 2868.48 2344.32 2718.72

Upper Bound: 2880 (5× 576) Tokens (100%)
64.2 67.9 1842 86.4 70.2 80.1 61.3 35.1 70.2

100%LLaVA-NeXT
Vanilla 7B 100% 100% 100% 100% 100% 100% 100% 100% 100%

Upper: 5× 128 = 640 627 527 580 627 493 638 638 521 604 ↓ 77.8%
SparseVLM

(2024)
60.3 65.7 1772 – 67.7 77.1 57.8 34.6 –

-
93.9% 96.8% 96.2% – 96.4% 96.3% 94.3% 98.6% –

VisionZip
(2025a)

61.3 66.3 1787 86.3 68.1 79.1 60.2 34.7 66.7
97.5%

95.5% 97.6% 97.0% 99.9% 97.0% 98.8% 98.2% 98.9% 95.0%

DivPrune
(2025)

61.58 65.38 1773.04 85.51 67.82 78.94 55.41 36.89 67.56
97.1%

95.9% 96.3% 96.3% 99.0% 96.6% 98.6% 90.4% 105.1% 96.2%

VisionZip
(2025a)

62.4 65.9 1778 87.6 67.9 79.9 60.8 37.2 67.8
98.9%

97.2% 97.1% 96.5% 101.4% 96.7% 99.8% 99.2% 106.0% 96.6%

62.27 65.29 1829.28 86.74 68.47 79.31 58.97 37.22 67.74MMTok
(Ours) 97.0% 96.2% 99.3% 100.4% 97.5% 99.0% 96.2% 106.0% 96.5%

98.7%

Upper: 5× 64 = 320 314 264 290 314 246 319 319 261 302 ↓ 88.9%
SparseVLM

(2024)
57.7 64.3 1694 – 67.3 73.4 55.9 34.4 –

-
89.9% 94.7% 92.0% – 95.9% 91.6% 91.2% 98.0% –

VisionZip
(2025a)

59.3 63.1 1702 82.1 67.3 76.2 58.9 35.3 63.4
94.5%

92.4% 92.9% 92.4% 95.0% 95.9% 95.1% 96.1% 100.6% 90.3%

DivPrune
(2025)

59.63 63.66 1731.04 83.47 67.82 76.64 53.84 37.11 65.35
95.1%

92.9% 93.7% 94.0% 96.6% 96.6% 95.7% 87.8% 105.7% 93.1%

VisionZip
(2025a)

61.0 64.4 1770 86.2 67.5 78.4 59.3 38.0 65.9
97.6%

95.0% 94.8% 96.1% 99.8% 96.2% 97.9% 96.7% 108.3% 93.9%

60.96 64.35 1799.33 85.76 67.33 77.68 56.93 38.00 66.29MMTok
(Ours) 95.0% 94.8% 97.7% 99.3% 95.9% 97.0% 92.9% 108.3% 94.4%

97.3%

Upper: 5× 32 = 160 157 132 145 157 123 159 159 130 151 ↓ 94.4%
SparseVLM

(2024)
51.2 63.1 1542 – 67.5 66.3 46.4 32.8 –

-
79.8% 92.9% 83.7% – 96.2% 82.8% 75.7% 93.4% –

VisionZip
(2025a)

55.5 60.1 1630 74.8 68.3 71.4 56.2 36.1 58.3
90.4%

86.4% 88.5% 88.5% 86.6% 97.3% 89.1% 91.7% 102.8% 83.0%

DivPrune
(2025)

57.79 62.29 1658.25 79.36 68.02 73.92 52.42 36.44 62.54
92.4%

90.0% 91.7% 90.0% 91.9% 96.9% 92.3% 85.5% 103.8% 89.1%

VisionZip
(2025a)

58.2 63.9 1699 83.4 67.5 75.6 57.3 37.7 62.9
95.0%

90.7% 94.1% 92.2% 96.5% 96.2% 94.4% 93.5% 107.4% 89.6%

60.05 62.97 1715.54 83.87 67.97 75.62 54.17 37.89 64.54MMTok
(Ours) 93.5% 92.7% 93.1% 97.1% 96.8% 94.4% 88.4% 107.9% 91.9%

95.1%

Table 18: Performance Comparison on LLaVA-NeXT-7B. The vanilla number of visual tokens
varies by dataset due to dynamic image processing (max 2880 for 5 images). ‘-’ means performance
not available in the original paper.
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Method GQA MMB MME POPE SQA VQAV2 VQAText MMMU SEED-I Avg.
Acc. ↑ Acc. ↑ P+C ↑ F1 ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ ↑

Avg. Images n̄ 4.90 4.12 4.53 4.90 3.85 4.98 4.98 4.07 4.72

Avg. Tokens (n̄ ∗ 576) 2822.4 2373.12 2609.28 2822.40 2217.60 2868.48 2868.48 2344.32 2718.72

Upper Bound: 2880 (5× 576) Tokens (100%)
LLaVA-NeXT

Vanilla 13B
65.4 70.0 1901 86.2 73.5 81.8 64.3 36.2 71.9

100%
100% 100% 100% 100% 100% 100% 100% 100% 100%

Upper: 5× 128 = 640 627 527 580 627 493 638 638 521 604 ↓ 77.8%
VisionZip
(2025a)

63.0 68.6 1871 85.7 71.2 79.7 62.2 36.4 68.8
97.7%

96.3% 98.0% 98.4% 99.4% 96.9% 97.4% 96.7% 100.5% 95.7%

DivPrune
(2025)

62.82 66.84 1832.76 86.17 71.84 79.87 57.54 37.78 69.38
97.1%

96.1% 95.5% 96.4% 99.9% 97.7% 97.6% 89.5% 104.4% 96.5%

VisionZip
(2025a)

63.7 66.6 1829 86.3 73.2 81.2 64.4 38.1 69.2
98.8%

97.4% 95.1% 96.2% 100.1% 99.6% 99.3% 100.2% 105.2% 96.2%

63.71 67.44 1874.63 86.72 72.29 80.55 61.06 37.11 69.61MMTok
(Ours) 97.4% 96.3% 98.6% 100.6% 98.4% 98.5% 95.0% 102.5% 96.8%

98.2%

Upper: 5× 64 = 320 314 264 290 314 246 319 319 261 302 ↓ 88.9%
VisionZip
(2025a)

60.7 67.2 1805 82.0 70.3 76.8 60.9 35.6 65.2
94.7%

92.8% 96.0% 95.0% 95.1% 95.6% 93.9% 94.7% 98.3% 90.7%

DivPrune
(2025)

61.03 65.46 1802.79 84.86 71.39 77.6 55.75 36.00 66.75
94.5%

93.3% 93.5% 94.8% 98.4% 97.1% 94.9% 86.7% 99.4% 92.8%

VisionZip
(2025a)

62.5 66.9 1861 85.7 72.7 80.0 63.2 36.9 67.9
97.8%

95.6% 95.6% 97.9% 99.4% 98.9% 97.8% 98.3% 101.9% 94.4%

62.95 65.55 1840.10 85.88 72.38 78.79 58.88 36.33 67.81MMTok
(Ours) 96.3% 93.6% 96.8% 99.6% 98.5% 96.3% 91.6% 100.4% 94.3%

96.4%

Upper: 5× 32 = 160 157 132 145 157 123 159 159 130 151 ↓ 94.4%
VisionZip
(2025a)

57.8 64.9 1739 76.6 69.3 72.4 58.4 37.0 61.1
91.4%

88.4% 92.7% 91.5% 88.9% 94.3% 88.5% 90.8% 102.2% 85.0%

DivPrune
(2025)

59.34 64.78 1699.83 82.16 70.55 74.72 54.65 35.89 63.80
92.0%

90.7% 92.5% 89.4% 95.3% 96.0% 91.3% 85.0% 99.1% 88.7%

VisionZip
(2025a)

59.7 65.3 1766 84.0 72.0 77.6 60.8 36.0 64.4
94.6%

91.3% 93.3% 92.9% 97.4% 98.0% 94.9% 94.6% 99.4% 89.6%

61.94 65.89 1811.35 85.11 72.43 76.8 55.91 37.11 65.45MMTok
(Ours) 94.7% 94.1% 95.3% 98.7% 98.5% 93.9% 87.0% 102.5% 91.0%

95.1%

Table 19: Performance Comparison on LLaVA-NeXT-13B. The vanilla upper number of visual
tokens is 2880. SEED-I represents SEED-IMG.
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Method GQA MMB MME POPE VQAText SQA OCRBench Avg.†
Acc. ↑ Acc. ↑ P+C ↑ F1 ↑ Acc. ↑ Acc. ↑ Acc. ↑ ↑

Dynamic Resolution (MinPix = 256 × 28 × 28, MaxPix = 2048 × 28 × 28), Upper Bound (100%)
Avg. Tokens T̄ 358.5 276.9 867.6 359.6 976.5 323.0 652.8

Qwen-2.5-VL-7B
Dynamic Res.

60.48 83.25 2327 86.16 77.72 87.46 83.80 100%100% 100% 100% 100% 100% 100% 100%

Fixed Resolution (MinPix = MaxPix = 2048 × 28 × 28), Upper Bound (100%)
Qwen-2.5-VL-7B

Fixed Res.
58.59 83.59 2339 86.09 76.64 86.91 76.60 99.3%96.9% 100.4% 100.5% 99.9% 98.6% 99.4% 91.4%

Retain 20% T̄ 71.7 55.4 173.5 71.9 195.3 64.6 130.6 ↓ 80%
VisionZip
(2025a)

56.80 80.33 2174 83.38 70.43 84.23 59.50
93.9% 96.5% 93.4% 96.8% 90.6% 96.3% 71.0% 94.2%

DivPrune
(2025)

56.70 76.98 2163 80.59 65.86 80.91 48.10
93.8% 92.5% 93.0% 93.5% 84.7% 92.5% 57.4% 91.5%

58.09 79.30 2217 82.38 70.49 81.61 59.60MMTok
(Ours) 96.0% 95.3% 95.3% 95.7% 90.7% 93.3% 71.1% 94.6%

Retain 10% T̄ 35.9 27.7 86.8 36.0 97.7 32.3 65.3 ↓ 90%
VisionZip
(2025a)

52.47 75.60 2003 78.90 63.78 82.30 36.90
86.8% 90.8% 86.1% 91.6% 82.1% 94.1% 44.0% 87.5%

DivPrune
(2025)

53.43 72.85 1957 74.99 59.59 79.57 37.30
88.3% 87.5% 84.1% 87.0% 76.7% 91.0% 44.5% 84.7%

55.09 74.74 2051 78.75 63.90 80.47 43.60MMTok
(Ours) 91.1% 89.8% 88.1% 91.4% 82.2% 92.0% 52.1% 88.5%

Retain 5% T̄ 17.9 13.8 43.4 18.0 48.8 16.2 32.6 ↓ 95%
VisionZip
(2025a)

46.28 67.53 1677 66.38 54.49 79.57 19.70
76.5% 81.1% 72.1% 77.1% 70.1% 91.0% 23.5% 75.4%

DivPrune
(2025)

49.01 65.89 1739 68.45 52.02 77.05 24.90
81.0% 79.1% 74.7% 79.4% 66.9% 88.1% 29.7% 76.3%

50.66 65.89 1796 71.35 55.95 77.19 30.70MMTok
(Ours) 83.8% 79.2% 77.2% 82.8% 72.0% 88.2% 36.6% 79.0%

0 Token ↓ 100%
Qwen-2.5-VL 7B

Text-Only
31.84 20.10 935 0.00∗ 38.93 71.10 1.80
54.3% 24.0% 40.0% 0.0%* 50.8% 88.6% 2.1% 33.8%

Table 20: Performance Comparison on Qwen-2.5-VL-7B-Instruct. Avg.† is the average perfor-
mance over the 5 datasets: GQA, MMB, MME, POPE, and VQAText. The first line of each method
shows the raw benchmark accuracy, and the second line is the proportion relative to the upper limit.
*Qwen-2.5-VL outputs "No" for all POPE questions when no visual tokens are provided, resulting
in 0% F1 score.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Method GQA MMB MME POPE SQA VQAText MMMU SEED-I* Avg@8 Avg@5 ≥90% ≥80%
Acc. ↑ Acc. ↑ P+C ↑ F1 ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ ↑ ↑ /8 ↑ /8 ↑

Vanilla Baseline (576 tokens)
LLaVA-1.5-7B 61.9 64.7 1862 85.9 69.5 58.2 36.3 66.14 100.0% 100.0% 8/8 8/8
90% Threshold 55.71 58.23 1675.80 77.31 62.55 52.38 32.67 59.53 90.0% 90.0% – –
80% Threshold 49.52 51.76 1489.60 68.72 55.60 46.56 29.04 52.91 80.0% 80.0% – –

64 Tokens
VisionZip 55.1 60.1 1690 77.0 69.0 55.5 36.2 57.84 93.0% 90.0% 5/8 8/8
DivPrune 57.78 59.28 1674.40 85.56 68.07 54.69 35.56 60.21 94.4% 93.1% 7/8 8/8
MMTok 58.29 61.17 1715.33 85.77 69.16 56.01 36.11 61.29 96.1% 94.7% 8/8 8/8

32 Tokens
VisionZip 51.78 57.22 1580.43 68.88 68.77 53.23 35.11 53.28 88.1% 83.5% 3/8 8/8
DivPrune 55.11 58.93 1600 82.06 68.62 53.20 35.33 57.08 91.9% 89.6% 5/8 8/8
MMTok 55.95 58.59 1624.72 82.95 68.86 53.70 35.33 59.81 93.0% 91.0% 7/8 8/8

16 Tokens
VisionZip 46.72 45.70 1326.89 51.84 67.67 49.74 35.00 46.66 78.4% 69.7% 2/8 3/8
DivPrune 51.10 53.09 1518 69.56 69.41 50.01 35.44 52.72 86.3% 81.4% 2/8 7/8
MMTok 53.31 54.30 1550.65 79.79 68.82 50.04 34.22 56.67 88.9% 86.4% 3/8 8/8

8 Tokens
VisionZip 39.47 24.40 1069.94 23.66 64.30 44.62 33.67 38.46 63.3% 48.9% 2/8 2/8
DivPrune 46.09 43.13 1294 52.10 67.92 45.21 34.00 46.68 76.4% 68.4% 2/8 2/8
MMTok 49.06 49.06 1355.31 78.46 66.83 45.71 34.11 52.74 83.5% 79.8% 3/8 3/8

4 Tokens
VisionZip 36.57 18.30 923.57 24.48 63.56 40.82 33.78 35.34 59.2% 43.8% 2/8 2/8
DivPrune 40.67 28.61 1134 33.33 65.20 42.54 33.33 40.99 66.3% 54.3% 2/8 2/8
MMTok 43.93 36.94 1290.31 74.84 65.64 43.52 34.00 48.10 77.5% 71.4% 2/8 3/8

2 Tokens
VisionZip 35.94 16.84 890.28 26.48 63.31 39.55 33.78 34.62 58.4% 43.0% 2/8 2/8
DivPrune 38.58 21.48 991 37.60 64.60 42.16 33.44 38.43 63.5% 50.1% 2/8 2/8
MMTok 40.58 25.69 1122.42 68.95 64.90 42.42 32.67 42.89 70.9% 62.1% 2/8 3/8

0 Tokens
Baseline 37.65 19.33 970.89 44.64 63.51 41.66 33.33 37.03 63.2% 50.2% 2/8 2/8

Table 21: Extended Performance Comparison with Extremely Less Token Budgets on LLaVA-
1.5-7B. *SEED-I indicts SEEDBench-Image. Avg@8 is across all 8 datasets, while Avg@5 is on 5
High-IC datasets.
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Method GQA MMB MME POPE SQA VQAText MMMU SEED-I Avg@8 Avg@6 ≥90% ≥80%
Acc. ↑ Acc. ↑ P+C ↑ F1 ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ ↑ ↑ /8 ↑ /8 ↑

Vanilla Baseline (Upper 2880 tokens)
LLaVA-NeXT-7B 64.2 67.9 1842 86.4 70.2 61.3 35.1 70.2 100.0% 100.0% 8/8 8/8

90% Threshold 57.78 61.11 1657.80 77.76 63.18 55.17 31.59 63.18 90.0% 90.0% – –
80% Threshold 51.36 54.32 1473.60 69.12 56.16 49.04 28.08 56.16 80.0% 80.0% – –

Upper 32×5 Tokens (160 Tokens) 5.6%

VisionZip 55.5 60.1 1630 74.8 68.3 56.2 36.1 58.3 90.6% 87.5% 3/8 8/8
DivPrune 57.79 62.29 1658 79.36 68.02 52.42 36.44 62.54 92.4% 89.7% 6/8 8/8
MMTok 60.05 62.97 1716 83.87 67.97 54.17 37.89 64.54 95.2% 92.8% 7/8 8/8

Upper 16×5 Tokens (80 Tokens) 2.8%

VisionZip 50.80 50.69 1431 61.82 66.93 51.65 34.44 51.77 81.8% 76.8% 2/8 3/8
DivPrune 55.73 59.97 1575 74.74 66.83 50.35 36.56 59.48 89.2% 85.7% 2/8 8/8
MMTok 58.23 62.54 1681 81.89 67.13 49.56 36.11 61.86 92.0% 89.6% 6/8 8/8

Upper 8×5 Tokens (40 Tokens) 1.4%

VisionZip 41.87 28.35 999 21.22 64.25 42.85 31.44 41.93 62.1% 52.6% 1/8 2/8
DivPrune 52.87 55.76 1462 67.49 66.78 48.02 33.44 55.40 83.7% 79.9% 2/8 4/8
MMTok 54.52 59.88 1555 81.84 67.73 45.77 35.00 59.28 88.4% 85.2% 3/8 7/8

Upper 4×5 Tokens (20 Tokens) 0.7%

VisionZip 36.56 18.38 814 0.40 63.56 35.36 31.56 34.98 52.1% 39.4% 1/8 2/8
DivPrune 49.57 48.54 1324 52.14 65.94 44.06 31.78 51.25 76.3% 71.0% 2/8 2/8
MMTok 49.60 51.20 1457 82.41 66.88 42.33 33.67 55.34 83.3% 79.2% 3/8 3/8

Upper 2×5 Tokens (10 Tokens) 0.3%

VisionZip 36.17 17.96 823 0.80 62.91 32.84 30.56 34.31 50.9% 38.5% 0/8 2/8
DivPrune 45.19 37.11 1134 25.48 65.25 40.33 33.22 45.54 66.8% 57.8% 2/8 2/8
MMTok 45.72 38.75 1283 79.62 65.64 39.77 33.78 49.73 76.9% 71.0% 3/8 3/8

0 Tokens
Baseline 38.23 17.87 867 25.84 64.60 37.77 31.56 37.43 57.5% 46.3% 1/8 2/8

Table 22: Extended Performance Comparison with Extremely Less Token Budgets on LLaVA-
NeXT-7B. Avg@8 is across all 8 datasets, while Avg@6 is across 6 High-IC datasets. The “×5”
notation indicates maximum sampling to 5 images. Average percentages are calculated relative to the
vanilla baseline for each metric.

25


	Introduction
	Related Work
	The Proposed Method
	Vision Token Selection by Coverage Maximization
	Maximum Text-Vision Coverage
	Maximum Vision-Vision Coverage
	Maximum Multimodal Coverage


	Experiments
	Performance Comparison on Diverse Tasks
	Comparison on High IC Tasks with Limited Vision Tokens
	Ablation Study

	Conclusion
	Ethics statement
	Reproducibility statement
	LLM usage Statement
	Experiments
	Adaptive Temperature va
	Pooling Strategy for Text
	MMTok for Reasoning Task
	MMTok vs. Resizing
	Inference Efficiency for Qwen2.5-VL-7B
	Efficiency effect of the number of input or selected vision tokens
	Token Selection in Decoder

	Improved MMTok
	Selected Tokens Visualization
	Complete Empirical Results

