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Abstract

Large Language Models (LLMs) have achieved001
remarkable success thanks to scalability on002
large text corpora, but have some drawback003
in training efficiency. In contrast, Syntactic004
Language Models (SLMs) can be trained ef-005
ficiently to reach relatively high performance006
thanks to syntactic supervision, but have trou-007
ble with scalability. Thus, given these comple-008
mentary advantages of LLMs and SLMs, it is009
necessary to develop an architecture that inte-010
grates the scalability of LLMs with the training011
efficiency of SLMs, namely Syntactic Large012
Language Models (SLLM). In this paper, we013
propose a novel method dubbed tree-planting:014
implicitly “plant” trees into attention weights015
of Transformer LMs to reflect syntactic struc-016
tures of natural language. Specifically, Trans-017
former LMs trained with tree-planting will018
be called Tree-Planted Transformers (TPT),019
which learn syntax on small treebanks via tree-020
planting and then scale on large text corpora021
via continual learning with syntactic scaffold-022
ing. Targeted syntactic evaluations on the Syn-023
taxGym benchmark demonstrated that TPTs,024
despite the lack of explicit syntactic supervi-025
sion, significantly outperformed various SLMs026
with explicit syntactic supervision that gener-027
ate hundreds of syntactic structures in parallel,028
suggesting that tree-planting and TPTs are the029
promising foundation for SLLMs.030

1 Introduction031

Recent years have witnessed remarkable success in032

Large Language Models (LLMs) based on Trans-033

former LMs (Vaswani et al., 2017). The suc-034

cess of LLMs suggests that continual learning on035

large text corpora is essential for LMs to acquire a036

wide range of world knowledge and solve various037

downstream tasks. However, despite their success,038

LLMs have some drawback in training efficiency.039

For example, GPT-3 (Brown et al., 2020) is trained040

on around 2, 000× larger data than a 12-year-old041
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Figure 1: Overview of Tree-Planted Transformers

human would have experienced (Warstadt et al., 042

2023), indicating that LLMs require tremendous 043

training corpus and computational resources. 044

On another strand, previous work has revealed 045

that Syntactic Language Models (SLMs), the in- 046

tegration of LMs with explicit syntactic supervi- 047

sion, can achieve high performance under data- 048

constrained settings (Dyer et al., 2016; Noji and 049

Oseki, 2021; Qian et al., 2021; Sartran et al., 2022; 050

Yoshida and Oseki, 2022; Murty et al., 2023). For 051

example, Sartran et al. (2022) showed that some 052

SLMs can achieve comparable syntactic knowl- 053

edge to an LLM-like model1 that is trained with 054

medium—around 250× larger—data, suggesting 055

that syntactic supervision is essential for LMs to 056

achieve high training efficiency. However, de- 057

spite their training efficiency, SLMs have trou- 058

ble with scalability: small SLMs cannot compete 059

with LLMs trained on 1, 000× larger data. Thus, 060

1Due to the rapid advances in recent years, what were once
considered LLMs are no longer deemed “large” by current
standards. We will refer to Transformer LMs larger than or
equal to GPT-2 (Radford et al., 2018) as LLM-like models.
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given these complementary advantages of LLMs061

and SLMs, it is necessary to develop an architec-062

ture that integrates the scalability of LLMs with063

the training efficiency of SLMs, namely Syntactic064

Large Language Models (SLLM; Table 1).065

In this paper, we propose a novel method dubbed066

tree-planting:2 implicitly “plant” trees into at-067

tention weights of Transformer LMs to reflect068

syntactic structures of natural language. Specif-069

ically, Transformer LMs trained with tree-planting070

will be called Tree-Planted Transformers (TPT),071

which learn syntax on small treebanks via tree-072

planting and then scale on large text corpora via073

continual learning with syntactic scaffolding (Fig-074

ure 1). Targeted syntactic evaluations on the Syn-075

taxGym benchmark demonstrated that TPTs, de-076

spite the lack of explicit syntactic supervision, sig-077

nificantly outperformed various SLMs with explicit078

syntactic supervision that generate hundreds of syn-079

tactic structures in parallel, suggesting that tree-080

planting and TPTs are the promising foundation081

for SLLMs.3082

2 Background083

2.1 Large Language Model084

Large Language Models are typically based on085

Transformer LMs (Vaswani et al., 2017) with a086

large number of parameters and trained on vast087

amounts of data. A major reason that Transformer088

LMs are employed as the base architecture for089

LLMs is their self-attention mechanism, which en-090

ables efficient parallel computation on GPUs.091

The self-attention mechanism of Transformer092

LMs computes a representation for predicting the093

next token through a weighted sum of each token094

in the context. Specifically, when predicting the095

i+ 1-th token, the attention weights from the i-th096

token to the j-th token is computed as follows:097

Aij =

exp

(
QiK

T
j√

dK

)
∑i

k=1 exp
(
QiKT

k√
dK

) , (1)098

where Qi and Kj represent the query vector of099

the i-th token and the key vector of the j-th token,100

2The term “tree-planting” coincidentally bears a resem-
blance to the term used in Mueller and Linzen (2023), but
this work diverges from ours in its motivation. Specifically,
Mueller and Linzen (2023) investigated biases that enable
syntactic generalization in Transformer LMs, from the per-
spectives of architectural features (depth, width, and number
of parameters), as well as the genre and size of training corpus.

3Upon acceptance of this paper, we will make our code
publicly available.

Scalability Training efficiency
LLM ✓
SLM ✓
SLLM ✓ ✓

Table 1: Comparison of SLLM with LLM/SLM in terms
of (i) scalability and (ii) training efficiency.

respectively, and dK denotes the dimension of the 101

key vector. As Equation 1 shows, the computation 102

for the i+1-th token prediction does not depend on 103

any computation for the 1, · · · , i-th token predic- 104

tions, which enables efficient parallel computation. 105

This property of the self-attention mechanism en- 106

ables the development of LLMs but it is important 107

to note that these models do not employ any syn- 108

tactic supervision, although syntactic structures are 109

one of the fundamental properties of natural lan- 110

guages (Chomsky, 1957). 111

2.2 Syntactic Language Model 112

Syntactic Language Models (SLMs) are a genera- 113

tive model of a token sequence x and its syntactic 114

structure y: 115

p(x,y) = p(z) =
n∏

t=1

p(zt|z<t), (2) 116

where z denotes the sequence of actions to generate 117

both the token sequence and syntactic structure. 118

For example, in top-down and left-to-right SLMs, 119

each zt could be either generating a token, opening 120

a constituent, or closing a constituent. 121

Recently, several SLMs based on the Trans- 122

former architecture have been proposed, achieving 123

higher syntactic knowledge than medium LLM- 124

like models (Qian et al., 2021; Sartran et al., 2022; 125

Murty et al., 2023). However, because SLMs 126

model the joint probability of a token sequence and 127

its syntactic structure, they cannot be trained on 128

other than treebanks, which prevents them from 129

scaling on large text corpora Moreover, SLMs 130

also have practical drawback in inference costs: 131

when utilized as LMs, they require hundreds of 132

syntactic structures via beam search (Stern et al., 133

2017; Crabbé et al., 2019) or an external parser, to 134

marginalize joint distribution p(x,y) to precisely 135

approximate p(x). 136

2.3 Constraints on attention weights 137

As discussed in Subsection 2.2, the bottleneck that 138

prevents SLMs from scaling on large text corpora 139

2



Parser-free
inference

Syntactic
supervision

Unidirectional
LM

Parallel
computation

Wu et al. (2018);Nguyen et al. (2020);
Bugliarello and Okazaki (2020);Bai et al. (2021);
Sachan et al. (2021);Slobodkin et al. (2022)

✓ ✓

Wang et al. (2019) ✓ ✓
Strubell et al. (2018);Chen et al. (2023) ✓ ✓ ✓
Peng et al. (2019) ✓ ✓ ✓
Tree-planting (ours) ✓ ✓ ✓ ✓

Table 2: Comparison of our tree-planting with the previous work that constrains attention weights according to
syntactic structures, based on the requirements for SLLM: (i) parser-free inference, (ii) syntactic supervision, (iii)
unidirectional LM, and (iv) parallel computation.

is their modeling space of the joint probability. To140

achieve the foundational architecture for SLLMs,141

it is necessary to introduce syntactic knowledge142

without changing the modeling space of their un-143

derlying Transformer LMs. For our goal, we will144

build upon another line of approach that constrains145

attention weights according to syntactic structures—146

typically targeting bidirectional Transformer En-147

coders like BERT (Devlin et al., 2019)—and ex-148

tend it to unidirectional Transformer LMs. Table 2149

summarizes the previous work in this line of ap-150

proach, comparing our tree-planting (Section 3)151

against others based on the requirements for SLLM:152

(i) parser-free inference, (ii) syntactic supervision,153

(iii) unidirectional LM, and (iv) parallel computa-154

tion.155

First, the majority of these approaches are purely156

motivated to explicitly restrict attention weights157

with syntactic structures from external parsers, un-158

der the assumption that these parsers would be159

available during inference (Wu et al., 2018; Nguyen160

et al., 2020; Bugliarello and Okazaki, 2020; Bai161

et al., 2021; Sachan et al., 2021; Slobodkin et al.,162

2022). These studies achieved successful perfor-163

mance in their respective downstream tasks, but164

not only are they all not directly applicable to uni-165

directional LMs, they also require external parsers166

during inference, rendering them unsuitable as the167

foundation for SLLM.168

Second, several studies proposed approaches169

that do not require external parsers during infer-170

ence. Wang et al. (2019) aimed at an unsupervised171

approach, where a hierarchical architectural bias172

widens the range of neighboring tokens eligible173

to attend from lower to upper layers, though this174

method is also not aligned with our goal of achiev-175

ing higher training efficiency via syntactic super-176

vision. Furthermore, Strubell et al. (2018) and177

Chen et al. (2023) designed the loss functions that178

implicitly encourage the attention to syntactic par-179

ents or children for each token, satisfying the 3/4 180

requirements for SLLM. However, this approach 181

is potentially not suitable for unidirectional LMs 182

where the existence of the dependent in the left 183

context is not guaranteed. 184

Finally, the approach also most closely aligned 185

with the spirit of this research is a hybrid Parser 186

and neural Language Model (PaLM; Peng et al., 187

2019). PaLM is the integration of an RNN 188

LM with an additional attention layer, which 189

would be supervised to attend the constituent 190

spans among the spans ending at time t − 1: 191

{w1, · · · , wt−1}, · · · , {wt−2, wt−1}. Although 192

PaLM also meets the 3/4 requirements, it was by na- 193

ture proposed for RNN LMs. The challenge arises 194

when adapting PaLM to Transformer LMs; the gen- 195

eration of embeddings for the spans introduces a 196

significant bottleneck in parallel computation with 197

the self-attention mechanism. 198

To sum up, none of the previous approaches fully 199

satisfy the requirements for SLLM, highlighting 200

the necessity for innovative methodologies. 201

3 Proposed method: tree-planting 202

In this paper, we propose a novel method dubbed 203

tree-planting: implicitly “plant” trees into atten- 204

tion weights of Transformer LMs to reflect syntac- 205

tic structures of natural language (Figure 2). Specif- 206

ically, Transformer LMs trained with tree-planting 207

will be called Tree-Planted Transformers (TPT), 208

which learn syntax on small treebanks via tree- 209

planting and then scale on large text corpora via 210

continual learning with syntactic scaffolding. Tree- 211

planting is strictly designed to satisfy the require- 212

ments for SLLM: (i) parser-free inference, (ii) syn- 213

tactic supervision, (iii) unidirectional LM, and (iv) 214

parallel computation. 215
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Figure 2: Overview of the proposed method: tree-planting

3.1 Supervision of attention weights216

In producing the supervision of attention weights,217

we extend the notion of syntactic distance (Shen218

et al., 2018, 2019; Du et al., 2020), a 1D sequence219

of the number of edges on syntactic structures be-220

tween two consecutive words, to a 2D matrix be-221

tween all pairs of words:222

Dij = CountEdge(wi, wj), (3)223

where wi and wj represent the i-th and j-th words,224

respectively, and CountEdge is the function that225

maps a pair of words to the number of edges on226

syntactic structures between them. This notion of227

syntactic distance matrix is theory-neutral: applied228

to any kind of syntactic structure, as long as the229

number of edges can be counted on it.4230

Then, the syntactic distance matrix D is con-231

verted to the supervision of attention weights S as232

follows:233

Sij =

{ exp(−Di+1,j)∑i
k=1 exp(−Di+1,k)

(i ≥ j)

0 (i < j)
, (4)234

where Sij represents the supervision of the atten-235

tion weight from the i-th word to the j-th word236

when predicting the i + 1-th word. This design237

of the supervision expects the attention weight of238

each word to decrease exponentially with its num-239

ber of edges between the predicted word;5 this240

alone successfully satisfies the 3/4 requirements241

for SLLM: (ii) syntactic supervision, (iii) unidirec-242

tional LM, and (iv) parallel computation. To fulfill243

the remaining requirement of (i) parser-free infer-244

ence, we adopt a strategy similar to that of Strubell245

et al. (2018); Chen et al. (2023), designing the loss246

function to implicitly supervise attention.247

4When applied to dependency structures, we ignore the
direction of syntactic dependency.

5We adopt an exponential function as Lin and Tegmark
(2017) reported that the mutual information between words
will decay exponentially with respect to the number of edges
on the syntactic structure between them.

3.2 Loss function 248

The supervision in Subsection 3.1 is produced at 249

the word level but LLMs typically take their input 250

at the subword level. To bridge this gap, we first 251

convert the subword-level attention weight matrix 252

A from a targeted Transformer LM to the word- 253

level attention weight matrix W as follows: 254

Wij =
Cij∑i
k=1Cik

, (5) 255

Cij =

END(wi+1)∑
l=START(wi+1)

END(wj)∑
m=START(wj)

Alm, (6) 256

where Wij represents the word-level attention 257

weight from the i-th word to the j-th word. Cij is 258

defined as the sum of the subword-level attention 259

weights over the subword inside wj when predict- 260

ing the subword inside wi+1, with Alm represent- 261

ing the subword-level attention weight from the 262

l-th subword to the m-th subword and START 263

and END being the functions that map words to 264

their start and end subword index, respectively. We 265

employ A from specific attention heads called tree- 266

planted heads.6 267

To implicitly supervise the word-level attention 268

weight matrix W with the supervision S, we in- 269

troduce a tree-planting loss LTREE employing a 270

Kullback–Leibler (KL) Divergence loss DKL:7 271

LTREE =

∑n−1
i=1 DKL(Si||Wi)

n− 1
, (7) 272

6Qian et al. (2021) also proposed the architecture which
constrains some attention heads based on syntactic structures,
or PLM-mask. PLM-mask and our tree-planting are simi-
lar in spirit, but they are quite different in their implemen-
tation: PLM-mask is a type of SLM that jointly generates a
word sequence and its syntactic structure, but tree-planting
builds TPTs, a type of LM. Furthermore, PLM-mask explicitly
masks the attention weights based on the local parser state but
tree-planting implicitly guides attention weights to reflect the
whole syntactic structure.

7This loss function is inspired by Ma et al. (2023), which
guides attention weights to focus on relevant texts in a
document-level relation extraction task.
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where n represents the length of a word sequence273

w. In short, the tree-planting loss is the average274

KL Divergence loss in predicting each word except275

the beginning of w.276

During the training, LTREE is averaged over277

tree-planted heads and balanced with the next word278

prediction loss LNWP:279

L = LNWP + λ

∑
h∈H L(h)

TREE

H
, (8)280

where L(h)
TREE represents a tree-planting loss for281

each tree-planted head h, H is the total number of282

tree-planted heads, and λ is a weight that balances283

the importance of the next word prediction loss284

and the average tree-planting loss. Transformer285

LMs trained with this loss function will be called286

Tree-Planted Transformers (TPT).287

4 Experiment288

To confirm that syntactic knowledge is introduced289

to TPTs by tree-planting, we conduct training on a290

small treebank and targeted syntactic evaluations291

on a syntactic knowledge benchmark.292

4.1 Settings293

Training data We used LG dataset of Hu et al.294

(2020), which comprises approximately 42M to-295

kens from BLLIP corpus (Charniak et al., 2000).296

Implicit syntactic supervision with each of three297

types of syntactic structures was investigated: (i)298

dependency structures ([dep.]), (ii) constituency299

structures ([cons.]), and (iii) binarized con-300

stituency structures ([bin.]). The (i) dependency301

structures were parsed with the en_core_web_sm302

model from the spacy library (Montani et al.,303

2023).8 The (ii) constituency structures were re-304

parsed with the Berkeley Neural Parser (Kitaev and305

Klein, 2018)9 by Hu et al. (2020). The (iii) bi-306

narized constituency structures were obtained by307

the binarization of the (ii) constituency structures308

with the chomsky_normal_form function from the309

nltk library (Bird et al., 2009).10310

Models We used the same architecture and BPE311

tokenizer as GPT-2 small (124M; Radford et al.,312

2018). The implementation of GPT2LMHeadModel313

and GPT2Tokenizer from the transformers li-314

brary (Wolf et al., 2020)11 were employed but all315

8https://spacy.io
9https://github.com/nikitakit/

self-attentive-parser
10https://www.nltk.org
11https://huggingface.co/docs/transformers

parameters of GPT2LMHeadModel were randomly 316

initialized. For the tree-planted head and the weight 317

of the tree-planting loss, we adopted a single atten- 318

tion head on the last layer and λ = 0.5, respec- 319

tively. The choice of the tree-planted head and the 320

weight was based on preliminary experiments and 321

the detailed effects of them will be described in 322

Section 5. 323

As baselines, we trained three models: (i) a 324

model with zero weight for the tree-planting loss 325

([zero]), (ii) a model supervised with random 326

syntactic distances that were generated from the 327

distribution same as the dependency structures 328

([rand.]), and (iii) a model supervised with se- 329

quential distances ([seq.]). Note importantly, (i) 330

is equivalent to a Transformer LM. Hyperparame- 331

ters are shown in Appendix A. 332

Evaluation data We evaluated syntactic knowl- 333

edge of the models via targeted syntactic eval- 334

uations on the SyntaxGym benchmark (Gau- 335

thier et al., 2020). The SyntaxGym bench- 336

mark comprises six syntactic circuits: Agreement, 337

Center-Embedding, Garden-Path Effects, 338

Gross Syntactic States, Licensing, and 339

Long-Distance Dependencies. Each syntactic 340

circuit consists of 2–10 syntactic suites on a spe- 341

cific type of syntactic phenomenon; for example, 342

the Agreement circuit contains syntactic suites 343

such as “subject-verb number agreement with a 344

prepositional phrase”. Each syntactic suite con- 345

tains 20–30 syntactic items with different vocabu- 346

lary; for example, the “subject-verb number agree- 347

ment with a prepositional phrase” suite includes 348

syntactic items as follows: 349

(1) a. The author next to the senators is good. 350

b. *The author next to the senators are good. 351

LMs’ predictions are evaluated against success cri- 352

terion, which specifies the inequality between con- 353

ditions within an item; for example, the underlined 354

position of the grammatical sentence (1a) should 355

be assigned the higher conditional probability than 356

the ungrammatical one (1b). 357

All models were trained and evaluated two times 358

with different random seeds. We report average 359

accuracies with a standard deviation, along with 360

word-level perplexity on the BLLIP test set. 361

4.2 Overall accuracies 362

Table 3 shows the overall accuracies of TPTs and 363

their baselines on the SyntaxGym benchmark (SG), 364
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SG (↑) PPL (↓)
Baselines:
TPT[zero] 71.7 ± 0.3 47.5 ± 0.1♠
TPT[rand.] 69.0 ± 1.0 47.4 ± 0.1♠
TPT[seq.] 70.1 ± 3.5 47.3 ± 0.2♠
TPTs (Ours):
TPT[dep.] 77.1 ± 0.2 47.7 ± 0.1♠
TPT[cons.] 75.8 ± 0.0 45.5 ± 0.0♡
TPT[bin.] 73.0 ± 1.8 45.6 ± 0.2♡
SLMs (comparable):
PLM 42.2 ± 1.2 -
PLM-mask 42.5 ± 1.5 -
SLMs (reference):
PLM† 73.2 ± 0.6 49.3 ± 0.3♡
PLM-mask† 74.6 ± 1.0 49.1 ± 0.3♡
TG‡ 82.5 ± 1.6 30.3 ± 0.5♡
LLM-like models (reference):
GPT-2¶ 78.4 -
Gopher¶ 79.5 -
Chinchilla¶ 79.7 -

Table 3: Overall accuracies of TPTs and their baselines
on the SyntaxGym benchmark (SG), along with word-
level perplexity on the BLLIP test set (PPL). The overall
accuracies were calculated across the syntactic suites. †
and ‡ represent the reference points as their inference
methods are more costly than TPTs. ¶ are also the
reference points as they were trained on significantly
larger corpora than TPTs. Perplexity can be directly
comparable only within the same mark, either ♠ or ♡,
due to differences in the tokenization of the constituency
parser and dependency parser.

along with word-level perplexity on the BLLIP365

test set (PPL). The overall accuracies were cal-366

culated across the syntactic suites. We also re-367

port the accuracies of several SLMs that were also368

trained on the same BLLIP-LG dataset: PLM, PLM-369

mask (Qian et al., 2021), and TG (Sartran et al.,370

2022). Only unmarked PLM and PLM-mask can371

be fairly comparable with TPTs as their evaluation372

was conducted generating a single syntactic struc-373

ture via greedy search, to align inference costs with374

TPTs.12 † and ‡ represent the reference points from375

Sartran et al. (2022) as their inference methods are376

more costly than TPTs: † and ‡ employed word-377

synchronous beam search (Stern et al., 2017) of ac-378

tion beam size 10013 and the external parser (Dyer379

et al., 2016), respectively. The accuracies of several380

12The fair comparison of TG was not performed because
their trained parameters were not publicly available.

13Word beam size was 10 and fast track size was 5.

LLM-like models are also reported from Sartran 381

et al. (2022): GPT-2 (Radford et al., 2018), Go- 382

pher (Rae et al., 2022), and Chinchilla (Hoffmann 383

et al., 2022). They are also the reference points 384

as these LLM-like models were trained on signif- 385

icantly larger corpora (denoted by ¶). Perplexity 386

can be directly comparable only within the same 387

mark, either ♠ or ♡, due to differences in the to- 388

kenization of the constituency parser and depen- 389

dency parser. 390

There are some important observations in the 391

overall accuracies on the SyntaxGym benchmark: 392

• TPT[zero], which is equivalent to a Trans- 393

former LM, underperformed all TPTs with 394

some implicit syntactic supervision, suggest- 395

ing that tree-planting can introduce syntactic 396

knowledge to TPTs. 397

• TPTs[rand.][seq.] also underperformed 398

all TPTs with some implicit syntactic supervi- 399

sion, indicating that not KL Divergence loss 400

itself but the loss based on syntactic structures 401

is necessary. 402

• Among TPTs with some implicit syntactic su- 403

pervision, TPT[dep.] achieved the best per- 404

formance. We further investigate this point in 405

Subsection 4.3. 406

• Most importantly, despite the lack of explicit 407

syntactic supervision, TPTs[dep.][cons.] 408

significantly outperformed not only the com- 409

parable SLMs (unmarked PLM and PLM- 410

mask) but also the various SLMs that generate 411

hundreds of syntactic structures in parallel 412

(PLM† and PLM-mask†). 413

Even though the best TPT[dep.] underperformed 414

the reference points of the more costly TG and 415

the larger LLM-like models, these observations 416

adequately suggest that tree-planting and TPTs are 417

the promising foundation for SLLMs. 418

Regarding perplexity, although TPT[dep.] nu- 419

merically underperformed its comparable baselines, 420

they all achieved similar perplexity with no signifi- 421

cant differences. 422

4.3 Circuit accuracies 423

In this subsection, we investigate the advantages of 424

dependency structures through the lens of circuit 425

accuracies. Figure 3 shows the circuit accuracies of 426

TPTs with some implicit syntactic supervision and 427
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Figure 3: Circuit accuracies of TPTs with some implicit
syntactic supervision and the baseline model with zero
weight for the tree-planting loss on the SyntaxGym
benchmark. The circuit accuracies calculated across the
syntactic suites (the vertical axis) are plotted against the
models (the horizontal axis), with each dot representing
the accuracy of a specific seed.

the baseline model with zero weight for the tree-428

planting loss on the SyntaxGym benchmark. The429

circuit accuracies calculated across the syntactic430

suites (the vertical axis) are plotted against the mod-431

els (the horizontal axis), with each dot denoting the432

accuracy of a specific seed.433

vs. zero supervision TPT[dep.] outperformed434

TPT[zero] on 5/6 circuits, suggesting that syntac-435

tic supervision of dependency structures is gener-436

ally advantageous over zero supervision. However,437

the Garden-Path Effects circuit presents an ex-438

ception, where LMs are evaluated for the ability to439

be surprised in a human-like manner, through com-440

parisons between sentences minimally different not441

in grammaticality but in local ambiguity (Hu et al.,442

2020). The underperformance of TPT[dep.] may443

suggest that due to the syntactic knowledge intro-444

duced by tree-planting with dependency structures,445

TPT[dep.] was no longer surprised by locally446

ambiguous but grammatical sentences. We further447

investigate this point in Appendix B.448

vs. constituency structures Surprisingly, on 5/6449

circuits, TPT[dep.] outperformed TPT[cons.].450

The only exception is the Garden-Path Effects451

circuit, where the potential disadvantage of tree-452

planting with dependency structures was men-453

tioned above. Specifically, TPT[dep.] most454

significantly outperformed TPT[cons.] on the455

Agreement circuit, which includes the syntactic456

items such as (1) from Subsection 4.1. For these457

syntactic items, only the head of the subject NP458

(author) is always nearest to the main verb (is/are)459

on dependency structures, but the same does not460

hold on constituency structures: in constituency 461

structures, the determiner of the subject NP (the) 462

and the head of the post-modifying PP (to) are as 463

nearest to the main verb as the head of the sub- 464

ject NP (cf. Appendix C). As long as the number 465

of edges is utilized as implicit syntactic supervi- 466

sion, dependency structures may potentially have 467

advantages over constituency structures. 468

vs. binarized constituency structures 469

TPT[dep.] outperformed TPT[bin.] on 470

3/6 circuits, with similar performance (a differ- 471

ence less than −1.0%) on the other 3 circuits. 472

Notably, TPT[dep.] achieved significantly better 473

performance (a difference more than +5.0%) 474

on the Agreement and Licensing circuits. Noji 475

and Oseki (2021) reported that deep syntactic 476

supervision is not always optimal; rather mild 477

syntactic supervision is sufficient for addressing 478

long-distance dependencies between elements 479

within and outside complex NP subjects. Given 480

that (i) the Agreement and Licensing circuits 481

consist only of syntactic suites that exemplify 482

this condition14 and (ii) the average syntactic 483

distance in the training data is significantly shorter 484

for dependency structures (4.8) than binarized 485

constituency structures (13.1), it could be argued 486

that dependency structures would be more suitable 487

as “good enough” syntactic supervision than 488

binarized constituency structures.15 489

5 Analysis 490

In this section, we report the effects of (i) the num- 491

ber of tree-planted heads and (ii) the weight of a 492

tree-planting loss, using TPT[dep.]. 493

5.1 Number of tree-planted heads 494

Our TPTs are based on a 12-layer, 12-head Trans- 495

former LM. In Section 4, out of 12× 12 heads, we 496

adopted a single attention head on the last layer 497

as a tree-planted head. In this subsection, we ex- 498

plore two alternatives: (i) head-direction extension 499

and (ii) layer-direction extension. For the head- 500

direction extension, 0, 1, 3, 6, 9, and 12 heads on 501

the last layer were adopted as tree-planted heads. 502

For the layer-direction extension, one attention 503

14Among the other syntactic circuits, the Center
Embedding circuit also exemplifies this condition.

15The average syntactic distance of constituency structures
is 10.0. This suggests that dependency structure would also
be superior to constituency structure as “good enough” syn-
tactic supervision, besides the points discussed in the “vs.
constituency structures” paragraph.
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Figure 4: The results of the head-direction, layer-direction, and weight extension. For the head-direction and
layer-direction extension, the overall accuracies on the SyntaxGym benchmark and the perplexity on the BLLIP
test set (the vertical axis) are plotted against the number of tree-planted heads (the horizontal axis). For the weight
extension, the horizontal axis indicates the weight of the tree-planting loss.

head from the each of bottom 0, 1, 3, 6, 9, and504

12 layers was adopted as tree-planted heads.505

In the left two columns of Figure 4, the results of506

the head-direction and layer-direction extension are507

shown: the overall accuracies on the SyntaxGym508

benchmark (SG) and the word-level perplexity on509

the BLLIP test set (PPL) (the vertical axis) are510

plotted against the number of tree-planted heads511

(the horizontal axis). Each dot denotes the accu-512

racy or perplexity of a specific seed. For both set-513

tings, x = 0, 1 are equivalent to TPT[zero] and514

TPT[dep.], respectively.515

Considering the overall accuracies on the Syn-516

taxGym benchmark, in both the head-direction and517

layer-direction extension, the highest accuracy was518

achieved when only a single head was adopted as519

a tree-planted head, while it is noteworthy that all520

the models with tree-planted heads outperformed521

the model without them. Incidentally, it should522

be mentioned that the result of the layer-direction523

extension exhibited significantly more variability.524

Although the reason why a single tree-planted525

head would work well is unclear, the adoption of526

multi tree-planted heads inherently induces the han-527

dling of redundant information across heads, which528

might potentially hinder the management of non-529

syntactic information of natural languages (e.g.,530

lexical information). Regarding perplexity, no con-531

sistent trend emerged.532

5.2 Weight of a tree-planting loss533

In Section 4, we adopted λ = 0.5 as the weight534

of the tree-planting loss. Here, we extend λ to 0.0,535

0.25, 0.50, 0.75, and 1.00. x = 0, 0.50 are equiva-536

lent to TPT[zero] and TPT[dep.], respectively.537

The rightmost column of Figure 4 shows the538

results of the weight extension. The overall ac- 539

curacies on the SyntaxGym benchmark display a 540

single-peaked pattern, with the maximum reached 541

for λ = 0.50. Interestingly, this result suggests that 542

by overtly focusing on reflecting syntactic struc- 543

tures, TPTs paradoxically become unable to learn 544

syntactic knowledge. On the other hand, we ob- 545

served that the perplexity got worse monotonically 546

as the weight increased. From these observations, 547

we may deduce that to acquire syntactic knowl- 548

edge, TPTs should learn not only to reflect syn- 549

tactic structures in their attention weights but also 550

to precisely predict the next word. Therefore, the 551

weight of the tree-planting loss emerges as a critical 552

hyperparameter, indicating that the search for the 553

optimal balance between the next-word prediction 554

loss and tree-planting loss is vital for developing 555

more human-like TPTs. 556

6 Conclusion 557

In this paper, we proposed a novel method dubbed 558

tree-planting: implicitly “plant” trees into atten- 559

tion weights of Transformer LMs to reflect syn- 560

tactic structures of natural language. Specifically, 561

Transformer LMs trained with tree-planting are 562

called Tree-Planted Transformers (TPT), which 563

learn syntax on small treebanks via tree-planting 564

and then scale on large text corpora via continual 565

learning with syntactic scaffolding. Targeted syn- 566

tactic evaluations on the SyntaxGym benchmark 567

demonstrated that TPTs, despite the lack of explicit 568

syntactic supervision, significantly outperformed 569

various SLMs with explicit syntactic supervision 570

that generate hundreds of syntactic structures in 571

parallel, suggesting that tree-planting and TPTs are 572

the promising foundation for SLLMs. 573
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Limitations574

There are at least three limitations in this pa-575

per. First, we only conducted sentence-level tree-576

planting. Typically, LLMs are trained at the doc-577

ument level, but SLMs are trained at the sentence578

level (Dyer et al., 2016; Kuncoro et al., 2017; Noji579

and Oseki, 2021; Yoshida and Oseki, 2022), be-580

cause on treebanks, the annotations are assigned581

at the sentence level. Because of this constraint,582

we also employed sentence-level experimental de-583

sign and verified the effectiveness of the proposed584

method first and foremost. Recent research in585

SLMs, however, has begun to extend treebank an-586

notations to the document level and train document-587

level SLMs on them (Sartran et al., 2022; Murty588

et al., 2023). When constructing TPTs for practical589

use, it might be beneficial to follow these recent590

studies and perform tree-planting with document-591

level annotations.592

Second, we only evaluated TPTs on the syntac-593

tic knowledge benchmark and perplexity. Recently,594

Murty et al. (2023) evaluated the performance of595

SLMs on tasks other than the targeted syntactic596

evaluations for the first time, suggesting that syn-597

tactic knowledge could also be beneficial to solving598

them. This indicates that there is also room for a599

broader evaluation of our methodology.600

Finally, the development of a novel continual601

learning method (e.g., updating the parameters of602

tree-planted heads sparingly) would be necessary603

for scaling TPTs on large corpora, without com-604

promising the syntactic knowledge but rather ex-605

ploiting it as syntactic scaffolding. In future work,606

we plan to develop a novel method for "climbing607

trees" in TPTs.608

Ethical considerations609

A significant feature of TPT lies in the training effi-610

ciency, which can potentially contribute to reducing611

computational resources. One minor concern is the612

possibility of bias in the models utilized in this pa-613

per, attributed to the training data (i.e., the BLLIP614

corpus), although this experimental setting follows615

conventional practices in the literature on SLMs.616

We employed ChatGPT and Grammarly for writing617

assistance, and for the development of experimen-618

tal code, we utilized ChatGPT and Copilot. These619

tools were used in compliance with the ACL 2023620

Policy on the Use of AI Writing Assistance.621
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Optimizer AdamW
Learning rate 5e-5
Number of epochs 10
Dropout rate 0.1
Batch size 256

Table 4: Hyperparameters for our experiments

A Hyperparameters911

Hyperparameters for our experiments are shown912

in Table 4, which primarily followed default set-913

tings. All models were trained and evaluated on 8×914

NVIDIA V100 (16GB). The total computational915

cost for all experiments in this paper amounted to916

about 1,300 GPU hours.917

B Further investigation of the918

Garden-Path Effects circuit919

In Subsection 4.3, we suggest the probabil-920

ity that syntactic knowledge introduced by tree-921

planting with dependency structures may prevent922

TPT[dep.] from being surprised by locally am-923

biguous but grammatical sentences. To inspect this,924

we break down the Garden-Path Effects circuit925

into the syntactic suites: “main verb / reduced rel-926

ative clause” (MVRR) and “NP/Z garden-paths”927

(NP/Z).928

Figure 5 shows the suite accuracies of TPTs with929

some implicit syntactic supervision and the base-930

line model with zero weight for the tree-planting931

loss on the Garden-Path Effects circuit, with932

the reference point of the more costly SLM, or933

PLM-mask† (Qian et al., 2021). We find that the934

deficiency of TPT[dep.] is attributed to its inad-935

equate performance on the MVRR circuit, which936

includes the syntactic items as follows:937

(2) a. The dog seen on the beach chased938

after a bird.939

b. !The dog walked on the beach chased940

after a bird.941

The success criterion on these suites defines that942

the underlined position of the unambiguous sen-943

tence (3a) should be assigned a higher conditional944

probability than the locally ambiguous one (3b).945

We speculate that TPT[dep.] might lose its sen-946

sitivity to the local ambiguity introduced by the947

participle verb (seen/walked), as it is guided to fo-948

cus more intently on the head of the subject NP949

Figure 5: Suite accuracies of TPTs with some implicit
syntactic supervision and the baseline model with zero
weight for the tree-planting loss on the Garden-Path
Effects circuit, with the reference point of the more
costly SLM, or PLM-mask† (Qian et al., 2021)

(dog) when predicting the main verb (chased), than 950

the unrestricted baseline. 951

Conversely, TPT[cons.][bin.] did not un- 952

derperform TPT(zero.) on the MVRR suites. 953

This result could be straightforwardly understood, 954

given that on these structures, the participle verb 955

(seen/walked) and the head of the subject NP (dog) 956

are equidistant from the main verb (chased). How- 957

ever, it is worth noting that the determiner of the 958

subject NP (the) also shares this distance, which 959

may not always be a desirable property (cf. Sub- 960

section 4.3). 961

Finally, PLM-mask†, the more costly SLM, also 962

underperformed TPT[zero] on the MVRR suites. 963

This suggests that the models with explicit syn- 964

tactic supervision may also struggle with losing 965

sensitivity to the local ambiguity as PLM[dep.]. 966
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C Dependency/constituency structures of967

(1) from Section 4.1968

To assist the discussion in Subsection 4.3, the de-969

pendency and constituency structures of (1) from970

Subsection 4.1 were displayed in Figure 6a and971

6a, respectively. Numbers below each word rep-972

resent the number of edges from the underlined973

position. To parse (1), the parsers referenced in974

Subsection 4.1 were employed.975

The author next to the senators is/are good.
2 1 2 3 5 4 0 1

(a) Dependency structure

S

NP

NP

DT

The
7

NN

author
7

ADVP

JJ

next
7

PP

IN

to
8

NP

DT

the
9

NNS

senators
9

VP

VBZ

is/are
0

ADJP

JJ

good.
5

(b) Constituency structure

Figure 6: Dependency/constituency structures of (1)
from Subsection 4.1

D Begin/End Of Sentence Tokens976

Sentences in the BLLIP corpus do not include Be-977

gin/End of Sentence (BOS/EOS) tokens, which are978

essential for sequences processed by LMs. To inte-979

grate these tokens, we implemented the following980

modifications:981

• For dependency structures, we introduced982

BOS/EOS tokens by defining new edges from983

the ROOT to these tokens.984

• For constituency structures, we introduced985

the BOS/EOS tokens by modifying the tree986

structure to encapsulate the original structure987

within a new root node, specifically by adding 988

a BOS token and an EOS token as the first and 989

the last child of this new root, respectively. 990

E License of the data/tools 991

We summarize the license of the data/tools em- 992

ployed in this paper in Table 5. All data and tools 993

were used under their respective license terms. 994

Data/tool License
BLLIP (Charniak et al., 2000) BLLIP 1987-89

WSJ Corpus Re-
lease 1 License
Agreement

SyntaxGym (Gauthier et al., 2020) MIT
spacy (Montani et al., 2023) MIT
nltk (Bird et al., 2009) Apache 2.0
transformers (Wolf et al., 2020) Apache 2.0
Berkeley Neural Parser (Kitaev and
Klein, 2018)

MIT

PLM/PLM-mask (Qian et al., 2021) MIT

Table 5: License of the data/tools
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