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Abstract
Ensemble learning is a powerful approach for im-
proving generalization under distribution shifts,
but its effectiveness heavily depends on how in-
dividual models are combined. Existing methods
often optimize ensemble weights based on vali-
dation data, which may not represent unseen test
distributions, leading to suboptimal performance
in out-of-distribution (OoD) settings. Inspired
by Distributionally Robust Optimization (DRO),
we propose Structure-informed Risk Minimiza-
tion (SRM), a principled framework that learns
robust ensemble weights without access to test
data. Unlike standard DRO, which defines un-
certainty sets based on divergence metrics alone,
SRM incorporates structural information of train-
ing distributions, ensuring that the uncertainty
set aligns with plausible real-world shifts. This
approach mitigates the over-pessimism of tradi-
tional worst-case optimization while maintaining
robustness. We introduce a computationally ef-
ficient optimization algorithm with theoretical
guarantees and demonstrate that SRM achieves
superior OoD generalization compared to exist-
ing ensemble combination strategies across di-
verse benchmarks. Code is available at: https:
//github.com/deep-real/SRM.

1. Introduction
Ensemble learning has emerged as a promising approach for
out-of-distribution (OoD) generalization (Lee et al., 2023;
Pagliardini et al., 2023), demonstrating superior robustness
and adaptability compared to individual models when de-
ployed in environments that differ from their training con-
ditions. By combining multiple diverse models, ensemble
methods can capture different aspects of the data distribution
and reduce the impact of individual model biases (Wortsman
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et al., 2022; Ramé et al., 2023), leading to more reliable
predictions under distribution shifts.

The success of ensemble learning hinges on two key steps:
(1) training diverse individual models and (2) optimally
combining them into a final predictor. While significant
advances have been made in ensemble training to produce
diverse and complementary models (Benoit et al., 2024;
Pagliardini et al., 2023; Rubinstein et al., 2024), poor com-
bination strategies can severely degrade performance (Rame
et al., 2022). This underscores the importance of determin-
ing optimal model combinations. Existing methods fall into
four main categories: selection/pruning (He et al., 2024),
voting (Tsoumakas et al., 2008), weighted voting (Wu et al.,
2023), and stacking (Chatzimparmpas et al., 2020). These
approaches typically optimize ensemble weights based on
validation data, either from a training split or a holdout set.
However, due to distribution shifts, such learned combi-
nations may underperform on unseen test distributions. A
recent work (Qiao & Peng, 2024) attempted to mitigate this
issue by explicitly promoting prediction diversity on test
data. However, test data are typically unavailable in OoD
generalization. This raises a fundamental question: Can we
learn ensemble weights that effectively generalize to unseen
test distributions?

Distributionally Robust Optimization (DRO) (Shalev-
Shwartz & Wexler, 2016), originally designed for training
individual models under distribution shifts, offers a promis-
ing approach to learning robust ensemble weights. DRO
optimizes the worst-case risk over an uncertainty set of po-
tential test distributions, typically defined as a divergence
ball around the training distribution using distance metrics
like f -divergence (Namkoong & Duchi, 2016), Wasserstein
distance (Shafieezadeh Abadeh et al., 2018) or Maximum
Mean Discrepancy (Staib & Jegelka, 2019). While DRO
enhances robustness, it often leads to overly pessimistic solu-
tions (Hu et al., 2018; Frogner et al., 2021; Dai et al., 2023),
degrading average performance by considering implausible
distributions that rarely occur in practice. This issue arises
because DRO treats distributions in the uncertainty set in-
dependently, ignoring the intrinsic structure governing their
real-world relationships.

To overcome this limitation, we propose Structure-informed
Risk Minimization (SRM), a principled framework that
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leverages distributional graphs to optimize ensemble
weights for OoD generalization. Our key insight is to incor-
porate structural relationships between distributions into the
uncertainty set, capturing how distributions naturally vary
and influence each other. By focusing on realistic distribu-
tion shifts rather than arbitrary worst-case scenarios, SRM
retains the robustness benefits of DRO while mitigating its
excessive conservatism.

Our main contributions are: (1) A principled framework for
learning ensemble weights under distribution shifts, bridg-
ing a critical gap in ensemble learning for OoD general-
ization. (2) A novel method for constructing uncertainty
sets that integrate distributional relationships, providing a
more realistic approximation of potential test distributions.
(3) A computationally efficient optimization algorithm that
balances worst-case robustness with average performance,
supported by theoretical guarantees.

2. Background
2.1. Problem Formulation

Let (X,Y ) be random variables where instances x ∈ X ⊆
Rd and labels y ∈ Y follow an unknown joint distribution
P (X,Y ). We observe data under different environmental
conditions e, where samples are drawn from a set of distribu-
tions Eall such that (x, y) ∼ Pe(X,Y ). Given m pre-trained
models F = {f1, ..., fm} trained on Etrain ⊊ Eall, where
each model fi : X → Y maps inputs to predictions, our ob-
jective is to construct an optimal ensemble that generalizes
to unseen test distributions Etest = Eall\Etrain.

We achieve this by learning ensemble weights w ∈ ∆m (the
probability simplex) to form the predictor:

fw(x) =

m∑
i=1

wifi(x). (1)

For a distribution Pe, the expected risk is defined as:
RPe

(w) = E(x,y)∼Pe
[ℓ(fw(x), y)], where ℓ is the loss

function. During deployment, the ensemble encounters test
distributions from Etest that are distinct from Etrain. The goal
is to minimize the worst-case risk across Etest:

min
w∈∆m

sup
e∈Etest

RPe(w). (2)

The key challenge lies in determining the optimal ensem-
ble weights w using only training distributions Etrain while
ensuring generalization to unseen test distributions Etest.

2.2. Average Risk Minimization

A natural approach is Empirical Risk Minimization
(ERM) (Vapnik & Vapnik, 1998), which assigns ensemble
weights to minimize the average risk on Ptrain:

min
w
RPtrain(w) = min

w
E(x,y)∼Ptrain [ℓ(fw(x), y)]. (3)

However, ERM assumes that the training and test distribu-
tions are identical, which rarely holds in practice. Conse-
quently, ERM-weighted ensembles may reinforce spurious
correlations that do not generalize (Arjovsky et al., 2019).

2.3. Worst-case Risk Minimization

Distributionally Robust Optimization (DRO) (Shalev-
Shwartz & Wexler, 2016) offers an alternative by minimiz-
ing the worst-case risk over an uncertainty set U(Ptrain):

min
w

max
P∈U(Ptrain)

RP (w). (4)

The uncertainty set is often defined as a divergence ball
centered at Ptrain:

U(Ptrain) = {P : D(P, Ptrain) ≤ ρ}, (5)

where ρ controls the set size, and D(·) denotes a discrep-
ancy measure between probability distributions, such as
f -divergence (Namkoong & Duchi, 2016), Wasserstein dis-
tance (Shafieezadeh Abadeh et al., 2018; Qiao & Peng,
2021), and other statistical distance measures.

While DRO enhances robustness, it often produces overly
conservative solutions (Frogner et al., 2021; Sagawa et al.,
2019) by treating all distributions within distance ρ as
equally likely, regardless of their practical relevance. This
limitation arises because DRO considers each potential test
distribution independently, ignoring the underlying structure
that governs real-world distributional shifts.

3. Structure-informed Risk Minimization
We propose Structure-informed Risk Minimization (SRM),
a principled framework that leverages distributional graphs
to optimize ensemble weights for out-of-distribution gen-
eralization. The key innovation lies in incorporating the
inherent relationships between distributions into uncertainty
set construction, capturing how distributions naturally vary
and influence each other. Using this structural information,
SRM guides the uncertainty set to focus on distributions
likely to occur under real-world conditions, rather than arbi-
trary shifts. This maintains the robustness benefits of DRO
while mitigating its tendency toward excessive pessimism.
SRM remains computationally tractable through a carefully
formulated optimization problem that balances worst-case
robustness with average performance.

3.1. Structure-informed Uncertainty Sets

Let G = (V,A) be a weighted graph, where the set of
vertices V corresponds to the n training distributions in
Etrain = {P1, ..., Pn}. The edges between distributions are
represented by the adjacency matrix A ∈ Rn×n, where
each entry quantifies the similarity between distributions.
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Specifically, the edge weight between two distributions Pi

and Pj is defined as: Aij = D(Pi, Pj), where D(·) is a
distributional distance metric (e.g., Wasserstein distance).

To incorporate this structure into ensemble learning, we
use graph centrality measures (e.g., closeness centrality)
to refine the construction of the uncertainty set in robust
optimization. Central distributions serve as “anchors” that
better represent the structure of the training domain, guiding
the ensemble weighting process. By considering central-
ity, we ensure that the uncertainty set focuses on plausible
test distributions that are well-supported by training data,
rather than arbitrarily distant shifts. This helps mitigate
over-pessimism in worst-case optimization while improving
generalization to unseen distributions.

Definition 3.1 (Centrality Prior). Given a graph G =
(V,A), we define the prior p ∈ ∆n as:

pe =
c(Pe)∑n
i=1 c(Pi)

, e ∈ {1, ..., n}. (6)

Here c : Pe → R+ maps each distribution to a non-negative
value measuring its centrality in G.

The uncertainty set is then defined as a mixture of training
distributions constrained by the prior p:

Q =

{
n∑

e=1

qePe | q ∈ ∆n,D(q∥p) ≤ τ

}
, (7)

where D(·) denotes the distance between two distributions
(e.g., ℓ2 distance or KL divergence), and τ controls the al-
lowable deviation from the structural prior. This ensures the
uncertainty set focuses on plausible mixtures aligned with
the structural relationships among training distributions.

Alternative Priors. We consider two alternatives to our
centrality-based prior: (1) Uniform prior, where pe = 1

n
for all distributions, ignoring the graph structure. (2)
Graph Laplacian-based prior, which uses the constraint
q⊤Lq ≤ τ , where L = D − A is the graph Lapla-
cian, with D = diag(A1) being the degree matrix. Here,
Aij = exp(−D2(Pi, Pj)/2) measures the similarity be-
tween distributions Pi and Pj . Although the Laplacian
constraint encourages smooth variations over the graph, it
focuses on local smoothness rather than global influence. In
contrast, our centrality-based prior directly measures global
proximity, better aligning with our goal of identifying dis-
tributions informative about unseen test conditions. The
empirical results in Sec. 4 validate this choice.

3.2. Optimization Framework

Given the uncertainty set Q, we formulate the ensemble
weight optimization as a constrained minimax problem:

min
w∈∆m

max
q∈∆n

n∑
e=1

qeRPe
(w) s.t. D(q∥p) ≤ τ, (8)

where RPe
(w) = E(x,y)∼Pe

[ℓ(fw(x), y)] denotes the ex-
pected risk on distribution Pe. To address computational
challenges in Eq. 8, we use the Karush-Kuhn-Tucker (KKT)
conditions (Boyd, 2004) to derive a Lagrangian reformula-
tion, where the constraint is replaced with a penalty term:

min
w∈∆m

max
q∈∆n

n∑
e=1

qeRPe
(w)− λD(q∥p), (9)

where λ > 0 controls the trade-off between risk minimiza-
tion and structural consistency. We solve this optimization
problem using an alternating gradient algorithm: (1) Updat-
ing ensemble weights w via:

wt+1 = P∆m(wt − ηtw∇wL(wt,qt)). (10)

(2) Updating mixture weights q via:

qt+1 = P∆n(qt + ηtq∇qL(wt,qt)). (11)

Here L(w,q) =
∑n

e=1 qeRPe(w) − λD(q∥p), ηw (ηq)
are step sizes, and P∆m (P∆n) denote projection (Duchi
et al., 2008) onto the probability simplex.

By assigning higher weights to distributions with both high
empirical risk and high centrality, our approach bridges the
gap between overly conservative worst-case approaches and
the fragility of average risk minimization under distribution
shifts.

Implementation Details. (1) Distribution distance D(·).
In contrast to traditional graph learning methods (Jin et al.,
2020; Dong et al., 2019) which primarily focus on point-
wise similarities, our approach models correlation on a
distribution-wise level. While the Wasserstein distance
is a natural choice for measuring distributional similari-
ties, its standard computation has cubic complexity, pos-
ing practical challenges in large-scale applications. To ad-
dress this, we adopt a computationally efficient Gaussian-
based approximation of the 2-Wasserstein distance. For
two Gaussian distributions Pi = N (µi,Σi) and Pj =
N (µj ,Σj), the 2-Wasserstein distance is: W 2

2 (Pi, Pj) =

∥µi − µj∥22 + tr(Σi +Σj − 2(Σ
1/2
j ΣiΣ

1/2
j )1/2). When the

covariance matrices Σi and Σj commute, this simplifies
to: D2(Pi, Pj) = ∥µi − µj∥22 + ∥Σ1/2

i − Σ
1/2
j ∥2F . This

approximation maintains the key geometric properties of
the Wasserstein distance while reducing computational com-
plexity from cubic to quadratic time.
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Algorithm 1 Structure-informed Risk Minimization (SRM)
Input: Data of Etrain, Step sizes ηw and ηq
Output: Learned ensemble weights w
// Construct graph G and compute prior p

for i, j ∈ {1, . . . , n} do
D(Pi, Pj)← ∥µi − µj∥22 + ∥Σ

1/2
i − Σ

1/2
j ∥2F

Aij ← D(Pi, Pj)
end
c(Pe)← [

∑n
j=1 d(Pe, Pj)]

−1 // Closeness centrality
pe ← c(Pe)/

∑n
j=1 c(Pj) // Prior distribution

// Optimize weights
Initialize w0 ← 1

m1, q0 ← 1
n1

while not converged do
Calculate L(w,q) via Eq. 9
Update ensemble weights wt+1 via Eq. 10
Update mixture weights qt+1 via Eq. 11

end

(2) Centrality prior p. We employ closeness centrality to
compute the prior as it effectively captures a distribution’s
global influence across the entire graph, rather than just
considering immediate neighbors. Specifically, for each
distribution Pe, its closeness centrality is computed as:
c(Pe) =

[∑
v∈V d(Pe, v)

]−1
, where d(Pe, v) denotes the

shortest path distance in the G. The prior is then normal-
ized as pe (Eq. 6). This formulation aligns well with our
goal of identifying distributions that are most representative
of the overall graph, as distributions with high closeness
centrality are likely to share characteristics with a broader
range of unseen test distributions, making them particularly
informative for constructing robust uncertainty sets.

Discussion. (1) Connection between τ (Eq. 7) and ρ
(Eq. 5). While DRO considers the uncertainty set defined
as a divergence ball with a radius of ρ, our method oper-
ates on mixtures of training distributions. These formu-
lations are closely connected: when the mixture weights
q satisfy D(q∥p) ≤ τ , the resulting mixture distribution
Pq =

∑n
e=1 qePe lies within a divergence ball centered at

the reference distribution Pp =
∑n

e=1 pePe. This provides
a computationally tractable way to approximate divergence
ball constraints while leveraging the structure induced by
the distributional graph via centrality prior p.
(2) Connection to existing methods. SRM provides a unified
framework that encompasses existing approaches as special
cases through the constraint D(q∥p) ≤ τ . (i) When τ = 0
and pe =

1
n , the constraint forces q = p, reducing to stan-

dard ERM that equally weights all training distributions. (ii)
With τ = 0 and centrality prior p, we recover weighted risk
minimization that prioritizes influential distributions. (iii)
When τ =∞, the constraint becomes inactive, allowing q
to be arbitrary, which recovers Group DRO (Sagawa et al.,
2019) that optimizes for the worst-case distribution. By set-

ting τ ∈ (0,∞), SRM interpolates between these extremes,
leveraging the distributional graph to achieve a balance be-
tween average performance and worst-case robustness.

4. Experiments
We evaluate SRM on two common OoD generalization
benchmarks, DomainBed (Gulrajani & Lopez-Paz, 2020)
and WILDS (Koh et al., 2021). Following the standard prac-
tice, we use a held-out validation set from training distribu-
tions on DomainBed benchmark and validation distributions
on WILDS benchmark for model selection. We provide im-
plementation details and additional results in the Appendix.
We provide the source code in the supplementary material.

Baselines. We compare SRM with the following methods:
(1) Uniform Ensemble; (2) Greedy Selection; (3) Empiri-
cal Risk Minimization (ERM) (Vapnik & Vapnik, 1998);
(4) Uniform Prior; (5) Laplacian Prior; (6) Group Distribu-
tionally Robust Optimization (DRO) (Sagawa et al., 2019).
These methods can be grouped into two categories: (1) Non-
optimization-based, where the ensemble weight is obtained
without the need for optimization (Uniform Ensemble and
Greedy Selection); (2) Optimization-based, where the en-
semble weight is learned through an optimization process
(ERM, Uniform Prior, Laplacian Prior and DRO).

4.1. DomainBed Benchmark

Datasets. We conduct experiments on five datasets: Ter-
raIncognita (Beery et al., 2018), VLCS (Fang et al., 2013),
OfficeHome (Venkateswara et al., 2017), PACS (Li et al.,
2017), and DomainNet (Peng et al., 2019). PACS con-
sists of images from four different distributions: art, car-
toons, photos, and sketches. It contains a total of 9,991 im-
ages with dimensions of (3, 224, 224) pixels and 7 classes.
VLCS contains photographic images from four distributions:
Caltech101, LabelMe, SUN09, and VOC2007. There are
10,729 total images with dimensions of (3, 224, 224) pix-
els across 5 classes. OfficeHome is made up of images
from four distributions: art, clipart, product images, and
real-world photos. There are 15,588 images in this dataset
with dimensions of (3, 224, 224) pixels and 65 classes. Ter-
raIncognita consists of photos of wild animals captured by
camera traps at four different locations. The dataset con-
tains 24,788 images of size (3, 224, 224) pixels from 10
different classes. DomainNet is a large-scale dataset with
images from six distributions: clipart, infographics, paint-
ings, quickdraw sketches, real-world photos, and sketches.
In total, there are 586,575 images of dimension (3, 224, 224)
pixels across 345 classes. For each dataset, we hold one
distribution out for test and train on the remaining ones, and
report the average accuracies over all test distributions. Fol-
lowing (Gulrajani & Lopez-Paz, 2020), all the experimental
results are averaged over 3 trials.
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Dataset Non-optimization-based Optimization-based

Uniform Greedy ERM Uniform Prior Laplacian DRO SRM

PACS 87.8 87.1 86.9 87.0 87.0 87.1 87.1
VLCS 79.5 79.6 79.6 79.8 78.7 79.8 79.9
OfficeHome 70.8 70.8 70.7 70.7 70.8 70.5 71.0
DomainNet 43.3 44.6 45.0 45.0 45.0 45.0 45.1
TerraIncognita 48.5 48.1 48.8 48.8 48.8 49.0 49.5

Average 66.0 66.0 66.2 66.2 66.1 66.2 66.5

Table 1. Average accuracies (%) over all test distributions across datasets on DomainBed benchmark. We bold the best results.

Test Distributions Non-optimization-based Optimization-based

Uniform Greedy ERM Uniform Prior Laplacian DRO SRM

Before 2004 53.7 53.3 54.4 54.1 54.4 53.2 54.4
2009-2011 62.3 62.3 62.3 62.4 62.3 62.3 62.5
After 2016 37.6 37.5 37.7 37.7 37.8 37.0 37.8

Average 51.2 51.0 51.4 51.4 51.5 50.8 51.6

Table 2. Worst-region accuracy (%) on the FMoW-WILDS dataset. We evaluate the algorithms under three different train-test split
schemes. SRM consistently outperforms other baselines in both Distribution Interpolation and Distribution Extrapolation settings.

Results. We report the results on DomainBed in Tab. 1.
SRM achieves state-of-the-art performance on four datasets
(VLCS, OfficeHome, DomainNet, and TerraIncognita), out-
performing both non-optimization-based and optimization-
based baselines. Notably, while other optimization-based
methods deliver inconsistent results (e.g., DRO outperforms
ERM and Uniform Prior on PACS and TerraIncognita, but
inferior to them on OfficeHome), SRM exhibits consistent
improvements over prior optimization-based methods, with
particularly significant gains on TerraIncognita (49.54% vs
DRO’s 48.96%). This indicates SRM achieves improved
generalization across diverse distributions by taking distri-
butional relations into account.

4.2. WILDS Benchmark

Dataset. We evaluate SRM on FMoW-WILDS (Koh et al.,
2021) dataset, which comprises satellite images collected
from different geographical regions across five continents at
different time. We study temporal distribution shift, where
distribution d represents the year the image was taken. Apart
from the original train-test split scheme (Test After 2016),
where training distributions consist of years 2002 to 2013,
test distributions consists of years 2016 and 2017, and years
2013 to 2016 are reserved for validation, we further propose
two train-test split schemes which cover more diverse distri-
bution shift scenarios: (1) Test Before 2004, where years
2007 to 2018 are for training, 2002 to 2004 are for testing,
2004 to 2007 are for validation; (2) Test Middle, where
years 2002 to 2008 and years 2012 to 2018 are for training,
2009-2011 are for testing, 2008 and 2011 are for validation.
These three settings cover both Distribution Interpolation

and Distribution Extrapolation cases proposed by (Wang
et al., 2020), providing more thorough comparison of base-
lines than single train-test split scheme.

Results. Tab. 2 presents the worst-region accuracy for dif-
ferent methods. We observe that SRM consistently outper-
forms existing approaches across all three train-test settings.
Notably, SRM improves worst-region accuracy compared to
DRO, demonstrating its ability to mitigate over-pessimism
while maintaining robustness. In the Test Before 2004 set-
ting, SRM achieves 54.44%, outperforming DRO (53.21%)
and standard ERM-based methods. In the Test Middle
(2009-2011) setting, SRM attains 62.46%, slightly outper-
forming DRO and achieving the best generalization. In the
Test After 2016 setting, SRM improves worst-region accu-
racy to 37.81%, surpassing DRO (36.98%), highlighting its
advantage in handling temporal distribution shifts.

Graph Visualization. Fig. 1 visualizes the learned distribu-
tion graphs under different train-test split settings. Unlike
DRO, which focuses on distributions with the worst test ac-
curacy (even if they are far from the training distributions),
SRM assigns higher weights to influential distributions with
high centrality in the training graph. This structure-aware
weighting strategy improves worst-region accuracy while
avoiding excessive pessimism.

Robustness to Severe Distribution Shift. To test SRM’s
robustness to severe distribution shift, we simulate different
level of distribution shift by adding corruptions to test data
with different severity (Hendrycks & Dietterich, 2019). We
apply two types of corruptions: Blur and Digital. The results
under the setting of Test After 2016 are reported in Fig. 2. As
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Distribution ID (Year):

Worst-case DistributionWorst-case DistributionWorst-case Distribution

0 (2002) 15 (2017)

(a) Test Before 2004

5 (2007) 10 (2012)

0 1 2 4 5 15 

Test Val Train

0 5 6 15 

Train Train

10 9 

Val ValTest

7 8 0 10 11 13 14 15 

TestValTrain

(b) Test Middle (c) Test After 2016

Figure 1. Visualization of distributional graph G under different train-test split schemes on FMoW-WILDS dataset. Distributions from
year 2002 to year 2017 are labeled by 0 to 15, respectively. The thickness of edges indicates the similarity between distributions. While
DRO focus on worst-case distributions (far from other distributions), SRM assigns higher mixture weights (q) to influential distributions.
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Figure 2. Worst-region accuracy (%) on FMoW-WILDS dataset
under different severity of corruptions to test data. Left: results
of Blur corruption. Right: results of Digital corruption. SRM
consistently outperforms DRO under different types and different
severity of corruptions.

observed, under different types and severity of corruptions,
SRM consistently outperforms the DRO baseline, demon-
strating the superior robustness to severe distribution shift
of SRM. However, the performance gap between SRM and
DRO is shrinking as the severity increases. This may at-
tribute to SRM tries to construct a realistic uncertainty set
while DRO focus on the worst-case distribution.

4.3. Ablation Study

We conduct the following ablation study under the Test After
2016 setting to investigate how each component affects the
effectiveness of SRM.

Comparison with Individual Learners. To further isolate
the benefit of structure-informed weighting, we compare
SRM with both individual models and a uniform ensemble
baseline. Tab. 3 reports results on the DomainNet dataset
across six test domains. SRM significantly outperforms both
the average individual performance and uniform ensemble.
For example, on the “Clipart” domain, accuracy improves
from 56.79% (mean of individual models) to 58.75% (uni-
form ensemble) and then to 63.02% with SRM, showing
that leveraging structural relationships provides substantial

Test Distribution Individual Learners Ensemble

min max mean std Uniform SRM

Clipart 52.74 59.51 56.79 2.39 58.75 63.02
Infograph 18.19 20.12 18.98 0.61 21.30 21.77
Painting 44.99 48.36 46.57 1.09 51.07 51.92
Quickdraw 10.98 13.51 12.25 0.75 14.11 14.96
Real-world 57.31 61.30 59.67 1.09 62.20 64.51
Sketch 46.76 51.12 49.11 1.21 52.31 54.66

Table 3. Accuracy (%) of individual learners and ensemble meth-
ods on DomainNet dataset.

gains.

Regularization Strength λ. To assess the role of λ, which
controls the trade-off between risk minimization and struc-
tural consistency, we vary λ ∈ [0.0, 2.0] and report the
worst-region accuracy in Fig. 3. When λ = 0, SRM reduces
to Group DRO, which focuses purely on worst-case risk
minimization without leveraging the structure of training
distributions. As λ increases, the worst-region accuracy
improves, indicating that incorporating topological informa-
tion helps refine the uncertainty set. However, overly large
values of λ (e.g., λ > 1.5) degrade performance, suggesting
that excessive reliance on structural consistency may overly
restrict the uncertainty set. Overall, a moderate λ value
(around 1.0) provides the best trade-off between robustness
and average-case performance.

Number of Models in the Ensemble Pool. We analyze
the effect of varying the number of models in the ensem-
ble pool from 2 to 10. Fig. 4 presents the worst-region
accuracy across different train-test splits. More models gen-
erally improve performance, as a larger ensemble provides
greater flexibility. However, diminishing returns are ob-
served beyond 7-8 models, indicating that excessive models
may introduce redundancy.

Distance Metric for Distribution Graph G. We evaluate
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Figure 3. Ablation study of the regularization strength λ (Eq. 9) on FMoW-WILDS dataset. Note that when λ = 0, SRM reduces to
Group DRO. The worst-region accuracy first increases then decreases as λ gets larger in Test Middle and Test After 2016. In Test Before
2004, the performance does not degrade because the worst-case distribution is far from other distributions (Fig. 1(a)), thereby leveraging
structural prior consistently brings performance gain.
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Figure 4. Ablation study of number of models (m) in the ensemble pool on FMoW-WILDS dataset. More models generally improves
performance, while in some cases (e.g., Test Before 2004) excessive models reduce efficiency due to model redundancy.

Distance Worst-region Acc. (%) Running Time (s)

2-Wasserstein 38.1 28.1
Diffusion EMD 38.0 2.6
EMD 38.1 516.4

Table 4. Ablation study of distributional distance metrics for distri-
bution graph G. Our choice of 2-Wasserstein distance strikes the
best balance between performance and time complexity.

three different metrics for computing pairwise distributional
distances in the training graph G: 2-Wasserstein Distance,
Diffusion EMD (Diffusion Earth Mover’s Distance (Tong
et al., 2021)), and EMD (Standard Earth Mover’s Distance).
Tab. 4 reports worst-region accuracy for each method. Con-
sidering both performance and computational complexity,
we choose 2-Wasserstein Distance for constructing the dis-
tribution graph.

Comparison of Different Centrality Metrics. To assess
the role of graph centrality in defining the uncertainty set, we
compare different centrality measures in Fig. 5. Closeness
centrality achieves the highest worst-region accuracy, rein-
forcing our choice in the main method. Laplacian centrality
and Katz centrality perform slightly worse, suggesting that
they are less effective in capturing global influence. Be-
tweenness centrality underperforms, likely due to its focus

on shortest paths rather than overall structure. Despite these,
the performance gap between best and worst centrality is
not obvious (0.07%), suggesting SRM is not sensitive to the
choice of centrality.

Graph Sparsity. In our experiments, we use complete
graph by default to calculate centrality. However, we also in-
vestigate how the graph sparsity (i.e. the percentage of edges
retained in the distribution graph with respect to complete
graph) influences performance by pruning edges between
distant distributions. Fig. 6 shows that moderate sparsity
(40-70 % edges) yields the best results. Excessive sparsity
(below 30 % edges) degrades accuracy as most structural
information is missing. These results suggest that balancing
connectivity is crucial, as overly dense or sparse graphs lead
to suboptimal uncertainty sets.

5. Related Work
Ensemble learning has emerged as a powerful paradigm
for enhancing model robustness and improving out-of-
distribution performance (Pagliardini et al., 2023; Lee et al.,
2023). The fundamental principle underlying ensemble
effectiveness lies in the strategic combination of diverse pre-
dictors, where diversity serves as a crucial factor in reducing
ensemble prediction error (Ueda & Nakano, 1996). This di-
versity can manifest in various forms, including architectural
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Figure 5. Ablation study of graph centrality. Performance gap
between different choices of centrality is negligible.
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Figure 6. Ablation study of graph sparsity. Note “30” denotes 70%
edges are pruned from the complete graph.

differences, training procedures, or learned representations
that capture complementary aspects of the underlying data
distribution.

Contemporary approaches to ensemble diversity optimiza-
tion can be broadly categorized into two main strategies.
The first category encompasses methods that directly opti-
mize prediction diversity on target data (Pagliardini et al.,
2023; Lee et al., 2023). These approaches explicitly encour-
age disagreement among ensemble members on specific data
points, thereby promoting complementary decision bound-
aries. However, such methods inherently require access to
test data during the optimization process, which presents
a significant limitation in practical deployment scenarios
where test distributions remain unknown at training time.
The second category promotes diversity through the adop-
tion of varied learning procedures (Arpit et al., 2022; Rame
et al., 2022; Wortsman et al., 2022). These methods gener-
ate ensemble diversity by systematically varying training
configurations, including hyperparameter settings, optimiza-
tion algorithms, data augmentation strategies, initialization
schemes, and architectural choices. While this approach of-
fers the advantage of not requiring test data access, it faces
the fundamental challenge that diverse training procedures

do not guarantee diverse predictive behaviors. Consequently,
such methods may inadvertently generate redundant models
that exhibit similar decision boundaries, potentially com-
promising ensemble performance when combined through
uniform weighting schemes.

The challenge of effective model selection within ensem-
ble frameworks represents another critical consideration. A
prevalent practice in the field is greedy selection (Wortsman
et al., 2022), where individual models are sequentially in-
corporated into the ensemble based on their contribution to
validation accuracy improvements. This validation-centric
approach, while computationally efficient and theoretically
motivated, suffers from a fundamental limitation: validation-
based selection criteria may not adequately generalize to
shifted test distributions that differ significantly from the
validation set. This generalization gap becomes particularly
pronounced in scenarios involving substantial domain shifts
or distributional changes.

Distributionally Robust Optimization (DRO) (Shalev-
Shwartz & Wexler, 2016) provides a principled mathemati-
cal framework for addressing distribution shifts by optimiz-
ing worst-case performance over a carefully constructed set
of potential test distributions. Traditional DRO formulations
define uncertainty sets using various divergence metrics, in-
cluding f -divergence (Namkoong & Duchi, 2016), Wasser-
stein distance (Shafieezadeh Abadeh et al., 2018; Qiao et al.,
2020), and other statistical distance measures. These uncer-
tainty sets characterize the space of plausible distribution
shifts that the model might encounter during deployment.

Despite the theoretical elegance and empirical success of
DRO in training individual robust models, the framework
suffers from a well-documented over-pessimistic issue. This
over-pessimism manifests as excessive conservatism in the
worst-case optimization objective, often leading to subop-
timal performance on the actual test distribution. Several
methods (Liu et al., 2022; Qiao & Peng, 2023; Ma et al.,
2024; Huang & Ding, 2025) have been proposed to mitigate
this over-pessimistic behavior. However, these existing so-
lutions predominantly focus on training individual models
rather than learning robust ensemble combinations, leaving
a significant gap in the ensemble learning literature.

6. Conclusion
We proposed Structure-informed Risk Minimization (SRM),
a principled framework for OoD generalization in ensem-
ble learning. The innovation lies in utilizing distributional
graphs to construct uncertainty sets that focus on plausi-
ble distribution shifts. By incorporating the relationships
between training distributions, SRM achieves a balance be-
tween robustness to unseen shifts and strong average-case
performance. Our theoretical analysis establishes guaran-
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tees for both convergence and generalization, while exten-
sive experiments across diverse benchmarks demonstrate
SRM’s effectiveness in real-world scenarios.
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A. Experiments
A.1. Implementation Details

We use DiWA (Rame et al., 2022) to train the models in the ensemble pool. Each model in the ensemble pool is a ResNet-
50 (He et al., 2016) model trained with ERM (Vapnik & Vapnik, 1998) using different hyper-parameter settings. The number
of models (n) used in the experiments is 10. A random model in the ensemble pool is chosen to construct the distribution
graph. For optimizing w and q, we use SGD optimizer. For the experiments on DomainBed, we set ηw = 0.1 and ηq = 0.1,
and for WILDS, we set ηw = 3e−2 and ηq = 0.1. λ is selected from [0.0, 2.0] for each dataset. We use in-distribution
validation set to optimize w and q, and the number of steps is 100 and 50 for DomainBed and WILDS, respectively.

A.2. Additional Results on DomainBed

We provide detailed experiment results for each test environment on DomainBed benchmark.

Env. Non-optimization-based Optimization-based

Uniform Greedy ERM Uniform Prior Laplacian DRO SRM

PACS

Art 88.2 88.5 88.0 88.3 88.0 88.0 88.5
Cartoon 82.1 80.0 80.3 80.2 80.3 80.4 80.4
Photo 98.5 98.3 98.0 98.0 98.0 98.1 98.1
Sketch 82.6 81.6 81.5 81.3 81.5 81.8 81.8

VLCS

Caltech101 98.2 98.8 99.1 99.2 98.5 99.1 99.3
LabelMe 64.5 64.3 65.4 65.3 65.1 65.3 65.4
SUN09 75.3 75.6 73.9 74.3 72.4 74.4 75.6
VOC2007 80.1 79.8 80.3 80.5 78.7 80.3 80.6

OfficeHome

Art 67.6 67.3 66.9 66.8 66.7 66.7 67.3
Clipart 56.9 57.0 56.4 56.3 56.3 56.1 57.0
Product 78.1 78.3 79.4 79.2 79.5 79.1 79.6
Real-world 80.6 80.6 80.4 80.4 80.6 80.2 80.6

DomainNet

Clipart 58.8 62.0 63.0 62.9 62.9 62.9 63.0
Infograph 21.3 21.6 21.7 21.7 21.7 21.7 21.8
Painting 51.1 51.7 51.6 51.6 51.5 51.6 51.9
Quickdraw 14.1 15.5 15.0 14.9 14.9 14.9 15.0
Real-world 62.2 63.3 64.4 64.4 64.4 64.4 64.5
Sketch 52.3 53.4 54.5 54.4 54.6 54.4 54.7

TerraIncognita

L100 55.3 58.9 55.1 55.8 55.8 56.2 58.9
L38 40.8 39.6 40.9 40.6 40.7 40.9 41.5
L43 60.4 60.6 60.8 60.7 60.6 60.9 61.1
L46 37.3 33.4 38.4 38.1 38.2 37.9 38.9

Table 5. Average accuracy (%) over all test distributions for PACS, VLCS, OfficeHome, DomainNet, and TerraIncognita datasets.
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