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ABSTRACT

We present a deep learning-based iterative approach to solve the discrete hetero-
geneous Helmholtz equation for high wavenumbers. Combining classical itera-
tive multigrid solvers and neural networks via preconditioning, we obtain a faster,
learned neural solver that scales better than a standard multigrid solver. We con-
struct a multilevel U-Net-like encoder-solver CNN with an implicit layer on the
coarsest level, where convolution kernels are inverted. This alleviates the field of
view problem in CNNs and allows better scalability. Furthermore, we propose a
multiscale training approach that enables to scale to problems of previously un-
seen dimensions while still maintaining a reasonable training procedure.

1 INTRODUCTION

The Helmholtz equation is a partial differential equation (PDE) that models the propagation of waves
in the frequency domain. This equation occurs in many disciplines of engineering and science.
However, in complex real-world environments, an analytical solution is difficult to obtain. Thus,
numerical methods are typically used, whether based on finite difference discretizations, iterative
solvers, or many other approaches. Indeed, solving the discrete Helmholtz equation efficiently is a
substantial field of research (Dwarka & Vuik, 2020; Gander & Zhang, 2019; Graham et al., 2020;
Luo et al., 2014; Olson & Schroder, 2010; Poulson et al., 2013; Reps & Weinzierl, 2017; Sheikh
et al., 2016; Treister & Haber, 2019).

One common method for the Helmholtz equation is multigrid. Such methods aim to complement
standard local methods called relaxations, which attenuate only high-frequency error components
efficiently. However, multigrid alone does not perform well for the Helmholtz equation, mostly due
to the indefiniteness of the resulting linear system. Hence, the shifted Laplacian (SL) approach is
often used (Erlangga YA, 2006; Umetani et al., 2009; Elman et al., 2001; Erlangga et al., 2004),
where the Helmholtz operator is shifted by an imaginary term. SL works well when used, for
example, as a preconditioner to a Krylov method.

Neural networks are known as universal approximators, i.e., capable of representing any smooth
signal. However, it has been established that to represent highly oscillatory functions, deep networks
require either substantial depth or other special considerations (Rahaman et al., 2019; Tancik et al.,
2020; Li et al., 2021; Sitzmann et al., 2020). Thus, we expect deep networks to scale poorly with
the complexity of the problem. Successful uses of deep learning for solving highly oscillatory PDEs
must therefore find ways to deal with the high frequencies inherent to this type of data.
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Figure 1: Implicit encoder-solver CNN architecture. (7op)The encoder computes feature maps
which are added to the solver as indicated by the arrows. (Botfom)The solver maps a residual vector
r to an error e. BLU stands for bilinear upsampling.

To achieve good performance during training, and enable successful generalization, here we exploit
the close connection between convolutional neural networks and multigrid cycles: A U-Net (Ron-
neberger et al., 2015) is trained to act as a preconditioner to FGMRES (Saad, 1993). Thus, our main
contribution is the introduction of an implicit layer at the coarsest level of the U-Net to mimic an
exact coarse grid solution. In addition, we propose a multiscale training method where the training
alternates between smaller and larger, hence more difficult problems. This enables the network to
learn salient features quickly in smaller domains, reducing overall training time. The networks are
shown to generalize to larger unseen sizes after being exposed to a smaller number of larger-scale
problems.

2 THE HELMHOLTZ EQUATION

The heterogeneous Helmholtz equation is given by
—Au(F) — WK (@) (1 - yi)u(@) = g(F), T €. (1)

The unknown (%) is the Fourier-space representation of the pressure wave function, while w de-
notes the angular frequency of the wave, g(&) represents any sources present, A is the Laplacian
operator, i = \/—1, and k(%) denotes the heterogeneous wave slowness model. ~ indicates the
fraction of global damping in the medium, which is assumed to be very small and constant.

Equation (1) is then discretized using second-order finite-differences on a uniform 2D grid of width
h in both dimensions, which yields a global linear system,

A" = g, 2)
where A" is the operator matrix:
110 -1 0
Al = — Ay — k(%) = — |1 4—w?k(x)*h* -1]. 3)
h* 1o -1 0

However, since standard multigrid methods struggle to deal with the indefiniteness of eq. (3), we
use the shifted Laplacian operator

—Au — w?k(%)* (o — Bi)u, «a,BER, “)

instead as a preconditioner in FGMRES. The SL multigrid method is consistent and robust for
heterogeneous slowness models, i.e., where x is not uniform. However, it is considered slow and
computationally expensive, especially for high wavenumbers, which is our interest.

3 A MULTIGRID-AUGMENTED CNN PRECONDITIONER

Our method is based on the U-Net encoder-solver method, proposed by Azulay & Treister (2021).
This U-Net architecture is similar in spirit to the multigrid V-cycle and shares common properties.
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Figure 2: Out-of-distribution test. (Top) Velocity models used for each test. (Middle) The solution to
a single-source Helmholtz problem computed by a single application of FGMRES with the implicit
network, followed by a V-cycle, as preconditioner. (Bottom) Convergence plots of the implicit and
explicit network preconditioners on each respective problem, as well as a V-cycle-only precondi-
tioner.

However, it suffers from a field of view problem as it has a limited number of levels. Hence, we
propose a novel implicit layer inspired by the Lippmann-Schwinger (LiS) equation. This encoder-
solver implicit network is shown in fig. 1. To solve many instances of the Helmholtz equation, we
also train an encoder to be applied before the solver network.

The encoder network emits a latent representation of the heterogeneous parameters in x2, while the
solver network is trained to use these encodings. The solver network maps the residuals to corre-
sponding error vectors, which are then fed into another, non-learned, V-cycle for further smoothing
before being passed back to FGMRES. Hence, we train the network on residual and error vectors
that are not treated well by V-cycles, and allow the network to generate noisy predictions because
these can be attenuated well by the V-cycle. This way we simplify the learning task of the CNN, and
show that this combination significantly reduces the number of FGMRES iterations required.

To obtain a solution, the slowness model is first encoded; then, to smooth out the initial error, we
start with a few iterations of FGMRES with the V-cycle only as a preconditioner. The result is used
again in FGMRES, where now the solver network, followed by a V-cycle, act as a preconditioner.
Since the encodings are computed once per slowness model and remain fixed, their cost is amortized
over many invocations of the solver network. This is especially desirable when solving many times
for the same 2, such as when solving inverse problems. Both the encoder and solver networks are
trained together to ensure compatibility.

As the U-Net architecture suffers from a field of view problem, caused by our training on small
grids, we propose a novel layer that mimics the exact solution of the coarsest grid in V-cycles,
which has a global field of view. Here, we build on the approach of Haber et al. (2019) which
inverts a compact convolution kernel. However, their formulation did not work well in our setup,
likely due to sensitivity to the boundary conditions, as the FFT considers periodic BCs, while we
use absorbing BCs. Thus, to make our implicit layer suitable for Helmholtz matrix inversion, we
take inspiration from the LiS equation, which has been used to solve inverse problems that feature
the Helmholtz equation (Soubies et al., 2017; Pham et al., 2020):

u" + A" (ko) T'w? (kG — KA (x))u = AM (ko) 'g", (5)

where A"(ko)~! is the inverse of a Helmholtz operator with a constant medium r¢, which can be
modeled by a fixed kernel. This is equivalent to a convolution with a suitable Green’s function
sampled on a twice larger grid at each dimension. This Green’s function is then convolved at each
application of the matrix in using FFT.

Let G i be the Fourier transform of a Green’s function G of a kernel K twice the size at each
dimension. The implicit layer is given by:

xU+) = F (G 0 F(xW)), (6)
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Table 1: Comparison of preconditioner methods. Each type of network was trained on problems up
to the grid size indicated in the columns to the right. The average number of FGMRES iterations
are shown for a slowness model unseen during training and 1000 right-hand sides. The methods are
executed until the residual norm falls by a factor of 10~7 or 2000 iterations are performed.

Preconditioner \ Grid size: 1287 2562 5122 1K? 2K? 4K?

OpenFWI  Shifted Laplacian V-cycle 1129 2468 5869  1983.8  >2000 > 2000
Explicit U-Net (up to 128%) 1838  30.51 5293  178.15 404.05" > 2000
Implicit U-Net (up to 128%)  17.26  28.98  50.63  126.09  502.34T > 2000
Explicit U-Net (up to 256%)  18.55 3042 5297  184.95 332.021 > 2000
Implicit U-Net (up to 256%)  17.21  28.52 4790 9231 281207 > 2000
Explicit U-Net (up to 512%)  20.53 3329 5531 10241 13574  202.96
Implicit U-Net (up to 512%)  18.82  27.34 4062 6339  94.13  143.03

STL-10 Shifted Laplacian V-cycle 166.2 360.72 75093  1876.1 > 2000 > 2000
Explicit U-Net (up to 128%) 25.85 44.66 7596  233.60 28430 > 2000
Implicit U-Net (up to 128%)  25.46  45.19 80.67 22285 > 2000 > 2000
Explicit U-Net (up to 256%) 28.11  34.60  54.44 77.75 139.12  280.43
Implicit U-Net (up to 256%)  27.13  33.21 48.26 69.21 132.66  232.12
Explicit U-Net (up to 512%)  27.42 3442  54.67 77.52 15529  231.72
Implicit U-Net (up to 512%)  26.13  33.77  47.54 63.50 130.43 189.67

CIFAR-10  Shifted Laplacian V-cycle 97.3 245.4 5459  1964.07 > 2000 > 2000
Azulay & Treister (2021) 25 52 101 N/A N/A N/A
Explicit U-Net (up to 128%)  19.10  30.61 49.64 88.19 172.02  224.51
Implicit U-Net (up to 128%)  18.12  28.35 43.89 70.84 120.12  200.41
Explicit U-Net (up to 256%) 1825  28.96 49.47 84.40 167.18 216.75
Implicit U-Net (up to 256%)  17.21  26.91 44.98 72.43 119.95 198.16
Explicit U-Net (up to 512%)  16.76  28.73 44.51 75.32 108.33 171.15
Implicit U-Net (up to 512%)  16.75  28.03 43.29 68.08 85.20 117.29

where F and F~! denote the Fourier transform and its inverse, applied per-channel, and ® denotes
the elementwise product. We train the implicit layer to learn K. To obtain the Green’s function of
some kernel K in Fourier space needed for eq. (6), we divide the kernel’s Fourier transform against
a point source centered in the domain, as this division corresponds to matrix inversion using a fixed

kernel:
F (K pad)

where ¢ = 107°. To compute G using the inverse FFT in eq. (7) while reducing the influence
from the boundaries, we zero-pad the domain to three times the size, and crop it afterward, that is:
G = F(crop(Gg)). We note that the Green’s functions in Fourier space G g are computed only
once for each kernel on the coarsest grid, as the kernels’ weights do not depend on the input data.
Furthermore, G i are stored as part of the network and are not computed at all during inference.
Lastly, since ¢ is a fixed point source, its FFT F(9) is fixed as well is computed only once per grid.

GKZJ:1<

4 NUMERICAL RESULTS

To demonstrate the efficiency of the proposed techniques, we compare three preconditioning meth-
ods: an encoder-solver with an implicit U-Net followed by a shifted Laplacian V-cycle, an encoder-
solver U-Net without the implicit step (called the explicit U-Net) also followed by a V-cycle, and
lastly a V-cycle-only preconditioner. The results of network training are presented in table 1, which
also shows that unless trained on the larger models of 5122, the networks may perform poorly or
even fail to converge in larger test problems (e.g., 4K?). We also demonstrate out-of-distribution
performance, where the distribution of the slowness model differs substantially from that seen dur-
ing training. Figure 2 shows how the implicit and explicit networks, trained in earlier experiments,
perform on these out-of-distribution models. The slowness models are generated from the CIFAR-
10 (Krizhevsky, 2009), OpenFWI Style-A (Deng et al., 2022) and STL-10 (Coates et al., 2011)
datasets. Details regarding the generation of data and multiscale training can be found in appendix D.
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For more information about the training and architecture, see appendix F. Finally, additional results
are given in appendix G.

5 CONCLUSION

In this work we introduced an implicit layer to the encoder-solver U-Net architecture, achieving
faster convergence and overcoming a limited field of view. Additionally, we adopted architectural
enhancements to speed up both the forward and backward computations of the CNNs.
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A ON SOLVING THE HELMHOLTZ EQUATION

The Helmbholtz equation occurs in many different fields, where its real-world applications include
seismic mappings of the earth, magnetic resonance imaging, optical diffraction tomography and
more (Bernard et al., 2017; Soubies et al., 2017; Guasch et al., 2020; Pham et al., 2020). It is
challenging to solve because it requires finer discretizations as the wavenumber wx grows. For
large values of , the resulting linear system is highly indefinite (Bayliss et al., 1985; Haber &
MacLachlan, 2011).

Typically, at least 10 grid nodes per wavelength are used in a discretization of the Helmholtz equation
to obtain an accurate solution. This means wkh is typically bounded by wrxh < % ~ 0.628. As
a result, the required mesh can be very fine for high wavenumbers, which means that we require
significantly more degrees of freedom. Hence, the system eq. (2) may become prohibitively large,
ill-conditioned, and indefinite. Due to the boundary conditions, it is also complex-valued. Moreover,
the eigenvalues of A" in eq. (3) will have more negative real parts as the wavenumber kw grows.
Thus, solving large-scale systems of this kind often requires the use of efficient iterative solution

techniques, like Krylov, multigrid, and other methods.

In addition, to model open domains, we use an absorbing boundary layer (ABL) (Engquist & Majda,
1977; 1979; Erlangga YA, 2006), i.e., a function in ~y that goes from 0 to 1 towards the boundaries.
Sommerfeld, PML (Berenger, 1994; Singer & Turkel, 2004) or (Papadimitropoulos & Givoli, 2021)
can be viable options as well.

B ON THE CONNECTION BETWEEN CNNS AND LIPPMANN-SCHWINGER
SOLVERS

A popular type of CNN is the ResNet architecture (He et al., 2016), which employs blocks of layers
given by

x0H0 = x0 1 Ko (KYx), j=0,... N1, ®)

where x(/) and x(7*1) are the input and output features respectively, ng ), K(Qj ) are two different
convolution operators, and ¢ is the non-linear activation function.

To understand the connection between CNNs and implicit solvers, consider eq. (8) as a forward-
Euler discretization of an underlying continuous non-linear ODE or PDE (Ruthotto & Haber, 2020),

atx(t) = f(X(t), O(t)), te [07 T]7 9

where f(x(t),0(t)) is some non-linear function parameterized by 6(¢) and [0, T is a time interval
which is discretized as per the number of layers in the network. The approach of Haber et al. (2019)
suggested discretizing the time derivative in eq. (9) using an implicit (backward) Euler method
instead of the explicit (forward) Euler, as in eq. (8). This implicit step is known to be effective
in increasing the field of view, but it also requires an inversion of a convolution kernel rather than
a multiplication, obtained using the Fast Fourier Transform (FFT) (Haber et al., 2019). This is
appealing since here essentially we need to invert a spatially dependent kernel in eq. (3). Hence, a
natural choice for the CNN solver would be an inverted convolution operator (i.e., implicit), albeit
with a fixed (yet learned) kernel. We perform this step only at the coarsest level for several channels
(4x coarsest in each dimension), hence we avoid the high cost associated with running the FFT on
the fine feature maps.

To obtain the formulation of the implicit Lippmann-Schwinger layer, let us first consider the ap-
proach of Soubies et al. (2017), that with Haber et al. (2019) inspired the design of our implicit
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layer. We note that the approach of Soubies et al. (2017) is applied in continuous space and then
discretized, while here we present the idea on the discrete space. As motivation, consider eq. (3),
where we add and subtract the term w?x21 with a constant rq:

AMr(x)) = —An = W R2X)] + W mgl — WP RGIL (10)

Hence, eq. (2) becomes
Al (ko)ul + w2 (k2 — K2(x))u" = g". (11)
The approach of Soubies et al. (2017) multiplies eq. (11) by A" (k)" to form!

u" + A" (ko) T'w? (kG — KA (x))u = A" (ko) 'g", (12)

If ko =~ r(z), then we have a well-conditioned system for u” dominated by an identity matrix which
is easy to solve. where A" ()" is the inverse of a Helmholtz operator with a constant medium
that can be modeled by a fixed kernel. This is equivalent to a convolution with a suitable Green’s
function sampled on a twice larger grid at each dimension. The Green’s function is then convolved
at each application of the matrix in using FFT. Because the Green’s function is sampled on a large
grid, there are no reflections or periodic continuations from the boundaries. In Soubies et al. (2017)
the Green’s function is defined analytically, and sampled.

We view the process in eqgs. (11) and (12) as a preconditioned Helmholtz equation, where the pre-
conditioner is the same operator but with constant media. That is, given an approximate solution u”
we approximate the error e” by

e ~ Ah(/fo)_l(gh — Ah(m(x))uh) = Ah(m(])_lrh. (13)

This preconditioner has a large field of view and can be implemented in a network efficiently on a
GPU using FFT.

C GEOMETRIC MULTIGRID AND THE SHIFTED LAPLACIAN

A common multigrid method to solve the Helmholtz equation is the shifted Laplacian method, orig-
inally suggested by Erlangga YA (2006). Since standard multigrid methods struggle to deal with the
indefiniteness of eq. (3), the shifted Laplacian operator

—Au — k() (o — Bi)u, «,fB ER, (14)

is used instead in the multigrid solver, and acts as a preconditioner in a suitable Krylov method. In
this paper we use the pair « = 1 and 5 = 0.5, which is shown in (Erlangga YA, 2006) to lead to
a good compromise between approximating eq. (2) and solving the shifted system using multigrid
tools. Specifically, we use a three-level geometric V-cycle and an inexact coarse-grid solution. The
SL multigrid method is very consistent and robust for heterogeneous slowness models, i.e., where
is not uniform. However, it is considered slow and computationally expensive, especially for high
wavenumbers, which is our interest.

Solving PDEs generally requires communicating information between the boundaries and the rest
of the domain. However, if computation relies solely on local operations, information is limited in
terms of the distance it can travel. To facilitate the transmission of information at multiple scales,
multigrid methods are commonly used to solve discretized PDEs. In multigrid, solutions are defined
on a hierarchy of grids, where the original fine grid Q" is progressively coarsened. Two distinct and
complementary processes are utilized: relaxation and coarse-grid correction. Relaxation is done by
performing a few iterations of a standard smoother like Jacobi or Gauss-Seidel. These smoothers
have a local nature (e.g., compact convolutions), and hence are only effective at reducing part of
the error. In the case of the Helmholtz system, such relaxation methods do not converge due to the
indefiniteness of A", but one or two iterations of them suffice to smooth the error. The remaining
components of the error typically correspond to eigenvectors of A" that are associated with small-
magnitude eigenvalues, i.e., vectors e such that

14" || < [lA" fle"]- (15)

!The right-hand side g™ in Soubies et al. (2017) is zero.
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To reduce these error components, multigrid methods use coarse-grid correction. The error e” for an
iterate u” is estimated on a coarser grid, where it is less smooth, and interpolated back to correct u”
on the finer grid. In other words, we solve an instance of an error-residual equation for e projected
onto the coarser grid, and then interpolate it back to the fine grid to obtain an approximate e”:

Afte™ =" = [f1(gh — AMa"), e =Ipel. (16)
The operator A approximates A" on the coarser mesh Q| where H = 2h.

To understand why the indefiniteness of the Helmholtz problem makes multigrid inefficient, consider
a smooth error on the fine grid to be a smooth eigen-mode v of A" that corresponds to a small
eigenvalue \". After the coarse grid correction in eq. (16), the new error is approximately (Elman

etal., 2001):
h _ h
e —(1—/\H>V, (17)

where A\ is the eigenvalue of A% that corresponds to the mode in v" on the coarse grid. Ideally,
M differs slightly from A", and both are small in magnitude. However, if \* and A¥ have opposite
signs, the correction is in the wrong direction and will cause the error to increase. This may happen
here since A" is indefinite in our case.

To restrict a fine-grid solution to the coarse grid we use the “full-weighting” operator /7. Con-
versely, to interpolate the coarse-grid solution to a finer grid, we use the bi-linear interpolation
operator I These operators are defined using the fixed kernels:

L2 (21
IH=—12 4 2|, 1h==-12 4 2. (18)
1611 2 1 1 21

Note that these geometric operators are suitable for our problem, because the Laplacian operator in
eq. (14) is homogeneous.

Taken as a whole and applied once, the above is the two-grid method, summarized in Algorithm 1.
Repeated recursively, this procedure forms a cycle, termed the V-cycle. Note that relaxation is
applied twice, before and after the coarse-grid correction, where it is referred to as pre- and post-
relaxation, respectively. This is often done when the coarse system is still too large to solve directly.
The V-cycle is often applied iteratively to solve the problem to some desired accuracy.

Algorithm 1 Two-grid cycle

* Relax v, times on A"u” = g" with u” as an initial guess
o fH « [H(gh — APvh)

* Solve A e = rH to obtain e

e u —u+ I}}eH

* Relax v, times on A"u” = g with u” as an initial guess

In the classic V-cycle scheme, one may freely choose the number of levels. However, unlike other
problems, the algebraically smooth error modes of the Helmholtz operator are still quite oscillatory
at high wavenumbers. This means very coarse grids typically cannot represent these high-frequency
error modes when about 10 grid points per wavelength are used. Thus, the performance of the solver
deteriorates as the number of levels increases. For example, the results in (Calandra et al., 2013)
show that three levels achieve the best balance between cost and performance.

D DATA GENERATION AND MULTISCALE TRAINING

Our solver network is intended to work as a preconditioner to a Krylov method, in tandem with a
V-cycle. Therefore, data seen during training must be as similar as possible to the residuals seen
during the Krylov method we use (FGMRES). Consider

e"“! = SolverNet(r, K2 0) 19

10
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to be a single forward application of the solver network for a given slowness model x(x)? and resid-
ual r. 6 denotes the set of trainable network weights. To successfully model a good preconditioner,
we seek to minimize the mean squared error (MSE)

1 m
min — Z |SolverNet(r;, k7; 0) — ef™¢||3, (20)

i=1
for each batch of error and residual vectors and slowness models {(e{"“¢ r;, k?)},, where r; =
Ahel™e Since we are dealing with a linear system, where the residual can be computed simply by
multiplying the error by the matrix A", the creation of the aforementioned dataset is straightforward,
and there is no need to solve the PDE many times to generate ground-truth solutions. However,
since the data must be as close as possible to the residuals seen during runs of the preconditioned
FGMRES, we smooth the residuals in the dataset. To this end, we apply a random number of
FGMRES iterations with a V-cycle preconditioner (specifically, we apply between 2 to 20 iterations).

That is, starting with a random vector x;, we compute a RHS vector b; = A”"x; and apply

%; = FGMRES (A", M = V-cycle, b;, x\?) = 0, iter € {2,...,20}). 1)

Following that, we compute error vector e!”“¢ = x; — %; and residual r; = b; — A"x; = Alelrve
to obtain the i-th data sample. This procedure generates data samples of varying smoothness levels
to be used as training residuals. Optimizing eq. (20) against these error-residual pairs directs the
network to learn to handle smooth error vectors. The output of the network may be noisy (generating
low errors but high residuals), hence in inference time we smooth the network’s output using a V-
cycle, so it is easy for FGMRES to include it when considering the optimal linear combination of
the iterations.

To solve our Helmholtz problem, information must propagate from the boundaries deep into the
domain, and vice-versa. This means that during training, the network must learn to propagate infor-
mation across the domain regardless of the size of the domain and the location of the boundaries.
Thus, networks exposed only to small domains may struggle to generalize to larger domains. While
CNNs are composed of shift-invariant convolutions, there is a huge influence to the boundaries,
especially in multiscale networks like U-Net that reach tiny grids. On the other hand, training on
larger domains is expensive. We show that training the network on multiple scales, i.e., exposing it
to varying sizes of problems, enables it to scale better to sizes unseen during training. This espe-
cially saves training time compared to training only on the maximal size since most of the iterations
are obtained on smaller grid sizes. To this end, we create datasets of three different sizes: samples
are taken from each source dataset, and resized to 128 x 128,256 x 256 and 512 x 512 using bi-
linear interpolation. Samples of each respective size are considered a separate dataset for training
purposes. We then alternate between these datasets during training every few epochs (here, 20).
The length of the epochs containing larger training examples is adjusted to be shorter, to use mostly
smaller ones, reducing the number of large examples overall. For example, an epoch of 128 x 128
samples is comprised of 16,000 samples, a 256 x 256 is made up of 10,000 samples and a 512 x 512
epoch is only 4000 samples long. Hence, the training requires less samples of the larger sizes while
still performing well.

D.1 SLOWNESS MODEL DATASETS

To generate slowness models for training and testing, we use three source datasets of increasing
difficulty: CIFAR-10 (Krizhevsky, 2009), OpenFWI Style-A (Deng et al., 2022) and STL-10 (Coates
etal., 2011). While CIFAR-10 and STL-10 are natural image datasets and therefore have no bearing
on the Helmholtz problem, they serve here as large data sets of general-purpose slowness models to
demonstrate our method.

Each source dataset is used to generate three target datasets of three different sizes, as mentioned. Up
to 16,000 images are sampled from each dataset, resized to the appropriate size, smoothed slightly by
a Gaussian kernel, and finally normalized to the range [0.25, 1]. Furthermore, during training only,
we shift the imaginary term of A" by applying a high ~ value of 0.05. We hypothesize that training
on data with a higher « value leads to more consistent training and yields a better convergence rate,
due to the domain and boundaries being more absorbent and less reflective. Thus, the network better
learns to model wave propagation and generalize to larger domains. The datasets are then split into
training, validation and testing portions for use in training and inference.

11
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(a) CIFAR-10 (b) OpenFWT (Style-A)

0.30

0.25

Figure 3: Example slowness models 2 used for training and testing: (a) models from the CIFAR-10
dataset; (b) models from the OpenFWI Style-A dataset; (c) models from the STL-10 dataset. We
generate separate datasets by sampling up to 16,000 images from each of the datasets.

We scale each sample up to the appropriate size, smooth it slightly using a Gaussian kernel, and
normalize the values to the range [0.25, 1], as depicted in fig. 3. We note that due to the upscaling,
the first two datasets (CIFAR-10 and OpenFWI Style-A) yield significantly smoother, and therefore
“easier”” slowness models. STL-10, while still smoothed slightly, is still quite challenging. Example
slowness models derived from CIFAR-10, OpenFWI and STL-10 are shown in fig. 3.

For the out-of-distribution tests, we used the Marmousi (Brougois et al., 1990), SEG/EAGE Salt-
dome, and Overthrust (Aminzadeh et al., 1997) models as out-of-distribution test problems. These
models specify a spatially varying wave velocity v, which is inverted to give k2 = v% To match the

values seen in the training of the networks, we normalized the values such that the maximum of x?
is 1, and took the highest frequency obeying the ten grid-point per wavelength rule.

E LIGHTWEIGHT ARCHITECTURE

CNN architectures in computer vision have grown over the years, with respect to both the num-
ber of parameters and FLOPs associated with the network forward application. Hence, several
patterns have emerged for lighter-weight network designs. One such technique, credited to Mo-
bileNet (Howard et al., 2017), uses separable convolutions, where depthwise convolutions and
channel-mixing 1 x 1 kernels are used separately?. MobileNetV2 (Sandler et al., 2018) improves
upon the first version by proposing the inverted bottleneck structure, where each network “module”,
similar to eq. (8), consisting of three convolutions: the first is a 1 x 1 convolution that expands the
number of channels, the second is a depthwise convolution and the last is a 1 x 1 convolution that
shrinks the number of channels back to the previous smaller number. This sequence of operations
reduces the number of parameters while still making efficient use of the hardware. We use these
techniques in our solver network and in addition, we begin and end the solver network with simple
downsampling and upsampling operations respectively, which are analogous to the MG prolongation
and restriction operations in eq. (18). Another method we use to reduce the number of parameters
is the use of a sum operation in place of a concatenation operation used in a standard U-Net where
feature maps are added together. That is where feature maps computed by the encoder are used in
the solver, and in the bypass connections within the solver itself, as shown in fig. 1. This use of ad-
dition instead of concatenation reduces the number of parameters in the network since the resulting
number of channels remains unchanged, whereas with concatenation it is doubled.

2A depthwise convolution is a spatial convolution that is applied on each channel separately with no mixing
between the channels. On the other hand, in 1 X 1 convolutions, there is no spatial operation, and each output
channel is a simple linear combination of the input channels.

12
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F ARCHITECTURE AND TRAINING DETAILS

The encoder network is essentially a multi-layer convolutional network that progressively com-
I I

presses the slowness model, resulting in feature maps of sizes 16 x £ x £,32x £ x L and 64 x £ x £,
where the first number is the number of channels and 1 is the original size of the domain along each
dimension, e.g., a 2 x 512 x 512 slowness model will be encoded into 16 x 256 x 256, 32 x 128 x 128
and 64 x 64 x 64 tensors, respectively. The domains discussed here are of equal height and width
for simplicity, but the design of the network does not rely on this being the case. The encoding fea-
tures are computed by a learnable strided convolution followed by two more modules comprised of
a learnable convolution, a batch normalization layer, and the softplus activation function. We term

this module the “downsampling module”.

The solver network is designed to accept these encodings as part of its architecture (see fig. 1), along
with the complex-valued residual vector r. As the computation in the solver network proceeds, the
encodings are summed elementwise with the feature maps of the same dimensions. The results of
the sum operation are propagated forward as feature maps.

Our solver network uses four levels, the first three of which are comprised of a learnable downsam-
pling convolution followed by an “inverted bottleneck™ module, which is discussed in appendix E.
This is followed by a single downsampling module, which outputs a feature map of size 64 x % X 1—16.
For smaller domains (e.g., smaller than 512 x 512), we skip the last downsampling operation, and
set the last downsampling convolutional layer to instead maintain the size of the incoming feature
map (i.e., the coarsest size is maintained at é X é. We found that skipping the final downsam-
pling operation is necessary in these cases, since otherwise the resulting feature map is too small for
the implicit step to produce meaningful results, causing the solution to diverge (for example, for a
128 x 128 domain, the size at the coarsest level would be 8 x 8). Following the implicit step, the
feature maps are interpolated back to the original size of the domain by three learnable upsampling
modules comprised of a learnable strided transposed convolution followed by two more convolution-
normalization-activation modules, with stride set to 1. Finally, the feature maps are projected back
to a single complex-valued channel and upscaled once more by a non-learned bi-linear upsampling

filter. The output of the solver is then the error vector e.

We train instances of the explicit and implicit U-Nets, where each is exposed to domains of increas-
ing size in a round-robin fashion: training alternates between 128 x 128, through 256 x 256 and
finally 512 x 512. We train three different network instances for each dataset and network type: one
is trained on 128 x 128 problems only, the next is trained with samples up to 256 x 256, and the last
is trained on all three sizes. Each time, we have the same number of total samples. These tests show
the influence of the training problem sizes on the test performance on larger problems, showing the
importance of multiscale training. After training, each network instance, followed by a V-cycle, is
tested as a preconditioner to FGMRES(10) on a batch of 1000 right-hand sides.

We train each encoder-solver pair until convergence on the validation set and up to 250 epochs.
Training was done using the ADAM optimizer (Kingma & Ba, 2015) with the default parameters
and batch sizes between 30-40, as GPU memory allowed. The learning rate was initialized to 0.001
and scheduled to divide by 10 every 100 epochs. For networks trained with more than one dataset
(i.e., networks trained on sizes greater than 128 x 128), both the training and validation data was
switched every 20 epochs in a round-robin fashion. We used a single current-generation consumer-
grade NVIDIA GPU for each training session. All learnable tensors were initialized randomly using
the default Kaiming initialization implemented by PyTorch (Paszke et al., 2019; He et al., 2015),
except for the learnable kernel in the implicit layer, which was initialized to L + ¢/ where L is
the 5-point Laplacian kernel. This kernel was then optimized along with the rest of the network’s
learnable parameters. Plots of the residual MSEs (as in eq. (20)) under multiscale training are shown
in fig. 4.

For the out-of-distribution tests, the networks used were trained on 512 x 512 domains taken from
the STL-10 dataset. For this test, the sizes of the models are 512 x 1024 for Marmousi, 352 x 800 for
Overthrust, and 512 x 1024 for the SEG/EAGE Salt-dome model. The pre-trained networks perform
reasonably, but the iteration counts somewhat deteriorate compared to the in-distribution iteration
counts in table 1. To improve these results, we also re-train the CNNss, i.e., optimize them for a short
amount of time on the respective out-of-distribution problem. To save computation, re-training is
done on models twice as small as the models used for evaluation, since the retraining is done after

13
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Figure 4: MSE loss during training of explicit and implicit U-Net networks with multiscale training
on the OpenFWI dataset. The MSE loss is as shown in eq. (20). It is worth noting the slight increase
in MSE value when the data is switched. Our results show that networks trained with multiscale
training generalize better to larger unseen sizes.

the model is known, at solve time. To this end, we generate 300 pairs of error vectors and their
corresponding residuals, and re-train the model for 30 epochs, each comprised of these 300 vector
pairs. Then, we evaluate the networks on new error-residual pairs on the original larger-sized test
cases. Figure 2 shows how performance on these problems is improved significantly compared to
the original networks, at the small cost of additional training. Here, as well, the implicit network has
an advantage over the explicit one.

G ADDITIONAL RESULTS

G.1 WALL-CLOCK RUNTIME COMPARISON PER ITERATION ON A GPU

In our last experiment, we compare the runtime performance of our networks and the other meth-
ods considered in this paper. To this end, the various methods are run as a preconditioner during
FGMRES. The wall-clock time to solution is measured and divided by the number of iterations
performed. We report the average time of a preconditioned FGMRES(10) outer iteration, which
includes ten preconditioning steps. The experiment is performed 100 times and the results are aver-
aged. Table 2 lists the average runtimes per iteration as well as other statistics such as the number
of parameters and FLOPs in the network. The timings do not include the application of the en-
coder network, which is applied only once per given linear discrete operator (defined by a slowness
model k(x)), and its output serves all iterations and right-hand-sides with that operator. Hence, its
inference time is insignificant compared to the total solution time. Fore completeness, we report the
measures of the encoder network in Table 3. Note that while the implicit U-Net appears to be more
expensive than the explicit U-Net, it is likely that a custom implementation, e.g., (Treister et al.,
2018), of the implicit layer will eliminate much of this performance gap, as the lone implicit layer
on the U-Net’s coarsest grid is obtained on small feature maps. The results presented here are given
for a standard GPU-based PyTorch implementation.
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Table 2: Runtime comparison of solution methods. The runtime per outer iteration of FGMRES(10)
is averaged over 100 right-hand sides and 100 iterations per RHS. FGMRES was run for a random
slowness model and for grid sizes up to 4096 x 4096 with the preconditioner listed by each respective
line. Where neural networks are used as preconditioner, they are also followed by an augmenting

application of a V-cycle. All standard deviations are too insignificant to list.

Preconditioner Params. FLOPs Runtime avg. (s)

Test grid size 5122 1K? 2K? 4K?
V-cycle only N/A 46M .06 08 .13 33
Azulay & Treister (2021)  2.5M 3.14B .08 A2 29 98
Explicit model 360K  245.8M .07 09 19 57
Implicit model 360K 245.8M .07 09 19 .59

Table 3: Runtime of encoding slowness models. The runtime cost in seconds of applying the encoder
to a slowness model of various grid sizes. The cost measurements are averaged over 100 random

slowness models. All standard deviations are too insignificant to list.

Encoder Params. FLOPs Runtime avg. (s)

Test grid size 5122 1K? 2K? 4K?
Azulay & Treister (2021) 1.9M 5.9B .003 .01 .041 .17
Ours 1.2M 504M  .001 .003 .013 .052
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