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Abstract001

The ever-increasing computational demands002
and deployment costs of large language models003
(LLMs) have spurred numerous compressing004
methods. Compared to quantization and un-005
structured pruning, SVD compression offers006
superior hardware compatibility and theoreti-007
cal guarantees. However, existing SVD-based008
methods focus on the overall discrepancy be-009
tween the original and compressed matrices010
while overlooking the protection of critical011
components within the matrix, which leads to012
inferior performance in the compressed mod-013
els. This paper proposes a dual-level impor-014
tance protection mechanism to enhance SVD-015
based compression methods: (1) local impor-016
tance protection: preserving the most criti-017
cal singular vectors within each weight matrix018
through channel-weighted data whitening; and019
(2) global importance protection: enabling less020
important layers to bear a greater portion of the021
compression burden through either a heuristic022
or optimization-based approach, thereby min-023
imizing the impact of compression on criti-024
cal layers. Extensive experiments demonstrate025
that DipSVD outperforms existing SVD-based026
compression approaches across multiple bench-027
marks, achieving superior model performance028
especially at high model compression ratios.029

1 Introduction030

While Large Language Models (LLMs) demon-031

strate remarkable capabilities across diverse natural032

language tasks such as multi-round conversation033

(Chen et al., 2023; Long, 2023) and logical rea-034

soning (Creswell et al., 2022; Duan et al., 2024;035

Pan et al., 2023), the ever-increasing model scales036

impose severe computational burdens (Zhou et al.,037

2024; Wang et al., 2024a). This has spurred in-038

tensive research into LLM-specific compression039

techniques, including quantization (Frantar et al.,040

2022; Lin et al., 2024), parameter pruning (Men041

et al., 2024; Ma et al., 2023; Kim et al., 2024; Song042

Method Local Importance Global Importance Coupling Modeling

FWSVD ✓ Row-wise Fisher weighting X X

ASVD X ✓ Sensity-based Truncation Rank Searching X

SVD-LLM X X X

Ours ✓ Channel-weighted Data Whitening ✓ Layer-Specific Compression ✓ Cross-Hierarchy Joint Optimization

Table 1: Comparison of existing SVD-based methods.

et al., 2024; Ding et al., 2025), and knowledge dis- 043

tillation (Gu et al., 2023; Hsieh et al., 2023). While 044

quantization and pruning require specialized hard- 045

ware support and costly retraining, low-rank de- 046

composition methods like Singular Value Decom- 047

position (SVD) offer hardware-agnostic compres- 048

sion through dense matrix operations. Moreover, 049

the KV cache of LLMs compressed via SVD at 050

runtime can also be reduced (Wang et al., 2024b). 051

Despite these advantages, existing SVD-based 052

compression methods are undermined by their fail- 053

ure to holistically consider both local importance 054

(e.g., intra-layer channel sensitivity) and global 055

importance (e.g., layer-wise heterogeneity) dur- 056

ing matrix factorization (as shown in Tab.1): (1) 057

Globally-aware methods like ASVD (Yuan et al., 058

2023) dynamically allocate compression ratios 059

across layers but retain standard SVD decompo- 060

sition within each layer, risking excessive pruning 061

of sensitive local features. (2) Locally-aware meth- 062

ods such as FWSVD (Hsu et al., 2022) weight 063

intra-layer channels but ignore global disparities. 064

In LLMs, where layers with same structure have 065

different roles (Zhang et al., 2024), uniform com- 066

pression across these heterogeneous layers leads 067

to suboptimal efficiency. (3) Isotropic methods 068

including SVD-LLM (Wang et al., 2024b) ap- 069

ply homogeneous compression without importance 070

weighting at either level and inevitably degrade the 071

performance-efficiency trade-offs. Critically, no 072

existing work jointly optimizes global and local 073

importance during SVD decomposition—a gap we 074

empirically prove to be detrimental under aggres- 075

sive compression. 076

In this paper, we propose DipSVD, a Dual- 077

1



importance protected SVD-based compression078

method. Specifically, our approach introduces:079

(1) Local Importance Protection: By employing080

channel-weighted data whitening, this method pre-081

serves the most importance singular vectors in the082

weight matrix, while allowing less important sin-083

gular vectors to bear a greater portion of the com-084

pression burden. (2) Global Importance Protection:085

Through either an optimization-based approach or086

a heuristic method derived from layer-wise gradient087

sensitivity analysis, we automatically determine the088

optimal layer-specific compression ratios, thereby089

protecting the most critical layers of the model and090

allocating more compression burden to less impor-091

tance layers. Through Pearson correlation analy-092

sis, we verify that the heuristic compression ratios093

closely align with those obtained from Bayesian094

optimization, while simultaneously reducing com-095

putation overhead.096

We conduct extensive experiments to evaluate097

the effectiveness of our DipSVD method, bench-098

marking against three SVD-based compression099

methods across five LLMs of varying architectures100

and scales. Our evaluation encompasses both zero-101

shot task performance and perplexity metrics under102

identical experimental conditions. Experimental103

results demonstrate the superiority of DipSVD in104

terms of both zero-shot task performance and gen-105

eration quality. Additionally, our ablation studies106

show that with one of the two key components of107

DipSVD alone, it still outperforms state-of-the-art108

SVD-based compression methods under different109

compression ratios.110

The contributions of this study are summarized111

as:112

• We propose DipSVD, a novel compression113

framework for LLMs that explicitly integrates114

both local and global importance into the SVD115

process, aiming to preserve model integrity116

and task performance.117

• To implement this framework, we (i) intro-118

duce an importance-aware whitening mecha-119

nism to efficiently estimate compression loss120

while emphasizing local importance, and (ii)121

develop two strategies for global importance122

modeling: a high-performance Bayesian opti-123

mization method and a lightweight heuristic-124

based alternative.125

• Extensive experiments demonstrate that126

DipSVD effectively improves on-device in-127

ference efficiency while maintaining superior 128

performance across seven diverse zero-shot 129

tasks and perplexity benchmarks. 130

2 Related Work 131

2.1 Large Language Model Compression 132

To mitigate the computational and memory de- 133

mands of LLMs, researchers have proposed mul- 134

tiple compression techniques such as quantiza- 135

tion, unstructured pruning, structured pruning and 136

knowledge distillation. Although these methods 137

have demonstrated practical effectiveness, each has 138

its own limitations. Quantized methods like GPTQ 139

(Frantar et al., 2022), AWQ (Lin et al., 2024), 140

and SmoothQuant (Xiao et al., 2023) enable low- 141

bit inference but often sacrifice accuracy or hard- 142

ware efficiency. Unstructured pruning methods like 143

SparseGPT (Frantar and Alistarh, 2023), Wanda 144

(Sun et al., 2023) and GBLM-Pruner (Das et al., 145

2023) can remove 50–75% of weights with reason- 146

able accuracy, though their practical speedups on 147

general-purpose hardware remain limited. While 148

structured pruning methods (Chen et al., 2021; Ma 149

et al., 2023; An et al., 2024) achieve hardware ac- 150

celeration through removing entire architectural 151

components, they suffer from substantial accuracy 152

loss under aggressive pruning. Recent knowledge 153

distillation methods such as GKD (Agarwal et al., 154

2023) and DistiLLM (Ko et al., 2024) compress 155

auto-regressive models into smaller students, but 156

require substantial computation and retraining. Un- 157

like these methods, low-rank approximation based 158

on Singular Value Decomposition (SVD) offers an 159

efficient alternative, requiring no retraining while 160

maintaining hardware compatibility. 161

2.2 Low-rank Decomposition 162

SVD compression is a widely used technique to 163

reduce matrix size by decomposing the weight ma- 164

trix and truncating smaller singular values (Kim 165

et al., 2015). Specifically, FWSVD (Hsu et al., 166

2022) incorporates Fisher information to prioritize 167

important parameters, better maintaining predic- 168

tion accuracy. ASVD (Yuan et al., 2023) scales the 169

weight matrix based on activation distributions and 170

adjusts the compression ratio layer-wise, allowing 171

performance preservation at moderate compression 172

ratios without retraining. SVD-LLM (Wang et al., 173

2024b) introduces truncation-aware data whiten- 174

ing and closed-form layer-wise parameter updates, 175
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Figure 1: Overview of DipSVD.

significantly improving the balance between com-176

pression efficacy and inference speed.177

However, existing SVD-based methods typically178

neglect both global and local importance consider-179

ations in model architecture. The failure to account180

for global importance, as evidenced by varying181

layer-wise compression sensitivity, leads to subop-182

timal rank selection and significant performance183

degradation under high compression ratios (Ding184

et al., 2025). Concurrently, ignoring local impor-185

tance, manifested through unequal channel contri-186

butions to model outputs, may inadvertently prune187

structurally critical channels and cause substantial188

accuracy deterioration.189

3 Method190

Fig.1 provides an overview of DipSVD. Follow-191

ing the standard procedure of post-training LLM192

compression methods, DipSVD first uses a ran-193

dom set of sentences as calibration data to gener-194

ate activation for local importance protection and195

layer whitening. Specifically, DipSVD selectively196

emphasize important channels in the whitening197

transformation, which not only ensures a direct198

mapping between singular values and compression199

loss, but also improves structural retention during200

compression. To preserve global importance of201

LLMs, DipSVD groups the weight matrices across202

by Transformer layer in the original LLM. For203

each Transformer layer, DipSVD assigns a unique204

compression ratio which computed through Bayes205

Optimization or Heuristic-based approach. Lastly,206

DipSVD applies the layer-specific compression ra-207

tios to the weight matrix and performs SVD to208

truncate the weight matrices to compress the LLM.209

The following subsections provide a detailed de-210

scription of each protection method and their syn-211

ergistic integration. Pseudocode is provided in Ap-212

pendix.A. 213

3.1 Local Importance Protection 214

3.1.1 Channel-weighted Whitening 215

To preserve structurally important channels during 216

whitening, we propose an importance-aware trans- 217

formation that adapts to the second-order statistics 218

of the input. Let X ∈ Rm×n denote a data matrix 219

with m samples and n feature channels. 220

We assess the structural importance of each chan- 221

nel by evaluating how much it contributes to the 222

overall sample-level second-order structure. Specif- 223

ically, for the j-th feature channel xj = X:,j ∈ Rm, 224

we define its importance as: 225

αj =
√
xTj (XXT )xj . (1) 226

Channels with larger αj values are considered more 227

significant, as they exert a stronger influence on the 228

global sample structure encoded in XXT . Geomet- 229

rically, this expression can be viewed as the magni- 230

tude of the projection of channel vector xj onto the 231

principal subspace spanned by the data samples. In 232

other words, α2
j reflects how well the direction xj 233

aligns with the dominant variance structure in the 234

sample space. Channels with high alignment are 235

thus deemed structurally important and are priori- 236

tized for preservation in the subsequent whitening 237

step. 238

To enhance the preservation of such channels 239

during whitening, we introduce a diagonal scaling 240

matrix D ∈ Rn×n, defined by: 241

Djj =

{
a, if αj is among the top p% values,
1, otherwise,

(2) 242

with a > 1. This results in a reweighted input 243

X̃ = XD, where structurally important channels 244

are selectively amplified. 245
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As a preparatory step for whitening, we compute246

the second-order structure of X̃ through the matrix247

product:248

X̃T X̃ = DTXTXD. (3)249

Applying singular value decomposition, we express250

this matrix as X̃T X̃ = UX̃ΣX̃UT
X̃

, where UX̃ ∈251

Rn×n is orthogonal and ΣX̃ is diagonal with non-252

negative entries. We then construct the whitening253

matrix:254

S = Σ
−1/2

X̃
UT
X̃
, (4)255

which yields the final whitened output as X̂ =256

X̃S = XDS. This process results in decorrelated,257

variance-normalized features, while maintaining258

the structural contributions of high-importance259

channels identified through the original covariance.260

3.1.2 Impact of Whitening on Truncation261

The channel-weighted whitening operation ampli-262

fies the contributions of important channels while263

ensuring that the compression loss is directly re-264

lated to the singular values of the weight matrix,265

which is critical for minimizing the performance266

degradation caused by compression. In the follow-267

ing, we provide a theoretical derivation explaining268

why the whitening process guarantees a direct map-269

ping between singular values and compression loss.270

Singular Value Decomposition of Whitened271

Weight Matrix. We first perform SVD on the272

whitened weight matrix WS to obtain its decom-273

position:274

WS = UΣV T =
r∑

i=1

σiuiv
T
i , (5)275

where: U = [u1, u2, ..., ur] contains the left sin-276

gular vectors ui ∈ Rn, Σ = diag(σ1, σ2, ..., σr)277

contains the singular values in descending order,278

V = [v1, v2, ..., vr] contains the right singular vec-279

tors vi ∈ Rm, r is the rank of WS.280

Single Singular Value Truncation. When trun-281

cating the i-th singular value σi of WS, the com-282

pression loss Li is given by:283

Li = ∥WX̃ −W ′X̃∥F
= ∥(WS − SVD(WS))S−1X̃∥F
= ∥σiuivTi S−1X̃∥F .

(6)284

Leveraging the orthonormality of ui and vi285

(i.e., uTi ui = vTi vi = 1), the whitening property286

S−1X̃X̃T (S−1)T = I , and the invariance of the287

Frobenius norm under orthogonal transformations, 288
we obtain: 289

Li = σi

[
trace

(
vTi S

−1X̃X̃T (S−1)T vi
)]1/2

= σi

[
vTi · I · vi

]1/2
= σi.

(7) 290

This shows that truncating a single singular value 291

results in a compression loss equal to that singular 292

value. 293
Multiple Singular Value Truncation. When 294

truncating the smallest r − m singular values 295
{σm+1, . . . , σr} of WS, the total compression loss 296

is defined as the output difference on input X̃: 297

L =

∥∥∥∥∥
r∑

i=m+1

σiuiv
T
i S

−1X̃

∥∥∥∥∥
F

=

√√√√ r∑
i=m+1

σ2
i . (8) 298

In summary, truncating smaller singular values 299

minimizes both the compression loss and approxi- 300

mation error, where the total impact is determined 301

by the root-sum-square of the truncated singular 302

values. The whitening operation ensures this direct 303

correspondence between singular values and model 304

performance. 305

3.2 Global Importance Protection 306

While local importance protection effectively pre- 307

serves critical channels within individual layers, 308

a key challenge lies in ensuring that globally im- 309

portant layers are also adequately protected. To 310

this end, we propose two compression strategies 311

based on global layer-wise importance, which allo- 312

cate different compression ratios to different layers 313

according to their relative significance. 314

3.2.1 Bayesian Optimization for 315

Layer-Specific Compression 316

For scenarios where computational resources are 317

abundant and the highest possible performance is 318

desired, Bayesian optimization can be employed 319

to directly optimize the global compression ob- 320

jective. This approach searches for the optimal 321

compression ratios by maximizing the cosine simi- 322

larity between the outputs of the original and com- 323

pressed models, subject to the global compression 324

constraint: 325

max
k1,k2,...,kL

cosine_similarity
(
forig(x), fcomp(x)

)
s.t.

1

L

L∑
l=1

kl = k,
(9) 326

where kl are layer compression ratios, L is total 327

layers, and k is the target global compression ratio. 328
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3.2.2 Efficient Heuristic for Layer-Specific329

Compression330

While Bayesian optimization offers superior perfor-331

mance, it is computationally expensive and may not332

be necessary for all applications. A practical and333

efficient alternative is provided by a heuristic-based334

approach that combines two key metrics: Fisher335

Sensitivity and Effective Rank. These metrics pro-336

vide complementary insights into the importance337

and compressibility of each layer, enabling a cost-338

effective yet principled compression strategy.339

Fisher Sensitivity. Fisher Sensitivity measures340

how sensitive the model’s loss is to changes in the341

parameters of each layer. It is computed as the342

ratio of the gradient norm to the parameter norm343

for each layer, capturing the relative importance of344

the layer’s parameters. Specifically, for each layer345

l, Fisher Sensitivity can be formulated as:346

Sl =
∑

Attention

∥∇θL∥F
∥θ∥F

+
∑
MLP

∥∇θL∥F
∥θ∥F

, (10)347

where∇θL is the gradient of the loss with respect348

to the parameters θ and ∥·∥F denotes the Frobenius349

norm.350

Effective Rank. Effective Rank quantifies the351

information density of each layer’s output by an-352

alyzing its singular value distribution. For each353

layer l, we compute the singular values of its out-354

put matrix Hl ∈ RB×T×D (where B is the batch355

size, T is the sequence length, and D is the hidden356

dimension) and determine the smallest rank Rl that357

captures a predefined threshold (e.g., 95%) of the358

cumulative energy:359

Rl = min

{
k |

∑k
i=1 σi∑r
i=1 σi

≥ threshold

}
, (11)360

where σi are the singular values of Hl.361

Combining Sensitivity and Effective Rank.362

Layers with higher sensitivity values are more crit-363

ical to the model’s performance and should be pre-364

served more aggressively. Similarly, layers with365

lower effective ranks are more compressible and366

can tolerate higher compression. To assign com-367

pression ratios to each layer, we first combine the368

Fisher Sensitivity Sl and Effective Rank Rl into a369

unified importance score Ql:370

Ql = (Sl)
β · (Rl)

1−β, (12)371

where β is a hyperparameter that controls the rela-372

tive importance of sensitivity and effective rank.373

Given normalized importance scores Ql for each 374

layer and a target global compression ratio k, we 375

define the per-layer preservation ratios pl (i.e., the 376

proportion of parameters retained in each layer) 377

such that the average preservation ratio across all 378

layers equals 1 − k. The preservation ratios are 379

computed as: 380

pl =
Ql∑L
j=1Qj

· L · (1− k). (13) 381

The corresponding compression ratios are then 382

given by 1 − pl. This formulation ensures that 383

layers with higher importance scores Ql are com- 384

pressed less aggressively, while maintaining the 385

desired global compression budget. As shown in 386

Fig.2, by capturing both the sensitivity trends Sl 387

and compressibility patterns Rl, the derived preser- 388

vation ratios clearly reflect each layer’s relative 389

contribution to model performance. 390
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Figure 2: The Ql, Sl, and Rl values for each layer in
Vicuna-7B at 20% compression ratio.

3.3 Integrated Compression Process 391

DipSVD incorporates local and global significance 392

protection mechanisms into compression: 393

Step 1: Layer Whitening. For each layer, per- 394

form data whitening using the matrix X̃T X̃ and 395

SVD, as described in Sec.3.1.1. 396

Step 2: Layer-Specific Compression Ratios. 397

Use Bayesian optimization (or the heuristic-based 398

approach) to determine the optimal compression 399

ratios k1, k2, . . . , kL for each layer, as described in 400

Sec.3.2. 401

Step 3: SVD Low-Rank Approximation. For 402

each layer l, apply the compression ratio kl to the 403

weight matrix Wl using SVD-based low-rank ap- 404

proximation: 405

1) Perform SVD on the whitened weight matrix 406

WlS: 407

WlS = UlΣlV
T
l , (12) 408
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Model Method WikiText-2 PTB C4 Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA Average

LLaMA-7B

ASVD 95.268 200.937 86.269 0.186 0.379 0.557 0.333 0.242 0.607 0.218 0.360

FWSVD 33.001 53.587 38.240 0.186 0.507 0.572 0.343 0.242 0.632 0.217 0.386

SVD-LLM 9.526 28.967 26.390 0.242 0.509 0.570 0.352 0.269 0.630 0.227 0.400

Ours 9.427 22.270 19.909 0.242 0.602 0.640 0.405 0.296 0.661 0.230 0.440

Vicuna-7B

ASVD 91.388 415.615 136.157 0.158 0.335 0.503 0.287 0.208 0.556 0.205 0.322

FWSVD 43.690 239.318 64.753 0.172 0.459 0.545 0.312 0.224 0.613 0.221 0.364

SVD-LLM 12.416 124.506 39.528 0.244 0.506 0.570 0.353 0.270 0.629 0.228 0.400

Ours 12.144 81.089 28.837 0.248 0.573 0.597 0.384 0.293 0.659 0.232 0.427

DeepSeek-7B

ASVD 85.169 87.709 79.853 0.154 0.390 0.516 0.312 0.213 0.610 0.210 0.344

FWSVD 68.416 99.775 118.319 0.142 0.406 0.551 0.296 0.194 0.595 0.220 0.344

SVD-LLM 10.841 30.747 32.622 0.260 0.589 0.609 0.384 0.283 0.670 0.232 0.432

Ours 9.895 20.977 22.558 0.276 0.628 0.631 0.415 0.312 0.700 0.239 0.457

Table 2: Performance of LLaMA-7B, Vicuna-7B and Deepseek-7B models compressed by DipSVD and baselines
at 30% compression ratio, evaluated on three language modeling datasets (measured by perplexity) and seven
classification datasets (measured by average accuracy). The best performance for each case is marked in bold.

where Ul ∈ Rn×r and Vl ∈ Rm×r are orthogonal409

matrices, and Σl ∈ Rr×r is a diagonal matrix con-410

taining the singular values σ1, σ2, . . . , σr of WlS.411

2) Truncate the smallest singular values in Σl412

based on kl, obtaining the truncated diagonal ma-413

trix Trunc∗(Σl).414

3) Construct the compressed weight matrix W ′
l :415

W ′
l = Ul × Trunc∗(Σl)× V T

l × S−1. (13)416

4) To further reduce memory usage, replace the417

original weight matrix Wl with two low-rank ma-418

trices Wu,l ∈ Rn×r̃ and Wv,l ∈ Rr̃×m:419

Wu,l = Ul × [Trunc∗(Σl)]
1/2, (14)420

421
Wv,l = [Trunc∗(Σl)]

1/2 × V T
l × S−1, (15)422

where r̃ is the rank after truncation.423

4 Experiments424

4.1 Experimental setup425

Foundation LLMs. We conducted experiments on426

existing popular LLMs at various scales, including427

LLaMA-{7B, 13B} (Touvron et al., 2023), Vicuna-428

{7B, 13B}-v1.5 (Chiang et al., 2023) and Deepseek-429

7B (DeepSeek-AI et al., 2025).430

Baselines. We compared DipSVD with several431

previous SVD-based compression methods includ-432

ing FWSVD (Hsu et al., 2022), ASVD (Yuan et al.,433

2023) and SVD-LLM (Wang et al., 2024b).434

Benchmarks. We measure zero-shot accuracy435

on commonsense reasoning datasets (i.e., PIQA436

(Bisk et al., 2020), HellaSwag (Zellers et al., 2019),437

WinoGrande (Sakaguchi et al., 2021), ARC-easy438

(Clark et al., 2018), ARC-challenge (Clark et al.,439

2018), MathQA(Amini et al., 2019) and Open- 440

bookQA (Mihaylov et al., 2018a)) using the lm- 441

evaluation-harness package (Gao et al., 2024). To 442

assess sequence prediction performance, we re- 443

port perplexity for DipSVD and the baselines on 444

WikiText-2 (Merity et al., 2016), PTB (Marcus 445

et al., 1993) and C4 (Mihaylov et al., 2018b). 446

Implementation Details. To ensure a fair com- 447

parison, we followed ASVD (Yuan et al., 2023) 448

to randomly select 256 samples from WikiText-2 449

as the calibration data. All of our experiments are 450

conducted on NVIDIA A100 GPUs. 451

4.2 Overall Performance 452

We evaluate the overall performance of DipSVD 453

from three aspects: (1) performance on differ- 454

ent LLMs, (2) performance on LLMs with larger 455

scales, (3) performance under different compres- 456

sion ratios. Detailed results, contents generated 457

by the compressed LLMs, and an analysis of the 458

computational gains achieved by our method are 459

provided in the Appendix. 460

Performance on different LLMs. We first com- 461

pare the zero-shot task performance and perplexity 462

metrics between DipSVD and the baseline on three 463

different LLMs, including LLaMA-7B, Vicuna-7B 464

and DeepSeek-7B under 30% compression ratio. 465

As shown in Tab.2, DipSVD consistently outper- 466

forms the baselines across all three LLMs and 467

all ten datasets. Specifically, we achieve the low- 468

est perplexity (9.427) on LLaMA-7B model. For 469

downstream tasks, our method attains the highest 470

average accuracy (0.457 vs. SVD-LLM’s 0.432 on 471

DeepSeek-7B), with notable gains on reasoning- 472

heavy benchmarks like ARC-Challenge (+4.3%). 473
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These results collectively show that DipSVD ef-474

fectively reduces model size and complexity while475

better preserving model performance compared to476

existing methods. The consistent improvements477

across different model architectures further demon-478

strate the robustness and generalizability of our479

proposed method.480

Model Method WikiText-2 PTB C4 Average

LLaMA-13B

ASVD 17.648 32.963 20.866 0.425

FWSVD 12.963 22.123 18.509 0.383

SVD-LLM 7.618 17.823 18.825 0.449

Ours 7.697 15.681 14.614 0.472

Vicuna-13B

ASVD 28.309 637.196 39.799 0.401

FWSVD 32.715 310.304 47.408 0.383

SVD-LLM 9.616 145.715 29.204 0.449

Ours 9.070 49.948 19.203 0.458

Table 3: Perplexity on three language modeling datasets
and average accuracy of seven datasets of LLaMA-13B
and Vicuna-13B at 30% compression ratio.

20 30 40 50
Compression Ratio(%)

101

102

103

104

Pe
rp

le
xi

ty
 (l

og
 sc

al
e)

WikiText-2

20 30 40 50
Compression Ratio(%)

0.28

0.32

0.36

0.40

0.44

0.48

Ac
cu

ra
cy

Zero-shot Tasks

Model Performance Across Different Compression Ratios
FWSVD ASVD SVD-LLM Ours

Figure 3: Perplexity on WikiText-2 and average zero-
shot accuracy of Vicuna-7B compressed by DipSVD
and baselines under 20% to 50% compression ratios.

Performance on LLMs with larger scales. We481

compare the performance between DipSVD and482

the baselines on LLaMA-13B and Vicuna-13B un-483

der 30% compression ratio on ten datasets in Tab.3.484

Specifically, our DipSVD method reduce PTB per-485

plexity by 65.7% compared to SVD-LLM (49.948486

vs 145.715) for Vicuna-13B. The results demon-487

strate that our method effectively scales to LLMs488

while maintaining superior capability preservation489

compared to existing compression methods.490

Performance under Different Compression491

Ratios. We compare the performance between492

DipSVD and the baselines on Vicuna-7B un-493

der compression ratio ranging from 20% to 50%494

on WikiText-2 datasets and seven classification495

datasets. As shown in Fig.3, DipSVD consistently496

outperforms all baselines, and the performance gap497

gain with the compression ratio increases.498

4.3 Performance of heuristics method 499

The heuristic method also serves as a key strat- 500

egy for global importance preservation. Tab.4 501

compares perplexity scores across SVD-LLM, 502

Bayesian optimization method, and the heuris- 503

tic method. The results demonstrate that the 504

heuristic method (DipSVD_H) significantly out- 505

performs SVD-LLM across multiple compression 506

ratios on all three datasets. While the Beyesian op- 507

timization method (DipSVD_B) achieves the best 508

performance with large computational overheads, 509

DipSVD_H remains competitive while offering a 510

practical trade-off between performance and effi- 511

ciency. 512

Compression Ratio Method WikiText2 PTB C4

0.2
SVD-LLM 9.942 71.366 23.358
DipSVD_B 9.952 56.869 19.722
DipSVD_H 9.988 54.380 19.950

0.3
SVD-LLM 12.416 124.506 39.528
DipSVD_B 12.144 81.089 28.837
DipSVD_H 12.378 82.872 30.748

0.4
SVD-LLM 18.346 261.100 77.706
DipSVD_B 17.085 142.752 49.183
DipSVD_H 17.290 168.404 54.794

0.5
SVD-LLM 35.569 615.591 185.780
DipSVD_B 27.807 375.093 111.996
DipSVD_H 30.180 390.512 118.873

Table 4: Heuristics result of compressed Vicuna-7B.
DipSVD_B represents compression model by Bayesian
optimization method. DipSVD_H represents compres-
sion model by the heuristic method.

Connection with Bayesian optimization. In 513

the experiments, the heuristic method showed the 514

strongest correlation with the optimization-based 515

method when β = 0.25. Therefore, we uniformly 516

set β to 0.25. Tab.5 shows the Pearson correla- 517

tion coefficient between the layer-wise compres- 518

sion rates obtained by heuristic and Bayesian op- 519

timization across different target compression ra- 520

tios. The correlation coefficients consistently ex- 521

ceed 0.64, indicating strong agreement between the 522

two methods at all compression levels. 523

Compression Ratio 0.2 0.3 0.4 0.5

Pearson Correlation Coefficient 0.645 0.669 0.711 0.706

Table 5: Pearson correlation coefficients between heuris-
tic and Bayesian optimization methods across different
compression ratios.
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4.4 Ablation Study524

4.4.1 Hyperparametric Ablation Experiment525

We conducted ablation experiments to evaluate526

the impact of two hyperparameters in DipSVD:527

weight (importance amplification factor) and bar528

(top channel selection ratio). The results are shown529

in Fig.4. First, we isolated the effect of weight530

by testing progressive values from 0 to 150 while531

fixing bar=0.03, revealing that higher weights intro-532

duce better performance as the parameters increase533

until it remains unchanged. Next, we analyzed bar534

with values from 0 to 0.3, demonstrating that the535

performance will be better and then worse as the536

parameters increase. The optimal performance of537

both DipSVD (Step1) and DipSVD (Step1+Step2)538

can be achieved when weight=30 and bar=0.03.539
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(b) Step1: Bar Ablation (weight=30)
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(c) Step1+Step2: Weight Ablation (bar=0.03)
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(d) Step1+Step2: Bar Ablation (weight=30)

Comparative Ablation Study of Step1 and Step2 Parameters
Wikitext2 ptb c4 Mean Reference

Figure 4: Parameter ablation studies: (a) Step1 weight
ablation (bar=0.03), (b) Step1 bar ablation (weight=30),
(c) Full DipSVD weight ablation (bar=0.03), (d) Full
DipSVD bar ablation (weight=30). Dashed lines mark
reference valus (weight=30, bar=0.03).

4.4.2 Modular Sensitivity Study540

We conduct ablation studies to evaluate our541

DipSVD method by: (1) Isolating Step1 (local im-542

portance protection with uniform layer compres-543

sion ratios), (2) Isolating Step2 (global importance544

protection with uniform SVD compression) and (3)545

Combining Step1 and Step2 (full DipSVD). This546

comparison quantifies the impact of local impor-547

tance protection (Step1) and how global importance548

protection (Step2) enhances the base performance549

achieved by local compression (Step1).550

From Tab.6, we observe that: (1) Both DipSVD551

(Step1) and DipSVD (Step2) outperforms SVD-552

LLM on all datasets, confirming the effectiveness553

of our proposed local and global importance pro-554

tection; (2) The full DipSVD (Step1+Step2) fur-555

ther reduces perplexity substantially, demonstrating556

Method Hyper WikiText2 PTB C4
Vanilla None 6.7836 30.853 9.2064

SVD-LLM None 12.4212 124.6766 39.5712
DipSVD (Step1) weight 30 bar 0.03 12.2663 97.2792 34.2737
DipSVD (Step2) None 12.1868 94.9336 31.7530

DipSVD (Step1+Step2) weight 30 bar 0.03 12.1578 80.6209 28.8224

Table 6: Perplexity of compressed Vicuna-7B: DipSVD
(Step1) preserves local importance only, DipSVD
(Step2) preserves global importance only, while
DipSVD (Step1+Step2) preserves both aspects.
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Figure 5: Ablation study of calibration datasets: (a)
Perplexity with varying sizes of Wikitext2 calibration
data, (b) Perplexity with different calibration datasets.

the synergistic effect of combining both protection 557

strategies in SVD compression. 558

4.4.3 Impact of Calibration Data. 559

We examine the impact of calibration data used 560

for channel-weighted data whitening. Fig.5 shows 561

the performance of compressed Vicuna-7B when 562

changing the choice and size of the calibration data. 563

The results show that increased context size will 564

improve the final performance of the compression 565

model to a certain extent, and will work best when 566

the test set is consistent with the calibration set. 567

5 Conclusion 568

In this paper, we propose DipSVD, a compression 569

framework that jointly considers both local and 570

global importance factors in large languge mod- 571

els (LLMs) to achieve more efficient and balanced 572

compression. Specifically, we introduce a channel- 573

weighted data whitening technique to preserve the 574

most critical singular vectors within each weight 575

matrix and develop two strategies for determining 576

layer-specific compression ratios, enabling less im- 577

portant layers to absorb a greater portion of the 578

compression burden. Extensive experiments across 579

10 datasets, 5 models from 3 LLM families, and 4 580

compression scales consistently demonstrate that 581

DipSVD achieves superior performance compared 582

to existing SVD-based compression methods. 583
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Limitations584

While DipSVD demonstrates strong performance585

across various models, datasets, and compression586

scales, several limitations remain.587

First, the channel-weighted data whitening pro-588

cedure employs a fixed amplification factor across589

all layers and channels, which may not optimally590

adapt to the varing statistical properties of different591

layers or channel distributions. A more dynamic592

or data-driven adjustment of the weighting factors593

could potentially further enhance compression per-594

formance.595

Second, the assignment of layer-wise compres-596

sion ratios in DipSVD relies on handcrafted impor-597

tance metrics based on Fisher sensitivity and ef-598

fective rank. While this design is computationally599

efficient and effective in practice, it may not fully600

capture complex inter-layer dependencies or fea-601

ture interactions. Developing more sophisticated602

global importance modeling techniques could po-603

tentially lead to further improvements.604

Nevertheless, despite these limitations, DipSVD605

consistently outperforms existing SVD-based com-606

pression methods across diverse evaluation settings,607

demonstrating its robustness and practical effective-608

ness.609
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A Pseudocode of DipSVD807

Algorithm 1 shows the pseudocode of DipSVD.808

Before compression, DipSVD randomly collects a809

small amount of sentences as the calibration data810

C, it then runs the truncation-aware data whitening811

process as shown in Algorithm 2 to obtain the set of812

whitening matrix SetS for the weight to compress.813

After that, it runs the SVD and truncation with814

SetS on each weight matrix in the LLM. Before815

formally compressing the model, it is necessary816

to use heuristic methods or Bayesian optimization817

methods to obtain the compression ratios of differ-818

ent layers, as shown in Algorithm 3.819

B Analysis of model computational820

complexity821

Computational complexity mainly depends on the822

model structure, parameter quantity, sequence823

length and hardware implementation. This section824

takes Vicuna-7b model as an example to discuss825

the computational gain brought by the DipSVD826

method at a 40% compression ratio.827

The DipSVD method achieves significant com-828

putational savings in Vicuna-7B through structured829

low-rank approximation of weight matrices. For a830

given weight matrix W ∈ Rm×n, we decompose831

it via truncated SVD as W ≈ UlΣkV
T
k , where832

k ≪ min(m,n) is the target rank detemined by833

Bayesian optimization under a 60% parameter bud-834

get constraint (mk+kn = 0.6mn). This decompo-835

sition transforms the original matrix multiplication836

WX (computational complexity CWX = m ·n ·p )837

into a two-step operation: (1) X̂ = ΣkV
T
k X (knp838

FLOPs) followed by (2) UkX̂ (mkp FLOPs), yield-839

ing total complexity CUV = k · p(m+ n). Substi-840

tuing the optimal rank k = 0.6mn
m+n derived from the841

parameter constraint, we obtain a theoetical FLOPs842

reduction ratio of r = 1− CUV
CWX

= 40%.843

When applied to Vicuna-7B’s 32-layer Trans-844

former architecture, this approach demonstrates845

three key advantages: (1) The self-attention mod-846

ule’s Q/K/V projections (original 3Ld2 FLOPs)847

reduce to 2Ldk operations, while the FFN lay- 848

ers’ dense matrices (8Ld2 FLOPs) compress to 849

4Ldk operations, where d = 4096 and k ≈ 0.6d. 850

(2) The 40% parameter reduction decreases mem- 851

ory bandwidth pressure, with model size shrink- 852

ing from 14GB to 8.4GB in FP16 format. Fig.6 853

presents the throughput and inference speed of 854

Vicuna-7B model compressed by DipSVD across 855

varying batch sizes and sequence lengths. As antic- 856

ipated, higher compression ratios yield measurable 857

improvements in both throughput and inference 858

speed. 859
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Figure 6: Inference efficiency on Vicuna-7B under dif-
ferent batch sizes and sequence lengths.

C Supplementary Experiment Results 860

C.1 Detailed performance 861

Tab.7–11 present a comprehensive comparison be- 862

tween our proposed DipSVD method and existing 863

baselines across five foundational models. The re- 864

sults clearly demonstrate the effectiveness of our 865

approach, with evaluations on three language gen- 866

eration datasets (measured by perplexity) and seven 867

classification tasks (measured by accuracy). The 868

consistent superiority of DipSVD across all bench- 869

marks highlights its robustness and generalization 870

capability. 871

C.2 Contents Generated from the compressed 872

model 873

In this section, we present sample outputs gener- 874

ated by our compressed LLaMA-7B model using th 875

proposed DipSVD method at varying compression 876

ratios. As shown in Tab.12, our DipSVD method 877

can maintain high-quality text generation across 878

different compression levels, showcasing its robust- 879

ness in model compression. 880
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Algorithm 1 Pseudocode of DipSVD
Input: Original model M , Target compression ratio R
Output: Compressed model M ′

Procedure: DipSVD(M , R)
1: Randomly collect several sentences as the calibration data C
2: S ← CHANNEL-WEIGHTED DATA WHITENING(M,C) ▷ Extract the whitening matrix
3: {k1, k2, ..., kL} ← LAYER-SPECIFIC COMPRESSION(M) ▷ Extract the layer specific

compression ratios
4: for each layer l ∈ {1, ..., L} do
5: Wl ← GetLayerWeights(M, l) ▷ Obtain the set of weights in M to compress
6: Ul,Σl, Vl ← SVD(WlSl) ▷ Apply singular value decomposition on W

7: kl ← argmink

(∑k
i=1 σ

2
i∑

σ2
i
≥ kl

)
8: Σ′

l ← diag(σ1, ..., σkl , 0, ..., 0) ▷ Truncate the smallest singular values in Σ
9: W ′

l ← UlΣ
′
lVlS

−1
l

10: Replace Wl with W ′
l in M ′

11: end for
12: return M ′

End Procedure

Algorithm 2 Pseudocode of Channel-weighted data whitening
Input: Original model M ; Calibration Data C; Diagonal scaling matrix D
Output: Set of whitening matrices in M for the weight to compress SetS
Procedure: CHANNEL-WEIGHTED DATA WHITENING(M ,C)

1: SetS ← ϕ ▷ Initialize the set of whitening matrices
2: SetW ←M ▷ Obtain the set of weights in M to compress
3: for W ∈ SetS do
4: X ←M(W,C) ▷ Obtain the input activation of the weight matrix W
5: X̃T X̃ ← DTXTXD ▷ Obtain the input activation of the weight matrix W
6: S ← SVD(X̃T X̃) ▷ Apply singular value decomposition on X̃T X̃
7: Σ1 ← Trunc.(Σ) ▷ Truncate the smallest singular values in Σ
8: SetS ← S

⋃
SetS ▷ Store the whitening weight matrix in the set

9: end for
10: return SetS
End Procedure
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Algorithm 3 Pseudocode of Layer-specific Compression
Input: Original model M ; Input activation x; Target compression ratio R;
Parameters: Global importance preservation method m ∈ {Bayesian,Heuristic}, Energy threshold
τ ∈ (0, 1) (default: 0.95), Trade-off parameter β ∈ [0, 1] (default: 0.3)
Output: A list of allocated compression ratios {k1, ..., kL}

1: Randomly collect several sentences as the calibration data C
2: if m = Heuristic then
3: S ← FisherSensitivity(M,C) ▷ Algorithm 4
4: U ← EffectiveRank(M,C, τ) ▷ Algorithm 5
5: Normalize metrics: S̃ ← S−min(S)

max(S)−min(S) + ϵ Ũ ← U−min(U)
max(U)−min(U) + ϵ

6: Compute combined importance: W ← S̃β ◦ Ũ1−β

7: Allocate ratios: {k1, ..., kL} ← ProportionalAllocation(W,R)
8: else
9: Initialize Bayesian Optimizer: B ← BO(domain = [0.25, 1]L, acq = EI)

10: for t← 1 to T do
11: rt ← B.query()
12: M ′ ← Compress(M, rt)
13: score← −Perplexity(M ′, C)
14: B.update(rt, score)
15: end for
16: {k1, ..., kL} ← B.best_params()
17: end if
18: return {k1, ..., kL}

Algorithm 4 Fisher Sensitivity Computation

1: function COMPUTEFISHERSENSITIVITY(M,C)
2: Initialize S ← 0L
3: for each batch B ⊂ C do
4: Compute gradients∇L via backpropagation
5: for each layer l ∈ {1, ..., L} do
6: sl ←

∑
p∈θl

∥∇pL∥2
∥p∥2+ϵ

7: S[l]← S[l] + sl
8: end for
9: end for

10: Apply segmented normalization to S
11: return S−1 ▷ Inverse sensitivity
12: end function
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Algorithm 5 Effective Rank Computation

1: function COMPUTEEFFECTIVERANK(M, C, τ )
2: Initialize U ← 0L
3: for each batch B ⊂ C do
4: Get hidden states {h1, ..., hL}
5: for each layer l ∈ {1, ..., L} do
6: Hl ← reshape(hl, [−1, dl])
7: {σi} ← SVD(Hl)

8: k ← min{k′|
∑k′

i=1 σ
2
i ≥ τ

∑
σ2
i }

9: U [l]← U [l] + k
10: end for
11: end for
12: U ← U

|C|/batch_size
13: return z-score(U)
14: end function

Radio Method WikiText-2 PTB C4 Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA Average

0.8

ASVD 8.759 12.705 10.833 0.296 0.671 0.694 0.505 0.340 0.750 0.233 0.498
FWSVD 9.280 14.525 11.880 0.266 0.679 0.646 0.472 0.329 0.742 0.228 0.480

SVD-LLM 7.894 16.848 16.118 0.258 0.623 0.652 0.433 0.310 0.687 0.234 0.457
Ours 7.949 15.597 14.074 0.268 0.633 0.648 0.454 0.328 0.710 0.238 0.468

0.7

ASVD 95.268 200.937 86.269 0.186 0.379 0.557 0.333 0.242 0.607 0.218 0.360
FWSVD 33.001 53.587 38.240 0.186 0.507 0.572 0.343 0.242 0.632 0.217 0.386

SVD-LLM 9.526 28.967 26.390 0.242 0.509 0.570 0.352 0.269 0.630 0.227 0.400
Ours 9.427 22.270 19.909 0.242 0.602 0.640 0.405 0.296 0.661 0.230 0.440

0.6

ASVD 9111.411 19425.612 8676.642 0.158 0.286 0.486 0.267 0.210 0.538 0.204 0.307
FWSVD 199.142 332.344 255.026 0.158 0.348 0.526 0.275 0.195 0.571 0.211 0.326

SVD-LLM 13.854 63.864 57.281 0.208 0.455 0.566 0.323 0.240 0.598 0.217 0.372
Ours 12.760 46.951 34.352 0.222 0.503 0.613 0.358 0.277 0.640 0.224 0.405

0.5

ASVD 37479.324 57294.849 37767.010 0.124 0.263 0.508 0.256 0.212 0.519 0.202 0.298
FWSVD 4622.404 8861.445 9240.634 0.124 0.277 0.508 0.260 0.207 0.535 0.210 0.303

SVD-LLM 26.864 191.380 153.840 0.160 0.361 0.540 0.288 0.207 0.570 0.216 0.334
Ours 20.983 116.404 94.796 0.192 0.382 0.559 0.306 0.223 0.590 0.229 0.354

Table 7: Overall Performance of LLama-7B.

Radio Method WikiText-2 PTB C4 Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA Average

0.8

ASVD 13.723 72.029 18.261 0.264 0.641 0.624 0.440 0.347 0.701 0.237 0.465
FWSVD 15.312 75.042 19.945 0.238 0.611 0.627 0.401 0.309 0.695 0.233 0.445

SVD-LLM 9.942 71.366 23.358 0.252 0.579 0.598 0.401 0.315 0.666 0.229 0.434
Ours 9.952 56.869 19.722 0.268 0.650 0.598 0.431 0.345 0.689 0.247 0.461

0.7

ASVD 91.388 415.615 136.157 0.158 0.335 0.503 0.287 0.208 0.556 0.205 0.322
FWSVD 43.690 239.318 64.753 0.172 0.459 0.545 0.312 0.224 0.613 0.221 0.364

SVD-LLM 12.416 124.506 39.528 0.244 0.506 0.570 0.353 0.270 0.629 0.228 0.400
Ours 12.144 81.089 28.837 0.248 0.573 0.597 0.384 0.293 0.659 0.232 0.427

0.6

ASVD 1580.427 3069.448 1735.991 0.126 0.273 0.524 0.259 0.224 0.527 0.215 0.307
FWSVD 347.362 1711.730 461.874 0.128 0.293 0.519 0.267 0.209 0.554 0.212 0.312

SVD-LLM 18.347 261.100 77.706 0.188 0.430 0.542 0.314 0.238 0.590 0.217 0.360
Ours 17.085 142.752 49.183 0.194 0.469 0.580 0.345 0.259 0.613 0.231 0.384

0.5

ASVD 22934.960 28252.915 24201.540 0.146 0.249 0.508 0.258 0.213 0.512 0.185 0.296
FWSVD 4449.084 9353.528 4421.253 0.128 0.273 0.501 0.262 0.210 0.533 0.201 0.301

SVD-LLM 35.569 615.591 185.780 0.158 0.338 0.525 0.286 0.231 0.567 0.225 0.333
Ours 27.807 375.093 111.996 0.170 0.365 0.543 0.300 0.220 0.571 0.221 0.342

Table 8: Overall Performance of Vicuna-7B.
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Radio Method WikiText-2 PTB C4 Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA Average

0.8

ASVD 12.727 17.215 16.851 0.288 0.654 0.650 0.486 0.325 0.742 0.237 0.483
FWSVD 15.578 23.550 24.258 0.238 0.617 0.643 0.411 0.274 0.714 0.242 0.448

SVD-LLM 9.128 19.106 21.004 0.286 0.636 0.650 0.431 0.330 0.711 0.243 0.470
Ours 8.805 15.890 17.732 0.290 0.665 0.663 0.450 0.342 0.721 0.256 0.484

0.7

ASVD 85.169 87.709 79.853 0.154 0.390 0.516 0.312 0.213 0.610 0.210 0.344
FWSVD 68.416 99.775 118.319 0.142 0.406 0.551 0.296 0.194 0.595 0.220 0.344

SVD-LLM 10.841 30.747 32.622 0.260 0.589 0.609 0.384 0.283 0.670 0.232 0.432
Ours 9.895 20.977 22.558 0.276 0.628 0.631 0.415 0.312 0.700 0.239 0.457

0.6

ASVD 3806.825 7580.528 4355.394 0.140 0.298 0.494 0.267 0.202 0.546 0.209 0.308
FWSVD 202.822 265.391 325.196 0.126 0.309 0.499 0.267 0.184 0.545 0.215 0.306

SVD-LLM 14.449 55.803 58.199 0.228 0.529 0.578 0.336 0.241 0.626 0.225 0.395
Ours 12.077 32.890 35.540 0.250 0.572 0.624 0.366 0.285 0.653 0.233 0.426

0.5

ASVD 64971.820 99927.992 57731.498 0.128 0.262 0.498 0.263 0.213 0.515 0.201 0.297
FWSVD 600.397 890.699 774.628 0.132 0.281 0.478 0.264 0.195 0.531 0.205 0.298

SVD-LLM 22.660 132.187 117.580 0.192 0.427 0.538 0.300 0.220 0.591 0.213 0.355
Ours 17.960 79.482 73.707 0.194 0.468 0.554 0.316 0.222 0.609 0.223 0.369

Table 9: Overall Performance of Deepseek-7B.

Radio Method WikiText-2 PTB C4 Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA Average

0.8

ASVD 6.743 10.407 9.123 0.330 0.732 0.707 0.540 0.431 0.771 0.251 0.538
FWSVD 6.938 11.231 9.499 0.312 0.737 0.696 0.518 0.393 0.769 0.258 0.526

SVD-LLM 6.575 12.194 12.811 0.302 0.683 0.684 0.470 0.356 0.725 0.265 0.498
Ours 6.649 11.383 11.418 0.306 0.681 0.692 0.490 0.369 0.734 0.258 0.503

0.7

ASVD 17.648 32.963 20.866 0.218 0.551 0.611 0.398 0.288 0.690 0.217 0.425
FWSVD 12.963 22.123 18.509 0.248 0.632 0.640 0.403 0.294 0.707 0.229 0.450

SVD-LLM 7.618 17.823 18.825 0.276 0.619 0.672 0.415 0.300 0.671 0.242 0.457
Ours 7.697 15.681 14.614 0.284 0.641 0.656 0.449 0.328 0.694 0.249 0.472

0.6

ASVD 201.027 286.850 183.898 0.148 0.336 0.518 0.293 0.197 0.579 0.215 0.327
FWSVD 45.150 75.662 64.610 0.166 0.431 0.552 0.305 0.219 0.607 0.226 0.358

SVD-LLM 9.836 34.222 33.328 0.222 0.521 0.639 0.355 0.248 0.637 0.228 0.407
Ours 9.575 25.782 21.716 0.230 0.548 0.644 0.402 0.283 0.661 0.233 0.429

0.5

ASVD 11445.274 13304.711 10897.571 0.116 0.270 0.490 0.267 0.221 0.535 0.206 0.301
FWSVD 193.531 275.487 245.409 0.126 0.304 0.518 0.270 0.176 0.550 0.213 0.308

SVD-LLM 14.984 89.288 68.417 0.194 0.420 0.582 0.314 0.224 0.588 0.220 0.363
Ours 13.526 74.449 45.166 0.192 0.447 0.603 0.333 0.229 0.612 0.229 0.378

Table 10: Overall Performance of LLama-13B.

Radio Method WikiText-2 PTB C4 Openb. ARC_e WinoG. HellaS. ARC_c PIQA MathQA Average

0.8

ASVD 10.261 135.308 14.523 0.276 0.684 0.663 0.466 0.368 0.739 0.259 0.493
FWSVD 12.636 152.403 19.540 0.230 0.657 0.624 0.412 0.312 0.717 0.237 0.456

SVD-LLM 8.035 82.811 18.269 0.314 0.687 0.671 0.456 0.378 0.727 0.264 0.500
Ours 7.892 36.405 14.225 0.306 0.666 0.674 0.471 0.357 0.718 0.262 0.493

0.7

ASVD 28.309 637.196 39.799 0.220 0.528 0.574 0.340 0.250 0.669 0.226 0.401
FWSVD 32.715 310.304 47.408 0.188 0.506 0.564 0.317 0.234 0.647 0.223 0.383

SVD-LLM 9.616 145.715 29.204 0.284 0.620 0.641 0.390 0.300 0.656 0.250 0.449
Ours 9.070 49.948 19.203 0.268 0.610 0.657 0.419 0.320 0.688 0.243 0.458

0.6

ASVD 189.392 1601.441 190.550 0.128 0.310 0.518 0.276 0.202 0.572 0.214 0.317
FWSVD 106.356 668.389 146.253 0.130 0.307 0.510 0.278 0.190 0.550 0.218 0.312

SVD-LLM 13.221 324.892 58.335 0.244 0.506 0.600 0.333 0.237 0.598 0.232 0.393
Ours 12.138 73.798 32.224 0.230 0.511 0.609 0.358 0.273 0.640 0.227 0.407

0.5

ASVD 1220.318 3922.871 1080.129 0.144 0.275 0.485 0.262 0.228 0.536 0.209 0.306
FWSVD 304.176 1475.578 395.776 0.124 0.284 0.489 0.264 0.207 0.540 0.202 0.301

SVD-LLM 23.607 699.598 140.584 0.172 0.372 0.563 0.296 0.218 0.563 0.220 0.343
Ours 18.150 148.365 71.652 0.184 0.404 0.563 0.311 0.215 0.582 0.217 0.354

Table 11: Overall Performance of Vicuna-13B.
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Score Description

What is the responsibility of the AI assistant?
1 AI assistants are responsible for understanding and responding to the user’s requests. They also

need to be able to make decisions and take action on behalf of the user. For example, if a user asks
Alexa to turn on the lights in the living room, Alexa needs to understand what “turn on” means and
then activate the light bulbs accordingly.

0.8 The AI assists you in your work. For example, if you are driving a car, it helps you to find parking
spaces. If you’re looking for a book, it shows you where the book is located.

0.7 The AI assists the player in various ways. For example, if the player has not completed a particular
task, such as collecting an item or completing a puzzle, they are prompted to do so by their AI.

0.6 How AI assistants can be used by AI researchers and AI scientists. The AI Assistant in AI has
made AI more important as AI evolves into AI for AI.

0.5 The AI assistant, known as a robot, operates autonomously in an autonomic environment. Robots
can operate autonomically and have their own autonomic system.

What is the universe? Explain this concept.
1 The Universe is everything that exists. It includes all of the planets, stars, galaxies, and other

celestial bodies in our solar system, as well as invisible elements like dark matter and dark energy.
0.8 The universe is everything that is, will be, or may be. It includes all matter, energy, antimatter, stars,

galaxies, planetary systems, interstellar gases, asteroids, comets, and nebulae.
0.7 The universe is made up of billions of galaxies, which contain hundreds of millions of stars. Each

star has its own orbit around the center of the galaxy.
0.6 The universe is a collection of galaxies bound by interstellar gases. A single galaxy may contain up

to 100 million stars, and hundreds of such galaxies exist.
0.5 The universe may not be defined solely by cosmological principles like astronomy and cosmology.

Table 12: Sample outputs generated by DipSVD of LLaMA-7B at varing compression ratios.
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