
Derivative-Free Guidance in Continuous and Discrete
Diffusion Models with Soft Value-Based Decoding

Xiner Li 1∗ Yulai Zhao 2 Chenyu Wang 3 Gabriele Scalia 4

Gokcen Eraslan 4 Surag Nair 4 Tommaso Biancalani 4 Shuiwang Ji 1

Aviv Regev 4† Sergey Levine 5† Masatoshi Uehara 4†
1Texas A&M University 2Princeton University 3MIT 4Genentech 5UC Berkeley

Abstract

Diffusion models excel at capturing the natural design spaces of images, molecules,
and biological sequences of DNA, RNA, and proteins. However, for many appli-
cations from biological research to biotherapeutic discovery, rather than merely
generating designs that are natural, we aim to optimize downstream reward func-
tions while preserving the naturalness of these design spaces. Existing methods
for achieving this goal often require “differentiable” proxy models (e.g., classi-
fier guidance) or computationally-expensive fine-tuning of diffusion models (e.g.,
classifier-free guidance, RL-based fine-tuning). Here, we propose a new method,
Soft Value-based Decoding in Diffusion models (SVDD), to address these chal-
lenges. SVDD is an iterative sampling method that integrates soft value functions,
which looks ahead to how intermediate noisy states lead to high rewards in the fu-
ture, into the standard inference procedure of pre-trained diffusion models. Notably,
SVDD avoids fine-tuning generative models and eliminates the need to construct
differentiable models. This enables us to (1) directly utilize non-differentiable fea-
tures/reward feedback, commonly used in many scientific domains, and (2) apply
our method to recent discrete diffusion models in a principled way. Finally, we
demonstrate the effectiveness of SVDD across several domains, including image
generation, molecule generation (optimization of docking scores, QED, SA), and
DNA/RNA generation (optimization of activity levels). The code is available at
https://github.com/masa-ue/SVDD.

1 Introduction
Diffusion models have gained popularity as powerful generative models. Their applications extend
beyond image generation to include natural language generation (Sahoo et al., 2024; Shi et al.,
2024; Lou et al., 2023), molecule generation (Jo et al., 2022; Vignac et al., 2022), and biological
(DNA, RNA, protein) sequence generation (Avdeyev et al., 2023; Stark et al., 2024). In each of
these domains, diffusion models have been shown to be very effective at capturing complex natural
distributions. However, in practice, we might not only want to generate realistic samples, but to
produce samples that optimize specific downstream reward functions while preserving naturalness by
leveraging pre-trained models. For example, in computer vision, we might aim to generate natural
images with high aesthetic and alignment scores (Black et al., 2023; Fan et al., 2023). In drug
discovery, we may seek to generate valid molecules with high QED/SA/docking scores (Lee et al.,
2023; Jin et al., 2018) or RNAs (such as mRNA vaccines (Cheng et al., 2023)) with high translational
efficiency and stability (Castillo-Hair and Seelig, 2021; Asrani et al., 2018), and regulatory DNAs

∗Work mainly done during an internship at Genentech
†Corresponding authors: regev.aviv@gene.com,svlevine@eecs.berkeley.edu

uehara.masatoshi@gene.com

AI for New Drug Modalities at NeurIPS 2024.

https://github.com/masa-ue/SVDD

Table 1: A comparison of SVDD to prior approaches. “Non-differentiable” refers to the method’s
ability to operate without requiring differentiable proxy models. “No Training” means that no
additional training of the diffusion model is required as long as we have access to the reward feedback.
We compare to SMC-based methods in Section 6.

No fine-tuning Non-differentiable No Training

Classifier guidance ✓
DPS (Chung et al., 2022) ✓ ✓

Classifier-free ✓
RL fine-tuning ✓

SVDD-MC (here) ✓ ✓
SVDD-PM (here) ✓ ✓ ✓

that drives high cell-specificity of expression (Gosai et al., 2023; Taskiran et al., 2024; Lal et al.,
2024).

The optimization of downstream reward functions using pre-trained diffusion models has been
approached in various ways. In our work, we focus on non-fine-tuning-based methods because
fine-tuning generative models (e.g., when using classifier-free guidance (Ho et al., 2020) or RL-based
fine-tuning (Black et al., 2023; Fan et al., 2023; Uehara et al., 2024; Clark et al., 2023; Prabhudesai
et al., 2023)) often becomes computationally intensive, especially as pre-trained generative models
grow larger in the era of “foundation models”. Although classifier guidance and its variants (e.g.,
Dhariwal and Nichol (2021); Song et al. (2020); Chung et al. (2022); Bansal et al. (2023); Ho et al.
(2022)) have shown some success as non-fine-tuning methods in these settings, they face significant
challenges. First, as they would require constructing differentiable proxy models, they cannot directly
incorporate useful non-differentiable features (e.g., molecular/protein descriptors (van Westen et al.,
2013; Ghiringhelli et al., 2015; Gainza et al., 2020)) or non-differentiable reward feedback (e.g.,
physics-based simulations such as Vina and Rosetta (Trott and Olson, 2010; Alhossary et al., 2015;
Alford et al., 2017)), which are particularly important in molecule design to optimize docking scores,
stability, etc. This limitation also hinders the principled application of current classifier guidance
methods to recently-developed discrete diffusion models (Austin et al., 2021; Campbell et al., 2022;
Lou et al., 2023) (i.e., without transforming the discrete space into the Euclidean space).

A C C G U

A M C G M

A M M G Mxt

xt−1

xT

x0

v(xt−1) := E[r(x0) |xt−1]

M M M M M A M M G M

A M G M A M M G MCA M G MU

2.4 4.2 3.5

 RNA Translational efficiency

r(x0)

Figure 1: Summary of SVDD. v denotes value
functions that predict reward r(x0) (at time 0)
from states at time t − 1. SVDD involves two
steps: (1) generating multiple noisy states from
pre-trained models, and (2) selecting the state
with the highest value according to the value
function.

To tackle these challenges, we propose a novel
method, Soft Value-based Decoding in Diffusion
models (SVDD), for optimizing downstream re-
ward functions in diffusion models (Figure 1). In-
spired by recent literature on RL-based fine-tuning
(Uehara et al., 2024), we first introduce soft value
functions that serve as look-ahead functions, in-
dicating how intermediate noisy samples lead to
high rewards in the future of the diffusion denois-
ing process. After learning (or approximating)
these value functions, we present a new inference-
time technique, SVDD, which obtains multiple
noisy states from the policy (i.e., denoising map)
of pre-trained diffusion models and selects the
sample with the highest value function at each
time step. Specifically, we introduce two algo-
rithms (SVDD-MC and SVDD-PM) depending
on how we estimate value functions. Notably, the
SVDD-PM approach does not require any addi-
tional learning as long as we have access to the
reward feedback by utilizing the characteristics of diffusion models (i.e., the forward process in
diffusion models to directly map t to 0 in terms of expectation in Figure 1).

Our novel technique for optimizing downstream reward functions in pre-trained diffusion models
makes two contributions (Table 1). First, it eliminates the need to construct differentiable proxy
models. This allows for the use of non-differentiable reward feedback, which is common in many
scientific fields, and makes our method applicable to recent discrete diffusion (Shi et al., 2024; Sahoo
et al., 2024) models without any modification. Second, it avoids the need to fine-tune the generative

2

model itself. This addresses the high computational cost associated with fine-tuning diffusion models.
We demonstrate the effectiveness of our methods across diverse domains, including image generation,
molecule generation (optimization of docking scores, QED, and SA), and DNA/RNA generation
(optimization of activity levels).

2 Related Works

To summarize related work, we first outline methods relevant to our goal, categorizing them based on
whether they involve fine-tuning. We then discuss related directions, such as discrete diffusion models,
where our method excels. We defer other relevant works (e.g., decoding in LLMs) to Section A due
to space constraints.

Non-fine-tuning methods. We discuss two main methods for optimizing rewards in diffusion
models without fine-tuning. We further cover closely relevant methods based on sequential Monte
Carlo (SMC) in Section 6 and Appendix B, after presenting our method.

• Classifier guidance (Dhariwal and Nichol, 2021; Song et al., 2020): It has been widely used
to condition pre-trained diffusion models without fine-tuning. Although these methods do not
originally focus on optimizing reward functions, they can be applied for this purpose (Uehara
et al., 2024, Section 6.2). In this approach, an additional derivative of a certain value function is
incorporated into the drift term (mean) of pre-trained diffusion models during inference. Subsequent
variants (e.g., Chung et al. (2022); Ho et al. (2022); Bansal et al. (2023); Guo et al. (2024); Wang
et al. (2022); Yu et al. (2023)) have been proposed to simplify the learning of value functions.
However, these methods require constructing differentiable models, which limits their applicability
to non-differentiable features/reward feedbacks commonly encountered in scientific domains as
mentioned in Section 1. Additionally, this approach cannot be directly extended to discrete diffusion
models (e.g., (Lou et al., 2023; Shi et al., 2024; Sahoo et al., 2024)) in a principle way. Our approach
aims to address these challenges.

Note a notable exception of classifier guidance tailored to discrete diffusion models has been
recently proposed by Nisonoff et al. (2024). However, SVDD can be applied to both continuous
and discrete diffusion models in a unified manner. Furthermore, their practical method requires the
differentiability of proxy models, unlike SVDD. We compare its performance with our method in
Section 7. We provide further details in Section C.

• Best-of-N: The naive way is to generate multiple samples and select the top samples based on
the reward functions, known as best-of-N in the literature on (autoregressive) LLMs (Stiennon
et al., 2020; Nakano et al., 2021; Touvron et al., 2023; Beirami et al., 2024; Gao et al., 2023). This
approach is significantly less efficient than ours, as SVDD uses soft-value functions that predict
how intermediate noisy samples lead to high rewards in the future. We validate this experimentally
in Section 7.

Fine-tuning of diffusion models. Several methods exist for fine-tuning generative models to
optimize downstream reward functions, such as classifier-free guidance (Ho and Salimans, 2022) and
RL-based fine-tuning (Fan et al., 2023; Black et al., 2023) or its variants (Dong et al., 2023; Wallace
et al., 2024). However, these approaches often come with caveats, including high computational
costs and the risk of easily forgetting pre-trained models. In our work, we propose an inference-time
technique that eliminates the need for fine-tuning generative models.

Discrete diffusion models. Based on seminal works Austin et al. (2021); Campbell et al. (2022),
recent work on masked diffusion models (Lou et al., 2023; Shi et al., 2024; Sahoo et al., 2024)
has demonstrated their strong performance in natural language generation. Additionally, they have
been applied to biological sequence generation (e.g., DNA, protein sequences in Campbell et al.
(2024); Sarkar et al. (2024)). In these cases, the use of diffusion models over autoregressive models
is particularly apt, given that many biological sequences ultimately adopt complex three-dimensional
structures. We also note that ESM3 (Hayes et al., 2024), a widely recognized foundation model in
protein sequence generation, bears similarities to masked diffusion models. Despite its significance,
it cannot be integrated with standard classifier guidance, because adding a continuous gradient
to a discrete objective is not inherently valid. Unlike standard classifier guidance, SVDD can be
seamlessly applied to discrete diffusion models.

3

3 Preliminaries and Goal
We describe the standard method for training diffusion models and outline the objective of our work:
optimizing downstream reward functions given pre-trained diffusion models.

3.1 Diffusion Models
In diffusion models (Ho et al., 2020; Song et al., 2020), our goal is to learn a sampler p(x) ∈ ∆(X)
given data consisting of x ∈ X . The training process for a standard diffusion model is summarized
as follows. First, we introduce a (fixed) forward process qt : X → ∆(X). Next, we aim to learn a
backward process: {pt} where each pt is X → ∆(X) so that the distributions induced by the forward
process and backward process match marginally. For this purpose, by parametrizing the backward
processes with θ ∈ Rd, we typically use the following loss function:

Ex1,··· ,xT∼q(·|x0)

[
− log p0(x0|x1) +

T−1∑
t=1

KL(qt(· | xt−1, x0)∥pt(· | xt+1; θ)) + KL(qT (·)∥pT (·))

]
,

which is derived from the variational lower bound of the negative log-likelihood (i.e., ELBO).

Here are two examples of concrete parameterizations. Let αt ∈ R be a noise schedule.
Example 1 (Continuous space). When X is Euclidean space, we typically use the Gaussian distribu-
tion qt(· | x) = N (

√
αtx, (1− αt)). Then, the backward process is parameterized as

N
(√

αt(1− ᾱt−1)xt +
√
ᾱt−1(1− αt)x̂0(xt; θ)

1− ᾱt
,
(1− αt)(1− ᾱt−1)

1− ᾱt

)
,

where ᾱt =
∏t

i=1 αi. Here, x̂0(xt; θ) is a neural network that predicts x0 from xt (Eq[x0|xt]).
Example 2 (Discrete space in Sahoo et al. (2024); Shi et al. (2024)). Let X be a space of one-hot
column vectors {x ∈ {0, 1}K :

∑K
i=1 xi = 1}, and Cat(π) be the categorical distribution over K

classes with probabilities given by π ∈ ∆K where ∆K denotes the K-simplex. A typical choice is
qt(· | x) = Cat(αtx + (1 − αt)m) where m = [0, · · · , 0,Mask]. Then, the backward process is
parameterized as {

Cat(xt), if xt ̸= m,

Cat
(

(1−ᾱt−1)m+(ᾱt−1−ᾱt)x̂0(xt;θ)
1−ᾱt

)
, if xt = m,

where ᾱt =
∏t

i=1 αi. Here, x̂0(xt; θ) is a neural network that predicts x0 from xt. Note that
when considering a sequence of L tokens (x1:L), we use the direct product: pt(x

1:L
t |x1:L

t+1) =∏L
l=1 pt(x

l
t|x1:L

t+1).

After learning the backward process, we can sample from a distribution that emulates training data
distribution (i.e., p(x)) by sequentially sampling {pt}0t=T from t = T to t = 0.

Notation. The notation δa denotes a Dirac delta distribution centered at a. The notation ∝ indicates
that the distribution is equal up to a normalizing constant. With slight abuse of notation, we often
denote pT (·|·, ·) by pT (·).

3.2 Objective: Generating Samples with High Rewards While Preserving Naturalness
We consider a scenario where we have a pre-trained diffusion model, which is trained using the
loss function explained in Section 3.1. These pre-trained models are typically designed to excel at
characterizing the natural design space (e.g., image space, biological sequence space, or chemical
space) by emulating the extensive training dataset. Our work focuses on obtaining samples that also
optimize downstream reward functions r : X → R (e.g., Quantitative Estimate of Druglikeness
(QED) and Synthetic Accessibility (SA) in molecule generation), while maintaining the naturalness
by leveraging pre-trained diffusion models. We formalize this goal as follows.

Given a pre-trained model {ppret }0t=T , we denote the induced distribution by ppre ∈ ∆(X) (i.e.,
ppre(x0) =

∫
{
∏1

t=T+1 p
pre
t−1(xt−1|xt)}dx1:T). We aim to sample from the following distribution:

p(α)(x) := argmax
p∈[∆(X)]

Ex∼p(·)[r(x)]︸ ︷︷ ︸
term (a)

−αKL(p(·)∥ppre(·))︸ ︷︷ ︸
term(b)

∝ exp(r(x)/α)ppre(x).

Here, term (a) is introduced to optimize the reward function, while term (b) is used to maintain the
naturalness of the generated samples.

4

Existing methods. Several existing approaches target this goal (or its variant), as discussed in
Section 2, including classifier guidance, fine-tuning (RL-based or classifier-free), and Best-of-N. In
our work, we focus on non-fine-tuning-based methods; specifically, we aim to address the limitations
of these methods: the requirement for differentiable proxy models in classifier guidance and the
inefficiency of Best-of-N.

Finally, we note that all results discussed in this paper can be easily extended to cases where the pre-
trained model is a conditional diffusion model. For example, in our image experiments (Section 7),
the pre-trained model is a conditional diffusion model conditioned on text (e.g., Stable Diffusion).

4 Soft Value-Based Decoding in Diffusion Models
First, we present the motivation behind developing our new algorithm. We then introduce SVDD,
which satisfies our desired properties, i.e., the lack of need for fine-tuning or constructing differentiable
models.

4.1 Key Observation
We introduce several key concepts. First, we define the soft value function:

t ∈ [T + 1, · · · , 1]; vt−1(·) := α logEx0∼ppre(x0|xt−1)

[
exp

(
r(x0)
α

)
|xt−1 = ·

]
,

where E{ppre}[·] is induced by {ppret (·|xt+1)}0t=T . This value function represents the expected future
reward at t = 0 from the intermediate noisy state at t− 1.

Next, we define the following soft optimal policy (denoising process) p⋆,αt−1 : X → ∆(X) weighted
by value functions vt−1 : X → R:

p⋆,αt−1(·|xt) =
ppret−1(·|xt) exp(vt−1(·)/α)∫
ppret−1(x|xt) exp(vt−1(x)/α)dx

.

Here, vt are soft value functions and p⋆,αt are soft optimal policies, because they literally correspond,
respectively, to soft value functions and soft optimal policies, where we embed diffusion models into
entropy-regularized MDPs (Geist et al., 2019), as demonstrated in Uehara et al. (2024).

With this preparation in mind, we utilize the following key observation:
Theorem 1 (From Theorem 1 in Uehara et al. (2024)). The distribution induced by {p⋆,αt (·|xt+1)}0t=T

is the target distribution p(α)(x), i.e.,

p(α)(x0) =
∫ {∏1

t=T+1 p
⋆,α
t−1(xt−1|xt)

}
dx1:T .

While Uehara et al. (2024) presents this theorem, they use it primarily to interpret RL-based fine-
tuning methods in Fan et al. (2023); Black et al. (2023). In contrast, our work explores how to convert
this into a new fine-tuning-free optimization algorithm.

Our motivation for a new algorithm. Theorem 1 states that if we can hypothetically sample
from {p⋆,αt }0t=T , we can sample from the target distribution p(α). However, there are two challenges
in sampling from each p⋆,αt−1: (1) the soft-value function vt−1 in p⋆,αt−1 is unknown, and (2) it is
unnormalized (i.e., calculating the normalizing constant is hard).

We address the first challenge in Section 4.3. Assuming the first challenge is resolved, we consider
how to tackle the second challenge. A natural approach is to use importance sampling (IS):

p⋆,αt−1(·|xt, c) ≈
M∑

m=1

w
⟨m⟩
t−1∑M

j=1 w
⟨j⟩
t−1

δ
x
⟨m⟩
t−1

, {x⟨m⟩
t−1}Mm=1 ∼ ppret−1(· | xt),

where w⟨m⟩
t−1 := exp(vt(x

⟨m⟩
t−1)/α). Thus, we can approximately sample from p⋆,αt−1(·|xt) by obtaining

multiple (M) samples from pre-trained diffusion models and selecting the sample based on an index,
which is determined by sampling from the categorical distribution with mean {w⟨m⟩

t−1/
∑

j w
⟨j⟩
t−1}

⟨M⟩
m=1.

Note that Best-of-N, which generates multiple samples and selects the highest reward sample, is
technically considered IS, where the proposal distribution is the entire ppre(x0) =

∫ ∏
t{p

pre
t (xt−1 |

xt)}dx1:T . However, the use of importance sampling in our algorithm differs significantly, as we
apply it at each time step to approximate each soft-optimal policy.

5

4.2 Inference-Time Algorithm

Algorithm 1 SVDD (Soft Value-Based Decoding in Diffusion Models)

1: Require: Estimated soft value function {v̂t}0t=T (refer to Algorithm 2 or Algorithm 3), pre-
trained diffusion models {ppret }0t=T , hyperparameter α ∈ R

2: for t ∈ [T + 1, · · · , 1] do
3: Get M samples from pre-trained polices {x⟨m⟩

t−1}Mm=1 ∼ ppret−1(·|xt), and for each m, calculate
w

⟨m⟩
t−1 := exp(v̂t−1(x

⟨m⟩
t−1)/α)

4: xt−1 ← x
⟨ζt−1⟩
t−1 after selecting an index: ζt−1 ∼ Categorical

({
w

⟨m⟩
t−1∑M

j=1 w
⟨j⟩
t−1

}M

m=1

)
,

5: end for
6: Output: x0

Now, by leveraging the observation in Algorithm 1, we introduce our algorithm. Our algorithm is an
iterative sampling method that integrates soft value functions into the standard inference procedure of
pre-trained diffusion models. Each step is designed to approximately sample from a value-weighted
policy {p⋆,αt }0t=T .

We note several key points.

• When α = 0, Line 4 corresponds to ζt−1 = argmaxm∈[1,··· ,M] v̂t−1(x
⟨m⟩
t−1). In practice, we often

recommend this choice. This is the default choice in Section 7.
• A typical choice we recommend for M is from 5 to 20. The performance with varying M values

will be discussed in Section 7.
• Line 3 can be computed in parallel at the cost of additional memory (scaled by M). If Line 3 is not

computed in parallel, the computational time in SVDD would be approximately M times that of
the standard inference procedure. We will check it in Section 7.

• In special cases where the normalizing constant can be calculated relatively easily (e.g., in discrete
diffusion with small K,L), we can directly sample from {p⋆,αt }0t=T .

• A proposal distribution different from ppret−1 in line 3 can be applied (see Section D). For instance,
classifier guidance or its variants may be used to obtain better proposal distributions than those
from the pure pre-trained model.

The remaining question is how to obtain the soft value function, which we address in the next section.

4.3 Learning Soft Value Functions
Next, we describe how to obtain soft value functions vt(x) in practice. We propose two main
approaches: a Monte Carlo regression approach and a posterior mean approximation approach.

Monte Carlo regression. Here, we use the following approximation v′t as vt where

v′t(·) := Ex0∼ppre(x0|xt)[r(x0)|(xt) = ·].
This is based on

vt(xt) = α logEx0∼ppre(·|xt)[exp(r(x0)/α)|xt] ≈ log(exp(Ex0∼ppre(xt)[r(x0)|xt])) = v′t(xt).
(1)

By regressing r(x0) onto xt, we can learn v′t as in Algorithm 2. Combining this with Algorithm 1,
we refer to the entire optimization approach as SVDD-MC.

Note that technically, without the approximation introduced in (1), we can estimate vt by regressing
exp(r(x0)/α) onto xt based on the original definition. This approach may work in many cases.
However, when α is very small, the scaling of exp(r(·)/α) tends to be excessively large. Due to this
concern, we generally recommend using Algorithm 2.
Remark 1 (Another way of learning value functions). Technically, another method for learning value
functions is available such as soft-Q-learning (Section E), by leveraging soft-Bellman equations in
diffusion models Uehara et al. (2024, Section 3) However, since we find Monte Carlo approaches to
be more stable, we recommend them over soft-Q-learning.

6

Algorithm 2 Value Function Estimation Using Monte Carlo Regression

1: Require: Pre-trained diffusion models, reward r : X → R, function class Φ : X × [0, T]→ R.
2: Collect datasets {x(s)

T , · · · , x(s)
0 }Ss=1 by rolling-out {ppret }0t=T from t = T to t = 0.

3: v̂′ = argminf∈Φ

∑T
t=0

∑S
s=1{r(x

(s)
0)− f(x

(s)
t , t)}2.

4: Output: v̂′

Posterior mean approximation. Here, recalling we use x̂0(xt) (approximation of
Ex0∼ppre(xt)[x0|xt]) when training pre-trained diffusion models in Section 3.1, we perform the
following approximation:

vt(x) := α logEx0∼ppre(x0|xt)[exp(r(x0)/α)|xt] ≈ α log(exp(r(x̂0(xt))/α) = r(x̂0(xt)).

Then, we can use r(x̂0(xt)) as the estimated value function.

The advantage of this approach is that no additional training is required as long as we have r. When
combined with Algorithm 1, we refer to the entire approach as SVDD-PM.

Algorithm 3 Value Function Estimation using Posterior Mean Approximation

1: Require: Pre-trained diffusion models, reward r : X → R
2: Set v̂⋄(·, t) := r(x̂0(xt = ·), t)
3: Output: v̂⋄

Remark 2 (Relation with DPS). In the context of classifier guidance, similar approximations have
been employed (e.g., DPS in Chung et al. (2022)). However, the final inference-time algorithms differ
significantly, as these methods compute gradients at the end.

5 Advantages, Extensions, Limitations of SVDD
We discuss the advantages, extensions, and limitations of SVDD.

5.1 Advantages
No fine-tuning (or no training in SVDD-PM). Unlike classifier-free guidance or RL-based fine-
tuning, SVDD does not require any fine-tuning of the generative models. In particular, when using
SVDD-PM, no additional training is needed as long as we have r.

No need for constructing differentiable models. Unlike classifier guidance, SVDD does not
require differentiable proxy models, as there is no need for derivative computations. For example, if
r is non-differentiable feedback (e.g., physically-based simulations for docking scores in molecule
generation), our method SVDD-PM can directly utilize such feedback without constructing differen-
tiable proxy models. In cases where non-differentiable computational feedback is costly to obtain, the
usage of proxy reward models may still be preferred, but they do not need to be differentiable; thus,
non-differentiable features or non-differentiable models based on scientific knowledge (e.g., molecule
fingerprints, GNNs) can be leveraged. Similarly, when using SVDD-MC, while a value function
model is required, it does not need to be differentiable, unlike classifier guidance. Additionally,
compared to approaches that involve derivatives (like classifier guidance or DPS), SVDD can be
directly applied to discrete diffusion models mentioned in Example 2.

5.2 Extensions
Using a likelihood/classifier as a reward. While we primarily consider scenarios where reward
models are regression models, by adopting a similar strategy to that in Zhao et al. (2024), they can be
readily replaced with classifiers or likelihood functions in the context of solving inverse problems or
conditioning (Chung et al., 2022; Bansal et al., 2023).

Fine-tuning by distilling SVDD. The inference-time cost may become slow as M increases in
SVDD. This issue can be mitigated by policy distillation, that is further fine-tuning diffusion models
to align them closely with policies from SVDD (Salimans and Ho, 2022; Kim et al., 2023). We leave
this aspect for future work.

7

5.3 Potential Limitations
Memory and computational complexity in inference time. Our approach requires more compu-
tational resources (if not parallelized) or memory (if parallelized), approximately M times more than
standard inference methods, as noted in Section 4.2. Taking this aspect into account, we compare
SVDD, with baselines such as best-of-N in our experimental section (Section 7). For gradient-based
approaches like classifier guidance and DPS, while a direct comparison with SVDD is challenging, it
is important to note that these methods also incur additional computational and memory complexity
due to the backward pass, which SVDD avoids. Lastly, it is important to note that this additional
inference-time burden can be alleviated through distillation, as discussed in Section 5.2.

Proximity to pre-trained models. If significant changes to the pre-trained models are desired,
we acknowledge that RL-based fine-tuning (Black et al., 2023; Fan et al., 2023) could be more
effective than SVDD for this purpose in certain scenarios, such as image examples. However, this
proximity to pre-trained models could also be advantageous in the sense that it is robust against
reward optimization, which conventional fine-tuning methods often suffer from by exploiting these
out-of-distribution regions (Uehara et al., 2024). Lastly, in cases where reward backpropagation
(Prabhudesai et al., 2023; Clark et al., 2023; Uehara et al., 2024) is not applicable, particularly in
scientific domains for RL-based fine-tuning, we may need to rely on PPO. However, PPO is often
mode-seeking and unstable, highlighting the challenges of RL-based fine-tuning in certain scenarios.

6 Comparison between SVDD and SMC-Based Methods
SMC-based methods for diffusion models are closely related to SVDD. These approaches (Wu et al.,
2024; Trippe et al., 2022; Dou and Song, 2024; Phillips et al., 2024; Cardoso et al., 2023) use SMC
(Del Moral and Doucet, 2014) for sampling from diffusion models. While they are originally designed
for conditioning (by setting rewards as classifiers), they can also be applied to reward maximization.
Notably, similar to our work, these methods do not require differentiable models.

However, these SMC methods are not tailored to reward maximization. Most importantly, they
involve resampling across the “entire” batch, which complicates parallelization. Additionally, when
batch sizes are small, as is often the case with recent large diffusion models, performance may be
suboptimal, since the SMC theoretical guarantees hold primarily with large batch sizes. Even with
larger batch sizes, using SMC for reward maximization can result in a loss of diversity across the
entire batch, since the effective sample size based on weights, which is a standard diversity measure
in SMC, does not ensure “real” diversity in the generated samples. In contrast, our method is highly
parallelizable, performs well even with small batch sizes (as low as 1), and maintains diversity with
larger batch sizes, as sampling is conducted on a “per-sample basis” (Line 4). We empirically validate
this in Section 7. We provide further details and experiments in Appendix B.

7 Experiments
We conduct experiments to assess the performance of our algorithm relative to baselines and its
sensitivity to various hyperparameters. We start by outlining the experimental setup, including
baselines and models, and then present the results.

7.1 Settings
Methods to compare. We compare SVDD to several representative methods capable of performing
reward maximization during inference, discussed in Section 2.

• Pre-trained models: We generate samples using pre-trained models.

• Best-of-N: We generate samples from pre-trained models and select the top 1/N samples. This
selection is made to ensure that the computational time during inference is approximately equivalent
to that of SVDD.

• DPS (Chung et al., 2022): It is a widely used training-free version of classifier guidance. For
discrete diffusion, we combine it with the state-of-the-art approach (Nisonoff et al., 2024).

• SMC-Based Methods (SMC): Methods discussed in Section 6 and Appendix B, which do not
require differentiable models, like SVDD.

• SVDD (Ours): We implement SVDD-MC and SVDD-PM. We generally set M = 20 for images
and M = 10 for other domains, and α = 0. Recall M is the duplication size in the IS part.

8

Datasets and reward models. We provide details on the pre-trained diffusion models and
downstream reward functions used. For further information, refer to Section F.
• Images: We use Stable Diffusion v1.5 as the pre-trained diffusion model (T = 50). For downstream

reward functions, we use compressibility and aesthetic scores (LAION Aesthetic Predictor V2 in
Schuhmann (2022)), as employed by Black et al. (2023); Fan et al. (2023). Compressibility is a
non-differentiable reward feedback.

• Molecules: We use GDSS (Jo et al., 2022), trained on ZINC-250k (Irwin and Shoichet, 2005),
as the pre-trained diffusion model (T = 1000). For downstream reward functions, we use drug-
likeness (QED) and synthetic accessibility (SA) calculated by RDKit, as well as docking score
(DS) calculated by QuickVina 2 (Alhossary et al., 2015), which are all non-differentiable feedback.
Here, we renormalize SA to (10 − SA)/9 and docking score to max(−DS, 0), so that a higher
value indicates better performance. The docking scores measure binding affinity regarding four
target proteins: Parp1, 5ht1b, Jak2, and Braf following Yang et al. (2021). These tasks are critical
for drug discovery.

• DNAs (enhancers) and RNAs (5’Untranslated regions (UTRs)): We use the discrete diffusion
model (Sahoo et al., 2024), trained on datasets from Gosai et al. (2023) for enhancers, and from
Sample et al. (2019) for 5’UTRs, as our pre-trained diffusion model (T = 128). For the reward
functions, we use an Enformer model (Avsec et al., 2021) to predict activity of enhancers in the
HepG2 cell line, and a ConvGRU model that predicts the mean ribosomal load (MRL) of 5’UTRs
measured by polysome profiling, respectively (Sample et al., 2019). These tasks are highly relevant
for cell and RNA therapies, respectively (Taskiran et al., 2024; Castillo-Hair and Seelig, 2021).

7.2 Results
Table 2: Top 10 and 50 quantiles of the generated samples for each algorithm (with 95% confidence
intervals). Higher is better. SVDD consistently outperforms the baseline methods.

Domain Quantile Pre-Train Best-N DPS SMC SVDD-MC SVDD-PM
Image: Compress 50% -101.4 ± 0.22 -71.2 ± 0.46 -60.1 ± 0.44 -59.7 ± 0.4 -54.3 ± 0.33 -51.1 ± 0.38

10% -78.6 ± 0.13 -57.3 ± 0.28 -61.2 ± 0.28 -49.9 ± 0.24 -40.4 ± 0.2 -38.8 ± 0.23

Image: Aesthetic 50% 5.62 ± 0.003 6.11 ± 0.007 5.61 ± 0.009 6.02 ± 0.004 5.70 ± 0.008 6.14 ± 0.007
10% 5.98 ± 0.002 6.34 ± 0.004 6.00 ± 0.005 6.28 ± 0.003 6.05 ± 0.005 6.47 ± 0.004

Molecule: QED 50% 0.656 ± 0.008 0.835 ± 0.009 0.679 ± 0.024 0.667 ± 0.016 0.852 ± 0.011 0.848 ± 0.014
10% 0.812 ± 0.005 0.902 ± 0.006 0.842 ± 0.014 0.722 ± 0.009 0.925 ± 0.007 0.928 ± 0.008

Molecule: SA 50% 0.652 ± 0.007 0.834 ± 0.014 0.693 ± 0.022 0.786 ± 0.004 0.935 ± 0.010 0.925 ± 0.016
10% 0.803 ± 0.004 0.941 ± 0.008 0.844 ± 0.013 0.796 ± 0.003 1.000 ± 0.006 1.000 ± 0.010

Molecule: Docking parp1 50% 7.15 ± 0.52 10.00 ± 0.17 7.35 ± 0.43 6.90 ± 0.60 12.00 ± 0.26 11.40 ± 0.22
10% 8.59 ± 0.31 10.67 ± 0.10 9.31 ± 0.26 9.37 ± 0.36 13.25 ± 0.16 12.41 ± 0.13

Molecule: Docking 5ht1b 50% 7.20 ± 0.53 9.65 ± 0.17 7.30 ± 0.48 6.80 ± 0.35 10.50 ± 0.46 10.50 ± 0.53
10% 8.69 ± 0.32 10.28 ± 0.10 9.21 ± 0.29 9.00 ± 0.21 12.87 ± 0.28 12.30 ± 0.32

Molecule: Docking jak2 50% 7.05 ± 0.45 8.85 ± 0.17 7.30 ± 0.43 6.80 ± 0.46 10.65 ± 0.35 10.30 ± 0.45
10% 8.20 ± 0.27 9.59 ± 0.10 8.70 ± 0.26 10.00 ± 0.28 11.80 ± 0.21 11.91 ± 0.27

Molecule: Docking braf 50% 7.20 ± 0.40 9.20 ± 0.11 7.50 ± 0.23 6.90 ± 0.46 10.00 ± 0.37 9.65 ± 0.33
10% 8.59 ± 0.24 10.29 ± 0.07 9.20 ± 0.14 8.74 ± 0.28 11.30 ± 0.22 11.40 ± 0.20

Enhancers 50% 0.121 ± 0.033 1.807 ± 0.214 3.782 ± 0.299 4.28± 0.02 5.074 ± 0.096 5.353 ± 0.231
10% 1.396 ± 0.020 3.449 ± 0.128 4.879 ± 0.179 5.95± 0.01 5.639 ± 0.057 6.980 ± 0.138

5’UTR 50% 0.406 ± 0.028 0.912 ± 0.023 0.426 ± 0.073 0.76± 0.02 1.042 ± 0.008 1.214 ± 0.016
10% 0.869 ± 0.017 1.064 ± 0.014 0.981 ± 0.044 0.91± 0.01 1.117 ± 0.005 1.383 ± 0.010

We compare the baselines with our two proposed methods regarding rewards r (Table 2). To
demonstrate the generated samples’ validity (i.e., naturalness), we present several examples in
Figure 2. In Section F.3, we also include metrics for the validity of samples.

Overall, SVDD outperformed the baseline methods (Best-of-N, DPS, and SMC), as evidenced by
higher quantiles. Furthermore, for both molecules and images, the samples generated by SVDD were
valid. This suggests that SVDD can generate high-reward valid samples that Best-of-N, DPS, and
SMC often struggle to generate or, in some cases, nearly fail to do.

The relative performance of our SVDD-MC and SVDD-PM appears to be domain-dependent. Gen-
erally, SVDD-PM may be more robust since it does not require additional learning (i.e., it directly
utilizes reward feedback). The performance of SVDD-MC depends on the success of value function
learning discussed in Section F.

Ablation studies in terms of the duplication size M . We assessed the performance of SVDD-PM
(when calculating value functions in Line 3 in a non-parallel manner) along with the computational

9

(a) Images: compressibility (b) Images: aesthetic scores

(c) Molecules: QED scores (d) Molecules: SA scores (Normal-
ized as (10− SA)/9)

(e) Molecules (by SVDD): high
docking scores to Parp1

(f) Molecules (by SVDD): high
docking scores to 5ht1b

(g) Molecules (by SVDD): high
docking scores to Jak2

(h) Molecules (by SVDD): high
docking scores to Braf

Figure 2: Generated samples from SVDD. For more samples, please refer to Section F.3. Note that
the surfaces and ribbons in (e)-(h) (such as the green objects in (e)) are representations of the target
proteins, while the generated small molecules are displayed in the center.

(a) Performance of SVDD as M varies for image gen-
eration while optimizing aesthetic score.

(b) Performance of SVDD as M varies for molecule
generation while optimizing the QED score.

(c) GPU time and max memory of SVDD as M varies
for image generation (aesthetic scores).

(d) GPU time and max memory of SVDD as M varies
for molecule generation (QED).

Figure 3: Ablation studies with respect to M for SVDD. Note 3c and 3d indicate that the computa-
tional time does not scale linearly with M , whereas memory usage scales linearly.
and memory complexity as M varies. First, across all domains, the performance gradually plateaus
as M increases (Figure 3a and 3b). Second, computational complexity increases linearly with M ,
while memory complexity remains nearly constant (Figure 3c and 3d). This behavior is expected,
as previously noted in Section 4.2. The comparison with Best-of-N in Table 2 is made with this
consideration in mind.

8 Conclusion
We propose a novel inference-time algorithm, SVDD, for optimizing downstream reward functions in
pre-trained diffusion models that eliminate the need to construct differentiable proxy models. Future
works include applications in other domains, such as protein sequence optimization (Gruver et al.,
2023; Alamdari et al., 2023; Watson et al., 2023) and 3D molecule generation (Xu et al., 2023).

10

Acknowledgement

We appreciate the feedback from Christian A. Naesseth. He pointed out the connection between
our work and the twisted diffusion sampler, and noted our algorithm is close to an instantiation of
nested-IS SMC in our context (Naesseth et al., 2019, 2015).

References
Alamdari, S., N. Thakkar, R. van den Berg, A. X. Lu, N. Fusi, A. P. Amini, and K. K. Yang (2023).

Protein generation with evolutionary diffusion: sequence is all you need. bioRxiv, 2023–09.

Alford, R. F., A. Leaver-Fay, J. R. Jeliazkov, M. J. O’Meara, F. P. DiMaio, H. Park, M. V. Shapovalov,
P. D. Renfrew, V. K. Mulligan, K. Kappel, et al. (2017). The rosetta all-atom energy function
for macromolecular modeling and design. Journal of chemical theory and computation 13(6),
3031–3048.

Alhossary, A., S. D. Handoko, Y. Mu, and C.-K. Kwoh (2015). Fast, accurate, and reliable molecular
docking with quickvina 2. Bioinformatics 31(13), 2214–2216.

Asrani, K. H., J. D. Farelli, M. R. Stahley, R. L. Miller, C. J. Cheng, R. R. Subramanian, and J. M.
Brown (2018). Optimization of mrna untranslated regions for improved expression of therapeutic
mrna. RNA biology 15(6), 756–762.

Austin, J., D. D. Johnson, J. Ho, D. Tarlow, and R. Van Den Berg (2021). Structured denoising
diffusion models in discrete state-spaces. Advances in Neural Information Processing Systems 34,
17981–17993.

Avdeyev, P., C. Shi, Y. Tan, K. Dudnyk, and J. Zhou (2023). Dirichlet diffusion score model for
biological sequence generation. arXiv preprint arXiv:2305.10699.

Avsec, Ž., V. Agarwal, D. Visentin, J. R. Ledsam, A. Grabska-Barwinska, K. R. Taylor, Y. Assael,
J. Jumper, P. Kohli, and D. R. Kelley (2021). Effective gene expression prediction from sequence
by integrating long-range interactions. Nature methods 18(10), 1196–1203.

Bansal, A., H.-M. Chu, A. Schwarzschild, S. Sengupta, M. Goldblum, J. Geiping, and T. Goldstein
(2023). Universal guidance for diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 843–852.

Beirami, A., A. Agarwal, J. Berant, A. D’Amour, J. Eisenstein, C. Nagpal, and A. T. Suresh (2024).
Theoretical guarantees on the best-of-n alignment policy. arXiv preprint arXiv:2401.01879.

Black, K., M. Janner, Y. Du, I. Kostrikov, and S. Levine (2023). Training diffusion models with
reinforcement learning. arXiv preprint arXiv:2305.13301.

Campbell, A., J. Benton, V. De Bortoli, T. Rainforth, G. Deligiannidis, and A. Doucet (2022).
A continuous time framework for discrete denoising models. Advances in Neural Information
Processing Systems 35, 28266–28279.

Campbell, A., J. Yim, R. Barzilay, T. Rainforth, and T. Jaakkola (2024). Generative flows on discrete
state-spaces: Enabling multimodal flows with applications to protein co-design. arXiv preprint
arXiv:2402.04997.

Cardoso, G., Y. J. E. Idrissi, S. L. Corff, and E. Moulines (2023). Monte carlo guided diffusion for
bayesian linear inverse problems. arXiv preprint arXiv:2308.07983.

Castillo-Hair, S. M. and G. Seelig (2021). Machine learning for designing next-generation mrna
therapeutics. Accounts of Chemical Research 55(1), 24–34.

Cheng, F., Y. Wang, Y. Bai, Z. Liang, Q. Mao, D. Liu, X. Wu, and M. Xu (2023). Research advances
on the stability of mrna vaccines. Viruses 15(3), 668.

Chorowski, J. and N. Jaitly (2016). Towards better decoding and language model integration in
sequence to sequence models. arXiv preprint arXiv:1612.02695.

11

Chung, H., J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye (2022). Diffusion posterior sampling
for general noisy inverse problems. arXiv preprint arXiv:2209.14687.

Clark, K., P. Vicol, K. Swersky, and D. J. Fleet (2023). Directly fine-tuning diffusion models on
differentiable rewards. arXiv preprint arXiv:2309.17400.

Dathathri, S., A. Madotto, J. Lan, J. Hung, E. Frank, P. Molino, J. Yosinski, and R. Liu (2019).
Plug and play language models: A simple approach to controlled text generation. arXiv preprint
arXiv:1912.02164.

Del Moral, P. and A. Doucet (2014). Particle methods: An introduction with applications. In ESAIM:
proceedings, Volume 44, pp. 1–46. EDP Sciences.

Dey, R. and F. M. Salem (2017). Gate-variants of gated recurrent unit (gru) neural networks. In 2017
IEEE 60th international midwest symposium on circuits and systems (MWSCAS), pp. 1597–1600.
IEEE.

Dhariwal, P. and A. Nichol (2021). Diffusion models beat gans on image synthesis. Advances in
neural information processing systems 34, 8780–8794.

Dong, H., W. Xiong, D. Goyal, R. Pan, S. Diao, J. Zhang, K. Shum, and T. Zhang (2023). Raft: Reward
ranked finetuning for generative foundation model alignment. arXiv preprint arXiv:2304.06767.

Dou, Z. and Y. Song (2024). Diffusion posterior sampling for linear inverse problem solving: A
filtering perspective. In The Twelfth International Conference on Learning Representations.

Fan, Y., O. Watkins, Y. Du, H. Liu, M. Ryu, C. Boutilier, P. Abbeel, M. Ghavamzadeh, K. Lee, and
K. Lee (2023). DPOK: Reinforcement learning for fine-tuning text-to-image diffusion models.
arXiv preprint arXiv:2305.16381.

Ferreira DaSilva, L., S. Senan, Z. M. Patel, A. J. Reddy, S. Gabbita, Z. Nussbaum, C. M. V. Cordova,
A. Wenteler, N. Weber, T. M. Tunjic, et al. (2024). Dna-diffusion: Leveraging generative models
for controlling chromatin accessibility and gene expression via synthetic regulatory elements.
bioRxiv, 2024–02.

Gainza, P., F. Sverrisson, F. Monti, E. Rodola, D. Boscaini, M. M. Bronstein, and B. E. Correia
(2020). Deciphering interaction fingerprints from protein molecular surfaces using geometric deep
learning. Nature Methods 17(2), 184–192.

Gao, L., J. Schulman, and J. Hilton (2023). Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR.

Geist, M., B. Scherrer, and O. Pietquin (2019). A theory of regularized markov decision processes.
In International Conference on Machine Learning, pp. 2160–2169. PMLR.

Ghiringhelli, L. M., J. Vybiral, S. V. Levchenko, C. Draxl, and M. Scheffler (2015). Big data of
materials science: critical role of the descriptor. Physical review letters 114(10), 105503.

Gosai, S. J., R. I. Castro, N. Fuentes, J. C. Butts, S. Kales, R. R. Noche, K. Mouri, P. C. Sabeti, S. K.
Reilly, and R. Tewhey (2023). Machine-guided design of synthetic cell type-specific cis-regulatory
elements. bioRxiv.

Gruver, N., S. Stanton, N. C. Frey, T. G. Rudner, I. Hotzel, J. Lafrance-Vanasse, A. Rajpal,
K. Cho, and A. G. Wilson (2023). Protein design with guided discrete diffusion. arXiv preprint
arXiv:2305.20009.

Guo, Y., H. Yuan, Y. Yang, M. Chen, and M. Wang (2024). Gradient guidance for diffusion models:
An optimization perspective. arXiv preprint arXiv:2404.14743.

Haarnoja, T., H. Tang, P. Abbeel, and S. Levine (2017). Reinforcement learning with deep energy-
based policies. In International conference on machine learning, pp. 1352–1361. PMLR.

Han, S., I. Shenfeld, A. Srivastava, Y. Kim, and P. Agrawal (2024). Value augmented sampling for
language model alignment and personalization. arXiv preprint arXiv:2405.06639.

12

Hayes, T., R. Rao, H. Akin, N. J. Sofroniew, D. Oktay, Z. Lin, R. Verkuil, V. Q. Tran, J. Deaton,
M. Wiggert, et al. (2024). Simulating 500 million years of evolution with a language model.
bioRxiv, 2024–07.

Ho, J., A. Jain, and P. Abbeel (2020). Denoising diffusion probabilistic models. Advances in neural
information processing systems 33, 6840–6851.

Ho, J. and T. Salimans (2022). Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598.

Ho, J., T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet (2022). Video diffusion
models. Advances in Neural Information Processing Systems 35, 8633–8646.

Inoue, F., A. Kreimer, T. Ashuach, N. Ahituv, and N. Yosef (2019). Identification and massively
parallel characterization of regulatory elements driving neural induction. Cell stem cell 25(5),
713–727.

Irwin, J. J. and B. K. Shoichet (2005). ZINC- a free database of commercially available compounds
for virtual screening. Journal of chemical information and modeling 45(1), 177–182.

Jin, W., R. Barzilay, and T. Jaakkola (2018). Junction tree variational autoencoder for molecular
graph generation. In International conference on machine learning, pp. 2323–2332. PMLR.

Jo, J., S. Lee, and S. J. Hwang (2022). Score-based generative modeling of graphs via the system of
stochastic differential equations. In International Conference on Machine Learning, pp. 10362–
10383. PMLR.

Kim, D., C.-H. Lai, W.-H. Liao, N. Murata, Y. Takida, T. Uesaka, Y. He, Y. Mitsufuji, and S. Ermon
(2023). Consistency trajectory models: Learning probability flow ode trajectory of diffusion. arXiv
preprint arXiv:2310.02279.

Lal, A., D. Garfield, T. Biancalani, and G. Eraslan (2024). reglm: Designing realistic regulatory dna
with autoregressive language models. bioRxiv, 2024–02.

Landrum, G. et al. (2016). Rdkit: Open-source cheminformatics software, 2016. URL http://www.
rdkit. org/, https://github. com/rdkit/rdkit.

Leblond, R., J.-B. Alayrac, L. Sifre, M. Pislar, J.-B. Lespiau, I. Antonoglou, K. Simonyan,
and O. Vinyals (2021). Machine translation decoding beyond beam search. arXiv preprint
arXiv:2104.05336.

Lee, S., J. Jo, and S. J. Hwang (2023). Exploring chemical space with score-based out-of-distribution
generation. In International Conference on Machine Learning, pp. 18872–18892. PMLR.

Levine, S. (2018). Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909.

Lew, A. K., T. Zhi-Xuan, G. Grand, and V. K. Mansinghka (2023). Sequential monte carlo steering
of large language models using probabilistic programs. arXiv preprint arXiv:2306.03081.

Lou, A., C. Meng, and S. Ermon (2023). Discrete diffusion language modeling by estimating the
ratios of the data distribution. arXiv preprint arXiv:2310.16834.

Mudgal, S., J. Lee, H. Ganapathy, Y. Li, T. Wang, Y. Huang, Z. Chen, H.-T. Cheng, M. Collins,
T. Strohman, et al. (2023). Controlled decoding from language models. arXiv preprint
arXiv:2310.17022.

Naesseth, C., F. Lindsten, and T. Schon (2015). Nested sequential monte carlo methods. In
International Conference on Machine Learning, pp. 1292–1301. PMLR.

Naesseth, C. A., F. Lindsten, T. B. Schön, et al. (2019). Elements of sequential monte carlo.
Foundations and Trends® in Machine Learning 12(3), 307–392.

Nakano, R., J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju, W. Saunders,
et al. (2021). Webgpt: Browser-assisted question-answering with human feedback. arXiv preprint
arXiv:2112.09332.

13

Nisonoff, H., J. Xiong, S. Allenspach, and J. Listgarten (2024). Unlocking guidance for discrete
state-space diffusion and flow models. arXiv preprint arXiv:2406.01572.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. (2019). Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems 32.

Phillips, A., H.-D. Dau, M. J. Hutchinson, V. De Bortoli, G. Deligiannidis, and A. Doucet (2024).
Particle denoising diffusion sampler. arXiv preprint arXiv:2402.06320.

Prabhudesai, M., A. Goyal, D. Pathak, and K. Fragkiadaki (2023). Aligning text-to-image diffusion
models with reward backpropagation. arXiv preprint arXiv:2310.03739.

Qin, L., S. Welleck, D. Khashabi, and Y. Choi (2022). Cold decoding: Energy-based constrained
text generation with langevin dynamics. Advances in Neural Information Processing Systems 35,
9538–9551.

Sahoo, S. S., M. Arriola, Y. Schiff, A. Gokaslan, E. Marroquin, J. T. Chiu, A. Rush, and V. Kuleshov
(2024). Simple and effective masked diffusion language models. arXiv preprint arXiv:2406.07524.

Salimans, T. and J. Ho (2022). Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512.

Sample, P. J., B. Wang, D. W. Reid, V. Presnyak, I. J. McFadyen, D. R. Morris, and G. Seelig
(2019). Human 5’utr design and variant effect prediction from a massively parallel translation
assay. Nature biotechnology 37(7), 803–809.

Sarkar, A., Z. Tang, C. Zhao, and P. Koo (2024). Designing dna with tunable regulatory activity using
discrete diffusion. bioRxiv, 2024–05.

Schuhmann, C. (2022, Aug). LAION aesthetics.

Shi, J., K. Han, Z. Wang, A. Doucet, and M. K. Titsias (2024). Simplified and generalized masked
diffusion for discrete data. arXiv preprint arXiv:2406.04329.

Song, J., C. Meng, and S. Ermon (2020). Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502.

Song, Y., J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole (2020). Score-based
generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456.

Stark, H., B. Jing, C. Wang, G. Corso, B. Berger, R. Barzilay, and T. Jaakkola (2024). Dirichlet flow
matching with applications to dna sequence design. arXiv preprint arXiv:2402.05841.

Stiennon, N., L. Ouyang, J. Wu, D. Ziegler, R. Lowe, C. Voss, A. Radford, D. Amodei, and P. F.
Christiano (2020). Learning to summarize with human feedback. Advances in Neural Information
Processing Systems 33, 3008–3021.

Taskiran, I. I., K. I. Spanier, H. Dickmänken, N. Kempynck, A. Pančı́ková, E. C. Ekşi, G. Hulselmans,
J. N. Ismail, K. Theunis, R. Vandepoel, et al. (2024). Cell-type-directed design of synthetic
enhancers. Nature 626(7997), 212–220.

Touvron, H., L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. (2023). Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288.

Trippe, B. L., J. Yim, D. Tischer, D. Baker, T. Broderick, R. Barzilay, and T. Jaakkola (2022).
Diffusion probabilistic modeling of protein backbones in 3d for the motif-scaffolding problem.
arXiv preprint arXiv:2206.04119.

Trott, O. and A. J. Olson (2010). Autodock vina: improving the speed and accuracy of docking
with a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry 31(2), 455–461.

14

Uehara, M., Y. Zhao, T. Biancalani, and S. Levine (2024). Understanding reinforcement learning-
based fine-tuning of diffusion models: A tutorial and review. arXiv preprint arXiv:2407.13734.

Uehara, M., Y. Zhao, K. Black, E. Hajiramezanali, G. Scalia, N. L. Diamant, A. M. Tseng, T. Bian-
calani, and S. Levine (2024). Fine-tuning of continuous-time diffusion models as entropy-
regularized control. arXiv preprint arXiv:2402.15194.

Uehara, M., Y. Zhao, E. Hajiramezanali, G. Scalia, G. Eraslan, A. Lal, S. Levine, and T. Biancalani
(2024). Bridging model-based optimization and generative modeling via conservative fine-tuning
of diffusion models. arXiv preprint arXiv:2405.19673.

van Westen, G. J., R. F. Swier, I. Cortes-Ciriano, J. K. Wegner, J. P. Overington, A. P. IJzerman, H. W.
van Vlijmen, and A. Bender (2013). Benchmarking of protein descriptor sets in proteochemo-
metric modeling (part 2): modeling performance of 13 amino acid descriptor sets. Journal of
cheminformatics 5, 1–20.

Vignac, C., I. Krawczuk, A. Siraudin, B. Wang, V. Cevher, and P. Frossard (2022). Digress: Discrete
denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734.

Wallace, B., M. Dang, R. Rafailov, L. Zhou, A. Lou, S. Purushwalkam, S. Ermon, C. Xiong,
S. Joty, and N. Naik (2024). Diffusion model alignment using direct preference optimization.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
8228–8238.

Wang, Y., J. Yu, and J. Zhang (2022). Zero-shot image restoration using denoising diffusion null-space
model. arXiv preprint arXiv:2212.00490.

Watson, J. L., D. Juergens, N. R. Bennett, B. L. Trippe, J. Yim, H. E. Eisenach, W. Ahern, A. J. Borst,
R. J. Ragotte, L. F. Milles, et al. (2023). De novo design of protein structure and function with
rfdiffusion. Nature 620(7976), 1089–1100.

Wu, L., B. Trippe, C. Naesseth, D. Blei, and J. P. Cunningham (2024). Practical and asymptotically
exact conditional sampling in diffusion models. Advances in Neural Information Processing
Systems 36.

Wu, Y., M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, et al. (2016). Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144.

Xu, K., W. Hu, J. Leskovec, and S. Jegelka (2018). How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826.

Xu, M., A. S. Powers, R. O. Dror, S. Ermon, and J. Leskovec (2023). Geometric latent diffusion
models for 3d molecule generation. In International Conference on Machine Learning, pp. 38592–
38610. PMLR.

Yang, K. and D. Klein (2021). Fudge: Controlled text generation with future discriminators. arXiv
preprint arXiv:2104.05218.

Yang, S., D. Hwang, S. Lee, S. Ryu, and S. J. Hwang (2021). Hit and lead discovery with explorative rl
and fragment-based molecule generation. Advances in Neural Information Processing Systems 34,
7924–7936.

Yu, J., Y. Wang, C. Zhao, B. Ghanem, and J. Zhang (2023). Freedom: Training-free energy-guided
conditional diffusion model. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 23174–23184.

Zhao, S., R. Brekelmans, A. Makhzani, and R. Grosse (2024). Probabilistic inference in language
models via twisted sequential monte carlo. arXiv preprint arXiv:2404.17546.

Zhao, Y., M. Uehara, G. Scalia, T. Biancalani, S. Levine, and E. Hajiramezanali (2024). Adding con-
ditional control to diffusion models with reinforcement learning. arXiv preprint arXiv:2406.12120.

15

A Further Related Works

Decoding in autoregressive models with rewards. The decoding strategy, which dictates how
sentences are generated from the model, is a critical component of text generation in autoregressive
language models (Wu et al., 2016; Chorowski and Jaitly, 2016; Leblond et al., 2021). Recent studies
have explored inference-time techniques for optimizing downstream reward functions Dathathri et al.
(2019); Yang and Klein (2021); Qin et al. (2022); Mudgal et al. (2023); Zhao et al. (2024); Han et al.
(2024). While there are similarities between these works and ours, to the best of our knowledge,
no prior work has extended such methodologies to diffusion models. Furthermore, our approach
leverages characteristics unique to diffusion models that are not present in autoregressive models
such as SVDD-PM.

B Difference Between SVDD and “Standard” SMC-Methods

In this section, we compare our algorithm with the SMC-based methods (Wu et al., 2024; Trippe
et al., 2022; Dou and Song, 2024; Phillips et al., 2024; Cardoso et al., 2023) for guidance. While they
originally aim to solve a conditioning problem, which is different from reward maximization, they
algorithms can be converted to reward maximization. First, we will explain this converted algorithm.
We then elaborate on the differences between SVDD, and them in the context of reward maximization.
Notably, our SVDD is an instantiation of nested-IS SMC (Naesseth et al., 2019, Algorithm 5) in the
literature on computational statistics, whereas these SMC-based Methods rely on standard sequential
Monte Carlo.

B.1 SMC-Based Methods

Algorithm 4 Guidance with “Standard” SMC (for reward maximization)

1: Require: Estimated value functions {v̂t(x)}0t=T , pre-trained diffusion models {ppret }0t=T , hyper-
parameter α ∈ R, Batch size N

2: for t ∈ [T + 1, · · · , 0] do
3: IS step:
4:

i ∈ [1, · · · , N];x
[i]
t−1 ∼ ppret−1(·|x

[i]
t), w

[i]
t−1 :=

exp(v̂t−1(x
[i]
t−1)/α)

exp(v̂t(x
[i]
t)/α)

5: Selection step: select new indices with replacement

6: {x[i]
t−1}Ni=1 ← {x

ζ
[i]
t−1

t−1 }Ni=1, {ζ [i]t−1}Ni=1 ∼ Cat

({
w

[i]
t−1∑N

j=1 w
[j]
t−1

}N

i=1

)
7: end for
8: Output: x0

The complete algorithm of TDS in our setting is summarized in Algorithm 4. Since our notation and
their notations are slightly different, we first provide a brief overview. It consists of two steps. Since
our algorithm is iterative, at time point t, consider we have N samples (particles) {x[i]

t }Ni=1.

IS step (line 3). We generate a set of samples {x[i]
t−1}Ni=1 following a policy from a pre-trained

model ppret−1(·|·). In other words,

∀i ∈ [1, · · · , N];x
[i]
t−1 ∼ ppret−1(·|x

[i]
t).

Now, we denote the importance weight for the next particle xt−1 given the current particle xt as
w(xt−1, xt), expressed as

w(xt−1, xt) :=
exp(vt−1(xt−1)/α)∫

exp(vt−1(xt−1)/α)p
pre
t−1(xt−1|xt)dxt−1

=
exp(vt−1(xt−1)/α)

exp(vt(xt)/α)
,

and define
∀i ∈ [1, · · · , N]; w

[i]
t−1 := w(x

[i]
t−1, x

[i]
t).

16

Note here we have used the soft Bellman equation:

exp(vt(xt)/α) =

∫
exp(vt−1(xt−1)/α)p

pre
t−1(xt−1|xt)dxt−1.

Hence, by denoting the target marginal distribution at t− 1, we have the following approximation:

ptart−1 ≈︸︷︷︸
IS

N∑
i=1

w
[i]
t−1∑N

j=1 w
[j]
t−1

δ
x
[i]
t−1

.

Selection step (line 5). Finally, we consider a resampling step. The resampling indices are
determined by the following:

{ζ [i]t−1}Ni=1 ∼ Cat

{ w
[i]
t−1∑N

j=1 w
[j]
t−1

}N

i=1

 .

To summarize, we conduct

ptart−1 ≈︸︷︷︸
IS

N∑
i=1

w
[i]
t−1∑N

j=1 w
[j]
t−1

δ
x
[i]
t−1

≈︸︷︷︸
Resampling

1

N

N∑
i=1

δ
x
ζ
[i]
t−1

t−1

.

Finally, we give several important remarks.

• In SMC, resampling is performed across the entire batch. However, in the algorithm,
sampling is done within a single batch. Therefore, the algorithms differ significantly. We
will discuss the implications in the next section.

• All of existing works Wu et al. (2024); Cardoso et al. (2023); Phillips et al. (2024); Dou and
Song (2024) actually consider a scenario where the reward r is a classifier. In Algorithm 4,
we tailor the algorithm for reward maximization. Vice verisa, as we mentioned in Section 5.2,
our SVDD can also operate effectively when r is a classifier.

• In Wu et al. (2024); Cardoso et al. (2023); Phillips et al. (2024), the proposal distribution
is not limited to the pre-trained model. Likewise, in our SVDD, we can select an arbitrary
proposal distribution, as discussed in Section D.

• In the context of autoregressive (language) models, Zhao et al. (2024); Lew et al. (2023)
proposed a similar algorithm.

B.2 Comparison of SVDD with “Standard” SMC-Based Methods (SSM) for Reward
Maximization

We now compare our SVDD with “standard” SMC-Based Methods (SSM). Here, we write a batch
size of SVDD in G. Importantly, we note that our implementation is analogous to nested-IS SMC in
the literature in computational statistics; hence, many differences between nested-IS SMC (Naesseth
et al., 2019, 2015) and pure SMC in computational statistics are translated here.

We first reconsider the fundamental assumptions of each algorithm. SVDD’s performance, in terms of
rewards, depends on the size of M but is independent of the batch size G. In contrast, the performance
of SSM depends on the batch size N . With this in mind, we compare the advantages of SVDD over
SSM from various perspectives.

Tailored to optimization in SVDD. SVDDis considered more suitable for optimization than SMC.
This is because, when using SMC for reward maximization, we must set α very low, leading to a lack
of diversity. This is expected, as when α approaches 0, the effective sample size reduces to 1. This
effect is also evident in our image experiments, as shown in Figure 4. Although SMC performs well
in terms of reward functions, there is a significant loss of diversity. Some readers might think this
could be mitigated by calculating the effective sample size based on weights (i.e., value functions)
and resampling when the effective size decreases; however, this is not the case, as the effective sample
size does not directly translate into greater diversity in the generated samples. In contrast, SVDD,
maintains much higher diversity.

17

(a) Samples from SMC (b) Samples from SVDD-PM

(c) Aesthetic scores from SMC (d) Aesthetic scores from SVDD-PM

Figure 4: Examples of generated samples from SMC (left) and SVDD (right), when the prompt is
“cat.” The histogram of generated samples in terms of the reward function is shown below. Here,
the pre-trained models are based on stable diffusion, and we optimize for aesthetic scores. In SMC,
we set the batch size N = 60, and in SVDD, we set the duplication size M = 20. It is observed
that most samples generated by SMC are similar, although diversity in terms of reward functions is
roughly maintained. This suggests that the effective sample size in terms of value functions (i.e.,
weights) does not directly translate to real diversity in the generated samples. On the other hand, in
SVDD, the generated samples are much more diverse while still achieving high reward functions.

Ease of parallelization in SVDD. SVDD is significantly easier to parallelize across multiple nodes.
In contrast, SSM requires interaction between nodes for parallelization. This advantage is also
well-documented in the context of nested-IS SMC versus standard SMC (Naesseth et al., 2019).

High performance of SVDD under memory constraints. Now, consider a scenario where the
batch size is small, which often occurs due to memory constraints in large pre-trained diffusion
models. In this case, while SSM may exhibit suboptimal performance, SVDD-PM can still achieve
high performance by choosing a sufficiently large M .

In SSM, the “ratio” is approximated. In SVDD, we approximate each exp(vt−1(xt−1)/α) as a
weight. However, in standard SMC, the ratio is approximated as a weight:

exp(vt−1(xt−1)/α)

exp(vt(xt)/α)
.

The key difference is that in SSM, both the numerator and the denominator are approximated, which
could lead to greater error propagation.

C Comparison against DG (Nisonoff et al., 2024) and DiGress (Vignac et al.,
2022) in Discrete Diffusion Models

Our method is closely related to guidance methods used in DG (Nisonoff et al., 2024) and DiGress
(Vignac et al., 2022). However, we emphasize that our approach is more general, as it operates on any

18

domain, including continuous spaces including Riemannian spaces and discrete spaces, in a unified
manner. In this sense, a strict comparison is not feasible. With this in mind, we provide a comparison
focusing on cases where all domains are discrete.

Comparison with Nisonoff et al. (2024). In this continuous framework, following the notation in
(Lou et al., 2023), they propose the use of the following rate matrix:

Q⋆
x,y(t) = Qpre

x,y(t)
exp(vt(y)/α)

exp(vt(x)/α)
.

where Qpre
x,y(t) is a rate matrix in the pre-trained model. This suggests that, with standard discretization,

the optimal policy at each time step is:
p(xt+δt = y|xt = x) = I(x ̸= y) +Q⋆

x,y(t)(δt) (2)
where δt is step size. Asymptotically, this is equivalent to sampling from the optimal policy in
Theorem 1, as we will show in Remark 3. However, as Nisonoff et al. (2024) note, sampling from the
optimal policy requires O(KL) computation, where K is the vocabulary size and L is the sequence
length, which is computationally expensive for large K and L. To address this issue, they propose
using a Taylor approximation by computing the gradient once. However, this is a heuristic in the sense
that there is no theoretical guarantee for this approximation. In contrast, we avoid this computational
overhead in a different manner, i.e., through importance sampling and resampling. Our algorithm
has an asymptotic guarantee as M goes to infinity. Empirically, we have compared two methods in
Section 7.
Remark 3 (Asymptotic equivalence between formula in Nisonoff et al. (2024) and Theorem 1). The
informal reasoning is as follows. Recall that the pre-trained policy can be written as

p(xt+δt = y|xt = x) = I(x ̸= y) +Qpre
x,y(t)(δt).

Then, Theorem 1 states that the optimal policy is
{I(x ̸= y) +Qpre

x,y(t)(δt)} exp(vt(y)/α)∑
z{I(x ̸= z) +Qpre

x,z(t)(δt)} exp(vt(z)/α)
.

Now, we have
{I(x ̸= y) +Qpre

x,y(t)(δt)} exp(vt(y)/α)∑
z{I(x ̸= z) +Qpre

x,z(t)(δt)} exp(vt(z)/α)

=
I(x ̸= y) +Qpre

x,y(t)(δt)} exp(vt(y)/α)
exp(vt(x)/α)

× {1 +O(δt)}

≈
{I(x ̸= y) +Qpre

x,y(t)(δt)} exp(vt(y)/α)
exp(vt(x)/α)

= I(x ̸= y) +
Qpre

x,y(t)(δt) exp(vt(y)/α)

exp(vt(x)/α)
.

Thus, this recovers the formula (2).

Comparison with DiGress in Vignac et al. (2022). Vignac et al. (2022) proposed a diffusion
model for graphs where each sampling and denoising step operates directly on the discrete structure,
avoiding continuous relaxation. They discuss how to implement guidance by treating rewards as a
classifier. To bypass the exponential computational cost of sampling from the optimal policy (p(α) in
Theorem 1), they employ a Taylor expansion. While it requires the calculation of gradients for value
functions, then it mitigates the exponential blow-up in computational time. In contrast, we avoid
this computational blow-up through importance sampling (IS) and resampling. A detailed empirical
comparison between our method and theirs is left for future work.
Remark 4. Note that in our molecule generation experiment in Section 7, we use GDSS (Jo et al.,
2022), which operates in continuous space and differs from DiGress.

D Extension with Arbitrary Proposal Distribution

Here, we describe the algorithm where the proposal distribution is not necessarily derived from
the policy of the pre-trained model, as summarized in Algorithm 5. Essentially, we only adjust the
importance weight. In practice, we can use the gradient of a differentiable proxy model, such as DPS,
as the proposal distribution qt−1. Even if the differentiable proxy (value function) models are not
highly accurate, our method will still perform effectively since other value function models v̂t−1 can
be non-differentiable.

19

Algorithm 5 SVDD (Soft Value-Based Decoding in Diffusion Models)

1: Require: Estimated soft value function {v̂t}0t=T (refer to Algorithm 2 or Algorithm 3), pre-
trained diffusion models {ppret }0t=T , hyperparameter α ∈ R, proposal distribution {qt}0t=T

2: for t ∈ [T + 1, · · · , 1] do
3: Get M samples from pre-trained polices {x⟨m⟩

t−1}Mm=1 ∼ qt−1(·|xt), and for each m, and
calculate

w
⟨m⟩
t−1 := exp(v̂t−1(x

⟨m⟩
t−1)/α)×

ppret−1(x
⟨m⟩
t−1|xt)

qt−1(x
⟨m⟩
t−1|xt)

.

4: xt−1 ← x
⟨ζt−1⟩
t−1 after selecting an index: ζt−1 ∼ Cat

({
w

⟨m⟩
t−1∑M

j=1 w
⟨j⟩
t−1

}M

m=1

)
,

5: end for
6: Output: x0

E Soft Q-learning

In this section, we explain soft value iteration to estimate soft value functions, which serves as an
alternative to Monte Carlo regression.

Soft Bellman equation. Here, we use the soft Bellman equation:

exp(vt(xt)/α) =

∫
exp(vt−1(xt−1)/α)p

pre
t−1(xt−1|xt)dxt−1,

as proved in Section 4.1 in (Uehara et al., 2024). In other words,

vt(xt) = α log{Ext−1∼ppre(·|xt) [exp(vt−1(xt−1)/α)|xt]}.

Algorithm. Based on the above, we can estimate soft value functions recursively by regressing
vt−1(xt−1) onto xt. This approach is often referred to as soft Q-learning in the reinforcement
learning literature (Haarnoja et al., 2017; Levine, 2018).

Algorithm 6 Value Function Estimation Using Soft Q-learning

1: Require: Pre-trained diffusion models {ppret }0t=T , value function model v(x; θ)
2: Collect datasets {x(s)

T , · · · , x(s)
0 }Ss=1 by rolling-out {ppret }0t=T from t = T to t = 0.

3: for j ∈ [0, · · · , J] do
4: Update θ by running regression:

θ′j ← argmin
θ

T∑
t=0

S∑
s=1

{
v(x

(s)
t ; θ)− v(x

(s)
t−1; θ

′
j−1)

}2

.

5: end for
6: Output: v(x; θ′J)

In our context, due to the concern of scaling of α, as we have done in Algorithm 2, we had better use

vt(xt) = Ext−1∼ppre(·|xt) [vt−1(xt−1)|xt] .

With the above recursive equation, we can estimate soft value functions as in Algorithm 6.

F Additional Experimental Details

We further add additional experimental details.

20

F.1 Additional Setups for Experiments

F.1.1 Settings

Images. We define compressibility score as the negative file size in kilobytes (kb) of the image
after JPEG compression following (Black et al., 2023). We define aesthetic scorer implemented as a
linear MLP on top of the CLIP embeddings, which is trained on more than 400k human evaluations.
As pre-trained models, we use Stable Diffusion, which is a common text-to-image diffusion model.
As prompts to condition, we use animal prompts following (Black et al., 2023) such as [Dog, Cat,
Panda, Rabbit, Horse,...].

Molecules. We calculate QED and SA scores using the RDKit (Landrum et al., 2016) library. We
use the docking program QuickVina 2 (Alhossary et al., 2015) to compute the docking scores follow-
ing Yang et al. (2021), with exhaustiveness as 1. Note that the docking scores are initially negative
values, while we reverse it to be positive and then clip the values to be above 0, i.e.. We compute
DS regarding four proteins, parp1 (Poly [ADP-ribose] polymerase-1), 5ht1b (5-hydroxytryptamine
receptor 1B), braf (Serine/threonine-protein kinase B-raf), and jak2 (Tyrosine-protein kinase JAK2),
which are target proteins that have the highest AUROC scores of protein-ligand binding affinities for
DUD-E ligands approximated with AutoDock Vina.

DNA, RNA sequences. We examine two publicly available large datasets: enhancers (n ≈ 700k)
(Gosai et al., 2023) and UTRs (n ≈ 300k) (Sample et al., 2019), with activity levels measured by
massively parallel reporter assays (MPRA) (Inoue et al., 2019). These datasets have been widely
used for sequence optimization in DNA and RNA engineering, particularly in advancing cell and
RNA therapies (Castillo-Hair and Seelig, 2021; Lal et al., 2024; Ferreira DaSilva et al., 2024; Uehara
et al., 2024). In the Enhancers dataset, each x is a DNA sequence of length 200, while y ∈ R is the
measured activity in the Hep cell line. In the 5’UTRs dataset, x is a 5’UTR RNA sequence of length
50, and y ∈ R is the mean ribosomal load (MRL) measured by polysome profiling.

F.1.2 Baselines and Proposals

We will explain in more detail how to implement baselines and our proposal. We use A100 GPUs for
all the tasks.

SVDD-MC. In SVDD-MC, we require value function models. For images, we use standard CNNs
for this purpose, with the same architecture as the reward model. For molecular tasks, we use a
Graph Isomorphism Network (GIN) model (Xu et al., 2018) as the value function model. Notably,
this model is not differentiable w.r.t. inputs. For GIN, we use mean global pooling and the RELU
activation function, and the dimension of the hidden layer is 300. The number of convolutional layers
in the GIN model is selected from the set {3, 5}; and we select the maximum number of iterations
from {300, 500, 1000}, the initial learning rate from {1e-3, 3e-3, 5e-3, 1e-4}, and the batch size from
{32, 64, 128}. For the Enhancer task, we use the Enformer model (Avsec et al., 2021) as the value
function model. The Enformer trunk has 7 convolutional layers, each having 1536 channels. as well
as 11 transformer layers, with 8 attention heads and a key length of 64. Dropout regularization is
applied across the attention mechanism, with an attention dropout rate of 0.05, positional dropout of
0.01, and feedforward dropout of 0.4. The convolutional head for final prediction has 2*1536 input
channels and uses average pooling, without an activation function. The model is trained using a batch
size selected from {32, 64, 128, 256}, the learning rate from {1e-4, 5e-4, 1e-3}, and the maximum
number of iterations from {5k, 10k, 20k}. For the 5’UTR task, we adopt the ConvGRU model
(Dey and Salem, 2017). The ConvGRU trunk has a stem input with 4 channels and a convolutional
stem that outputs 64 channels using a kernel size of 15. The model contains 6 convolutional layers,
each initialized with 64 channels and a kernel size of 5. The convolutional layers use ReLU as the
activation function, and a residual connection is applied across layers. Batch normalization is applied
to both the convolutional and GRU layers. A single GRU layer with dropout of 0.1 is added after the
convolutional layers. The convolutional head for final prediction uses 64 input channels and average
pooling, without batch normalization. For training, the batch size is selected from {16, 32, 64, 128},
the learning rate from {1e-4, 2e-4, 5e-4}, and the maximum number of iterations from {2k, 5k, 10k}.
All function models are trained to converge in the learning process using MSE loss.

21

https://github.com/jacobkimmel/pytorch_convgru?tab=readme-ov-filea

SVDD-PM. For this proposal, we directly use the reward feedback to evaluate. We remark when
the reward feedback is also learned from offline data, technically, it would be better to use techniques
mitigating over-optimization as discussed in Uehara et al. (2024). However, since this point is
tangential in our work, we don’t do it.

DPS. We require differentiable models. For this task, for images, enhancers, and 5’UTRs, we use
the same method as SVDD-MC. For molecules, we follow the implementation in Lee et al. (2023),
and we use the same GNN model as the reward model. Note that we cannot compute derivatives
with respect to adjacency matrices when using the GNN model. Regarding α, we choose several
candidates and report the best one. For image tasks we select from [5.0, 10.0] and for bio-sequence
tasks we select from [1.0, 2.0]. For molecule QED task we select from {0.2, 0.3, 0.4, 0.5}, for
molecule SA task {0.1, 0.2, 0.3}, and for molecule docking tasks we select from {0.4, 0.5, 0.6}.

SMC. For value function models, we use the same method as SVDD-PM. Regarding α, we choose
several candidates and report the best one. For image tasks we select from [10.0, 40.0]. For Enhancer
and 5’UTR tasks as well as molecule QED and SA tasks we select from {0.1, 0.2, 0.3, 0.4}, while for
molecule docking tasks we select from {1.5, 2.0, 2.5}.

F.2 Software and Hardware

Our implementation is under the architecture of PyTorch (Paszke et al., 2019). The deployment
environments are Ubuntu 20.04 with 48 Intel(R) Xeon(R) Silver, 4214R CPU @ 2.40GHz, 755GB
RAM, and graphics cards NVIDIA RTX 2080Ti. Each of our experiments is conducted on a single
NVIDIA RTX 2080Ti or RTX A6000 GPU.

F.3 Additional Results

Histograms. In the main text, we present several quantiles. Here, we plot the reward score
distributions of generated samples as histograms in Figure 5.

Performance of value function training. We report the performance of value function learning
using Monte Carlo regression as follows in SVDD-MC. In Figure 6, we plot the Pearson correlation
on the test dataset for the Enhancer and 5’UTR tasks, as well as the test MSE for the molecular task
of parp1 docking score.

Validity metrics for molecule generation. To evaluate the validity of our method in molecule
generation, we report several key metrics that capture different aspects of molecule quality and
diversity in Table 3 on page 22.

Table 3: Comparison of the generated molecules of pre-trained GDSS model and SVDD applied on
various metrics.

Method Valid Unique Novelty FCD SNN Frag/Test Scaf NSPDK MMD Mol Stable Atm Stable
Pre-trained 1.0 1.0 1.0 22.2799 0.2992 0.8274 0.0033 0.0260 0.2903 0.9256
SVDD 1.0 0.9375 1.0 21.5671 0.3441 0.7803 0.0838 0.0772 0.4783 0.9095

The validity of a molecule indicates its adherence to chemical rules, defined by whether it can be
successfully converted to SMILES strings by RDKit. Uniqueness refers to the proportion of generated
molecules that are distinct by SMILES string. Novelty measures the percentage of the generated
molecules that are not present in the training set. Fréchet ChemNet Distance (FCD) measures the
similarity between the generated molecules and the test set. The Similarity to Nearest Neighbors
(SNN) metric evaluates how similar the generated molecules are to their nearest neighbors in the
test set. Fragment similarity measures the similarity of molecular fragments between generated
molecules and the test set. Scaffold similarity assesses the resemblance of the molecular scaffolds
in the generated set to those in the test set. The neighborhood subgraph pairwise distance kernel
Maximum Mean Discrepancy (NSPDK MMD) quantifies the difference in the distribution of graph
substructures between generated molecules and the test set considering node and edge features. Atom
stability measures the percentage of atoms with correct bond valencies. Molecule stability measures
the fraction of generated molecules that are chemically stable, i.e., whose all atoms have correct bond

22

(a) Images: compressibility (b) Images: aesthetic score

(c) Molecules: QED (d) Molecules: SA (e) Molecules: DS - parp1

(f) Molecules: DS - 5ht1b (g) Molecules: DS - jak2 (h) Molecules: DS - braf

(i) Enhancers (j) 5’UTRs: MRL

Figure 5: We show the histogram of generated samples in terms of reward functions. We consistently
observe that SVDD demonstrates strong performances.

valencies. Specifically, atom and molecule stability are calculated using conformers generated by
RDKit and optimized with UFF (Universal Force Field) and MMFF (Merck Molecular Force Field).

We compare the metrics using 512 molecules generated from the pre-trained GDSS model and from
SVDD optimizing SA, as shown in Table 3. Overall, our method achieves comparable performances
with the pre-trained model on all metrics, maintaining high validity, novelty, and uniqueness while
outperforming on several metrics such as molecule stability, FCD, SNN, and scaffold similarity. These
results indicate that our approach can generate a diverse set of novel molecules that are chemically
plausible and relevant.

More Ablation Studies. We provide several more ablation studies regarding M on top of the
results in the main text, as plotted in Figure 7. The results are consistent with what we have observed
in Figure 3.

Visualization of more generated samples. We provide additional generated samples in this section.
Figure 8 and Figure 9 show comparisons of generated images from baseline methods and SVDD with
different M values regarding compressibility and aesthetic score, respectively. Figure 10 and Figure 11
presents the comparisons of visualized molecules generated from the baseline model and SVDD
regarding QED and SA, respectively. The visualizations validate the strong performances of SVDD.
Given that SVDD can achieve optimal SA for many molecules, we also visualize some molecules
with optimal SA generated by SVDD, as shown in Figure 12. In Figure 13, Figure 14, Figure 15, and
Figure 16 we visualizes the docking of SVDD-generated molecular ligands to proteins parp1, 5ht1b,
jak2, and braf, respectively. Docking scores presented above each column quantify the binding affinity
of the ligand-protein interaction, while the figures include various representations and perspectives of

23

(a) 5’UTR MRL (b) Enhancers

(c) Molecules

Figure 6: Training curve of value functions

(a) Performance of SVDD as M varies. (b) GPU time and max memory of SVDD as M varies.

Figure 7: Abltation Studies (for image generation while optimizing the compressibility)

the ligand-protein complexes. We aim to provide a complete picture of how each ligand is situated
within both the local binding environment and the larger structural framework of the protein. First
rows show close-up views of the ligand bound to the protein surface, displaying the topography and
electrostatic properties of the protein’s binding pocket and providing insight into the complementarity
between the ligand and the pocket’s surface. Second rows display distant views of the protein using
the surface representation, offering a broader perspective on the ligand’s spatial orientation within the
global protein structure. Third rows provide close-up views of the ligand interaction using a ribbon
diagram, which represents the protein’s secondary structure, such as alpha-helices and beta-sheets,
to highlight the specific regions of the protein involved in binding. Fourth rows show distant views
of the entire protein structure in ribbon diagram, with ligands displayed within the context of the
protein’s full tertiary structure. Ligands generally fit snugly within the protein pocket, as evidenced
by the close-up views in both the surface and ribbon diagrams, which show minimal steric clashes
and strong surface complementarity.

24

Figure 8: Additional generated samples (Domain: images, Reward: Compressibility)

Figure 9: Additional generated samples (Domain: Images, Reward: Aesthetic score)

25

Figure 10: Additional generated samples (Domain: Molecules, Reward: QED score)

Figure 11: Additional generated samples (Domain: Molecules, Reward: SA score, normalized as
(10− SA)/9)

26

Figure 12: Additional generated samples from SVDD-MC (Domain: Molecules, Reward: SA score =
1.0 (normalized as (10− SA)/9))

Figure 13: Additional generated samples from SVDD (Domain: Molecules, Reward: Docking score -
parp1 (normalized as max(−DS, 0)))

Figure 14: Additional generated samples from SVDD (Domain: Molecules, Reward: Docking score -
5ht1b (normalized as max(−DS, 0)))

27

Figure 15: Additional generated samples from SVDD (Domain: Molecules, Reward: Docking score -
jak2 (normalized as max(−DS, 0)))

Figure 16: Additional generated samples from SVDD (Domain: Molecules, Reward: Docking score -
braf (normalized as max(−DS, 0)))

28

	Introduction
	Related Works
	Preliminaries and Goal
	Diffusion Models
	Objective: Generating Samples with High Rewards While Preserving Naturalness

	Soft Value-Based Decoding in Diffusion Models
	Key Observation
	Inference-Time Algorithm
	Learning Soft Value Functions

	Advantages, Extensions, Limitations of SVDD
	Advantages
	Extensions
	Potential Limitations

	Comparison between SVDD and SMC-Based Methods
	Experiments
	Settings
	Results

	Conclusion
	Further Related Works
	Difference Between SVDD and ``Standard'' SMC-Methods
	SMC-Based Methods
	Comparison of SVDD with ``Standard'' SMC-Based Methods (SSM) for Reward Maximization

	Comparison against DG nisonoff2024unlocking and DiGress vignac2022digress in Discrete Diffusion Models
	Extension with Arbitrary Proposal Distribution
	Soft Q-learning
	Additional Experimental Details
	Additional Setups for Experiments
	Settings
	Baselines and Proposals

	Software and Hardware
	Additional Results

