
Under review as a conference paper at ICLR 2021

RETHINKING THE TRULY UNSUPERVISED IMAGE-TO-
IMAGE TRANSLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Every recent image-to-image translation model uses either image-level (i.e. input-
output pairs) or set-level (i.e. domain labels) supervision at a minimum. How-
ever, even the set-level supervision can be a serious bottleneck for data collection
in practice. In this paper, we tackle image-to-image translation in a fully unsu-
pervised setting, i.e., neither paired images nor domain labels. To this end, we
propose a truly unsupervised image-to-image translation model (TUNIT) that si-
multaneously learns to separate image domains and translate input images into the
estimated domains. Experimental results show that our model achieves compara-
ble or even better performance than the set-level supervised model trained with
full labels, generalizes well on various datasets, and is robust against the choice
of hyperparameters (e.g. the preset number of pseudo domains). In addition, TU-
NIT extends well to the semi-supervised scenario with various amount of labels
provided.

1 INTRODUCTION

Given an image of one domain, image-to-image translation is a task to generate the plausible images
of the other domains. Based on the success of conditional generative models (Mirza & Osindero,
2014; Sohn et al., 2015), many image translation methods have been proposed either using image-
level supervision (e.g. paired data) (Isola et al., 2017; Hoffman et al., 2018; Zhu et al., 2017b; Wang
et al., 2018; Park et al., 2019) or using set-level supervision (e.g. domain labels) (Zhu et al., 2017a;
Kim et al., 2017; Liu et al., 2017; Huang et al., 2018; Liu et al., 2019; Lee et al., 2020). Though the
latter approach is generally called unsupervised as a counterpart of the former, it actually assumes
that the domain labels are given a priori. This assumption can be a serious bottleneck in practice as
the number of domains and samples increases. For example, labeling individual samples of a large
dataset, such as FFHQ, is expensive, and the distinction across domains can be ambiguous.

Here, we first clarify that unsupervised image-to-image translation should strictly denote the task
without any supervision neither paired images nor domain labels. Under this definition, our goal
is to develop an unsupervised translation model given a mixed set of images of many domains
(Figure 1). We tackle this problem by formulating three sub-problems: 1) clustering the images by
approximating the set-level characteristics (i.e. domains), 2) encoding the individual content and
style of an input image, and 3) learning a mapping function among the estimated domains.

To this end, we introduce a guiding network that simultaneously solves 1) unsupervised do-
main classification and 2) style encoding. It has two branches of providing pseudo domain labels
and encoding style features, which are later used in the discriminator and the generator training, re-
spectively. We employ a differentiable clustering method based on mutual information maximization
for estimating domain labels. This helps the guiding network group similar images together while
evenly separate their categories. For embedding style codes, we adopt a contrastive loss (Hadsell
et al., 2006; He et al., 2020; Chen et al., 2020a), which leads the model to further understand the
dissimilarity between images, resulting in better representation learning. Finally, conditioned on the
style features and domain labels from the guiding network, we use generative adversarial networks
(GAN) to learn the image translation functions across various domains.

Although GAN and the guiding network play different roles, we do not separate their training
process– our guiding network participates in the translation process. By doing so, the guiding net-
work can exploit gradients from GAN training. The guiding network now understands the recipes of
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Figure 1: Levels of supervision. To perform image-to-image translation, existing methods need
either (a) a dataset with input-output pairs or, (b) a dataset with domain information. Our method is
capable of learning mappings among multiple domains using (c) a dataset without any supervision.

domain-separating attributes because the generator wants the style code to contain sufficient infor-
mation to fool the domain-specific discriminator, and vice versa. Thanks to this interaction between
the guiding network and GAN, our model successfully separates domains and translates images.

We quantitatively and qualitatively compare our model with the existing set-level supervised method
under unsupervised and semi-supervised setting. The experiments on various datasets show that
the proposed model outperforms the previous method over all different levels of supervision. Our
experimental results show that, by exploiting the synergy between two tasks, the guiding network
helps the image translation model to largely improve the generation performance.

Our contributions are summarized as follows:

• We clarify the definition of unsupervised image-to-image translation and to the best of our knowl-
edge, our model is the first to succeed in this task in an end-to-end manner.

• We propose the guiding network to handle the unsupervised translation task and show that the
interaction between translation and clustering is helpful for the task.

• We show the effectiveness of our model through the extensive experiments on various datasets.

• We confirm that our model is applicable to various numbers of clusters and the practical case,
where ground truth labels of several samples are available.

2 TRULY UNSUPERVISED IMAGE-TO-IMAGE TRANSLATION (TUNIT)

We consider the unsupervised image-to-image translation problem, where we have images χ from
K domains (K ≥ 2) without domain labels y. Here, K is an unknown property of the dataset.
Throughout the paper, we denote K as the actual number of domains in a dataset and K̂ as the
arbitrarily chosen number of domains to train models. We design a module that integrates both a
domain classifier and a style encoder, which we call guiding network. It guides the translation by
feeding reference images as the style code to the generator and as the pseudo domain labels to the
discriminator. Using the feedback from the discriminator regarding the pseudo labels, the generator
synthesizes images of the target domains (e.g. breeds) while respecting styles (e.g. fur patterns) of
the reference images and maintaining the content (e.g. pose) of source images (Figure 2).

2.1 LEARNING TO PRODUCE DOMAIN LABELS AND ENCODE STYLE FEATURES

In our framework, the guiding network E plays a central role as an unsupervised domain classifier
as well as a style encoder. Our guiding network E consists of two branches, EC and ES , each of
which learns to provide domain labels and style codes, respectively. In experiments, we compare our
guiding network against straightforward approaches, i.e.., K-means on image or feature space.

Unsupervised domain classification. The discriminator requires target domain labels to provide
useful gradients for image translation into the target domain. EC adopts a differentiable clustering
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Figure 2: Overview of our proposed method. The figure illustrates how our model changes the
breed of the cat. (a) An estimated domain from our guiding network E is used to train the multi-task
discriminator D. (b) E provides the generator G with the style code of a reference image and the
estimated domain is again used for GAN training.

technique to provide pseudo domain labels of reference images, maximizing the mutual information
(MI) between an image x and its randomly augmented version x+ (Ji et al., 2019). The optimum of
the mutual information I(p,p+) is reached as the entropy H(p) is maximum and the conditional
entropy H(p|p+) is minimum, where p = EC(x) represents the softmax output from EC , indicat-
ing a probability vector of x over K̂ domains. Please refer to Section 3.3 for more details about K̂.
Maximizing MI encourages EC to assign the same domain label to the pair (x and x+) while evenly
distributing entire samples to all domains.

Formally, EC maximizes the mutual information:

LMI = I(p,p+) = I(P) =

K̂∑
i=1

K̂∑
j=1

Pij ln
Pij

PiPj
,

where P = Ex+∼f(x)|x∼pdata(x)[EC(x) · EC(x
+)T ],

(1)

where f is a composition of random augmentations such as random cropping and affine transforma-
tion. Pi = P(p = i) denotes the K̂-dimensional marginal probability vector, and Pij = P(p =
i,p+ = j) denotes the joint probability. To provide a deterministic one-hot label to the discrimina-
tor, we use the argmax operation (i.e. y = argmax(EC(x))). We note that the mutual information
is one way to implement TUNIT, therefore, any differentiable clustering methods can be adopted
such as SCAN (Van Gansbeke et al., 2020).

Style encoding and improving domain classification. ES encodes an image into a style code s
which provides translation guide for the generator. In addition to the style guide to the generator,
ES is beneficial in improving unsupervised domain classification, where pseudo labels from EC fail
to scale up when samples are complex and diverse (e.g., AnimalFaces (Liu et al., 2019)). Since ES

is an another branch of the guiding network, imposing the contrastive loss (He et al., 2020) on the
style codes improves representation of the shared embeddings:

LE
style = − log

exp(s · s+/τ)∑N
i=0 exp(s · s

−
i /τ)

, (2)

where s = ES(x). x and x+ denote an image and randomly augmented version of x, respectively.
This (N + 1)-way classification enables E to utilize not only the similarity of the positive pair (s,
s+) but also the dissimilarity of the negative pairs (s, s−i ). We adopt a queue to store the negative
codes s−i of the previously sampled images as MoCo (He et al., 2020). By doing so, we can conduct
the contrastive learning efficiently without large batch sizes (Saunshi et al., 2019). We observe that
adding this objective significantly improves unsupervised classification accuracy on AnimalFaces
from 68.0% to 84.1% compared to the previous approach (Ji et al., 2019).
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2.2 LEARNING TO TRANSLATE IMAGES WITH THE DOMAIN GUIDANCE

In this subsection, we describe how to perform the unsupervised image-to-image translation under
the guidance of our guiding network. For successful translation, the model should provide the real-
istic images containing the visual feature of the target domain. To this end, we adopt three losses: 1)
adversarial loss to produce realistic images, 2) style contrastive loss that encourages the model not
to ignore the style codes, 3) image reconstruction loss for preserving the domain-invariant features.
We explain each loss and the overall objective for each network.

Adversarial loss. For adversarial training, we adopt a variant of conditional discriminator, the multi-
task discriminator (Mescheder et al., 2018). It is designed to conduct discrimination for each domain
simultaneously. However, its gradient is calculated only with the loss for estimating the domain of
the input image. For the domain label of the input image, we utilize the pseudo label from the guiding
network. Formally, given the pseudo label ỹ for a reference image x̃, we train our generator G and
multi-task discriminator D via the adversarial loss:

Ladv = Ex̃∼pdata(x)[logDỹ(x̃)] + Ex,x̃∼pdata(x)[log(1−Dỹ(G(x, s̃)))], (3)

where Dỹ(·) denotes the logit from the domain-specific (ỹ) discriminator, and s̃ = ES(x̃) denotes a
target style code of the reference image x̃. The generator G learns to translate x to the target domain
ỹ while reflecting the style code s̃.

Style constrastive loss. In order to prevent a degenerate case where the generator ignores the given
style code s̃ and synthesize a random image of the domain ỹ, we impose a style contrastive loss:

LG
style = Ex,x̃∼pdata(x)

[
− log

exp(s′ · s̃)∑N
i=0 exp(s

′ · s−i /τ)

]
. (4)

Here, s′ = ES(G(x, s̃)) denotes the style code of the translated image G(x, s̃) and s−i denotes the
negative style codes, which are from the same queue used in equation (2). And we follow the training
scheme of MoCo (He et al., 2020) as equation (2). The above loss guides the generated image
G(x, s̃) to have a style similar to the reference image x̃ and dissimilar to negative (other) samples. By
doing so, we also avoid the degenerated solution where the encoder maps all the images to the same
style code of the reconstruction loss (Choi et al., 2020) based on L1 or L2 norm. Equation (2) and
(4) are based on contrastive loss, but they are used for different purposes. Please refer to Appendix H
for more discussion.

Image reconstruction loss. To ensure that the generatorG can reconstruct the source image x when
given with its original style s = ES(x), we impose an image reconstruction loss:

Lrec = Ex∼pdata(x)[‖x−G(x, s)‖1]. (5)

This objective not only ensures the generator G to preserve domain-invariant characteristics (e.g.,
pose) of its input image x, but also helps to learn the style representation of the guiding network E
by extracting the original style s of the source image x.

Overall objective. Finally, we train the three networks jointly as follows:

LD = −Ladv,

LG = Ladv + λGstyleLG
style + λrecLrec,

LE = LG − λMILMI + λEstyleLE
style

(6)

where λ’s are hyperparameters. Note that our guiding network E receives feedback from LG, which
is essential for our method. We discuss the effect of feedback to E on performance in Section 3.1.

3 EXPERIMENTS

We first evaluate TUNIT on labeled datasets by treating them as unlabeled because the desired be-
haviours of the translation models in labeled datasets are well defined (Section 3.1). Here, we provide
an ablation study to analyze the effect of each component and compare the models both quantita-
tively and qualitatively. We then move on to unlabeled datasets to validate our model in the unsu-
pervised scenario in the wild (Section 3.2). Lastly, we show that TUNIT is robust against the choice
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Configuration AnimalFaces-10 Food-10
mFID D & C Acc. mFID D & C Acc.

A Baseline FUNIT (supervised) 74.0 0.749 / 0.671 1.000 68.4 0.989 / 0.782 1.000
B (A) + Improved G & D (supervised) 46.2 0.896 / 0.732 1.000 57.6 1.284 / 0.857 1.000
C (B) + K-means on image space 110.7 0.822 / 0.615 0.215 90.7 0.849 / 0.648 0.201
D (B) + K-means on feature space 76.2 0.770 / 0.597 0.428 64.6 0.968 / 0.808 0.331
E (B) + Differentiable clustering 73.5 0.940 / 0.588 0.680 64.2 1.038 / 0.819 0.542
F TUNIT w/ sequential training 46.0 1.060 / 0.789 0.850 61.1 0.908 / 0.777 0.860
G TUNIT w/ joint training 47.7 1.039 / 0.805 0.841 52.2 1.079 / 0.875 0.848

Table 1: Main results. mFID, Density / Coverage (D & C), and classification accuracy (Acc) of each
training configuration. Note that the configurations (A) - (B) use ground-truth class labels, while (C)
- (G) use pseudo-labels. We bold the best results separately for supervised and unsupervised settings.

Source Reference A B C D E F G

Figure 3: Qualitative comparison of translation results using each configuration in Table 1. Here, B
reflects the style feature (e.g. species or type of food) of the reference images while A does not. The
model C performs much worse than A and B in that it overly adopts the source image, not adequately
merging styles and contents from both sides. The model D generates more plausible images than C
but fails to reflect the characteristics of the reference images. For example, D on fifth row does not
look like several pieces of dumpling due to its shape and dish color, meaning that the reference styles
are not properly reflected. Similarly, E also fails to generate the dumpling in the fifth row. TUNIT
with sequential training F reflects the visual features of each reference on both datasets. However,
in terms of visual fidelity, we observe that G consistently outperforms F. Akin to the quantitative
results, TUNIT achieves equivalent or even better visual quality than the set-level supervised model
A and B.

of hyperparameters (e.g. the preset number of clusters, K) and extends well to the semi-supervised
scenario (Section 3.3). In all experiments, we use FUNIT (Liu et al., 2019) as our baseline.

Datasets. For the labeled datasets, we randomly select ten classes among 149 classes of Animal-
Faces and 101 classes of Food-101, which we call AnimalFaces-10 and Food-10, respectively. Here,
the labels are used only for the evaluation purpose. For the unlabeled datasets, we use AFHQ, FFHQ,
and LSUN Car (Choi et al., 2020; Karras et al., 2019; Yu et al., 2015), which do not have any or
are missing with fine-grained labels. Specifically, AFHQ roughly has three groups (i.e., dog, cat and
wild), but each group contains diverse species and these species labels are not provided. FFHQ and
LSUN Car contain various human faces and cars without any labels, respectively.
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Figure 4: Reference-guided image translation results on unlabeled datasets.
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(a) t-SNE visualization of FUNIT (left) and TUNIT (right) (b) Representative images

Figure 5: t-SNE visualization of the style space of our guiding network trained on AFHQ Wild. Since
AFHQ Wild does not have ground-truth labels, each point is colored with the guiding network’s
prediction. Although we set the number of domains to be quite large (K̂ = 10), the network separates
one species into two domains, which are so closely located that the model creates six clusters.

Evaluation Metrics. We report two scores to assess the generated images. First, to provide a general
sense of image quality, we use the mean of class-wise Frénchet Inception Distance (mFID) (Heusel
et al., 2017). It can avoid the degenerate case of the original FID, which assigns a good score when
the model conveying the source image as is. Additionally, to provide a finer assessment of the gener-
ated images, we report Density and Coverage (D&C) (Naeem et al., 2020). D&C separately evaluates
the fidelity and the diversity of the model outputs, which is also known to be robust against outliers
and model hyperparameters (e.g. the number of samples used for evaluation). Denote that a lower
mFID score means better image quality, and D&C scores that are bigger or closer to 1.0 indicate the
better fidelity and diversity, respectively. Please refer to Appendix C for the detailed information.

3.1 COMPARATIVE EVALUATION ON LABELED DATASETS

Table 1 summarizes the effect of each component of TUNIT and rigorous comparisons with the
state-of-the-art supervised method, FUNIT. First, we report the set-level supervised performance
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(a) t-SNE of K̂=10 (b) t-SNE of K̂=20

K̂
AnimalFaces-10 Food-10

mFID D & C mFID D & C
1 129.6 0.561 / 0.512 95.1 1.113 / 0.771
4 77.7 0.879 / 0.738 67.4 0.851 / 0.785
7 62.7 1.016 / 0.729 52.7 1.079 / 0.875
10 47.7 1.039 / 0.805 52.2 1.079 / 0.875
13 56.8 0.993 / 0.805 54.8 0.970 / 0.845
16 54.1 1.093 / 0.782 54.8 1.029 / 0.857
20 55.4 1.019 / 0.778 57.7 0.937 / 0.846
50 63.8 0.858 / 0.701 60.8 1.067 / 0.837
500 67.2 0.921 / 0.694 63.2 0.986 / 0.826
1000 66.9 0.908 / 0.707 60.7 0.945 / 0.845

Table 2: t-SNE visualization of the model with (a) K̂=10 and (b) K̂=20 trained on AnimalFaces-10
and quantitative evaluation of our method by varying the number of pseudo domains K̂. Each point
is colored with the ground-truth labels. As shown in t-SNE visualizations, even if K̂ is set to overly
larger than the actual number of domains, the guiding network clusters the domains reasonably well.

Source Reference K̂=1 K̂=4 K̂=7 K̂=10 K̂=13 K̂=16 K̂=20

Figure 6: Qualitative comparison on the number of pseudo domains K̂. The performance varies
along with K̂. When we set K̂ large enough, the results are reasonable.

of FUNIT and its variant (Table 1). Here, A is the original FUNIT and B denotes the modified
FUNIT using our architecture (e.g. We do not use PatchGAN discriminator), which brings a large
improvement over every score on both datasets. One simple way to extend B to the unsupervised
scenario is to add an off-the-shelf clustering method and use its estimated labels instead of the ground
truth. We employ K-means clustering on the image space for C, and the pretrained feature space for
D. Here, we use ResNet-50 (He et al., 2016) features trained with MoCo v2 (Chen et al., 2020b)
on ImageNet. Not surprisingly, because the estimated labels are inaccurate, the overall performance
significantly drops. Although using the pretrained features helps a little, not only is it far from the set-
level supervised performance but it requires three steps to train the entire model, which complicates
the application. This can be partially addressed by employing the differentiable clustering method (Ji
et al., 2019), which trains VGG-11BN (Simonyan & Zisserman, 2015) with mutual information
maximization that makes E. This reduces the number of training steps from three to two and provides
better label estimation, which enables the model to approach the performance of original FUNIT A.
However, as seen in the coverage score, the sample diversity is unsatisfactory.

Finally, we build TUNIT by introducing the guiding network and the new objective functions de-
scribed in Section 2. The changes significantly improve the accuracy on both datasets, particularly
achieving similar mFID of the improved set-level supervised model B. Our final model, G matches
or outperforms mFID and D&C of B. This is impressive because B utilizes oracles for training while
G has no labels. Notably, TUNIT can cover 7%p wider support of the data on AnimalFaces-10 than
B. We conjecture that TUNIT benefits from the style codes that represent meaningful domain fea-
tures learned by clustering. By comparing F and G, we confirm that they are comparable in terms of
clustering and G is more stable in terms of inter-dataset performance. Therefore, we adopt the joint
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Configuration AnimalFaces-10 Food-10
20% 40% 60% 80% 20% 40% 60% 80%

A FUNIT 124.4 106.4 96.0 79.6 111.4 85.8 74.8 70.3
G TUNIT (ours) 42.0 42.6 43.9 46.2 53.6 56.2 52.8 53.4

Table 3: Quantitative evaluation (mFID) when few labels are available during training.

Configuration AnimalFaces-10 Food-10
1% 2% 4% 8% 1% 2% 4% 8%

A FUNIT 107.8 104.7 90.3 93.9 71.9 71.5 71.6 69.0
G TUNIT (ours) 47.9 44.8 42.7 42.4 54.5 56.1 55.9 55.8

Table 4: Quantitative evaluation (mFID) when few labels are available during training. Here, an
auxliary classifier is adopted to improve the FUNIT baseline by giving pseudo-labels to Dun.

training of style encoder and clustering as our final model (G). In addition, we remove the adversar-
ial loss for training the guiding network. It directly degrades the performance; mFID changes from
47.7 to 63.0 on AnimalFaces-10. It indicates that our training scheme takes an important portion of
performance gains. Qualitative results also show superiority of TUNIT over competitors (Figure 3).

3.2 VALIDATION ON UNLABELED DATASET

We evaluate TUNIT on the unlabeled datasets having no clear separations of the domains, which are
AFHQ, FFHQ and LSUN Cars. For AFHQ, we train three individual models for dog, cat and wild.
For all experiments, FUNIT is used as a baseline. We train it by presuming all labels to be the same
as one. We set K̂=10 for all the TUNIT models. More discussions on K̂ will be in Section 3.3.

Figure 4 demonstrates the results. We observe that the results of TUNIT adequately reflect the style
feature of the references such as the textures of cats or cars and the species of the wilds. Although
FFHQ has no clear domain distinctions, TUNIT captures the existence of glasses or smile as do-
mains, and then add or remove glasses or smile. However, FUNIT performs much worse than TUNIT
in this truly unsupervised scenario. For example, FUNIT outputs the inputs as is (cats and wilds) or
insufficiently reflects the species (third row of AFHQ Wild). For FFHQ, despite that FUNIT makes
some changes, the changes are not interpreted as meaningful domain translations. For LSUN Car,
FUNIT fails to keep the fidelity.

We also visualize the style space of both models to qualitatively assess the quality of the represen-
tation. Figure 5 shows the t-SNE maps trained on AFHQ Wild and the examples of each cluster.
Surprisingly, TUNIT organizes the samples according to the species where it roughly separates the
images into six species. Although we set K̂ to be overly large, the model represents one species into
two domains where those two domains position much closely. The highly disentangled, meaningful
style features can be an important factor in the success of our model. On the other hand, the style
features of FUNIT hardly learn meaningful domains so that the model cannot conduct the translation
properly as shown in Figure 4. Because of the page limit, we include more results in Appendix E,
G.

3.3 ANALYSIS ON GENERALIZABILITY

Robustness to various K̂’s. When TUNIT conducts clustering for estimating domain labels, the
number of clusters K̂ can affect the overall performances. Here, we study the effects on different K̂
on the labeled datasets and report them in Figure 6 and Table 2. As expected, the model performs
best in terms of mFID when K̂ equals to the ground truth K (i.e. K̂=10). Additionally, TUNIT
performs reasonably well for sufficiently large K̂ (≥ 7), and even with 100 times larger K̂ than
the actual number of the domains, TUNIT still works well on both datasets. From this study, we
conclude that TUNIT is relatively robust against K̂ as long as it is sufficiently large. We suggest
using a sufficiently large number of K̂ or studying different K̂’s in log scale to find the optimal
model.
With Few labels. We investigate whether or not TUNIT is effective for the partially labeled dataset
that corresponds to a more practical scenario. To this end, we use AnimalFaces-10 and Food-10.
We partition the dataset D into the labeled set Dsup and the unlabeled set Dun with varying ratio
γ = |Dsup|/|D|. Like before, we choose FUNIT as a competitor. We first train the networks while
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changing γ from 0.2 to 1.0 and report the result Table 3. As γ decreases, the performance of FUNIT
significantly degrades whereas our model maintains mFID around 45 and 55 on both datasets. We
also train an auxiliary classifier (VGG-11BN) with Dsup then provide pseudo-labels for Dun to
FUNIT. As shown in Table 4, the performance of FUNIT is no longer sensitive to the changes in γ
but still much worse than TUNIT. Although semi-supervised learning schemes can further improve
FUNIT, TUNIT outperforms FUNIT using all labels as seen in Table 1. Under the empirical results
in the semi-supervised scenario, we verify that TUNIT is also effective for semi-supervised setting.

4 CONCLUSION

We argue that the unsupervised image-to-image translation should not utilize any supervision, such
as image-level (i.e. paired) or set-level (i.e. unpaired) supervision. Under this rigorous regime, many
previous studies fall into the set-level supervised framework that uses the domain information at a
minimum. In this paper, for the first time, we proposed an effective model to handle the truly unsu-
pervised image-to-image translation. To this end, we suggested the guiding network that performs
unsupervised representation learning for providing pseudo labels and the image translation tasks.
The experimental results showed that guiding network indeed exploits the synergy between two
tasks, and the proposed model successfully conducts the unsupervised-image-to-image translation.
We also showed the generalizability on the value of K̂ and the partially labeled scenario.
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gan: Blind motion deblurring using conditional adversarial networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 8183–8192, 2018.

Hsin-Ying Lee, Hung-Yu Tseng, Qi Mao, Jia-Bin Huang, Yu-Ding Lu, Maneesh Singh, and Ming-
Hsuan Yang. Drit++: Diverse image-to-image translation via disentangled representations. Inter-
national Journal of Computer Vision, pp. 1–16, 2020.

Jae Hyun Lim and Jong Chul Ye. Geometric gan. arXiv preprint arXiv:1705.02894, 2017.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400,
2013.

Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image translation networks.
In Advances in neural information processing systems, pp. 700–708, 2017.

Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo Aila, Jaakko Lehtinen, and Jan Kautz.
Few-shot unsupervised image-to-image translation. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 10551–10560, 2019.

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. Which training methods for gans do
actually converge? In ICML, 2018.

10



Under review as a conference paper at ICLR 2021

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
fidelity and diversity metrics for generative models. 2020.

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with
spatially-adaptive normalization. In CVPR, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch.
2017.

Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and Hrishikesh Khandeparkar.
A theoretical analysis of contrastive unsupervised representation learning. In International Con-
ference on Machine Learning, pp. 5628–5637, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

Saurabh Singh and Shankar Krishnan. Filter response normalization layer: Eliminating batch de-
pendence in the training of deep neural networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11237–11246, 2020.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using
deep conditional generative models. In Advances in neural information processing systems, pp.
3483–3491, 2015.

Dustin Tran, Rajesh Ranganath, and David Blei. Hierarchical implicit models and likelihood-free
variational inference. In Advances in Neural Information Processing Systems, pp. 5523–5533,
2017.

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, and Luc
Van Gool. Scan: Learning to classify images without labels. In European Conference on Com-
puter Vision (ECCV), 2020.

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-
resolution image synthesis and semantic manipulation with conditional gans. In CVPR, 2018.
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APPENDIX

A RELATED WORK

Image-to-image translation. Since the seminal work of Pix2Pix (Isola et al., 2017), image-to-image
translation models have shown impressive results (Zhu et al., 2017a; Liu et al., 2017; Kim et al.,
2017; Kupyn et al., 2018; Choi et al., 2018; Huang et al., 2018; Liu et al., 2019; Yang et al., 2019).
Exploiting the cycle consistency constraint, these methods were able to train the model with a set-
level supervision (domains) solely. However, acquiring domain information can be a huge burden in
practical applications where a large amount of data are gathered from several mixed domains, e.g.,
web images (Yalniz et al., 2019). Not only does this complicates the data collection, but it restricts
the methods only applicable to the existing dataset and domains. Inspired from few shot learning,
Liu et al. (2019) proposed FUNIT that works on previously unseen target classes. However, FU-
NIT still requires the labels for training. Recently, Bahng et al. (Bahng et al., 2020) has partially
addressed this by adopting the ImageNet pre-trained classifier for extracting domain information.
Unlike the previous methods, we aim to design an image-to-image translation model that can be
applied without any supervision such as a pre-trained network or supervision on both the train and
the test datasets.
Unsupervised representation learning and clustering. Unsupervised representation learning aims
to extract meaningful features for downstream tasks without any human supervision. To this end,
many researchers have proposed to utilize the information that can be acquired from the data it-
self (Gidaris et al., 2018; Hjelm et al., 2019; Ji et al., 2019; He et al., 2020; Van Gansbeke et al.,
2020). Recently, by incorporating the contrastive learning into a dictionary learning framework,
MoCo (He et al., 2020) has achieved outstanding performance in various downstream tasks under
reasonable mini-batch size. On the other hand, IIC (Ji et al., 2019) have utilized the mutual infor-
mation maximization in a unsupervised way so that the network clusters images while assigning the
images evenly. Though IIC provided a principled way to perform unsupervised clustering, it fails to
scale up when combined with a difficult downstream task such as image-to-image translation. By
taking the best of both worlds, we aim to solve unsupervised image-to-image translation.

B TRAINING DETAILS

We train the guiding network for the first 65K iterations while freezing the update from both the gen-
erator and the discriminator. Then, we train the whole framework 100K more iterations for training
all the networks. The batch size is set to 32 and 16 for 128×128 and 256×256 images, respectively.
Training takes about 36 hours on a single Tesla V100 GPU with our implementation using Py-
Torch(Paszke et al., 2017). We use Adam (Kingma & Ba, 2014) optimizer with β1 = 0.9, β2 = 0.99
for the guiding network, and RMSprop (Hinton et al., 2012) optimizer with α = 0.99 for the gener-
ator and the discriminator. All learning rates are set to 0.0001 with a weight decay 0.0001. We adopt
hinge version adversarial loss (Lim & Ye, 2017; Tran et al., 2017) withR1 regularization (Mescheder
et al., 2018) using γ = 10 (Eq. 5). We set λrec = 0.1, λGstyle = 0.01, λEstyle = 1, and λMI = 5 in equa-
tion. 6 for all experiments. When the guiding network is simultaneously trained with the generator,
we decrease λEstyle and λMI to 0.1 and 0.5, respectively. For evaluation, we use the exponential mov-
ing average over the parameters (Karras et al., 2018) of the guiding network and the generator. We
initialize the weights of convolution layers with He initialization (He et al., 2015), all biases to zero,
and weights of linear layers from N(0, 0.01) with zero biases. The source code will be available
publicly.

C EVALUATION PROTOCOL

For evaluation, we use class-wise Fréchet Inception Distance (FID) (Heusel et al., 2017), which
is often called mFID in literatures and D&C (Naeem et al., 2020). FID measures Fréchet distance
between real and fake samples embedded by the last average pooling layer of Inception-V3 pre-
trained on ImageNet. Class-wise FID is obtained by averaging the FIDs of individual classes. In the
experiments with fewer labels, we report the mean value of best five mFID’s over 100K iterations.
For example, we use entire real images of each class and generate 810 fake images where 18 ×
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(K − 1) source images (K = 10 for AnimalFaces-10) and five reference images of AnimalFaces-
10 are used to produce those fake images. We choose the source images from all classes except
for the target class. For each source image, the five references are selected arbitrarily. For D&C,
we generate fake images the similar number of training images with randomly selected source and
reference images. Then, we use Inception-V3 pre-trained on ImageNet for extracting feature vectors
and measure D&C by using the feature vectors.

D ARCHITECTURE DETAILS

For the guiding network, we use VGG11 before the linear layers followed by the average pooling
operation as the shared part and append two branches Eclass and Estyle. The branches are one linear
layer with K̂ and 128 dimensional outputs, respectively. The detailed information of the generator,
the guiding network and the discriminator architectures are provided in Table 5, Table 6 and Table 7.

LAYER RESAMPLE NORM OUTPUT SHAPE

Image x - - 128× 128× 3

Conv7×7 - IN 128× 128× ch
Conv4×4 Stride 2 IN 64× 64× 2ch
Conv4×4 Stride 2 IN 32× 32× 4ch
Conv4×4 Stride 2 IN 16× 16× 8ch

ResBlk - IN 16× 16× 8ch
ResBlk - IN 16× 16× 8ch
ResBlk - AdaIN 16× 16× 8ch
ResBlk - AdaIN 16× 16× 8ch

Conv5×5 Upsample AdaIN 32× 32× 4ch
Conv5×5 Upsample AdaIN 64× 64× 2ch
Conv5×5 Upsample AdaIN 128× 128× ch
Conv7×7 - - 128× 128× 3

Table 5: Generator architecture. “ch” represents the channel multiplier that is set to 64. IN and AdaIN
indicate instance normalization and adaptive instance normalization, respectively.

LAYER RESAMPLE NORM OUTPUT SHAPE

Image x - - 128× 128× 3

Conv3×3 MaxPool BN 64× 64× ch
Conv3×3 MaxPool BN 32× 32× 2ch
Conv3×3 - BN 32× 32× 4ch
Conv3×3 MaxPool BN 16× 16× 4ch
Conv3×3 - BN 16× 16× 8ch
Conv3×3 MaxPool BN 8× 8× 8ch
Conv3×3 - BN 8× 8× 8ch
Conv3×3 MaxPool BN 4× 4× 8ch

GAP - - 1× 1× 8ch
FC - - 128
FC - - K̂

Table 6: Guiding network architecture. “ch” represents the channel multiplier that is set to 64. The
architecture is based on VGG11-BN. GAP and FC denote global average polling (Lin et al., 2013)
and fully connected layer, respectively.
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LAYER RESAMPLE NORM OUTPUT SHAPE

Image x - - 128× 128× 3

Conv3×3 - - 128× 128× ch
ResBlk - FRN 128× 128× ch
ResBlk AvgPool FRN 64× 64× 2ch
ResBlk - FRN 64× 64× 2ch
ResBlk AvgPool FRN 32× 32× 4ch
ResBlk - FRN 32× 32× 4ch
ResBlk AvgPool FRN 16× 16× 8ch
ResBlk - FRN 16× 16× 8ch
ResBlk AvgPool FRN 8× 8× 16ch
ResBlk - FRN 8× 8× 16ch
ResBlk AvgPool FRN 4× 4× 16ch

LReLU - - 4× 4× 16ch
Conv4×4 - - 1× 1× 16ch
LReLU - - 1× 1× 16ch

Conv1×1 - - K̂

Table 7: Discriminator architecture. “ch” and K̂ represent the channel multiplier that is set to 64 and
the number of clusters, respectively. FRN indicates filter response normalization (Singh & Krishnan,
2020).
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E T-SNE VISUALIZATION & CLUSTER EXAMPLE IMAGES

E.1 AFHQ CAT

t-SNE visualization Domain 0 Domain 1

Domain 2 Domain 3 Domain 4 Domain 5

Domain 6 Domain 7 Domain 8 Domain 9

Figure 7: t-SNE visualization and representative images of each domain.
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E.2 AFHQ DOG

t-SNE visualization Domain 0 Domain 1

Domain 2 Domain 3 Domain 4 Domain 5

Domain 6 Domain 7 Domain 8 Domain 9

Figure 8: t-SNE visualization and representative images of each domain.
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E.3 FFHQ

t-SNE visualization Domain 0 Domain 1

Domain 2 Domain 3 Domain 4 Domain 5

Domain 6 Domain 7 Domain 8 Domain 9

Figure 9: t-SNE visualization and representative images of each domain.
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E.4 LSUN CAR

t-SNE visualization Domain 0 Domain 1

Domain 2 Domain 3 Domain 4 Domain 5

Domain 6 Domain 7 Domain 8 Domain 9

Figure 10: t-SNE visualization and representative images of each domain.
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F ADDITIONAL COMPARISON WITH FUNIT: AFHQ, LSUN CAR AND
FFHQ
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Figure 11: AFHQ Cat, unsupervised reference-guided image-to-image translation results of FUNIT
and TUNIT. The content and the style are from the source and the reference, respectively. While
FUNIT usually fails to reflect the style of the reference image, TUNIT generates the fake images
with the style – color, fur texture.
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Figure 12: AFHQ Wild, unsupervised reference-guided image-to-image translation results of FUNIT
and TUNIT. FUNIT rarely reflects the correct style of the reference image – the species, on the other
hand, TUNIT translates the source image to the correct species.
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Figure 13: LSUN Car, unsupervised reference-guided image-to-image translation results of FUNIT
and TUNIT. While TUNIT generates plausible and changes the color of the source image to that of
the reference image, FUNIT not also generates unrealistic image but also fails to changes the color.
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Figure 14: FFHQ, unsupervised reference-guided image-to-image translation results of FUNIT and
TUNIT. Our model, TUNIT can remove or add the glasses to the source while preserving the identity
better than FUNIT. In addition, TUNIT can change the hair color (last column) and the hair style –
especially, bang (fifth column). It is hard to specify the definition of domains in the results of FUNIT
while domains of TUNIT are more interpretable.
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G ADDITIONAL RESULTS OF TUNIT: AFHQ, LSUN CAR, FFHQ,
ANIMALFACES-10, AND S2W

G.1 ANIMALFACES-10

Source

D
o
m

a
in

(a) Results guided by average style vectors

R
ef

er
en

ce

Source

(b) Results guided by reference images
Figure 15: AnimalFaces-10, unsupervised image-to-image translation results.

21



Under review as a conference paper at ICLR 2021

G.2 AFHQ CAT
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(b) Results guided by reference images
Figure 16: AFHQ Cat, unsupervised image-to-image translation results.
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G.3 AFHQ DOG
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(b) Results guided by reference images
Figure 17: AFHQ Dogs, unsupervised image-to-image translation results.

23



Under review as a conference paper at ICLR 2021

G.4 AFHQ WILD
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Figure 18: AFHQ Wild, unsupervised image-to-image translation results.
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G.5 FFHQ
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Figure 19: FFHQ, unsupervised image-to-image translation results.
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G.6 LSUN CAR
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(b) Results guided by reference images
Figure 20: LSUN Car, unsupervised image-to-image translation results.
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G.7 SUMMER2WINTER (S2W)

Source

To

Winter

To

Summer

(a) Results guided by the average style code of each domain

(b) Results guided by reference images
Figure 21: Summer2Winter (S2W), unsupervised image-to-image translation results.
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H DIFFERENCE BETWEEN EQUATION (2) AND EQUATION (4)

Equation (2) and (4) have similar forms – contrastive loss, but they are used for different purposes.
We use equation (2) to improve the representation power of the guiding network, which affects
the performance of the generator and the discriminator. On the other hand, equation (4) is used to
enforce the generator to reflect the style of a reference image when translating a source image. To
examine the effect of each loss, we train models without either equation (2) or (4) on AnimalFaces-
10. The mFID score without equation (2) or (4) is 86.8 and 93.3, respectively. Both models are
significantly worse than the original setting (47.7). It means that both equation (2) and (4) should
be considered during training. In addition to the purpose, they are different in terms of the way to
choose positive pairs. We use a real image and its randomly augmented version as a positive pair in
equation (2) while we use the translated image and reference image as a positive pair. In summary,
the role of equation (2) is to enhance the representation power of the guiding network and lead the
guiding network to learn how to encode the style vector in terms of a style encoder while the role of
equation (4) is to guide the generator to learn how to interpret the provided style vector as a form of
the output image.

I FID AND LPIPS ON UNLABELED DATASET

Source

Reference

F
ID

LPIPS

Fails to 
preserve 
content

Reconstructs
input

Fails to
provide

realistic image

Adversarial
example

Figure 22: LPIPS and FID of models and their status.

We also utilize LPIPS to evaluate the models in addition to FID and D&C. However, LPIPS is not
proper to evaluate the loyalty for reflecting the reference image and the fidelity of images, we use
LPIPS with FID. Figure 22 shows the result. It is clear that a model with high FID and LPIPS
generates a noise-like image. Even if FID is low, a model with high LPIPS also fails to conduct the
reference-guided image translation, because it does not preserve the structure of the source image.
The model with low LPIPS and high FID might be an adversarial example of LPIPS. We generate
the image via optimization on LPIPS. If a model exhibits low FID and LPIPS, it might not reflect
the visual feature of the reference image enough. The simple combination of LPIPS and FID can
detect several failed models but can not evaluate the loyalty for the reference image. We suggest that
the rigorous way to combine several metrics for the quantitative evaluation of the reference-guided
translation might be a interesting future work.
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