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ABSTRACT

This paper studies cooperative Multi-Agent Reinforcement Learning (MARL)
under the mathematical model of Decentralized Partially Observable Markov
Decision Process (DEC-POMDP). Despite the empirical success of cooperative
MARL, its theoretical foundation, particularly in the realm of provable learning
of DEC-POMDPs, remains limited. In this paper, we first present a hardness result
in theory demonstrating that, without additional structural assumptions, learning
DEC-POMDPs requires several samples that grows exponentially with the num-
ber of agents in the worst case, which is also known as the curse of multiagency.
This motivates us to explore important subclasses of DEC-POMDPs for which ef-
ficient solutions can be found. Specifically, we propose new algorithms and estab-
lish sample-efficiency guarantees that break the curse of multiagency, for finding
both local and global optima in two important scenarios: (1) when agents employ
memoryless policies, selecting actions based solely on their current observations;
and (2) when a factored structure is present, which enables key properties similar
to value decomposition in VDN or Qmix.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) has gained significant attention due to its
wide range of applications in real-world problems, such as autonomous vehicles and robotic swarms.
However, one of the primary challenges in cooperative MARL is the exponential growth of the ac-
tion space as the number of agents increases. Consequently, the number of samples required to learn
an optimal policy grows exponentially with the number of agents. To address this issue, |Oliehoek
et al.| (2008a)); [Kraemer and Banerjee| (2016)) proposed the method of centralized training with de-
centralized execution (CTDE). In CTDE, agents’ policies are trained using global information, but
the resulting policies are decentralized, allowing each agent to execute them using only local in-
formation during execution. Rashid et al.| (2018)) introduced the decentralized partially observable
Markov decision process (DEC-POMDP) as a model for fully cooperative multi-agent reinforce-
ment learning. The DEC-POMDP model is similar to a traditional partially observable Markov
game, with the key distinction that in a DEC-POMDP, the objective is to maximize the cumulative
rewards across all agents. Although cooperative MARL has achieved empirical success across a
variety of real-world problems, and numerous significant algorithms have been developed—such as
VDN (Sunehag et al., 2017), Q-MIX (Rashid et al., 2018)), and Q-PLEX (Wang et al., 2021)—the
theoretical foundations of MARL remain underdeveloped. Therefore, the objective of this paper is
to develop a sample-efficient algorithm for DEC-POMDPs, with an emphasis on theoretical rigor
and comprehensive guarantees.

This paper considers two types of optimality: (1) global optimality, where agents seek policies
that maximize the total cumulative reward across all agents; and (2) local optimality, where each
agent aims to find a policy that maximizes total cumulative reward, assuming the policies of all other
agents are fixed. The latter concept is commonly referred to as the Nash equilibrium (Kreps, [1989)
in game theory.

The challenge of learning in DEC-POMDPs arises from two primary factors. First, agents have
access only to their individual trajectory histories, making it difficult to identify either global or
local optima, both of which require cooperation among agents. Second, the joint action and ob-
servation space grows exponentially with the number of agents, creating significant obstacles in
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designing algorithms with polynomial sample complexity, particularly as the number of agents in-
creases. We illustrate these challenges by first proving statistical hardness results for learning
DEC-POMDPs without additional structural assumptions (Theorem[5.2). This motivates us to focus
on important subclasses of DEC-POMDPs that are rich enough to encompass practical applications
but constrained enough to admit sample-efficient algorithmic solutions. Specifically, we consider
the following two subclasses:

Factored Structure Model: Motivated by the value decomposition approach, which has been
widely employed in practical algorithms such as VDN and Qmix, we consider DEC-POMDPs with
a factored structure that enables key properties similar to value decomposition. We demonstrate that
a factored value decomposition property holds for our model and develop algorithms with provable
efficiency to achieve both local and global optimality. Specifically, the value decomposition-like
conditions in our model allow the total action-value function to be decomposed into distinct com-
ponents, each dependent only on the trajectory of one or a small subset of agents. As a result,
each agent only needs to focus on a limited number of components when making decisions, which
mitigates the exponential scaling of complexity as the number of agents increases.

DEC-POMDP with Memoryless Policy: We first investigate a model frequently studied in partially
observable settings (Kara and Yuksel, 2022; Kara and Yiiksel, 2023)), where agents determine their
actions based solely on their current observations. We propose a sample-efficient algorithm tailored
to achieve local optimality in this context.

Our Contribution: Our contributions are centered around the development of a sample-efficient
algorithm under reasonable conditions. We summarize our key contributions and results as follows:

1. We demonstrate that, without further assumptions, designing a sample-efficient algorithm to
achieve global optimality in DEC-POMDPs is infeasible, regardless of whether agents employ
general policies or are restricted to memoryless policies.

2. In the setting where agents use memoryless policies, we propose a sample-efficient algorithm
that achieves local optimality.

3. For the factored structure model, we prove that the value function can be decomposed into com-
ponents that depend only on the trajectories of a few agents rather than all agents. We also
introduce a sample-efficient algorithm that can achieve both local and global optimality.

4. Our analysis of the factored structure model provides a partial theoretical explanation for empir-
ical algorithms such as VDN, as we establish a sufficient condition for value decomposition and
offer a sample-efficient guarantee under this condition.

2 RELATED WORK

Due to space limits, we briefly present a few previous works closely related to this paper and leave
the comprehensive discussion on additional related work in the appendix.

Learning POMDPs planning in POMDPs is known to be PSPACE-complete (Papadimitriou and
Tsitsiklis, [1987; |Littman, [1994; [Burago et al., (1996} |[Lusena et al. |2001). [Uehara et al| (2022)
impose a deterministic latent transition assumption on the model and design computationally effi-
cient algorithms. Jin et al.| (2020) design the observable operator model with the upper confidence
bound algorithm for weakly revealing POMDPs, while [Liu et al.| (2022a)) propose the optimistic
maximum likelihood estimation (OMLE) algorithm for learning weakly revealing POMDPs. (Chen
et al.| (2022) derive a unified analysis for OMLE with a sharper sample complexity. Furthermore,
Liu et al.|(2023)) provides a generic framework for applying OMLE to a wide range of partially ob-
servable problems, including low-rank sequential decision-making problems and general sequential
decision-making problems under the SAIL condition. Since OMLE learns the near-optimal poli-
cies of an enormously rich class of sequential decision-making problems in a polynomial number of
samples, we also build our work upon the generic framework of OMLE.

Learning DEC-POMDPs Rashid et al.| (2018) introduced the decentralized-partially observable
Markov decision process (DEC-POMDP) as a fully cooperative multiagent reinforcement learning
task. Empirical algorithms for solving DEC-POMDP include VDN (Sunehag et al., [2017), Q-MIX
(Rashid et al., [2018), and Q-PLEX (Wang et al.l 2021). Recent works on DEC-POMDP, such as
those by|Hu and Foerster|(2019), |Foerster et al.|(2019)), and [Lerer et al.|(2020), adopt ideas similar to
the common information approach, leading to breakthroughs in challenging DEC-POMDP problems
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like Hanabi. The common information approach of Dec-POMDP has been studied theoretically
in (Zhang et al., 2019; [Mao et al., 2023} [Liu and Zhang, 2023). In particular, (Liu and Zhang,
2023) establish a sample quasi-efficient algorithm with quasi-polynomial sample complexity. In
comparison, by imposing additional structural assumptions, our algorithms have polynomial sample
complexity. Moreover, our lower bound shows that polynomial sample complexity is impossible
without additional assumptions.

3 PROBLEM FORMULATION

3.1 PRELIMINARY

Partially Observable Model: We study the decentralized partially observable Markov deci-
sion process (DEC-POMDP)(Rashid et al., [2018) with n agents, which is denoted by a tuple
(8,0, A; H, 1, T,0;r). Here S is the set of all possible states, where the states are not observ-
able by the agents. For each agent m € [n], we let A, and O,,, denote the action and observation
space of agent m respectively. We define the joint action space and the joint observation space by
A=A x -+ x A, and O := O x --- x Oy, respectively. Besides, H is the episode length,
w1 is the distribution of the initial state s1, T = {T.a }( h,a)c[H—1]x.A 1s the Markov state transition
kernel, @ = {Op i} ne[],meln] is the observation emission kernel, and r = {71 m } he[#],men]
denotes the reward function. In particular, starting from s; ~ p1, at each step h € [H], each agent
m observes an observation oy, ,, € Oy, according to distribution Qy, ,,, (- | s1,), takes an action ay, .,
and receives a reward 7y, ., (0p,m) € [0,1], which is is a function of oy, ,,. We consider this type
of reward function to prevent information about latent states from leaking through rewards beyond
what is provided by the observations. Let a, = (ap1,@n.2; - - -, Gh,pn) denote the joint action at step
h. The next state sp+1 is sampled from distribution T}, », (- | s5,). Such a process terminates when
spg+1 is reached. For each agent m, it collects data {0h7m, ah,m, rh_,m}he[H]. Notably, each agent
has access only to their own observation and reward, and therefore does not know the total payoff.
The goal of the agents is to maximize the social welfare, i.e. the summation of cumulative rewards
obtained by all the n agents. Moreover, to simplify the notation, we let S, A, and O denote |S
Maxy,cin] [Am|, and max,, ¢, [On |, respectively.

[}

DEC-POMDP: In this work, we study the case where agents adopt decentralized policies. Namely,
each agent only selects actions based on the history of her own trajectories. The joint policy 7,
represents the decentralized policy product of the n agents. We formally denote the policy class as
m = {@ 1 Thm therm) | Thim  (Om X Am)"™1 x Op — Ay}, When considering a product
policy 7, we denote its value function as V™, defined as the expected total reward received by all
agents under policy 7r:

VT = B [ S0 Sy 7 (0nm)-

V71, = (01,44, ...,4a), we define the Q-function as Q™ (15,) = Er [Z;I:h S 1 rm(0f.m) | Thl-
For each agent m € [n] and step h € [H], we define the trajectory notation of the m' agent as
Th,m = (Ol,ma a1,my -+ O0nhm; ah,m)‘

Learning Target: We define two types of optimality as learning objectives for DEC-POMDPs:
global optimality and local optimality. Their formal definitions are provided as follows:

Definition 3.1 (Local Optimality). A policy w = 7 X wg X - -+ X 7, is considered a local optimal
policy for agents 1,2, ..., n if it satisfies V™ = maXe[,) [max, V’T:?*”*i].

Our aim is to minimize the number of samples required to obtain an e-approximate local optimal
policy. We define an e-approximate local optimal policy as a policy ® = 71 X mg X -+ X 7, that
satisfies

V™ > maxepy [max,ré V’Tf/ﬂ“—i] — €.
Definition 3.2 (Global Optimality). A policy m = m; X 7wy X - -+ X T, is deemed a global optimal
policy for agents 1,2, ..., n if it satisfies V™ = maxy; q; .« VXX Xy,

n

Our goal is to minimize the regret, which is defined as

Regret(T) = Y1 (V™ — V™),
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where w* = argmax, V™. We assume that agents interact with DEC-POMDPs for T episodes,
and in the k-th iteration for any k € [T, they follow the policy 7% = 7¥ x 7& x - -+ x w¥. Similarly,
we can define an e-approximate global optimal policy in the local context, where a uniform mixture

of wl, ..., T satisfies the definition when sub-linear regret is achieved.

Weakly Revealing Condition: [Liu et al.|(2022a) demonstrated that without any assumption on the
model, there exist hard instances such that the number of samples required to learn an e-approximate
optimal policy in single-agent POMDPs is exponential in the horizon length . Given the difficulty
of learning POMDPs without assumptions on the model, even in single-agent settings, we consider
the weakly revealing condition. This assumption is commonly adopted in previous works on par-
tially observable contextual settings (Jin et al.|[2020; Liu et al., 2022a}; |Chen et al., [2022).

Assumption 3.1. We define O} as Qi (on; | sp) = Z{O}LJ}J_G[HJ/“} Op(op, | sp). There exist oo > 0

such that ming, ; US(@Z) > «, where for matrix A we use o5(A) to denote the S* singular value
of emission matrix A.

This condition guarantees that, with enough samples, the observations provide adequate information
to differentiate between any two combinations of states.

Additional Notations: Throughout this paper, we adopt the following notation for sets of elements
with subscripts: Let R = {z; }ies, where S denotes the set of subscripts of the elements in R. For
simplicity, we represent R as R = zs.

3.2 HARDNESS RESULT FOR GENERAL DEC-POMDP

The following theorem demonstrates that, in the absence of specific assumptions on the model,
achieving global optimality in DEC-POMDPs is not possible with a sample complexity that is not
exponential in the number of agents.

Theorem 3.1. For any randomized or deterministic algorithms, there exists an instance of DEC-
MDP wherein the regret scales at least as (v A”T).

This result highlights the limitations of achieving sample efficiency in algorithms for DEC-POMDPs
without making assumptions about the transition model. Consequently, in the following sections,
we aim to develop a sample-efficient algorithm for DEC-POMDPs under reasonable assumptions
about the model.

4 LEARNING DEC-POMDP wWITH FACTORED STRUCTURE MODEL

4.1 FACTORED STRUCTURE MODEL

In this section, we consider a factored structure model, where the state space is decomposed as the
Cartesian product of n individual spaces, S = 81 X So X --- X S,. Foralls’ = (s},...,s) € S,

s = (81,...,8,) € S,a € A, 0 € O, and h € [H], the observation distribution and transition
probability are factorized as:

@h,(o | S) = Hzlzl (O)h,m(om | Sm)a Th(sl | S, a) = H:;lzl Th,m(sin, | Smy Gm, apa(m))a

where pa(m) C [n] represents the set of agents whose actions influence the transition of agent
m. We further define pa(m) = pa(m) U {m}. We assume that the local state transition of each
individual agent depends solely on the actions of other agents, with no dependency between the
states of different agents.

To represent the correlation between different agents, we introduce the following influence graph:

Definition 4.1. We define a directed graph G = (V,E), where V = {1,2,...,n}, and there is
a directed edge from vertex i to vertex j for distinct vertices i,5 € V if and only if i € pa(j).
Additionally, we assume that the maximum indegree of the graph G is d.

Additionally, for clarity in presentation, we introduce several notations from graph theory:

Definition 4.2. For each agent m € [n], we define two sets: the children set ch(m) and the ancestor
set an(m). Specifically, for a vertex i € [n), if there exists a directed path i = ji,jo,...,51 = m
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in the influence graph G, where there is a directed edge from j, to Jr41 forall v € [l — 1], then
i € an(m) and m € ch(i). Moreover, for all m € [n], we define ch(m) = {m} U ch(m) and

pa(m) = {m} U pa(m). We also define the complement set of ch(m) as nch(m) = [n] \ ch(m).

The factored structure of the model leads to the following property of value decomposition.

Proposition 4.1. (Value Decomposition) For all h € [H] and trajectory T, = (01,1, ...,0p,ap),
the Q-function can be decomposed as follows:

Q" (Th) = Zzlzl Qm(Th7ﬁ(m))7

where we define Qum(Than(m)) = Erpn [Zf:h 75.m(05,m) | Than(m)]- In other words, the value
function can be expressed as the sum of n terms, where the m-th component depends only on the
trajectory of the agents in an(m).

For each i € [n], we denote 0; = (T;,0;, ;) as the collection of parameters representing the
transition and observation models of the i-th agent. We further use ©; to denote the set of all
possible model parameters #;. According to the factored structure condition, the joint trajectory
probability can be rewritten as the product of individual trajectory operators, where the individual
operator Py* (Trr,i | T pa(iy) is defined as:

Bo, (Thi | Trpa(i) = 2,y #(51,0)00i(01 | s14)mi(ans | 014)
: [Hth_ll Th,i(Sht1i

We further use {0 };c[n] to denote the model parameters of the true transition model.

(D

Shyis Ohpa(i) One1,i(On41,i | Shy1,i)Thati(ansri | Th_l,wh,i)] .

4.2 ACHIEVING GLOBAL OPTIMALITY WITH FACTORED STRUCTURE

In this section, we introduce a sample-efficient algorithm (outlined in Algorithm to achieve
global optimality under the factored structure model.

Algorithm Description: Algorithm .2 consists of three main steps in each episode k:

* Update policy and parameters (Line 3): We construct n distinct confidence intervals, where the
i-th confidence interval contains only the parameters of the i-th agent’s transition and observation
model. The total value function is considered as a function of the joint product policy of all agents
and the model parameters. We select model parameters 0¥ from the i-th confidence interval, along
with a joint product policy 7%, such that the value function is maximized. After selecting the
policy, we iteratively execute the following two steps for each agent i € [n] to collect samples
and update the confidence intervals.

» Sample trajectories for Agent i (Lines 6-8): We sample trajectories for different agents according
to two distinct distributions. At step 5, all agents initially select an action according to their
policies. For agent m € [i], an observation sample is directly collected from the true model. For

the remaining agents m € [n] \ [i], we denote T}, and Of , as the transition and observation
models corresponding to the parameter ¢;. Given that model ']I‘;j’m and (O);j’m are known, agent
m samples sp,+1m ~ TF (- | 8h.m). Subsequently, agent m collects an observation oy, 41, ~

@2 +1.m (| 8h+1,m) and stores a dummy state 55,41, for exploration in the next episode.

* Update confidence interval for agent i (Line 10): After collecting the trajectories 7% =
(S 0’}_[77”, a’f{’m) for all m € [n], we add the tuple (75, T%(i)) to the sample set D;. The
confidence set is then updated according to:

BF = {91 € B} : > log P7*(7i | Tpa(i)) = max > log PL/ (75 | Tpa(iy) — Bi}-
(Tri,Tﬁ(i))E'Di ‘ 9i€®i (‘Iri,Tﬁ<i))€Di ’

)

That is, we include those model parameters 6,,, for which the total log-likelihood assigned to the
data is close to the maximum possible total log-likelihood.

Technical Challenge and Insights: The dimensionality of the model grows as Q(A™O™), since
the joint action and observation spaces expand exponentially with the number of agents. Conse-
quently, the sample complexity for estimating the model parameters is susceptible to Q(A™O™). To
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address this challenge, we construct separate confidence intervals for estimating the different model
parameters. This approach mitigates the exponential sample complexity in n, as the dimension of
each parameter 6,, does not increase exponentially with n. Additionally, we employ a carefully
designed sampling procedure (outlined in lines 6-8) instead of directly sampling from the true tran-
sition model. This enables us to precisely control the statistical error in estimating the joint trajectory
probability by separately managing the statistical error of each individual trajectory operator.

Algorithm 1 OMLE for Achieving Global Optimal in Factored Structure Model

1: Initialize: B., = {0,, € O,, : miny, 05(Qp,(0,) > @)}, Dy, = {}, for all agents m € [n).
2: fork=1...T do R
3 Compute (6F,05,... 0% 7%) = arg MaXG, gk 6, Bk, 0, cBE V™ (0).
4: fori=1...,ndo
5: forh=1,...,Hdo
6: Selects an action according to ay .~ 7f (- | Th—1,m,0nm) for all m € [n].
7 For agent m € [i], collect observation oy, ... from the environment.
8 For agent m € [n]\[¢], samples dummy state sp41 m ~ Tlﬁ,m(' | Sh,m» Ghga(m))-
9: Collect observation OZ_H,m ~ @Z+17m(~ | Sh41,m) for agent m € [n]\[i].
10 Add (rF, T%(i)) into D;, and then update B! with eq. .
Theorem 4.1. For all m € [n], we select bonus parameter as B,, = H?(S?AP™I 4

SO)log(TSAOH) + log(Tn/d) for some constant c. Then, with probability at least 1 — §, Al-
gorithm{.2| guarantees that the following inequality holds.

Regret(k) = SF_ vm — v < @(a—2520Ad+1\/k(52Ad+1 n SO)),Vk e[, @

where we define * = arg max, V™, and recall that d denotes the maximum in-degree of G.

Remark 4.1. The term \/S?A%+1 + SO in (3| arises from the model error, while the additional
O A1 terms result from the statistical error related to the eluder dimension. The model dimension
of the factored model scales exponentially with d. Consequently, the regret also scales exponentially
in d, as we incur a model estimation error of O(A®). Notably, when d = O(1), the regret is bounded
by poly(S, A°1) O, H,a~',log(6~'T)).

Theorem 4.2. (Lower Bound) For any randomized or deterministic algorithms, there exists an
instance of DEC-POMDP with a factorization structure such that the regret for achieving global

optimal is at least Q(V A41T).

The regret scales as (v A9t1) since the model dimension scales as (v A4t1). Therefore, Theo-
rem [4.2]demonstrates that the dependence on the model’s dimension is unavoidable.

4.3 ACHIEVING LOCAL OPTIMALITY WITH FACTORED STRUCTURE

In this section, we derive theoretical guarantees for achieving local optimality within a factored
model. Since local optimality is a specific case of global optimality, we can directly apply Al-
gorithm [4.2] with minor modifications to achieve e-local optimality with a sample complexity of
K = O(S§*A24+2(§2 A4+ 1 SO) - poly(H)/(a*e?)). However, we demonstrate that a more re-
fined analysis is possible to further improve the sample complexity. We present algorithm which
achieves local optimality with fewer samples compared to the direct application of Algorithm 4.2

Algorithm Description: Due to space constraints, we refer the reader to Appendix [D.I]for the com-
plete description of Algorithm[D.T] Here, we briefly outline the core idea of the algorithm and illus-
trate the key sub-routine, emphasizing the novel contributions of our approach. Our approach entails
iteratively implementing the following procedure for each agent m € [n|: we maintain the policies
of agents [n]\ {m} (referred to as 7_,,) fixed and determine the policy 7, = arg max,,, V#m7"—m.
If V7m:™—m — J™m:T-m < ¢ we terminate the entire algorithm and output the policy ®” _,7,,.
Otherwise, we replace the policy of agent m with 7, and continue the procedure. Consequently, we
are tasked with developing a sample-efficient algorithm to obtain 7y, = argmax, , V#m7-m_ We
present Algorithm [D.T] which fulfills this task. The algorithm consists of two main steps, which we
now explain in detail. For clarity in the presentation, we denote ch(i) = {l,...,1,} with [, = i.
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Algorithm 2 OMLE for Achieving Local Optimal Under Factored Model
1: Initialize: B = {0,, € ©,, : min, 05(0p,(0,,)) > a}, D = {} forallm € ch(i),

B' = {Omench(iy : ming 05(0m (0m)) > o, Vm ¢ ch(i)}, D = {}, central agent i, policy of
other agent m_;.

2. fork=1...Tdo
3:  Follow Wnch(l) to collect trajectories Tkh( = {0 >+ -+ O Fmench(i)-
4: Add Tnch( ) into D and update confidence interval with eq. l)
5:fork=1...T do .
6:  compute (6%, 7f) = arg max; B Y occnce B:6@ips V(D)
7: form=1,2,...,rdo
8: forh:l,...,Hdo
9: Agent [ € nch(i) take action a{,r
10: Select an action a’,il ~ T, (- | Th=1,1;,0n,,) forall j € [r —1].
11: Select an action af” NW}”( | Th—1,i, Ons)-
12: For agent [; with j € [m],collect observation of 4 1,, from the environment.
sbj
13: For j € [r] \ [m], sample dummy state sp,1.1; ~ Ty, (- | sn1,» anpag;))-
14: Collect observation o, ;. ~ OF 1y, (- | snt14,) for j € [r]\ [m].
. k T
15: If m # r,add (m,, 7. ()N (i)’ pa(m)\a(,)) to D,y,.
16: Otherwise, add (7%, 7% v ) to D;.

@ Tpa(i)nch(i)’ "pa(i)\eh(i)
17: Update confidence interval with eq. ( . for all j € ch(i).

18: Output 7 as uniform mixture of the policies 7}, 72, . . ., K

i

* Estimate model parameters Onch(;) (Lines 2-4): According to the factored structure, agent m ¢
ch(4) is not influenced by the actions of agents m € ch(i), and the policies of agents m ¢ ch(i)
are predetermined. Based on this observation, the key idea of our algorithm is to estimate the
model parameters 95( 0 and 6, () separately in two loops over T episodes. For the estimation of
the model parameter ¢,cp(;), We construct B as the set of model parameters for agents m ¢ ch(i).

We then iteratively follow this process for 1" episodes: In the k-th episode, by executing policy
Tnch(i)» We collect trajectories chh(i). Subsequently, we update the confidence interval with:

Bk+1 :{ench(i) S [;’1 : Z log f( nch(i)s Tnch(s )) > glax Z } f(é:\ch(i)aTnch(i)) - B}v
Tnch(i)ED 6"Ch(’i) 7—nch(i)eD
4)

where vench(i)» we define f(ench(i), Tnch(i)) = Hmech(z) P (Tm | Tpa ))
e Estimate model parameters 9&(1‘) and update policy (Lmes 9-15): We proceed with another T’

episodes to estimate the remaining parameters and find the optimal policy. Similar to Algo-
rithm 4.2} we construct separate confidence intervals to estimate each model parameter for the

1nd1v1dua1 agents. At the beginning of the k-th eplsode we select the parameter Gm from the
confidence interval B¥ , the parameter Onch(s) from B¥, and the policy for agent 7 that optimizes
the total value function. Next, for each m € [r], we collect a joint trajectory using a similar sam-
pling procedure as in Algorithm Specifically, at step h, agent I € nch(i) takes action ai 1
while agent /; (with j € [m]) samples actions and observations from the true environment, and
the remaining agents sample from the model corresponding to 8*. Eventually, we add a sample
to each individual sample set and update the confidence intervals with:

B;Hl = {Gj = le : > logIP’;r (75 | Tpa(s)) = max > longf (75 | Toa(s)) —
(7 75a(5) ) €D 03€0i (m;,15(;))€D; ’

&)

Theorem 4.3. We define bonus parameter in eq. (I5). Then, with probability at least 16, Algorithm

terminates within 4H /e steps of the while loop, and outputs an e—approximate local optimal
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(a) Original graph G (b) Induced by ch (c) Induced by ch (f) Induced by ch

gl 48 o gt

(d) Induced by ch (e) Induced by ch 5)  (g) Induced by ch (h)yd=3

Figure 1: An example 111ustrat1ng the sample complexity of Algorlthm@ For each m € V, we
highlight the subgraph induced by ch(m) in green. It can be observed that max,, [, dp = 1.

policy. The total number of episodes is at most
K=0(Yn_, S*0?A%n+2(§2 A%+ 1 SO) - poly(H)/(ae?)).

where we use d,, to denote the maximum in-degree of the sub-graph induced by ch(m), and we
naturally have d,,, < d.

Technical Insights: The novelty of Algorithm [D.1] compared to Algorithm [4.2] lies in its care-
ful utilization of the structural properties. Specifically, since only the policy of the central agent
(denoted as 7) varies across episodes, and the trajectory probability of agents m ¢ ch(¢) remains un-
affected by this variation, we can pre-estimate the model parameters 0, (;). Finally, we proceed
to estimate 95(1.), where we adopt a similar sampling method as in Algorithm and achieve
a sample complexit that is exponential only in d,,, rather than in d. If we were to dlrectly
apply Algorithm by adjusting the parameter and policy selection to (0%,605,... 0k 7F) =
ArGMAXG gk Bk .0, B mm Vm T —m (é) while keeping the other proceduresd unchanged, the

total number of requlred episodes would be K = O(S*A24+2(52 A% 1 SO) - poly(H)/(ate?)).
Thus, Algorithm [D.T] significantly reduces the sample complexity needed to achieve an -
approximate locally optimal policy. To illustrate this improvement, we provide an example in Figure
In this example, Algorithm @’requires a sample complexity of O(A®), whereas applying Algo-
rithm [4.2]directly would result in a sample complexity of O(A!2).

4.4  APPLICATION: POMDP WITH KNAPSACK CONSTRAINTS

As a minor extension, we demonstrate the applicability of our approach to a specific problem do-
main: POMDP with knapsack constraints, akin to the example in 1.,2020). We consider
a POMDP with a budget M € R9. At each time step h, the agent incurs a cost vector C, and the
total budget updates to M1 = My, — Cj. We model the transition of each budget component i as
My 41, ~ Trm(- | My, 0, ap). The episode terminates when any budget component reaches 0.

We formulate this problem as a factored DEC-POMDP with d+1 agents,

treating the budgets as observations of d dummy agents. Consequently,

Algorithm [£.2] can be directly applied. However, since the budgets are

directly observed, there are still opportunities for improvement. We es-

timate the transition T} g using a confidence interval approach akin to

UCB-VI 2017), and we can achieve a sharper bound. Due . .

to the space limit, we defer the complete discussion to Appendix [ influential graph

5 LEARNING DEC-POMDP wWITH MEMORYLESS POLICY

In this section, we focus on the setting where agents adopt memoryless policies. Namely, each
agent select her action base solely on her current observation. We define the policy class as
U@ —1Thm Y herr) | Thom @ Om — A(Anp)}. Notably, our results can be readily extended to set-
tings where agents consider observations and actions from the preceding L steps. In such cases, the
policy class broadens to {{®%,_1Th.m ne(m) | Thm : (O X )DL % 0, — A(A)}.
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5.1 ACHIEVING LOCAL OPTIMALITY WITH MEMORYLESS POLICY

We utilize a framework similar to that described in Section[d.3] Specifically, we iteratively update
the policy of the m!" agent using 7%, = argmax,,,, V#= ™ m and terminate the procedure when
further updates no longer produce a s1gniﬁcant increase in the total value function. Our remaining
task is to develop a sample-efficient method to obtain 7y, = arg max,, V#™™-™ given w_p,, for
all m € [n]. We present Algorithm [5.1} which addresses this task. Due to space constraints, a
detailed description of the complete algorithm is provided in Appendix [E.T| (Algorithm [E.T).

Algorithm Description: For each agent m € [n], the parameter set 6,,, represents the model pa-
rameters of the joint probability distribution of trajectories for the m-th agent and the i-th agent.
We denote P’ (7;) as the probability of the trajectory for the i-th agent and Py*"""™ (7;, 7,,,) as the
joint probability of trajectories for the ¢-th and m-th agents, given the underlying DEC-POMDP
with parameters @ = (61,...,0,). The formal definition is provided in Appendix (Equation
equation[I8). With these definitions, we now proceed to explain Algorithm [5.1]in detail.

e Update policy and parameters (Lines 3-4): We denote the value functions Vi’”*”*i(ei) and
V"7 (0,,) for all m € [n] \ {i} as:

VT 0;) = S0, P () (o Thi(on.a)).
Vi (Om) = Zrm,n Pg;’,m” (T Ti) ( Zf:l Thym(oh,m»'

The observation probabilities {0y, }fL | and the transition probabilities {T}, ,,,}_, corre-

sponding to the real model 6,, = 0, are defined as per Equations equation and equa-

tlon [20] in Appendix [E.I] In this context, the value function can be decomposed as V7™ =

V" 7'(67,). Thus, we decompose the value function into n distinct terms, each de-
pending solely on the parameter 6,,. For each m € [n], we select 6% € BE as the optimal
parameter that maximizes V;;,"" " (6,,,). We then determine the policy 7% as the optimal policy
that maximizes the total value function. Subsequently, we use the policy 7 = (7% 7_;) to
collect a trajectory 7% = (of, a¥, ..., ok, ak)).

e Construct Confidence Intervals (Lines 5-6): We construct n different confidence intervals to
estimate the n model parameters separately For each agent m € [n] \ {i}, we add the newly
collected policy-trajectory pair (wf, 7k 7k ) to the dataset D,,. Similarly, for agent i, we add
the policy-trajectory pair (7%, 7F) to the dataset D;. Subsequently, we update each of the n

confidence intervals separately according to the following equations for agent 7 and m € [n]\ {i}:

{0l T R, T i) -3)
T3, Ti)E (i) € ’

B — {Gm eB.: > log ]P’m (7, Tm) > max > log ngyiw’" (T3, Tm) — ﬂm}

(%i,7iTm)EDm 0m€Om (n, 7, 70 )ED,

(6)
Technical Challenge and Novelty: To showcase our novel approach, we highlight the challenges in
developing a sample-efficient algorithm to find 7y, = arg max,,,, V#™ ™= with given w_,,, along
with our solutions to these challenges:

1. In DEC-MDPs, given 7_,,, the model reduces to a single-agent problem with action space A,,.
However, this reduction does not apply to DEC-POMDPs, precluding the use of single-agent
algorithms for sample-efficient guarantees as in MDP setting.

2. Another challenge arises from the exponential growth of the joint action and observation space
with the number of agents, resulting in a model dimension that scales as O(A™O"™). Conse-
quently, constructing a single confidence interval to estimate the model parameters leads to a
sample complexity of O(A™O™).

We overcome the technical challenges by assigning a parameter for the trajectory probability of each
agent, subsequently estimating and updating these parameters with separate confidence intervals.
Since the dimension of parameter 6,,, (m € [n]) is at most H(S2A%20? + SO?) + S, we achieve an
e-approximate local optimum with a sample complexity that avoids exponential scaling in n.

Theorem 5.1. Let the central agent for Algorithm 5.1 be agent i. We define the bonus parameter
as eq. . Then, with a probability of at least 1 — 6, Algorlthmtermmates within 4H /€ steps
of the while loop and outputs an e-approximate local optimal policy. The total number of episodes
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Algorithm 3 OMLE for memoryless policy

1: Input: Central agent 1, and the policy for agent [n [n)\ {3}, 1,2y« ooy Tie1, Tig 1y -« Tpe
2: Initialize: B! = {; € O, : min;, 05(0;(0;) > )}, BL, = {0, € O,y : miny, 05(0p, (0,) >
a\ VO)} forall m € [n] \ {i}. Set D,,, = {}, for all agents m € [n].

.T do

fork=1.

4: Compute (OF,05,...,0F k) = arg MAXy gt 6, eBE, .. 0, Bk m DI VT ().
5: Follow 7* to collect a trajectory 7% = (0¥, a¥, ... of, a’fq)

6: Add (zF,7F 7k ) into D,, form € [n] \ {i} andadd (7F, 7F) into D;.

7. Update BF*! and BEF! for all m € [n] \ {i} with eq.

8: Output 7, which is selected uniformly from the policies 7}, 72, ..., w1.

played by Algorithm|E.|is at most
K = O(S*0*A*(S2A20? + SO?) - poly(H)/(a*e?)).

Remark 5.1. In a commonly studied model (where agents adopt memoryless policies), we derive
an algorithm capable of achieving an e-approximate local optimal policy for DEC-POMDPs. Im-
portantly, the sample complexity of this algorithm does not scale exponentially with n.

Moreover, since DEC-POMDPs can be seen as a special case of a partially observable version of a
Markov potential game, our framework extends to the analysis of achieving Nash equilibrium within
this partially observable version.

5.2 HARDNESS RESULT FOR ACHIEVING GLOBAL OPTIMALITY

In addition to local optimality, we now explore the attainment of global optimality with memoryless
policies. However, the following theorem reveals that, without additional assumptions on the model,
deriving an algorithm to achieve global optimality with regret not exponential in n is unattainable.

Theorem 5.2. For any randomized or deterministic algorithms, there exists an instance of DEC-
MDP with horizon H = 2 wherein the regret scales at least as O(v/ A™T'). This result underscores
the limitation of achieving sample efficiency in algorithms for DEC-POMDP without imposing as-
sumptions on the transition model, either when agents adopt memoryless policies.

6 CONCLUSION AND DISCUSSION

Conclusion and Summary: This work introduces a sample-efficient algorithm and provides the-
oretical guarantees for DEC-POMDPs. Theorem highlights the challenges associated with de-
veloping sample-efficient algorithms for DEC-POMDPs without making any assumptions about the
model. Consequently, our focus shifts towards identifying such algorithms under specific condi-
tions rather than for the general model. Initially, we present a sample-efficient algorithm for a
commonly studied scenario where agents utilize memoryless policies. Furthermore, inspired by em-
pirical methods that leverage value decomposition to address exponential complexity, we propose
a factored structural model as a sufficient condition for value decomposition and derive a sample-
efficient algorithm based on this assumption. This analysis provides a theoretical foundation for the
empirical strategies currently employed.

Open Directions: One open question is whether it is possible to derive a sample-efficient algorithm
that achieves local optimality without imposing any assumptions on the model. When Algorithm[5.]
is applied to a full-memory setting, the sample complexity upper bound scales as O(A?). In con-
trast, applying the vanilla OMLE algorithm from [Liu et al.[|(2022a)) results in a sample complexity
of O(A™). Therefore, it remains an open problem to determine whether a lower bound on sample
complexity can scale as O( A™*{H:7}) or if it is possible to overcome the multi-agent curse without
imposing assumptions on the model. Another avenue for future research is to explore whether addi-
tional reasonable assumptions about the model could facilitate the development of sample-efficient
algorithms. We leave these directions for future investigation.
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A ADDITIONAL RELATED WORK

Learning POMDPs Learning partially observable Markov decision processes (POMDPs)
presents significant challenges due to the lack of the Markov property in observations and the depen-
dence of policies on the full observation history. This complexity is underscored by lower bounds,
such as those established by Mossel and Roch|(2005) and Krishnamurthy et al.| (2016), which show
exponential complexity in the horizon for learning near-optimal policies in POMDPs. Given the dif-
ficulty of learning POMDPs in the general case, recent research has explored learning under various
structural conditions. Some works, like Jin et al.| (2020) and |[Liu et al.| (2022a), have investigated
weakly revealing conditions, while others, such as|Cai et al|(2022) and [Wang et al.| (2022)), have
focused on low-rank POMDPs. [Efroni et al.| (2022) and [Zhang et al.| (2023) have delved into learn-
ing under decodable conditions, while \Uehara et al.|(2022)) and Uehara et al.| (2023)) have proposed
algorithms for learning with memoryless policies and deterministic transition models, respectively.
Chen et al.| (2022)) have introduced the B-stability condition as a comprehensive framework that en-
compasses previous structural conditions. In our work, we demonstrate our results under a weakly
revealing condition akin to that of Jin et al.| (2020) and [Liu et al.| (2022a)). However, it’s important to
note that our framework can be extended to incorporate other conditions proposed in previous works,
such as the B-stability condition introduced by [Chen et al.[(2022). This flexibility underscores the
applicability and generality of our approach within the broader landscape of learning POMDPs.

Learning POMGs |Liu et al| (2022b) present the OMLE algorithm for finding approximate
Nash equilibria, correlated equilibria, as well as coarse correlated equilibrium of weakly revealing
POMG:s in a polynomial number of samples, particularly when the number of agents is small. On a
related note, |Liu and Zhang| (2023)) develop a partially observable multi-agent reinforcement learn-
ing (MARL) algorithm that is both statistically and computationally quasi-efficient, incorporating
information sharing under the general framework of partially observable stochastic games.

Learning MDPs and POMDPs with Specific Structures We consider a factorized structure
model in this work. In the context of factored MDPs, |Osband and Van Roy|(2014) first proposed the
factored MDP model and introduced PSRL and UCRL-style algorithms with near-optimal Bayesian
and frequentist regret bounds. Xu and Tewari (2020) extended the results of |Osband and Van Roy
(2014) to the infinite horizon setting. Tian et al.| (2020) applied the UCBVI algorithm (Azar et al.,
2017) to the factored MDP framework, while |Chen et al.| (2020) further refined the approach by
applying the UCB-VI algorithm and developing the FMDP-BF algorithm, which achieves a sharper
bound compared to [Tian et al.|(2020). Additionally, |Chen et al.|(2020) introduced reinforcement
learning with knapsack constraints as an example of factored MDPs. |Diuk et al.|(2009) proposes an
algorithmic framework based on the KWIK principle for learning probabilistic concepts, and applies
this framework to reinforcement learning in factored models. The authors provide empirical insights
that suggest more efficient algorithms can be derived when restricted to factored structure models.
Strehl et al.|(2007) addresses the reinforcement learning problem in factored MDPs and proposes an
efficient algorithm leveraging dynamic Bayesian networks (DBNs). (Chakraborty and Stone| (2011)
studies factored-state MDPs and aims to develop an algorithm that guarantees a return close to the
optimal in factored MDPs. Since factored-state MDPs are a special case of Markov chains, they
utilize the properties of ergodic stochastic processes to analyze factored MDPs.

In terms of POMDPs, several prior studies have explored POMDPs with specific factored structures.
For example, Katt et al.|(2018)) introduced the Factored Bayes-Adaptive POMDP model, along with
a method to learn both the factorization and the model parameters simultaneously. |Guestrin et al.
(2001)) demonstrated that, for factored POMDPs, the value function can be represented as a linear
combination of basis functions, enabling the derivation of an efficient algorithm by leveraging the
decomposition of the value function. Similar to our setting, several previous studies have examined
factor structures in DEC-POMDPs. For instance, Oliehoek et al.| (2008b) analyzed general factored
DEC-POMDPs, focusing on the model’s dependencies over space and time, and formulated decom-
posable value functions.

The aforementioned works primarily focus on analyzing the state structure of POMDPs. Beyond
considering POMDPs with specific state structures, |Altabaa and Yang| (2024)) investigated the role
of information structure, which describes how events in the system occurring at different points in
time influence each other. |Altabaa and Yang| (2024) also provided an upper bound on the sample
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complexity for learning a general sequential decision-making problem with a directed acyclic graph
(DAG) information structure.

Learning with Memoryless Policies Since learning POMDPs is known to be PSPACE-complete,
many works focus on developing algorithms to learn optimal memoryless policies, which can be
viewed as a special case of general POMDPs. |Kara and Yuksel| (2022) studied learning optimal
memoryless policies for POMDPs by approximating the belief model through discretizing the belief
space. |[Kara and Yiiksel (2023) provided convergence analysis for a Q-learning algorithm tailored
to POMDPs with memoryless policies.

Learning Multi-agent System: In multi-agent reinforcement learning (MARL), the action space
grows exponentially with the number of agents, making it crucial to derive algorithms whose sam-
ple complexity is not exponential in the number of agents—a challenge commonly referred to as
breaking the curse of multi-agency. |Daskalakis et al.| (2023);Jin et al.|(202 1)) derive sample-efficient
algorithms with non-exponential sample complexity, while Wang et al.| (2023); |Cu1 et al.[ (2023)
further generalize this approach to settings with linear function approximation. Another method to
address the exponential growth of the action space is the mean-field approach, which assumes that
each agent’s decision is influenced by the mean field (i.e., the average behavior of other agents)
rather than by the individual actions of each agent. Previous work utilizing the mean-field method to
tackle exponential growth in multi-agent RL includes |Yang et al.| (2018)); |Pasztor et al.| (2021); |Qiu
et al.[(2022)). |Gu et al.| (2021) demonstrates that if all agents are homogeneous and exchangeable,
mean-field control can provide a good approximation to an N-agent problem. Similarly, Mondal
et al.| (2022) provides a comparable approximation for a K -class of heterogeneous agents. In con-
trast to the mean-field method, we adopt a similar approach of optimizing the performance of a
single agent while considering the overall effect of others. This allows the optimization problem to
be approximated as a single-agent problem, thereby mitigating the exponential growth of the action
space in the environment.

B PROOF OF THEOREM [3_1]

Theorem B.1. For any randomized or deterministic algorithms, there exists an instance of DEC-
MDP wherein the regret scales at least as Q(v/ A*T).

Proof. The proof for Theorem [3.1] proceeds straightforwardly. We consider a two-step DEC-MDP,
commencing from an initial state s;. For all s € S, we assume the reward function satisfies
rh1(s) = rh2(s) = -+ = rpn(s) for all h € [2]. Consequently, the entire DEC-MDP reduces
to a multi-armed bandit problem. By leveraging a classic result on the lower bound of regret for
the multi-armed bandit problem (Mannor and Tsitsiklis, 2004), it follows that for any randomized
or deterministic algorithm, there exists an instance of the multi-arm bandit problem such that the

regret is at least O(V /NlT), where A denotes the number of arms. Consequently, for any random-
ized or deterministic algorithm, there exists an instance of DEC-MDP such that the regret is at least

O(VAT). O

C SUPPLEMENTARY DETAILS FOR SECTION

C.1 PROOF FOR THEOREM [4.1]

In this section, we present the proof of Theorem[d.1] To ensure clarity, we begin by defining several
notations that will be useful throughout the proof.

Definition C.1. For all (m,i) € [n] x [T, 0, € Om, and any policy m, of agent m, we denote
Fm Oy ) as i (O, 7m) = Pg::(Tm | {7r}repa(m)). Additionally, we use I (Om, mm) to

denote f»}n(em777m) = Pg;n7m (T’rtn | {T”,L:}repa(m))'
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Lemma C.1. For all (0,,,t) € O, x [T] and agent m € [n], the folllowing inequality holds with
probability at least 1 — §:

Zlog( (Ouns o) Fo B 7)) < s

where we define bonus term 3,, = c(H?(S?AlP2(mI+1 1 SO)log(TSAOH) + log(Tn/$)) for
some absolute constant c.

Proof. Tnitially, we can view ©,, as a subset of R% with d,,, = H(S2AP2(™I| + 50O) 4+ S. We
denote 0, as the optimistic e—discretelization of 6,,,, so that 6,,, ; = [0y, /€] x € for all coordinates
i. Selecting € < 1/(c(S + O + A)HTOH AH), we obtain the folllowing relationship:

fm(ém’ﬂ-m) > fm(emaﬂ'm)a ‘fm(gmvﬂ'm) - fm(emaﬂ-m)’ < 1/(TOHAH)

The inequalities holds for all trajectories T € (Om X Ap)H. We use ©,, to represent the
collections of all such 6,,,, then, the log-cardinality of ©,, is bounded by

log 6] < O (12 (52411 4 SO) log(TSAOH) ) .
In the folllowing step, we aim to apply Markov inequality to bound the folllowing expectation:

Elexp (35— 108(f5, (O, 7m)/ Fiy (05, 7m)))]. We denote By[-] = E [- | {m", 7'}iZ} U {x'}]. We
then have

£ wp<§jmg(;lnu7»/ﬂ <m7%0)]
e _exp <Zlog (fm ) T (05, m))) E, [exp (log (fm( I Vo A () fn)))ﬂ

ﬂg%gmmlmmm<wmﬁﬁmmMWM%mﬂ o

According to the Definition we further have

f frz(é’m; m m—1 1
- (W) me gm’ﬂ-m) HfJ J J) H f] ]7 ] < 1+T

ms m j=m+1
We insert eq. (8)) back into eq. (7), and we can obtain that

E [exp (Zt: log (f:n (gmvﬂm) /.ffn (egvﬁm))>
i=1

We then use Markov inequality and take a union bound for all (6,,,t) € ©,, x [T] and m € [n], and
we can conclude that the following event holds with probability at least 1 — ¢ for all m € [n]:

<e.

max Zlog( O 7o) Fi O 7)) < B

(O 1t) EOm X [T

According to the definition of optimistic discretization, we obtain that the following inequality holds
with probability at least 1 — § for all m € [n]:

max Zlog(f’ s )/ Fio (620 7)) < B

(01 ,t)€O,, X [T

17
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Lemma C.2. There exists a universal constant ¢ such that for any § € (0, 1], with probability at
least for all t € [T'] and all 0,,, € ©,,,, m € [n], it holds that

Hfl glaﬁz)] H fl ]7 j

j=m+1

t

Z Z’fm my T m fm mv m

i=1

(E i o) )

) ) k k
Proof. We define tangent trajectory sample 7 that satisfies 7% ~ [T;", Pg! . TT7—,, 14 ]P’;rg ; butare

independent with 7. With similar analysis as Lemma 15 of [Liu et al.|(2022a), we obtain that

. . _
1 (i (B Zﬁ)) For (O i)
E |exp —log | =——— | —logE |exp log = Em =1,
(; 2 ( (05, 7h) Fin (03,73
where for all (f,,,m) € O, x [n], we denote fi (6, 7") as fi (O, ;n) IP mo (|
{73} vcpa(m))s and we denote &, En, as & = (w8, 7)Y, En = {(7), 7)), With Cher-

noff’s method, we can obtain that with probability at least 1 — 6, for all 6, 6 O,,, we have
t ~. — . t — .
1 v Gm, 7171 1 l m7 ;n
=1 m7 Tm =1

Fin (B, 73)
©))
Then, we apply elementary inequality — log x > 1 — x, and we can obtain that

: 1 fﬁn (gnuﬂ-»fn)
ep@?bg(fz@(mm)) 5’"]

fm (gma 7T7in)

t
:—iz_;logETN< - P'z)( . p ) _ RS

i= . 9
1% gx j=m+41 61, m> 'm

- log Eg.m

— log Efm

Zi 1 —E s fnz ( HL? 7n)

= reo (T ) (M2, ) |V Fon O ) |
:i 1*2\/fm m, T m O T, [H fl el’wl)] H f] j’ ]
i=1 j=m+1

To continue, we aim to achieve the lower bound for the following term of interest:

1. (T (émmin)» |
X -1 e Em
) p@l? °g<f;< PRy

We have the folllowing inequalities:

t -~ — .
1 TZn (enmﬁin))) ‘
exp log —_ gm
(e

t
ZZ \/fm my T m) fm m7 m [H fl 91,71'1)‘| H f] J’ j _A,_%

j=m+1

1
—logEz —.
ogliz +2

—logEg

=1 j=m+1
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With elementary calculation, we have

—logEg Em| +

1
2

gl i (ém,win)»
X 71 -
) p@l? °g<f:;1< P

£ ([T ]| 1 509 [fLoer] |

1 T

M=~

1
12 <

>

.
Il

Hfﬂ ]’J

=m-+1

=m++1 j=m+1

We then apply Cauchy-Schawarz inequality, and we arrive at

‘1 72 Oy,
o (S (37 ))

b3 (S0 st [ o] | L s 0]) -

=1 j=m+1
(10)

We insert eq. back into eq. (9), and we obtain that there exist a universal constant ¢ such that
for any 6 € (0, 1], with probability at least 1 — 6 for all ¢ € [T'], m € [n], and all 8,,, € ©,,, it holds

that
2
Hfl em”H A D
j=m+1

(Zlog Orn m) /fm( m> T m)) “'/Bm)

=1

— log Egm Em| +

1
2

t

Z(Z’f’m m, T m - m’ 1171

=1

We combine this result with the update rule of Algorithm[4.2]

Corollary C.1. With probability at least 1 — 6, for all k € [K], m € [n], the following inequality
holds.

ki Yoo o Ohmh) = fon (0 70) [Hfz 91»”1][]1—[ f; (65,7

=1 {75 r}ren] m+1

SV Bmk.

According to Lemmaand Lemma with probability at least 1 — ¢, for all k € [K], m € [n],
the following inequality holds.
2
s

We apply Cauchy-Schawarz inequality, and we can obtain that

k—1 n

S0 |t (08,7 = fn (05,70, [H f (05,7 ] IT £ xt) | < V/Bmk.

J

t=1 {TH,T}I‘E[n j=m+1

k—1
Z( Z |fm( m> m) .fm ma T [H fl alvﬂ_l ‘| [ H f] 37 ]
t=1 Jj=

{TH,r}rem) =m+1

19

m—1 m
Z [H fl (9;’7(; ] fm my T, ’m [ H f_] Jv j] [Hfl (0;77Tl‘| [ H f_] J? j
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2

)
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Definition C.2. For all (m,h, k) € [n] x [H] x [T'], we define the matrix notations M}, , € RO*O
and Mﬁm € RO*O as follows:

O k k k O

Ma,m = @T,m/‘;@ eER ) MO,m = (D)l,mum ER )
. T Ox0
Mz,m(owza Ay {G’T}Tepa(m)) = ©7L+1 7nT;(z M,am,{@r }repa(m) : dl(lg ((O);(L,’V‘VL(OWL | )) ( ;(Lm) ER x y

. i Ox0
Mﬁ.m(om’am’ {a’T}TEpa m)) ©h+1 m h m,am,{ar}repam) dlag (@ﬁ,m(om | )) ((O)]fi,m) c RY* ,

where {(O)h m Y (h,m)e[H]x[n] and {Th m am{ar}repa(m)}(hvm)e[H]X[”] denote the observation and

transition matrices corresponding to the true transition model, and {©i,m}(h,m)e[H]x[n] and

(Tt

hvm7am»{a7‘}r€pa(m)
ing to model parameter 0F for all k € [T]. When no confusion arises, we simplify
the notation by using M, to represent M,*L,m(om,am,{ar},.epa(m)) and M’Z’m to represent

Mz,m(om’ Am, {QT}TEPa(m))'

}(h,m)e[H]x[n] denote the observation and transition matrices correspond-

Since marginalizing two distribution will not increase their TV distance, so for all (k, k) € [K] x
[H — 1], we have the following corollary.

Corollary C.2. With probability at least 1 —0, for all (k, h) € [T| x [H —1], the following inequality
h h
[ H 1\A:[k),’,,n‘| - [ H 1\A:[*,’,,n‘|
h'=0 h'=0

holds true.
m Thl)]
H My,
1

k—1
Z Z an(Th,m)
Lemma C.3. With probability at least 1 — §, for all (k,h,m) € [T] x [H — 1] X [n],

t=1 T4
— h—1 m—1
Z Zﬂ-fn(Th,m) ' H (Mlﬁ,m - Z,m) lH M*',m] [
h'=0 =1

m—1

I1

=1

H M,

1

11

j=m+1

Th J) S kﬁm

h

H M,

™ Thz)]

t=1 Th =0
H H M3 Sl T (Tng) | S V/SkBm e
j=m-+1 ||h/=

Proof. We intend to bound the following term:

k—1 h—1
Zzﬂ-in(Th,m) |<Mllf,m - ;Lm) lH M*’,m]

t=1 Th h/=0

H M, ,

h!/=

I i -

h!=

ThJ)

o

lm]n

j=m+1

1

We initially have the following decomposition:
h—1
H (Mzm@ - Z,m) lH M*’,m]
h’=0 1
h—1 h—1
Do [T [T
h'=0 h'=0 1

h—1 h—1
h'=0 h'=0
According to the result in Corollary we obtain that

k—1 h [ h
zzmwﬂHWA—nwﬁ

m—1
i ]| 11
j=m+1

=1

1

1

(1)

H M, () | S VEBm.

h!=

I =

h!=

1
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According to the definition of matrix operator, we have

k—1 h—1 h—1
xe e (=] fie)

t=1 T
T 1 (12)
[H H My, || Thl)] H H Ml 7w (Tng) | S V/SkBm /.
=1 ||h'= 1 j=m+1||h'= 1
We combine eq. (TI) and eq. (I2), and we enventually arrive at:
h—1
ZZ'H— Thm ’ M - Z’m) [H I\A:[‘k/ﬁ,,n‘| . [H H Mh/ l Thl)‘|
t=1 75, h'=0 1 Li=1
H H Mh/ . Th] \V4 Skﬁm/a
j=m—+1||h/=
holds with probability at least 1 — ¢ for all (k, h) € [T] x [H — 1]. O
Lemma C.4. The regret is bounded by the following inequality:
Regret(k Z V™ V™ <nH Z Z ‘]P)et (TH) Pe* (TH)|,
t=1 Ty
where we define
Po: (tr) = [ o rrom | {7o1.rbrepaim)s P (ti) = ] B (Tatm | {711} repaim))-
m=1 m=1

Proof. We can strightforwardly achieve this result according to the definition of value function and
regret. O

Lemma C.5. The regret is bounded by the following inequality:

k
Regret(k) = Z | e

H-1

DD

t=1m=1 h=1 {r , },e(n]

iy Thl)‘| : H

j=m-+1

@\é

h
’ ﬂ-fn(Th,m) ’ H (Mh m ;(L,’HL) lH M*/,TYL]
h’=0

1

I] v, |

h!=

H M,

h!=

Thd)

[m 1
=1

Proof. According to the definition of transition model factorization, we have

Xk:Z ’ng (T) — PG (TH)\

t=1 Ty
k n . n .

=> D | L Por (rm [ {mmrbrepaom) = 11 P62 (Trm (7m [ {700 b repaom)))
t=1 g |m=1 m=1

Moreover, we have the following inequality of difference between transition probability measure.

zk: Z ’sz (te) — P3. (TH)‘

t:l h n m—1 (13)
:ZZZ HfJ 5 15) | | (O 70n) = fon (0 7 [ H fi (67, m 1
t=1 g m=1 | j=1 l=m+1
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Moreover according to the definition of matrix notation, we can rewrite the term |f,, (6% , 7t ) —

P (05, 78] as e

ﬂ'fn (TH g )

i) fiv ]|

h/=0 h’=0

|f7ﬂ( mo m) f’m( m? 7n |

Then we have the following inequality:

h h H-1 H-1 j—1
lH M;z,m‘| - lH Mz,m] Tm (TH,m) < H Mfﬁ7m (M§’7m - M;m) [H M?L,m‘| . an (THm’L)
h'=0 h'=0 =1 || | h=j+1 h=0

1
(14)

We insert eq. back into eq. (I3), and we can obtain that

m—1
Z H fj(]’ J) |fm( m? m) fm m’ m [ H fl 0[,71'[ ‘|
TH J=1 l=m+1

H-1 H-1 Jj—1
§Z [ Mz,m (M?me}:m) [H M;;m‘| 7Tt (TH,m) H fj j, ] [ H fi el,ﬂ'l ]
j h=0

1 l=m+1

H-1
VS .
< 7 (M)}fzm hm H M ’ ﬂfn(TH,m)
h=1 Th 1
m—1 h
. [H M;,m] W;(Thd . [ H lH Mlm] Thl)]
J=1 Lh’=0 l=m-+1 /
Eventually, the target regret can be bounded with
k
Regret(k) < 3 3 [PF! () — F5: (7))
t=1 Ty
k n n .
=>> H oL (Tt o) = IT 2o ravmrm—1)
t=1 g |m= m=1 ’
m—1
S99 91 11 FACRS| [TACRES BTN R | 108
t=1 g m= j=1 l=m+1

k n H-1 h
0> 5 f-wfnm,m)-Hmz,m— z,m[ﬂw,,m]
t=1 h’=0

m=1 h=1 {Th,v‘}'re[n]
[ml
=1

Proof for Theorem[d.1] With the Lemmas provided above, we now present the proof for Theorem
[£1] We first restate the theorem as follows:

Theorem C.1. We select bonus parameter as f,, = H?(S?AlP2(MI+1 1 S0O)log(TSAOH) +
log(T'n/9) for some constant c. Then with probability at least 1 — 5, Algorithm|4.2| guarantees that
the following inequality holds true.

Regret(k) = 2?21 vy < @(E:anl M\/k(SZA\Pa(m)H-l ¥ SO)),

a2

1

Thj)

h
11 M., H M,
h/=0

'Wf(Th,z)l : H

j=m+1

1
O

where we define ™" as ™ = argmax, V7.
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Proof. According to Lemma[C.5] it is sufficient to obtain an upper bound for the following term:

k H—1

Zzzﬂin(ﬁ%m) MI;me hm [H M*/

t=1 h=1 Th 1R
m—1

[T o] st | 1 [ £T o0 st
=1 llh'= j=m+1|ln'= 1

For probability at least 1 — §, we have

k H-1 h m—
3 5 3 eh )08 305) | T 261 | T | TT | -t >]
t=1 h=1 Th h!'=0 1 —
H H Mh’ j Thﬂ M/a
j=m+1||h/=

For m € [n], we fix (o,a, {ar}repaim)) € Om X Am X (Xrepaim)Ar). We define the set of
trajectories {74 } rc[n], denoted by Cp,, as:

Cm = {Th ‘ {Th,r}re[n] : (Oh,ma Ah,m, {ah,r}repa(m)) = (07 a, {QT}TEpa(m))} .

Then, we have the following condition:

k H-1

ZZZW Thm k - ;(L,m) ;(Lm hm [HM*’ ]

t=1 h=1 Tn 1
m—1

[H ]___[ Mh/l s Thl)] : H H Mh/ i ThJ SV SEBm /o
=1 [|h'= 1 j=m-+1[|h/=

We define {w; 1} (¢,1)e[rx[o] that satisfies:

W, = [(Mz,m(@ a, {aT}TGpa(m)) - Mh,m(oa a, {ar}repa(m)))@h,m]l .

We denote the sequence

h m—1

7 (Thom) ( ;,7m)T [H M*,,m] : [H H M || - Thl)] . H H My Sl 7w (Ta)

h'=0 =1 [lh'= Jj=m+1||h/=
for all 7, : (0n,m» @h,m, {h,r frepa(m)) = (0,4, {ar}repa(m)) by 241, %12, ..., %, N, Where

N = ’{Th | Th : (Oh,m>ah,m7 {ah,r}repa(m)) = (07a7 {aT}TEPa(m))}| .

Then we have two observations about the x, w sequence:
The vector sequence {z; ; }¥ , satisfies Zf\;l l|z¢,:]|1 < 1 for all ¢ because

; h m—1

7t (Thom) lH Ml 1] lH H MGl - ( Thl)] . H H My 1| - 75 (Th5)
h’=0 1 =1 [|h'= 1 j=m+1||h/= 1

IN

Z T (Th,m)

Th:(0n,m,an,m)=(0,a)

< Z an(Th,m)

{Th,T}T#7n7Th71 m

1 Tle,

j=m+1||h/=

H M,

h'=0

I

h'=0

ThJ)

eIl
][I

zThl)] H

j=m+1

1

1

'Wf(Th,l)]

1

Th’j) =1.

1
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The vectors {wy; }2, satisfy S [lw |1 < 257 /a for all t, since we have

O
> llwealls = | (M = M5 ) O, < S (M, + 105, ) < 25"/

Using the notation of {z;;}" ; and {w;,;}2 ,, we have
k—1

>3 lofioel =0 (Vi)

1

Therefore, we can bind the target term with Eluder-Dimension lemma (Proposition 22 of [Liu et al.
(20224a)). We have the following result.

kLo > G152
ZZZIwZ}xt,A:O( - \/M)

t=1 [=1 i=1

The equation holds for all k& € [T']. We represent the result with matrix operator, and we arrive at
h m—1
‘ Mﬁm - 7;L,m) [H M*’,m‘| . [H H Mh’ ™ 7-hl)‘|
h'=0 1

=1 lln=
Hrhj) | S VST H KB o

k H-1

D D )

t=1 h=1 T, ECp,

11 Hth

j=m-+1 ||h/=

We sum up both the left-hand side and the right-hand side for all (0, a, {ar}repa(m)), and we can
obtain that

k H-1 h m—1
Z Z Zﬂ-fn(Thm) (Mi,m - Z7m> [H M*’7m] : [ ’ l 7-h l)]
t=1 h=1 Tn h'=0 1 =1 |ln'=0 1
n 1.5 172 (m)+1
11 H M || - wh () | S SOHIOATT -
j=m+1||h'= 1 @

C.2 PROOF FOR THEOREM [£4.2]

Theorem C.2. For both randomized and deterministic algorithms, there exists an instance of DEC-
POMDP with factorization such that the regret is at least O(V And(G)+1T),

Proof. We consider the scenario where the state is directly observable to the agents, namely, a DEC-
MDP under a factored structure model. We further assume that the transition probability satisfies
the following structure: for alls’,s € S,a € A, and h € [H],

n—1

Th a(s | S H Thm S | Smaam) Th n( Sn | S’I’L?{aT}TG[n)

m=1

We further assume that the episode length H = 2, and the reward function satisfies 74, , (sm,) = 0 for
all h € [H] and m € [n — 1]. Thus, the entire model is equivalent to an A™-armed bandit problem.
By leveraging a classic result on the lower bound of regret for the multi-armed bandit problem
(Mannor and Tsitsiklis| |2004), it follows that for any randomized or deterministic algorithm, there

exists an instance of the multi-armed bandit problem such that the regret is at least O(\/ AT, where

A denotes the number of arms. Consequently, for any randomized or deterministic algorithm, there
exists an instance of a factored DEC-POMDP such that the regret for achieving the global optimum

is at least O(VA"T) = O(v And(G)+1T), O
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D SUPPLEMENTARY DETAILS FOR SECTION

D.1 COMPLETE ALGORITHM FOR ACHIEVING LOCAL OPTIMAL UNDER FACTORED
STRUCTURE MODEL

We present Algorithm [D.1] as the complete algorithm for achieving local optimal under factored
structure model.

Algorithm 4 NASH-CA for Achieving Local Optimal Under Factored Structure Model

1: Initialize 7 = {ﬂ-i}’ie[n]a where 7; = {7Th7i}(h,i)e[H]><[m]-
2: while true do

3: Execute policy = for N = ng log ((nHSK max;e, A;)/(€5)) episodes and obtain
‘A/LZ- () which is the empirical average of the total return under policy 7.

4: foragent: =1,...,mdo

5: Appoint agent ¢ as the central agent and fix m_; to run Algorithm ?? for K; =

O(S* A% ind(Gleh(DU{i}]) (62 Aid(G)  SO) - poly(H)/(a*e?)) episodes and get a new policy
6: Execute policy (#;, m_;) for N = €4  log ((nHSK max;c(,) A;)/(ed)) episodes and
obtain V/ (#;, _;) which is the empirical average of the total return under policy (7;, 7_;).
7: Set A; « V (7, m_;) — V(n).
8: if max;c(,) A; > €/2 then

9: Update 7; < 7; where j = arg max;e,) A;.
10: else
11: return m

Algorithm 5 OMLE for Achieving Local Optimal Under Factored Model

I: Initialize: B}, = {0,, € O : min, 05(0p(6m)) > a}, Dy, = {} forall m € ch(i),
B' = {Omench(i) : ming 05(0m(0m)) > o, ¥m ¢ ch(i)}, D = {}, central agent i, policy of
other agent m_;.

2. fork=1...Tdo
3: Follow wnch( ) to collect trajectories 7' = {ok O s a’}’{’m}mench(i).
4: Add Tnch ) into D and update conﬁdence interval with eq. .
5:fork=1...T do .
. k kY — i T—i
6: compute (8%, 7;’) = arg MAX () CBE Y o) 0.0, s VHiT—i(6)
7: form=1,2,...,rdo
8: forh=1,...,H do
9: Agent [ € nch(i) take action a;l.
10 Select an action aZJj ~ Tha, (- | Th=1,;,0ny,) forall j € [r —1].
11: Select an action a’,fb’i ~ ﬂ}";i(o | Th—1,i, Ons)-
12: For agent [; with j € [m],collect observation of 10, from the environment.
13: For j € [r]\ [m], sample dummy state 55,1, ~ T;‘;’lj(- | Sh.i;@npa(i;))-
14: Collect observation of ., ;. ~ O 1y ;. (- | snt1,,) for j € [r]\ [m].
. k T
15: If m # r,add (m,, 7. (m)mch( . pa(m)\ch( )) to D, for m # r.

16: Otherwise, add (7% ’Tpa(z)ﬂch(z)7 Tpa(z)\ch( ) 10 D;.

17: Update confidence interval with eq. (5)) for all m € pa(i).

18: Output 7 as uniform mixture of the policies 71,72, ..., 7.
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Bonums Term : For m € [n], the bonus term 3,,, and 3 is defined as
Bm = c(H?(S2APMIFL L §0)1og(TSAOH) + log(Tn/d)),

~ 15
B=c > H(SPAPRMI 4 50)1og(TSAOH) | + log(Tn/6) (1)

r¢ch(n)
D.2 PROOF FOR THEOREM [4.3]

We first proof the following Theorem [D.1] and then we will prove Theorem 4.3]
Theorem D.1. If Algorithm take agent i as central agent and take policies {Ty, } mein)/{i} @S
input, then Algorithm guarantees that with probability at least 1 — § for all k € [T

k 2 d;i+1
* k S0 A%
E VT YT
o?
t=1

where T is defined as w7 = argmax,, V™0™~ and recall that we use d; to denote the maximum
indegree of the subgraph induced by ch(7)

<0

VK (524441 1 50) pozy(H)> :

D.2.1 PROOF FOR THEOREM [D.]]

Without loss of generosity, we consider the case where the central agent is agent n.

Lemma D.1. There exists an absolute constant ¢ such that for any 6 € (0, 1], with probability at
least 1 — 0: the following inequality holds true.

Tm i réch(n)
: Pem ( | {T }TEPa(m)ﬂCh(”) {TT}TE(;;a('m))
(6 t?elgx X[T]Zlog Tm T réch(n)
" " =1 ]P)an’ ( | {T }TEpa(m)ﬂch (n)’ {T }r€pa ))
W:L 7 7 r¢ch(n
! 1 P9n (Tn ‘ {TT'}répa(n)ﬁa(ny {T?}rigagn)))
0 2218 | o Ty Ean()
n n =1 Pe (Tn ‘ {TT}TEpa(n)ﬁa(ny {Tr }r€pa(n))
I gare Po) (7 | {7 }repam))) i

t
max < p.
X ganon 03 D E€Xjgamen) O % [T] 1 (ngch(n) Pg; (75 [ {7} repa(n))

< Bm,m € ch(n),

< B,

3*3

Proof. The proof of the lemma is similar to the proof for Lemma|D.I] so we omit it here for clarity.
O

Lemma D.2. There exists a universal constant ¢ such that for any 6 € (0, 1], with probability at

least for all t € [T) and all 0,, € ©,,, m € |ch(n)| — 1, the following inequalities hold true.
Initially, for agent m € [|ch(n)|], we have

t m—1 [ch(n)|—1 .
Ten,m Ten,m ch,l Trcn,j T,
DN D D e N N B U v I U A

R en,m n,l .
=1 {TT}TEa(n) =1 Jj=m+1

Tan m 7 7 T T¢a(”)
HD . (Tcn,m | {Tr}repa(cn’m)ﬁa(ny {Tr }7‘€p3(0n,m))

10 — + [
Z : g;::: ( Tenm | { }TEpa(cn m)Nch(n)” { }:i;ra]g:,)l,m)> B o
For central agent n, we have
¢ i i ’
>0 > pe || II w3
i=1 {Tr}rea(n) lech(n)
ilog Pgﬁ ( o T epatmynaiinys 17, T}:iﬁg(ﬁi) L5,

i i ré¢ch(n)
% (T | { }repa(n)ﬂch(n) {TT}re,c)a(n)>
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For estimation error of {61}, ,), we have

2
t
YU X I 26 (il {mdveeay) = 11 BG: (| {medrepay)
=1 \{7r},¢am(n) |I¢ch(n) I¢ch(n)
- il iganin Pt (7 {7 repa)) W
[igarin) Poy (77 1 {7} repay)
where we for all m € |ch(n)| — 1, 0,, € ©,,, and policy T,, we denote Pg:: as ]P’g:: =

Tm r¢ch(n
]P)Om (Tm | {TT}TEpa(m)ﬁch {TT}ripa( )

Proof. The proof of the lemma is similar to the proof for Lemma|[C.2} so we omit it here for clarity.
O

Definition D.1. For all (m, h, k) € [n] x [H] x [T], we define the matrix notations M, € RO*©
and Mij . € RO*© as follows:

] k k k ]
am:(@; . ER ’ MO,mZOI,mMmER )

,m/j‘m

Mfz,m(omaama {ar}repa(m)) = ©Z+1 mT;: M,am,{ar}repa(m) : diag (@Z,m(om | )) ( h ) € ROXO

Mﬁ m(om’ Am, {U'T}TEPa ’m)) ©h+1 m h m a7n,{ar}r€pa(m) diag (@ﬁ,m(om | )) ((O)ﬁ,m) € ROXO?

where {0}, . }(h.m)e[H)x[n] and {Th m am,{aT}Tepam)}(h:m)e[H]X["] denote the observation and
transition matrices corresponding to the true transition model, and {@Zm}(h,m)e[H]x[n] and
{Ti Mm@ rcontom) }(h’m)e[ Hx[n] denote the observation and transition matrices corresponding
to model parameter 0y, for all k € [T)|. When no confusion arises, we simplify the notation by us-

ing M3, ,, ({an, ) ) 10 represent M, (0ms s {ar brepa(m) and M, ({an, 20 ) 10

represent M,";m (0m @y {ar frepa(m))-

According to the Definition [D.T] we can directly achieve the following result:

Lemma D.3. With probability at least 1 — 6, for all (k,h,m) € [K] x [H — 1] x |ch(n)| — 1, the
following probability holds true.

D>

t=1 {TT}7~ea(n>

n—1 m—1
Ao Thenn) | TL [0 || mens Grcn) | | T [0 |, e ) | Il ()
j=m+1 7j=1

Z Z W;(Th,n)

t=1 {7, } 7€ch(n)

n—1
[H||mhcnllwcﬂl Thc‘nl ‘| Vv SkBn/a

=1

r¢ch(n) réch(n)
’( <{ ap, T}TEpa(n ) ({ ap, T}TEPa n))) mp—_1.n 1

k—1
Z Z H Pg; (70 [ {7} repay) H ]P (71 [ {7 }repay) | = O( kB) .

=1 {1}, ¢m(n) |I¢ch(n) I¢ch(n)

where for all m € ch(n), h € [H), t € [T, we define my, ., and mj, . as
h h
réch ré¢ch
mh,m - H M ({ h r}rz;ag;) ) } mz,m = H M <{ h T}rz;ag;) ) .
h'=0 h'=0

27

h—1
ré¢ch(n réch(n *
(Mh Cn,m ({ h’f‘}ripa(cz m) ) - hcnm <{ hr}ripagclm))) [H M ! Cnim ({arll;,r}
h/=0

réch(n) )
repa(cn,m)
1

VSkBe, .
@
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According to the definition of regret, we can bound the regret with trajectory probability in the
following way:
Lemma D.4. The regret is bounded by the following inequality:

t
Regret(k) < nH Z Z ‘IP”T T —Pg. """ (1)

t=1 Ty

where we define

Pgt_nmn (TH) - H ng: (TH,m ‘ {TH,T}TEPQ(m))] ng (TH,n | {TH,T}rEpa(n)) )

P‘g*—mﬂ’n (TH) H ]P‘ﬂ'm TH,m ‘ {TH,T}TEpa(m))] ng (TH,n | {TH,T}rEPa(n)) .

Lemma D.5. The regret is bounded by the following inequality:

k
Regrei(k) <nty > || [T Pgi|®or — | TI Po:|Por|| II Po:
t=1 Tu | [iech(n) lech(n) l¢ch(n)
k
+nHZ Z H ]Pgl i | {THr brepat H P (a1 | {78 Y repany) |
=1 {rH,r}, gmh(n) |l¢ch(n) I¢ch(n)

where for any m € ch(n), 0, € ©,, any policy m,,, we denote Pm as Py =

]P)g: (THJ”L | {TH,T}T'Epa(m)) .

Proof According to the factorization of trajectory probability, we can bound
‘]P”T’"’7r (T) —Pgo™ i TH)’ with the following inequalities.

S [a ™ ey - B ()|

t
n Uy T Uy
SZ H IP l ",n - I | ]P@L*,l P@;,n H ]PJQT l

TH lech(n) lech(n) I¢ch(n)
k
S T B3t G s drema) =TT B3 (o | i boenn) | | T P | 5
t=1 Tu |l¢ch(n) I¢ch(n) lech(n)
Kk
SZZ H ng,z Pef,n - H LA Pgn H LA
t=1 TH lech(n) lech(n) I¢ch(n)
k
> 11 Pot (T | {7ar brepa) - 1] Pot s (T | {7 trepay) |-
t=1 {TH,r}rga(n) I¢ch(n) I¢ch(n)
Thus, we finish the proof of the lemma. O

For the clarity of presentation, we define the following notations:
Definition D.2. We define R;(k) and Ry(k) as

k
W=>31| TI ®ga|®or = | T1 P | ®o| | IT Pai |

t=1 7Ty | |l€ch(n) lech(n) l¢ch(n)
k

=X > II Pot (e | {7} repay) — IT B3 (o | {rartrepay) | -
t=1{7r.r}rgamn) |Igch(n) I¢tch(n)
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We then have
Regret(k) < H - (R1(k) + Ra(k)).
Lemma D.6. With probability at least 1 — 0, we have the following bound on Ry(k), for all k € [T).

Ro(k) < O (@)

Proof. According to Lemma|D.3| we have with probability at least 1 — ¢ for all k& € [T,

k-1
Z Z H Pg;i (7 [ {7 }repay) — H Pgli (7 [ {me}repany) | = O (\/;B> .

=1 {mr} g |Igch(n) I¢ch(n)
Then we can straightforwardly obtain that R (k) < O <\ / k@) . O

Lemma D.7. R, (k) is bounded by the following inequality:

R O e L ¢an(n) ¢ah(n)

réch(n * T ~ré&ch(n
Z Z Z Z H( h 3Cn,m <{ h"}TEpa(Cn‘m)) - Mh,(/’n,m ({ath'}TEPa(Cn,m))) mh—lycn,mHl
t=1 m=1 Th

n—1
t

t
' Trcn,m (Thacnﬂn,) H Hmh,cmj

j=m-+1

I8 (0, (108, 11E5500) 18 (6T, 1) )

t

17Tcn,j(7-h,cn,j) H H my., .
Jj=

ey (Thens) | 10l (7h,n)

n—1
X 7y, (Thn) - [H [y e, [, (Th,cn,l)] 1 :
=1

where for all m € ch(n), h € [H], t € [T), we define my, ,,, and mj . as
T%T(n) T%T(n)
H M ({ h r TE:B(TI’O) 5 H M <{ h T rGZa(m)) .
Proof. According to the definition of R; (k), we can obtain the following bound on Ry (k):

k chl(n)—1 [m—1 n—1 t
SZZ > [H]P’g,i] P =Pl | T Pyt | Pgr T =5
t=1 m=1

j=m-+1 I¢ch(n)

x| et =i | IO
t=1 TH lga(n)
We can deduce the result of lemma by representing this inequality with matrix notations. O

Lemma D.8. With probability at least 1 — 6, for all (k,h,m) € [K] x [H — 1] x |ch(n)| — 1, the
following inequality holds true.

k—1
Z Z ﬂ.zn‘m (Thvcn,m)

t=1 {TT'}reE(n)

ré&ch(n * ré¢ch(n
’( h yCn,m ({ h T}Ti:)agcz m ) - hnd,m, ({ h r }Tg:a(c}, m))) mh_lvcn,m, 1

n—1 m—1
H Hmz,cn,j 17rcn‘j (Tftz,cn,j) Hmz,cn,j 171-27” (Thacn,j) Hmh7"||17TfL(Th7n)
j=m+1 j=1

51'5OA|pa(C"'*7"')mE(n)‘+1H2
SJ kﬂcn m
o \/ ,
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and for agent n, the following inequality holds true:

SN )| (o (6 1ER) ~ M (6T 1) )

t=1 {mr e
Sl.5OA|pa(n)ﬁa(n)\+lH2

5 V k‘/Bna

«

n—1
1 [H Hmh7cn,l ||17rznyl (Th7cn,l)
=1

where for all m € ch(n), h € [H], t € [T], we define my, , and myj,  as
i ch i ch
mpm =TT ¥ (10,530 b = TT M (10, 1E))
h'=0 h'=0

Proof. Tnitially, for m € |ch(n)| — 1, we fix (o,a, {ar}, cpatenmyriann)) € Ocnm X Ac, X

(Xjepa(cn,,m,)ncT(n)Aj)’ we first define set S as

Cn,m

Copn = {{Th,r}rea(n) | {Th,r}rea(n) : <0h75n,m7ah75n,m7 {ah,r}repa(cn,m)ma(n)) = (0,a7 {G‘T}repa(cn,m)ﬁa(n))} :

O
We assume that
wia = | (W, ~ Wi, ) Ohe,.. ] -

where we denote M% o and M; o A8

M, =M, (0’ @, {ar} e pa(en. m)rich(n) {a%-}f«iiﬁ’i m))

v focnm = My (0 @5 {01} epaen m)richn) Aap, r}iiﬁ'; Z) )) '
We denote the sequence wénﬂm(Th,cnm)@L’anmh_l,cw e |mh entl1Ten  (Thocn )] -
M1 c, It (T, ;)] -l 1t () for all {Th,r}Tea(m € Cem by
Ty, %42, .-, 2N, Where N = |C., . |. Then we have two observations about the z,w sequence:

The vector sequence {x;;} N satisties 2 [|2i[l1 < 1 for all ¢ because

m—1
> TennOhenn) [0, v [H e, w<>]
=1

{7h.r}reamn) €Cen,m

n—1

t
H Hmhvcmﬂ'

j=m+1

m—1
S Z chm(’rh Cn,m H(D)h (-nmmh 1can [H ||mh,cn,l||1 Wl(Th,cn,z)‘|
=1

{7hr} redmn) (On cn,m @h,cn,m ) =(0,a)

[ i(Then ;) [, ||, 7 (i)

n—1

TT b, | )| ol
j=m+1

m—1
< > Tenm (Th=1,cn.m) H©Lﬁcn,mmh71,cn,m . lH e, ||, ﬂ-l(Th,cn,L)‘|

{hor b redhin) /en,m ) Th=1.en,m =1

n—1

H HmZ,cn,j 17Tj(7h~,cn,j) =1
Jj=m+1
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The vectors {wy; }2, satisfy S [lw |1 < 257 /a for all t, since we have

Zuwt iy = ||(¥8... ~¥Eie,.,.) Ons,,,

Using the notation of {z;;}"_; and {w;,;}2 ,, we have

k—1 O n
DY whiwe =0 <\F kB, ) .

t=1 [=1 i=1

<5 (e, + | ],) <
‘1 = h,Cn,m 1+ h,cn,m )=

Therefore, we can bind the target term with Eluder-Dimension lemma (Proposition 22 of [Liu et al.
(2022a)). We have the following result.

k n 1.5 172
ZZZ |th,l$t,i| =0 (S aH \/ kﬁcn,m) :

t=1 [=1 i=1

The equation holds for all & € [K]. We represent it with matrix operator, and we have

k
E Vit
Z H (Mh Cn,m Mhycn,'nl) mh*l:Cn,'m,

t=1 {Th,r}re?h(n) €Cepm

o3 t = t t t t StoH?
A T, )| | TL [ 7t ) | ol ') = 0 (505 ).

=1 j=m+1

t
1 : ﬂ-cn,m (Th&n,m)

We sum up both the left-hand side and the right-hand side for all (o, a, {a,} €

repa(c",,,”)ﬂa(n))
Ocpoe X Ay (Xjepa(cn (A ) and we can obtain that

réch(n réch(n)
E E ’n-cnm Th Cnm H(Mh Cn,m ({ hr}repa ) - hcnm ({ hr}repa (cn,m) mp—1.cn,m 1

t=1 T
m—1 n—1
51‘5H2OA1+
' [H mhul”Wlt(Th»l)] T b1l 7 ag) | Il () =0 <‘
=1 j=m+1

Then, with similar techniques, we consider the term

réch(n r¢ch(n
’( hn ({ ar, r}é;ini) - ({ hr}rz;a(n )) my_in,

Z Z WfL(Th,n)

t=1 {7}, caiim)

We define set S,, as

n—1
1 [H ||mhvcn,l||17rzn,l(7h70n,1)‘| .
=1

C" = {{Thﬂ'}réa(n) | {Thﬂ'}rea(n) : (Oh,na QAh,ns {ahﬂ'}repa(n)ﬂa(n)) = (O,CL, {a’T}era(n)ﬂa(n))} .

_ ot Vits *
Wy = [(Mhn - h,n) h,n]l'

Vit VT*
where we denote M, , and M | as

‘We assume that

Vit — it T yréch(n)
Mh,n - Mh,n (0’ a, {aT}v'Epa(n)ﬁCT(7L)’ {ah,T}TEpa(n)) ’
* * r¢ch
h,n — Mh,n (07 a, {aT}TEpa(n)ﬂch ’ { ap, T}T?F:)agz)) '

We denote the target sequence 7% (75.,)O0}  mp—1, - [[175 mnc, 17, (Thoe, )] for all
{Th,r}rea(n) € S, by x41,%2,...,2,n, Where N = |C,|. Then we have two observations
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about the =, w sequence: The vector sequence {z; ;}¥ | satisfies Z _1llzeil|1 < 1for all ¢ because

n—
Z ﬂ-fz(Th-,n) H Hmhacn,l H1 7Tlt (Th7cn,l)]
=1

{Th/ﬂ‘}rea(n) eCn

< Z 7"’fz(Th,n)

{Th.r}reah(n)(0n.n:ann)=(0,a)

< > T (Tho1.n)

{T}L,W‘}'r-ech(n)7Th—1-,n

’(@—L,nmhﬂ’b 1

‘(O)meh—l,n

n—1
1 lH ||mh7Cn,l ||1 W;(Th,,cn,z)]
=1

T
‘(O)h,nmhflyn

n—1
1 [H ||mh,cn,, ||1 71—Zt(Thycn,z)‘| =1,
=1

The vectors {wt 1}O satisfy Zzo lwealli <2515 /o for all ¢, since we have

*
(Mh n ) h,n 1

Using the notation of {z;,;}" ; and {w;,;}? |, we have

k—1 O n
DY) lwhwl =0 (?M) .
t=1 =1 i=1

Therefore, we can bind the target term with Eluder-Dimension lemma (Proposition 22 of [Liu et al.
(20224a)). We have the following result.

k O n Sl
S whw =0 ( \/kﬁn> :
t=1 =1 i=1

The equation holds for all k € [K]. We represent it with B—operator, and we have

S ) me

=1 {7h,7}, cch(n) ECn

We sum up both the left-hand side and the right-hand side for all (o, a, {a,}

<5 (e

Vits
1 + HMh’”

1) <28 /a.

n—1
Tul(Thn) [H mpc, ime,  (The,.)

=1

répa(cy m)ﬂch(n)) €
O X Ay (Xjepa(cn (A ) and we can obtain that

3w ) | (v, (e Een) = M (Tak, dEn) ) ) manva|

t=1 T
S1-5 (120 Al+IPacn.m)Nech(n)|
= O < o \/m N

n—1
[T 1wl (7a)
=1
Corollary D.1. With probability at least 1 — 8, for all k € [T], Ry (k) is bounded by the following
inequality:

S?2H30A

Rl(k) <0 — Z A\pa(m)ﬂcih(n)H-l /kﬁm

« —
mé&ch(n)

Proof. We only need to combine the result in Lemma[D.3]and Lemma|[D.7] and we can achieve the
result. H
Corollary D.2. With probability at least 1 — 6, for all k € [T], Ry1(k) is bounded by the following

inequality:

S2H30A
mwy<o SO | 5 gmeraer i,
m&ch(n)

Proof. We only need to combine the result in Lemma and Lemma|D.7] and we can achieve the
result. H
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Proof of Theorem With the lemmas presented above, we are now ready to prove Theorem

Theorem D.2. If Algorithm take agent i as central agent and take policies {T, } mein)/{i} @S
input, then Algorithm guarantees that with probability at least 1 — § for all k € [T

k
E Vi Vﬂ'fﬂf—i
t=1

where 7} is defined as w; = argmax,, V"1,

_ 2 d;+1
<0 (S OA

\/K (S2And(G)+1 4 50) ~poly(H)) ,

a2

Proof. According to Corollary [D.2] and Lemma [D.6] we can obtain that with probability at least
1 -4, forall k € [T,

RF < H - (Ry(k) + Ry (k))

o EHOA| S~ g g | 4k

a2
mech(n)
SQ OAindeg(Fn)—o—l
(5

IN

IN
S

VK (S2A™ 4+ 50) - poly(H)) )

D.2.2 PROOF FOR THEOREM [4.3]

After proving Theorem [D.I] we are ready to prove Theorem{.3] For the readers’ convenience, we
first restate the theorem here.

Theorem D.3. If central agent for Algorithm [D.l| is i, we define bonus parameter as
Bm = c(H?(S2APMIHT 4 G0)log(TSAOH) + log(Tn/s)), Ym € [n, B =
(X geni) H(S?2AMM+ 4+ SO)1og(TSAOH) 4 log(Tn/6))). Then, with probability at least
1-4, Algorithmterminates within 4H /e steps of the while loop, and outputs an e—approximate
local optimal policy. The total episodes of play in Algorithm[D.1]is at most

K = @( an:1 S4O2A2~ind(G[ch(m)u{m}])+2(S2Aind(G)+1 + SO) 'poly(H)/(a463)).

Proof. We use superscript ¢ to represent variables at the t*" step (before 7 is updated) of the while
loop. We set K; = O(5*A2nd(Gleh(L{i}) (§2 Aind(©) 1 SO) . poly(H)/(a*€?)). According to

Theorem for fixed ¢ and ¢, we have with probability at least 1 — SiEH

max V (p;, 7t ,) — V(zk,7t,) <
Hi

B~

We then take a union bound over all t < 4H /e and for all ¢ € [n], and we have with probability at
least 1 — ¢ the following inequality holds for all ¢ € [n] and ¢t < 4H /¢

maxv(/“"ivﬂii) - V(ﬁfvﬂii) <
Hi

. (16)

1

For the empirical estimator V', it’s bounded in [0, H]. Thus, by Hoeffding’s inequality, for fixed
i€ [n]andt

2
(7|2 §) <aem (- ).

nHSK max;cn] Ai
€d

Choosing N = Cg 2 log ( ) for some large constant C', we have

P(‘Vt _Vt‘ = é) = 1667(:H'
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Applying this inequality for V(7! 7' ;) and V*(x?) and taking a union bound over i € [n] and
t < 4H /e, we can achieve that

[V (&}, nly) = V(ah, )l < e/8, |[VH(r') = V(x")| < ¢/8.
We combine this result with equation and we can obtain that with probability at least 1 — §
max V(us, 7l;) = V(& 7l,) < 17 V(#&f,mly) = Viahal) < e/8, [Vir') = V(x') < /8
holds for all i € [n] and t < 2. On this event,

68 =Vi(qs,m_y) = Virt) < V(at,xt,) = V(nt) + €/4.

If the while loop doesn’t end after the ¢—th iteration and ¢ < 4H /e, there exists jts.t. Az.t > €/2,

so we have
~t t t t
V(@je,m2je) = V(7)) > Aj —€/4 > e

VAR
Since the value function is bound by H, so the while loop ends within 4H /epsilon steps. Therefore,
the inequality above that holds for all ¢ € [n] and t < 4H/epsilon holds for simultaneously before
the end of the while loop with probability at least 1 — §. Again, on this event, if the while loop stops
at the end of ¢ step, we have max;c,) 0; < €/2, then

max V(pi, m;) — V(r') =max V(u;, 7l;) — V(#;, 7l) + V (@}, 7l;) — V(x')
Hi Hi

<e/4+ Vizt, xt,) — Vi(xt) + 2¢/8

<e/2 + Al

<e.
So the returned policy 7 is an e—approximate local optimal. Therefore, we can conclude that prob-
ability at least 1 — §, within 4H /e steps of the while loop, Algorithmoutputs an e—approximate
local optimal policy.

Eventually, we compute the total number of episodes as the total sample complexity. According to
the definition of N and K; for all ¢ € [n], we can obtain that

Ko 4H <N+ Z (K, +N)> 5 (i S4O2A2<ind(G[ch(i)U{i}])+2(52Aind(G)+1 + 50) -poly(H)) |

€ £ aded
i=1 i=1

O

E SUPPLEMENTARY DETAILS FOR SECTION

E.1 COMPLETE ALGORITHM FOR ACHIEVING LOCAL OPTIMAL WITH MEMORYLESS
POLICIES

The complete Algorithm for achieving local optimal with memoryless policies is presented in Algo-
rithm If the central agent of Algorithm is m, then the bonus parameter f3,,, for m € [n] is
defined as

B = c(H(S*A%0* + 0°S)log(TSAOH) + log(Tn/5)),m € [n — 1]

(17)

Bn = c(H(S5?AO + 0S) log(TSAOH) + log(Tn/é)).
Trajectory Probability Vm € [n], we use 7., = (01.1m,41.ms-- -, OH,m; aHm) to denote the
trajectory of the m!”* agent, and we denote the parameter Om g;]l‘m, Opm, ) as the collection

of parameters representing the joint probability of the m! and 1*" agent’s trajectory. We define
trajectory probability Py’ ;(7;) and Py (7;, 7., ) for all m € [n] \ {4} as follows:

Pgﬁii(Ti) = Zsh“_,sH #(51)@)1,1‘7"1,1‘[ hz_l Th,i,ah.i@h+1,ﬂrh+1,i},

Py (Tis Tm) = D, M(S1)@1,i7T1,iW1,m[HhH;11 Thisan.ssan.m Qht1,mTht1,i Tht1,m)] -

(18)

.....
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Algorithm 6 NASH-CA for Achieving Local Optimal with Memoryless Policies

1: Initialize 7 = {ﬂ-i}ie[n]a where m; = {7Th7i}(h,i)e[H]><[m]-

2:
3:

4:

10:
11:

while true do . .
Execute policy 7 for N = Cg log (nHSK max;c[, A;/(6)) episodes and obtain V; ;()
which is the empirical average of the total return under policy 7.

for agentt =1,...,mdo
Fix 7_; let the ith agent be the central agent to run Algorithm - E.l| for K; =
@(S4O4A4(52A202 +80?) x poly(H)/(a*e?)) episodes and get a new policy 7;.
Execute policy (#;, m_;) for N = <& : log(nH SK max;c[,) Ai/(€d)) episodes and
obtain V (#;, _;) which is the empirical average of the total return under policy (7;, 7—;).
Set A; « V (7, m_;) — V(n).
if max;cp,) Ay > 6/2 then
Update 7 < 7r; where j = arg max;c(,) A;.
else
return 7

Algorithm 7 OMLE for memoryless policy

1:
2:

AN AN

Input: central agent ¢, and the policy for agent [n]/{i}, T1, T2, ..., Ti—1, Tit1,- -+, Tn.
Initialize: B} = {0; € O, : min, 05(0;(6;) > )}, BL, = {0 € O, : ming, 05(0,, (0,,) >
a/V/O0)} for all m € [n]/{i}. Set D,,, = {}, for all agents m € [n].

.T do

fork=1.
k pk k N N n 71'1,71’, A
compute (0F, 05, ... 0F =k) = arg MaXy cpr g, eBk .0, Bk D 74 f(Om)
k kE .k k Ak
follow 7 to collect a trajectory 7% = (o¥,al,... 0 H, a H)

add (wk, 7k, 7 )1nt0Dmform6[]/{}andadd(

REE A

BEFY for m € [n]/{i} as follows:

B! = {9 eBl: Y log P3' (i) =2 max 3> log ng,i(Ti) - ﬂi}

7F) into D;, and update Bf 1 and

Z ? Z

(mi,7)ED; v 0;€0; (m;,7)ED;
BEH = {Hm €B.: > log Pg“”m (TiyTm) > max > log Py, "2 (Ti, Tn) — 6m}
(74,7, Tm ) EDm, " 07 €Om (74,7, Tm ) EDm,
Output 7 as uniform mixture of the policies 7}, 72, ... 7X.
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Vh € [H], the notation in the equations are defined as: for agent i, mp; = mhi(ans | oni),
Thian: = Thian:(Sht1 | 8h,0n,4),Oni = Qpi(ons | sn), and Ym € [n] \ {i}, Thm =
Thm(@hm | Onm)s Thomoan e = Thim,anmoan; (Sht1 | Sk, 0nms 0n,i), Onm = Onom (0n,m, 0ni |
Sh).

For the real transition model ¢; = 07, the observation probability {Qy, ; } c[z] and transition proba-
bility {T, i } ne[s) are defined as (Vs € S, 5p41 € S0, € Ojyan,; € A;)

On,i(on,i | sn) = Z On(on | sn)
{0h,m}meln)/{i}

@h(oh ‘ Sh)
— " Tha
(O)h,i(oh,i | Sh) h, h(sh"rl ‘ Sh)

Thian.: (Sht1 | Sny0ni) = Z H Th,j(an,j | on,j)
{(on,msan,m)}memy/ iy |I€MI/{i}
(19)
Similarly, for all m € [n]/{i}, the real transition model 6,, = 6Z,, the observation probability
{Oh,m }herm) and transition probability {Tp ., frheim) are defined as (Vs, € S,s5p41 € S,0nm €
Oma Qh,m € Am)

@h,m(oh,iaoh,m | Sh) = Z @h(oh ‘ Sh)
{oh,r}re[n]/{i,m,}

On(op | sn
Th,m,an,sanm (Sht1 | ShsOnis Onm) = > IT  mnitan; lony) 0 (O(_L()' )|8)
{(0n,man) Fmepml/ (im) i€/ {im} hymAZhyé> Chim | Sh
(20)

where we denote T}, a, as Th a, (Sht1 | Sh)-

E.2 PROOF FOR THEOREM [5.1]

We first proof the following theorem, which can be seen as the bound of regret for Algorithm [E-]

Theorem E.1. If Algorithm take agent i as central agent and take policies {T ., }me[n)/{i} aS
input, then Algorithm guarantees that with probability at least 1 — § for all k € [T]

i V”;vﬂ'—i _ Vﬂ,ﬁ“,ﬂ-,i A w
t=1 a2

<O VE(S2A20? + SO?) x poly(H)) ,

where 7} is defined as

m; = argmax V771,
LD

According to the symmetric principle, we assume the central agent in Algorithm [E-1] is agent n
without loss of generosity.
Definition E.1. For all (m,i) € [n — 1] x [T, 0, € Oy, and any policy 7., of agent m, we define
Oy Ty Ty ) and [ (O T, T ) @S

fm(0m7 Ty ﬂ'm) = Pg:j;;" (TTLy Tm)7 f:n(arm Tiny 7Tm) = Pg:j;;" (T’rip Tfn) .
For agent n, we define f,,(0,,,m,) and ffl(Qn, T ) AS:

fn(emﬂ'n) = Pg:,n(Tn)v f:;,(en’ﬂn> = Pg:,n (T’:L) .

Lemma E.1. There exist an absolute constant ¢ such that for any § € (0,1], with probability at
least 1 — 6, the following inequality holds for all t € [T and all 0,,, € ©,,, m € [n].

t t
Zlog (fvln (oma Fjlaﬂ-'rn) /,fyln (0:7“ W%aﬂ'rn)) < ﬁ'rru Zlog (f:L (97“7'(':.1) /f;z (9;;’ 77:1)) < Bna
i=1 i=1

where we define bonus term (3, and By, for all m € [n — 1] as:
Bm = ¢ (H(S?A?0% + 0*S)log(TSAOH) + log(Tn/9)) ,
Bn =c(H(S*AO + 0S)log(TSAOH) + log(Tn/9)) .

36



Under review as a conference paper at ICLR 2025

Proof. We first prove the first inequality. We use 6,, = (T,,, O,,, ) to denote the ensemble of all
the parameter of the probability of trajectory 7. We use ©,, to denote the collections of all such
parameters 6,,. We can view ©,, as asubsetof ad,, = H(S 2 AO+S0)+ S dimension subspace. We
denote 6,, as the optimistic e—discretelization of 6,, so that 0,,, ; = [6,,,,;/€] x € for all coordinates
i. We always have f,, (0., m,) > fn(6n, 7). We can choose € < 1/(¢(S + O + A)HT) such that
Zm | frn(On, 7n) — fr(On,7n)| < 1/T. We use ©,, to represent the collections of all such 6,,, then,

the log-cardinality of ©,, is bounded by
log |0, < O (H(S5*AO + SO)log(TSAOH)) .
We denote B[] = E = [|{(m},, 7/)};Z; U {}, }].

E _exp (ilog ( fi (én,ﬂ'fl /fZ T ))]
=E -exp (Zlog(z (én,wn /f’ T, )) - E, [exp <log (ft( s T n)/ft( * ")))”
( )

:E exp (ZIOg ~’:;, (é”’ﬂ-n /fZ n ) Et (ft enaﬂ-n)/ft( n’ n))‘| (21)

Since we have

By (FL(0n, mi) /205 7)) = 30 FL (Buont) < (14 1/T),

Tn

we obtain that

E lexp <ilog (fn T n) /fZ ( . ;)))] <e.

Therefore, by Markov’s inequality, we have

fn 07L77rn)
(221 ( 7 o Z_)) >10g(1/5)> <E

n? n

fYL (07“71-71)
ex log | =————~ -exp(—1lo ) ed.
pZEI g <fz (9;77%))1 p(—1log(1/d)) <

We take a union bound over all (,,,t) € ©,, x [T] and rescaling &, we obtain
P il fn (B, 1) > c(H(S?AO + SO)log(TSAOH) +log(T/58)) | <6
max og | =—= c og og <.
(On 1) €65 x[T] 1= i (65,7)
Since #,, is an optimistic discretization of 6,,, which implies that Pg”:)n(rn) < Pg" n(Tn) for all
0., T, Tn. As aresult, we obtain that
P zt) Fo (Broma) | (H(S?AO + SO)log(TSAOH) + log(T/8)) | < &
max og| =————= c 0 o .
(0n 1) €O X [T] “— s fi (0%, mh) & & N
We similarly consider f,,, (6., T, T ) forallm € [n—1]. Weuse ad,, = H(S?>A%20%+S0?)+ S
dimension parameter 6,, = (T_m,@m, 1) to denote the ensemble of all the parameters of the
probability of trajectories (7,,7,,). We denote ©,,, as the collection of all the e—optimistic dis-
cretelization, 6,,. We still choose ¢ < 1/(c¢(S + O + A)HT) for large constant c so that
D | fm (Oms T ) = fin (O, T, ™) | < 1/T. With similar analysis as above, we can
derive the following inequality:

P ( max Zlog( Hm,ﬂn,ﬂ'm) /fz (H:n, Ty, T )) > ﬁm> <.

m t)EOm X [T]

Eventually, we can obtain that with probability at least 1 — J, the following events hold true:

Etjlog(fin(em,w;mm)/fi (60, i ) ) < B, Zlog( () /73 (03:73) ) < B
i=1

O
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Lemma E.2. There exists a universal constant ¢ such that for any § € (0, 1], with probability at
least 1 — 6, forall t € [T and all ,,, € ©,,, m € [n — 1], it holds that

k
Z Z |fm (amﬂripﬂm) fm( ms n,’/Tm)|

t=1 \7p,€(OnXxAp)H 7, €(Om X A ) H

<c (Zlog( T n,Trm)/f (6rm n7777n)) +5m>,

and for 6,, € ©,,, it holds that

S5 ln-n o) <o(Ses(E0m)) 1)

t=1 \7,€(On xAp)H

Proof. The proof of this lemma is very similar to the proof for Lemma[C.2] so we omit it here for
clarity. O

Lemma E.3. We have the following bound on the regret of Algorithm[5.1]

K
E [Vﬂ,ﬂ:n _ Vﬂﬁ,ﬂun

k=1
. n—1 K .
T T T T s Tm,
W (TH ) sz ()| + H - g E E IP’ o (TH s THm) — ]P)e:n . (TH s THm)| 5
t=1TH n m=1t=1 TH n,TH,m

* * I
where we define w} as w7 = argmax,, V7T

Proof. For any policy = = (71,72, ..., T, ), we can decompose the value function V™ as follows:
n H n H
33 nton] = 3 B | S ratonn)
m=1h=1 m=1 h=1

= Z > PT(rH)- (Z Th(Oh,m)>

m=1{ru;}7_,

H H
= Z Z ]ng o (TH ms TH o) - (Zrh(oh,m ) ZP (THn) - (Z (on.n ) .
h=1

m=1TH,m TH,n TH,n

For m € [n — 1], we further define

H
VimT=n(6,) = Z Py (TH ) - (Z T (0n ) , Vi (0,,) Z Pg:;x” (TH,m, TH) - (Z Th(Oh’m)> .
h=1

TH,n TH,m ;TH,n

Then we can decompose the value function as
V'Trn,ﬂ',n _ § :Vr:; s —n 9* Vﬂ'n,ﬂ',n _ E :Vﬂ' sTT—mn

According to Lemmaand Lemma we can deduce that 6}, € Nycx B, holds forall m € [n]
with probability at least 1 — ¢. In the following analysis, we assume that 0%, € Nyc[x1B},. On this
event, according to the optimism of {6,, },,,c[,,) and 7}, for ¢ € [K], we can obtain that

YR YT = Z VT (92 Z VT () Z Vi (gt ) Z VI (9 )
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According to the definition of {V e (an)} . and {Vmﬂz’ﬂf" (95,1)} il we further have
me(n me(n

the following bound on the regret.

K * k
Sl vie

t=1
K n n .
<D v T 6E) — v (92,,)]
t=1 Lm=1 m=1
K . . n—1 K .
SH ’ Z Z ‘P;}’Z (TH,n) - ng (TH,n) +H- Z Z Z P :L’ﬂ—m (TH,n, TH7m) — Pg{ﬂm (TH,n, TH,m) .
t=1THn m=1t=1TH n,TH,m

O
Definition E.2. For all (m, h,k) € [n — 1] x [H] x [T'], we define the matrix notations M, €
RO**0% and My € RO**O% 45 follows:
M = OF bty € RO, Mg, = OF ppir, € RO,
* * * * * T 2 2
M}L,m(omv Am s an) = @h+1 mTh SN, A G, 'dlag (@h,m(omv On | )) ( h,m) € RO x0

Mz,m(omv Am, a’n) ©h+1 mTh M, A ,An diag (@ﬁ,m(omv On | )) ((O)z,m)T € R02X027

)

and for agent n, we define matrix notations M, ,, € RO*CO and Mfm € RO*O as follows for all
(h, k) € [H] x [T]

M, = O un € RO, ME,, =0} puk eRO,
M, (0ns @) = Oy o T, - diag (O}, (0n | ) (O},)" € ROXO,

MZ,TL(OTH a’") = @Z—&-l,anL,n,an ' dlag ((O)}]j,n(on ‘ )) (@h n) € ROXO’

where {O} .} (h,m)e(H]x[n] and {T27m}(h7m)e[H]X[n] denote the observation and transition matri-
ces corresponding to the true transition model, and {@ﬁ,m}(h,m) c[H]x[n] and {T ) (hym) €[H]x [n]

denote the observation and transition matrices corresponding to model parameter Ok, for all
k € [T]. When no confusion arises, we simplify the notation by using Mg, ,,, to represent

Mg, . (Oms Ay ) and MK
using MIj, |, to represent M}, , (on, a,) and Mﬁ ., to represent MY (0, ay,).

Lemma E 4. Given O x S matrix A1,A,, ..., A,. We further define matrix B and matrix C
as BT = (A],Al,...,AT), C = Ay + Ay + -+ A,. Then if 05(C) > «, then we have
0s(C) > a//n.

Proof. We only need to prove that for any given unit vector x € R, ||Bx||o > %. Since we have

to represent MIF m(Om, @m, ay) for m € [n — 1]. We also simplify by

h,m

1
[Bx|[2 = [(A1xT, ..., ApxT)T][2 = \/IIA1XH§ +oo ot A3 = ﬁllAlir et Anx|e =

Thus, we finished the proof of the lemma. [
Corollary E.1. According to the definition of observable condition, we have o5(Op, ) > «, for all
h € [H], and 05(Op ) > a/VO forall h € [H] and all m € [n — 1].

According to the definition of matrix notation, we can directly obtain the following lemma:

Lemma E.S5. (Bound the regret of Operator Estimates) The following two inequalities holds true
forall h € [H]:

h

h h
S TIE | - T || wtr < 2 (X
j=0 j=0

Th,n 1 7=0Tjn

=
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and for all agent m € [n — 1] we further have

h h
Z H M?m bg,m - H M;,m ﬂ—’fL (Th,n)ﬁm (Th’m)
j=0 7=0

Th,n>Th,m 1

\/§ h N J—1 X
S?Z Z M?m _Mj,m) [H IM:[h/,m‘|
h'=0

J=07Tjn,Tjm
Lemma E.6. (Constraints for the Operator Estimates from OMLE) With probability at least 1 — 0,
forallm € [n — 1], the following events hold true.

k—1 h—1
S () men i) [H M]
h/=0

t=1Th,n

h—1
Z Z Thn ’/Tm(’Th m) . H(Mh m Zm) lH M*’,m]
h'=0

t=1 Th,nTh,m

7rf1 (Thon) T (Thym)-
1

o)

—O(ﬁgm),

1
where (3, and (3, is defined as

By = c(H(S?A?0? 4+ SO*)1og(TSAOH) + log(nT/$)),
By = c(H(S?AO + SO)log(TSAOH) + log(Tn/9)).

Proof. The proof of this lemma is very similar to the proof for Lemma[C.3] so we omit it here for
clarity. O

Proof of Theorem : We only need to consider the following problem:
We are required to bound the following target term for m € [n — 1].

S X 0t 05,0 TT 6

h=0 Th,n

IOIDY

h=0 Th,n:Th,m

M=

7"'fz(Th,n)
1

~~
Il
-

Mx-

71-'fL(Thﬂ“b)ﬂ'm(Th,m) y
1

h—1
h m ;Lm) lH Mz’,m]
h'=0
For agent n we have the following condition:
k—1 h—1
525 ot s [T
t=1 Th n h’=0
Corresponding to agent m € [n — 1] we have the following condition:
k—1 h—1
VS
S 5 oth 150 | T i || it =0 (2R
h'=0

t=1 Th,n>Th,m
We apply Eluder-Dimension Lemma (Proposition 22 of [Liu et al|(2022a)), and we can obtain the
following bound on the regret with probability at least 1 — 0 for all m € [n — 1].

~~
Il
-

X 7 (Thn) = O (“f\/k@ \Vk € [T]

1

1

k H-1 ) ;
Z Z Z Mh n ;(L'IL [H M*/ TL] Th 71) = @ <S’152é/1[{3 kﬂn>
t=1 h=0 Th,n

S

t=1 h=0 Th,n,Th,m

h—1
* *
h m h,m) H Mh/,m
h’'=0

Therefore, we achieve the bound of the regret.

~ 51'502A2H3
7T;(Th,n)Trm(Th,m) =0 <a M) .
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Proof for Theorem We are now ready to prove Theorem We begin by restating the
theorem here for the reader’s convenience.

Theorem E.2. If the central agent for Algorithm is i, we define bonus parameter as 3; =
¢(H(S?AO + SO)log(TSAOH) + log(Tn/8)), Bm = ¢(H(S?A20? + SO?)log(T'SAOH) +
log(Tn/8)) (Vm € [n]/{i}) for some constant c. Then, with probability at least 1 — §, Algorithm
terminates within 4H /€ steps of the while loop, and outputs an e—approximate local optimal policy.
The total episodes of play is at most

K =0 (S*'0*A*(S?A20? + SO?) x poly(H)/(a€?)) .

Proof. We use superscript ¢ to represent variables at the t*" step (before 7 is updated) of the while
loop. We set K; = O(S*0*A* (524202 + SO?) x poly(H)/(a*e?)). According to Theorem |E. 1]

for fixed ¢ and ¢, we have with probability at least 1 — 8ffH

max V(p;, 7t,) — V(7l,7t,) <
i

>~ o

We then take a union bound over all t < 4H /e and for all ¢ € [n], and we have with probability at
least 1 — 0 the following inequality holds for all ¢ € [n] and ¢t < 4H /e

max V (s, 7t ,) — V(7k,nt,) <
Hi

. (22)

A~

For the empirical estimator V', it’s bounded in [0, H]. Thus, by Hoeffding’s inequality, for fixed
i€ [n]andt

R Ne2
(v -v]= ) <2om (- 5m)

nHSK max;e(n) Ai
€d

Choosing N = 2% Jog (

= ) for some large constant C, we have

€ €l
>5) < .
8 16nH

Applying this inequality for V*(#!, z* ;) and V*(x") and taking a union bound over i € [n] and
t < 4H /e, we can achieve that

V(af,mly) = V(ELal)l < /8, [Via') = V(x")| < ¢/8.
We combine this result with equation[22] and we can obtain that with probability at least 1 — §

P (‘f/t vyt

max V(p;, 7)) — V(i 7l,) < i, V(atwly) = V(EL Tl < ef8, (Vi) = V(r')| < e/8
1223

holds for all i € [n] and ¢ < £ On this event,

6f =Vt (R, m_y) — Vi(xt) < V(&L 7)) — V() + €/4.
If the while loop doesn’t end after the ¢—th iteration and ¢ < 4H /e, there exists 5t s.t. A;t >€/2,
so we have

V(ah,mt ) = V(r') > Al —e/d > e

Since the value function is bound by H, so the while loop ends within 4 H /epsilon steps. Therefore,
the inequality above that holds for all ¢ € [n] and ¢t < 4H /epsilon holds for simultaneously before
the end of the while loop with probability at least 1 — §. Again, on this event, if the while loop stops
at the end of t'” step, we have mMaX;e || 0t < ¢/2, then

max V (pi, ') — V(r') =max V(u;, 7)) — V(7L 7)) + V(7L =%,) — V(=)
Hi Hi

<e/4+ Vizt, xt,) — Vi(xt) + 2¢/8
<e/2+ Al
<e.
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So the returned policy 7! is an e—approximate local optimal. Therefore, we can conclude that prob-
ability at least 1 — 0, within 4H /e steps of the while loop, Algorithmoutputs an e—approximate
local optimal policy.

Eventually, we compute the total number of episodes as the total sample complexity. We first com-
pute the number of episodes within each step of the while loop.

. 2 HSK el A L /G404 A4( G2 42002 2
N+Z(K1+N)—O<ng 10g<n HEl;XE[] >)+O<SOA(SAO +SO)><p01y(H)>.

i=1

ate?
Since the algorithm ends within at most 4H /e, we can compute the total sample complexity.

n 44 A4 2 122 2
K:4£I<N+Z(Ki+N)> ~<SOA(SAO +SO)><poly(H)>.

=1

=0

oted

E.3 PROOF FOR THEOREM[3.2]

Theorem E.3. For both randomized and deterministic algorithms, there exists an instance of DEC-
MDP wherein the regret scales at least as O(v/ A™T). This result underscores the limitation of
achieving sample efficiency in algorithms for DEC-POMDP without imposing assumptions on the
transition model, even with a memoryless policy.

Proof. The proof for Theorem [5.2] proceeds straightforwardly. We consider a two-step DEC-MDP,
commencing from an initial state s;. For all s € S, we assume the reward function satisfies
rpa(8) = rha(s) = -+ = rpu(s) forall b € [2]. Consequently, the entire DEC-MDP reduces
to a multi-armed bandit problem. By leveraging a classic result on the lower bound of regret for
the multi-armed bandit problem (Mannor and Tsitsiklis| 2004), it follows that for any randomized
or deterministic algorithm, there exists an instance of the multi-arm bandit problem such that the

regret is at least O(V/ /NlT), where A denotes the number of arms. Consequently, for any random-
ized or deterministic algorithm, there exists an instance of DEC-MDP such that the regret is at least

O(VA"T). O

F POMDP wiTH KNAPSACK CONSTRAINTS

F.1 MODEL

We commence by formally defining the model. We consider the framework of tabular Partially Ob-
servable Markov Decision Processes (POMDPs), denoted as (S,.A, O, H, T, r, M), which extends
to an episodic POMDP with a d-dimensional budget. Each component M; of the budget vector M
represents the total budget of the i*” cost. At the onset of each episode, the agent is endowed with
abudget M; = M = (M, M, ..., M). During the h*" step, the agent incurs a cost vector, thereby
decrementing the total budget to M, ; = M, — Cj,. Subsequently, the budget for the (h + 1)t"
step follows a transition probability M1 ; ~ Tp(:|Mp i, 0, ap). An episode concludes after H
steps or when the budget of any dimension ¢ reaches 0. The primary objective of the agent is to
maximize its cumulative reward Zszl Zthl r,n over K episodes. Furthermore, we impose the
knapsack assumption on the cost:

Assumption F.1. Both the budget M; and the possible values of costs C; are integral multiples of
the unit cost %

We conceptualize the POMDP model as a factored Decentralized POMDP (DEC-POMDP). Initially,
the policy class is defined as follows:

= {{m} |m: (Ax Ox MHT1x O x M — A} .

We define the joint state space as S = S x M, where the tuple consists of the true state and the
budget. We introduce d dummy agents, where the local state of the i dummy agent corresponds to
the 7™ entry in the budget vector. The true agent is denoted as the (d+ 1)™ agent. The state transition
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of the (d + 1) agent follows s 1 ~ T (- | sn,an), and its observation follows o, ~ Oy (- | s).
The transition of the i agent is given by: My, 11 ; ~ Ty (- | My, 4, 01, ap). Therefore, the transition
of the joint state is:

(Sh1, Mpi1) ~ H Thom(- | M, on,an) | Tr(- | sn,an).

m=1

The probability of trajectory (01, a1, M1, 092,a2, Ma, ..., 0n,ay, My) for policy 7 is defined as:

d
P (tw) = Z p1(s1)O01 (01 | s1)mi(ar | 01, Mq)T1q,(s2 | 51) HT1,i(M2,i|M1,z‘7017@1) Xooee
51,82,...,8H i=1
X O(og—1 | sg—1)mH—-1(ap—1|o01,a1,My,...,0q_2,ag—2,My_2,00-1)Ta—1,a,_,(51 | SH-1)
d
X HTHAJ(MHJ | Mu—1,,00-1,am-1) X O(og | sg) X mg—1(am | 01,01, M1,...,ag—1,Mpu_1,0m).
i=1

The reward function is defined as (for all h € [H]):
fh(Oh, Mh) :’I"h(Oh) if Mh,,i > (0forallz € [d}
=0 else.

Hence, we can model the POMDP setting with knapsack constraints as a DEC-POMDP with d +
1 agents. For the (d + 1) agent, o, a, and s are defined as its observation, action, and state,
respectively. We 1nterpret B; as both the individual state and the observation of the i*” agent. The
transition of the ' agent is defined as: Thi(Mp41,|Mp i, 0, an),

which is influenced by the observation and action of the (d + 1)*" agent.
The actions of agents 1,2, ...,d do not affect the model, hence we do
not need to consider their actions. The reward function 74 (op, My},) is
a function of the observation of all individuals. Thus, the POMDPwk
model can be formulated as a factored DEC-POMDP. The influence
graph of POMDPwk is depicted in Figure 2] The maximum indegree
1. Figure 2: Influential
graph for POMDP with

F.2 ALGORITHM .
constraints

We can apply Algorithm 2] to the the setting of POMDP with con-
straints. We introduce Algorithm We define the complete trajectory Ty and trajectory 7p ;

Algorithm 8 OMLE for POMDPwk
: Initialize: B¢11+1 = {éd+1 S ®d+1 : minh O'S(@i(éd+1) > a)},Bi = {@i}, Di = {}, Vi € [d]

1
2: fork=1,..., K do
3: compute (0%,05, ... 08 7%) = arg MaXG, gk G, epk,.. eneBk Vﬂ(@)
4 follow 7* to collect a trajectory 7% = (of, a¥, MK, ... ok, ak,, M~
5 add (7%, 7%) into Dy 1, and then update
B§+11 = {éd+1 c B;—s-l : > log PT > max > logPy 401 — ﬁd+1}
* (7, 7)EDat1 Oat1,d+1 0041 (7, 7)EDas1 aridt
6: fori=1,...,ddo
7: follow 7% and model {H j=1P0, ] [H it ]pek:| Pw§+1 to collect a trajectory 7.
8: add (7', 7%, ,) into D; and then update

BF! = {9 €B: ( Z) logPy ; (7ilTa+1) > er/naex ( Z) log P, ; (7ilTat1) — Bi}
Ti,Td+1)€D; t(7i,Ta+1)€EDs

corresponding to agent i € [d + 1] as
Ty = (01,01, My,...,0om,ag,My), THds1 = (01,01,...,00,an), Th;= M, Moy, ...,Mg;), i¢€ld.

s
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The probability of individual Pg, ;1 (Tat1[{7i}{=) and P, i(7|7at1),7 € [d] is defined as:

buonart (Tap [ {mY2) = Y0 m(s1)01(01 | s))mi(ar | 01, M) Tya, (52| s1) X -+
$1,82,..ySH

x O(og—1 | sg—1)ma-1(am—1 | 01,01,Mu1,...,00—2,a0—2,Mpu_2,00-1)TH 1,0y _,(SH | SH-1)

x O(og | su) X mp—1(am | 01,a1,Mu,...,05-1,am—1,Mu_1,0H),

]P)Gi,i(Ti \ Td+1) = Tl,i(MZi | M1,i701701) X TZ,i(MS,i

r02,a2) X - X T (Mpa,; | Mg—1:,05-1,a8-1).
F.3 THEORETICAL GUARANTEE

We establish the following theoretical guarantee concerning the regret of Algorithm [F2]

Theorem F.1. Let 441 = c(H(SA + SO)log(TSAOH) + log(Td/d)) and B; =
c(HSM?*m20Alog(TSMmAOH) + log(dT/$)) for all i € [d], where c is a constant. Then,
with probability at least 1 — 8, Algorithm[F2| ensures the following inequality:

520 VRSTAT50) x pobs (1) + (00 KO x pob1) )

Regret(k) < O <

The proof of this theorem closely follows the derivation outlined in previous sections. Here, we
present key steps while omitting detailed proofs for some of the lemmas for clarity.

Lemma F.1. With probability at least 1 — 6, the following events hold:

k tvd
9d+1,d+1 T | {7 }1, 1)
max E log
(Ba+1,k)€Oa41 X [T] y—

(7 > c(H(SA+ SO)log(TSAOH) +log(Td/9)),

d+1,d+1(7d+1 | {7' i= 1)

il (PW(T |Td“>) > ¢ (H(SM2m?0A) log(TSMmAOH) + log(dT/5)) i € [d]
max 0, Y ErEra— C m o m O, 52 .

(0:,k)€0;: X [T] S\ Po: o (f | Tai1) s &

Lemma F.2. The following event holds with probability at least 1 — 6 for all ; € ©;, i € [d].

2
k d
t d t d
> ( Bardr1 (Tarn [ {7itiz) = PG a1 (Tagr | {Ti}izl)‘ [TPe:i(m | Td+1)>
-

t=1 i=1

Tt

0. d+1<Td+1 | {T 1)

k P
<ec (Z log ( B Tir | (1M 1)> + H(SA+ SO)log(TSAOH) + log(Td/6)> 7
2

k d
t
S D Po,i(mi | mara) — Pori(mi | Tata)] HPG*,j JIRZE Por, a1 (Tat | {ri}i1)

t=1 \ T j=it1

k P
0; z<7'1t ‘ Té—l—l) 2 9
< v v erh
c ( E log < e 7 1)> + H(SM“m=0A)log(TSMmOAH) + log(dT'/¢) |,

where for all m € [d), O, € Oy, we denote Py, 1, as Py, (T | Tat1)-
Definition F.1. For m € [n — 1], we define the B—operator as follows:

bo,a+1 =011 € RO,
B,at1(0,a) = On41Th g - diag(Op (o | -))O}, € RO*C,Vh € [H],

bh,i (Th+1 i) —

h
H Th i (Mprg1 | My iy onr, ah’)] )
h=1

h

H By avi1(on, an) | bo,at1.
h=1

bh,at1(Th,d+1)
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Lemma F.3. With probability at least 1 — §, the following inequality holds true for all h € [H|, k €
[T],i € [d]:

_ d
SN @) (BE gt (0n, an) = Bhayi(on, an)) ba—1.a11(th-1,441)l1 lH by—1,i(Th,i)

t=1 T3 i=1

—0 (fx/wdﬂ> ,

ZZH Ty _ LiMp | My, 0n—1,an-1) = Tho1,i(Mpi | Mp—1,i,0n—1,an—1)bh—2,i(Th—1))[[1

t=1 T
i—1 d
[Ibr-15ma)| | TT Bhos i) | Ibhass () il () = O (VRS
j=1 Jj=i+1

Lemma F.4. the regret by the error of operator estimates is bounded by the following term:

k H-1 .
Slo
Regret(k) < ZZ |(B,.ar1 — Bha+1)br—t,a41(Th—r,a+1) |1 - 7 (7h) [th 1 Tm]
t=1 h=1 Th
k H-1 d i1 d
+y ZZH Th—1o = Thov)bn2ills | [T Pr-1sn) | | T] Phoiyni) | 105 ass (Tnas)liw’ (1),
t=1 h=1 i=1 j=1 j=itl

where for all h € [H|, we denote Bzde as Bz,dﬂ(oh, ay) and denote By, 411 as By, g1 (on, ap).
Foralli € [d] and h € [H], we denote T}, ; as T}, ,(Mp; | Mp_1,i,0n—1,a,,_, ), and denote T}, ; as
Thi(Mpi | Mh—1,,00-1,a,_,) - Moreover, forall h € [H],i € [d], we denote by, ; as by ;(Tht1.4)-
Theorem F.2. Let 441 = c(H(SA + SO)log(TSAOH) + log(Td/d)) and B; =

c(HSM?*m20Alog(TSMmAOH) + log(dT/5)) for all i € [d], where c is a constant. Then,
with probability at least 1 — 0, Algorithm|[F2ensures the following inequality:

520 VRS S0) x pobs(H) + (00 KO x pob(11) )

(67

Regret(k) < O <

Proof. The target is to bound the following d + 1 terms:

k H—1
Z ZH Bj a1 — Bhar)ba1ai1(th-r,ap1)ll - 7 [th 1,i(Thi ] ;
t=1 h=1 Th
k H-1 i—1 d
DY Tt = Taordbnosull [ [T Pr1mng)| | TT Phorgns) | 1B (har)llim (), i € [d).
t=1 h=1 Tn j=1 j=i+1

The condition we have is that with probability at least 1 — 9,

k—1H-1 \/§
SN N IMBE a1 — Brias)brvaii (th-rarn)llr - 7 (1h) [th 1,i(Th,) =O<a\/k5d+1>7

t=1 h=1 Tn

k—1H-1

SN ST~ Taor)biail th H b1 | Ibh s () ' (1) = © (VEB;) i € [d].
t=1 h=1 T3 j=i+1

Then, we can apply Eluder dimension lemma (Lemma ??) to obtain that the target is bounded by

L= SLSH20A

S Y B a1 — Brar)batar1(thova1)ll - 7 (7h) th 1i(Th,i) | = O (a\/kﬁdH),
t=1 h=1 T

k H-1 1—1 d

DO D I Theri = Tard)bn2i(mnri)ll | [[Pr-1Gmi)| | T] Pho1yTas) | 1D (Fhara)lliw’ (7a)

t=1 h=1 T j=1 j=i+1

1
—0 ( Mm)zOAM) Ji€d]

45



Under review as a conference paper at ICLR 2025

Therefore, we can achieve that the regret is bounded by

<O (SQAO VR(S7A+ 50) x poly(H) + d(Mm)*0Ay/k(Mm)?OA x P‘“y“”) |

O

F.4 IMPROVEMENT TO ACHIEVE SHARPER BOUND

F.4.1 MOTIVATION

Algorithm does not appear to achieve the optimal sample complexity. The intuition is that
dummy agents 1, 2, ..., d can observe their exact state. Therefore, they experience an MDP process.
If we directly apply OMLE to the single-agent MDP setting, the algorithm yields the regret forms
like R¥ < O(S2A+/k(S2A) x poly(H)). The regret is scaled in A5, However, if we apply the
UCB-VI algorithm to the single-agent MDP, we can obtain: R¥ < O(H?\/S2Ak). The regret is

scaled in AY5. Therefore, by combining UCB-VI with OMLE, we might achieve a sharper bound
on the regret.

We still use OMLE to estimate the model parameter 64, for the d + 1! agent. For dummy agent
1,2,...,d, we first use number of times each state tuple (M;, 0, a, M/) and (M;,0,a) is visited.
Namely we have

k
NI{LC(MhO,avMi/) :Zl(lﬂfhi,oi,ah h+1 )=(M;,0,a,M!)> Nh MMO a’ Zl(Mhl,oh ah =(M;,0,a)>

NE(M“ o, a, Mz/)
N;f(Mi,O, a’)
We define the bonus as follows:
& 2MmIn(MmOAKHAd/S)  2ln(MmOAKHAd/))
by (M;,0,a) = ’ - ,
Nh (Mi705 a) Nh((MiaO7 a))
Ba+1 = c(H(SA+ SO)log(TSAOH) + log(Td/$6)).

TZ(M; | Mi705a) =

Algorithm 9 OMLE for POMDPwk

1: Initialize: BY, |, = {far1 € Ogy1 : miny, 05(0;(0441) > @) }.B} = {6;}, D; = {}, for all
players i € [d].
2: fork=1,..., K do

3 compute (0%,05, ..., 0,’3, k) = argmaxe eBk 92665,.4..9,@8@, V(o )
4: follow 7* to collect a trajectory 7% = (of, a¥, MK, ... ok, ak,, M~
5 add (7%, 7%) into Dy 1, and then update
k+1 _ [ g 1,
Byl = {9d+1 €Byy: > log]P’e aradil >max Y. logIF’géH,d+1 — 5d+1}

(7,7)EDa1 0441 (m,7)€EDg11

6: fori=1,2,...,ddo

Bk-‘rl {9 S Bl : MZ Téd+1,h(Mh+17i | Mh,i707 a) - Tﬁ(Mh-i-l,i | Mh,i7 o, G;)‘ S bﬁ(Mh,ia o, a‘)?v(ha o, a, Mhl)}
h+1,1

F.5 THEORETICAL GUARANTEE

Theorem F.3. With probability at least 1 — 6, Algorithm guarantees the following bound on

the regret:
~ (S2A0
Regret(k) < O \/k(S4A + SO) x poly(H) + dHBmVEkOA | .

a?
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The proof of this theorem closely follows the derivation outlined in previous sections. Here, we
present key steps while omitting detailed proofs for some of the lemmas for clarity.

Lemma E.5. With probability at least 1 — 6, for all o, a, M}, ;, k, h, we have

Z ‘T9;+1,h(Mh+1,i | My i 0,0) — Tf(Mpg1,i | My, 0,a)| < bf(Mpi,0,a).
Mhpy1,i

Proof. Consider a fixed tuple (o0, a, M}, ;, h, k). Define Hp, ¢+ as the history starting from the begin-
ning of episode 1 to step h at episode ¢ (including step h, i.e. up to s}, a},). Define random variables
{Xt}tZO as

Xt = Lot at , M} M}, )=(0,0,Mpi,Mps1,:) ~ Lol al, M}, =(0.a.My, ) To5,  h(Mpy1i | Mpg,0,a).

We now show that {X,};> is a martingale sequence adapted to filtration {?{, ; };>o. Note that
E[X:|Hne = 0. We have |X;| < 1. To use Azuma-Bernstein’s inequality, we note that

E [X? | Hn,] is bounded as:
)=(o.a.My ) T03,  h(Mnt1,i | Mpi, 0,a) (1 = To;, ,.n( ir 0, a)) :

where we use the fact that the variance of a Bernoulli with parameter p is p(1 — p). This means that

E [Xt2 ‘ Hhﬂf] = l(o;L,ahJ\/[t

h,i

ZIE X? | Hn] = NF(M;,0,a)To-

d+1°

h(Mpg1,i

i, 0,Q) (1 — To~ (Mh+1,7,' | My 4,0, a)) .

d+1’

Now we apply Bernstein’s inequality on the martingale difference sequence {X;};>o, we have

k . 2T92+1, n( i, 0,Q) (1 — TO(’;H,h(Mh—i-l,i | My, 4,0, a)) In(1/4) 21n(1/5)
t=1 t Nj (Mp,i, 0,a) NF(My,i,0,a)
- 2To;, , h(Mht1,i | M, 0,a)In(1/0) 21n(1/4)
- N,’f(Mh’i,o,a) N,’f(Mh,i,o,a)'

We apply a union bound over all B, ; € B;,0 € O,a € A h € [H], k € [K],i € [d], and we can
achieve that

‘TQ[’;H,h(Mthl,i | M}y, i,0,a) — Th(Mh+1 i | Mhi,0,a)

Xk:X 2Tos, , n(Mnt1,i | Mp,is0,a)L N 2L
—1 H= N}?(Mh,ivch CL) N}?(Mh,ivoaa)’
where we define In(MmOAKHd/$). O

Corollary F.1. With probability at least 1 — 9,
(07,05,....05) € () (Bf x Bf x -+ x B,,).
ke[K]
Lemma F.6. With probability at least 1 — 0, the following event holds.

k
1 P0d+1 d+1(7'd+1 {7 )
max Z og 71" t
(0g+1,k)EO 441 X[T] P 05,1, d+1(Td+1 | {T }L 1)

Lemma FE.7. We can obtain that the following event holds with probability at least 1 — ¢ for all
Oq+1 € Ogy1 and k € [T]

) > c(H(SA + SO)log(TSAOH) + log(Td/5)).

HPQ* Ti | Td+1)]>

k
<> 1o (P"d“ (T | {70 )> + H(SA + SO) log(TSAOH) + log(Td/6)> .

k
Z (Z ‘Padﬂ,dﬂ Td+1 | {TL}'L 1) - 9*+1,d+1(7d+1 | {Tl}z 1 ’

t
P35 d+1,d+1(7_d+1 | {T 1)

47



Under review as a conference paper at ICLR 2025

Lemma E.8. With probability at least 1 — 0, the following event holds:

k—1 d
VS
> m ) (B as1 (0 an) = Brara(on, an)) brota1 (th-r,a41)1 lH bh—l,z‘(Th,i)] =0 (a\/ ka1 ) -
i=1
Theorem F.4. With probability at least 1 — 6, Algorithm guarantees the following bound on

the regret:
~ (S?AO
Regret(k) < O \/k(S4 + SO) x poly(H) + dHBmVkOA ) .

t=1 T

a?

Proof. Initially, using similar techniques as in the section of finding global optimal for factored
DEC-POMDP, we have with probability at least 1 — ¢, 6441 € (), cix] B k 1- We combine this with

result in and we can obtain that with probability at least 1 — 4,
(07,05,....05,) € [ (BY xB5 x---xBE).

ke[K]
Therefore, we can bind the regret as:

ZVG* 17 <Zvat vy <ZZH‘PW (1) Pe*(TH)’

t=1 Ty
According to the factorlzatlon condltlon, we have
k
t t
S Pai(rH) — Py (Th)
t=1 Ty
k rd 7 r 7
t d
=>> H]P’eg,i(ﬂ' | 7ar1) | By aa(rasn [ {midies) — | T] Pora(ri [ 7ar0) P, 5, e (Tar1 | {Ti}ioy)]| -
t=1 Ty | Li=1 Li=1 -

Then we bind the term Zt 1 Z ’Pgi (o) — Pg: (TH)’ via the following decomposition.

TH

[ d
t
ZZ HPet (73 | Td+1) PGe av1(Tat | {r:¥e) = [T Por.i(i | 7ag) PG;H a1 (Tas | {m}iy)
Li=1 i

t=1 Ty Li=1

k d
t
<0 Hpef,i(Ti | 7ar1) = [T Porimi | 7as0)| Py aia (ran [ {midiin)
t=1 Ty [i=1 =1
d
55> LACIIPRECALINER AR C U REATINI) | L CA R
t=1 Ty i=1
k
SZZZ HPQ* , ‘]P)g* (7 | Tar1) — Por (7 | Td+1)‘ H Py d+17d+1(7-d+1 REA)
t=1 Ty i=1 Jj=i1+1

+ZZ ’P 04 ,d+1 (Tasr | {mi}iz) — Pgd+1,d+1(7d+1 RE ‘ [HPG* (73 | Td-‘rl)} ;

t=1 Ty

where for all j € [d],0; € ©j, let Py, ; denote Py, ;(7; | 7ar1). Moreover, for the term

]P’Tr d+1(Td+1 | {r},) — Pg£+lvd+1(Td+1 | {Ti}le)’, we have the folllowing inequality

d+1 Td+1‘{7—l}z 1)~ Pg* d+1(7—d+1|{7—z =1) ‘ [HPG* i TZ|Td+1)‘|

t=1 Ty
H-1 d
= E g H B}, 411 (0hm, @hm)bh g1 — H B, a+1(0hms @hm)bo,ar1|| HbH 1,i(TH i)
t=1 Ty h=1 1 i=1

k H-1

SZZZ*” B.ar1 — Brar1)br-tas1(th-r,a41)]1 -7 [th 1, ThZ]

t=1 h=1 T

48



Under review as a conference paper at ICLR 2025

d+1)d+1(Td+1 | {Ti}?zl)‘. According

to the selection of parameter in the implementation of the algorithm, we can derive that for all
o€ 0,ae A, My, € M,k € [K],he[H]iecld,

Now we consider the term ’Pg’d‘t+l,d+1(7—d+1 | {r:}d ;) — P3.

Z ’T9;+1,h(Mh+1,i | Mpis0,a) = Tox  (Mpy1,i | Mpi, o, a)‘

d+1°
Mpy1,i
<> ‘T9;+1,h(Mh+1,i | Mhi,0,a) = TF(Mnia: | Mni,o, a)’
Mpy1,i
+ ) ’Tek n(Mii1i | Mi i, 0,a) = TF (Mg | Mh,,i,O,a)‘
Mhpt1,i

SQbfL (M}M', o, a) .

Moreover, we have

k d i—1 d

t
S>3 (T Pers ‘PGI,i(Ti‘TdJrl)_PGf,i(Ti|Td+1)‘ IT Pe:s Pge a1 (Tasn | {ri}i1)
t=1

T i=1 |j=1 j=it+1
k H-—1 d 1—1 d

<> ZZH T 1 = Tao1.)bnvi(mnvd)ll [ [T a1 | | TT Phor| IPhars(Trar)lam ()
t=1 h=1 i=1 =1 j=it1

F%Z
MZ

E Enf, 10 0n-1,an-1 HT%+1 1(Mni | Mp—14,0n-1,ap—1) — Tyt

d+1°
Mh, i

_1(Mp; | Mh71,¢,0h71,ah71)H

H_
Il

—

o>
o

_
<.
Il

—_

M=

]EIV[h,—l,i»Oh,—lyah,—l [szfl(thl,iv Oh*l) a’h*l)} 9

-

t

Il
—
>
—
.

I
—_

where for all i € [d], §; € O;, we denote Py, ; as Py, ;(7; | Tat1). For all h € [H],i € [d], we
denote by, ; as by, ;(Th11,:), and we denote b}, ; as by, ;(7h41,).

We can then bound the summation of the bonus term with the following inequality:

Nh(M ,0,a)

Y Y Y

t=1 M;,0,a M;,0,a r=1

- < 2/ > < [MmOA Y NE(M;,0,a) = VEMmOA.

M;,0,a M;,0,a M;,0,a

-

Therefore, we can deduce that

ZZZ HI%*,j ‘Pe* (Ti | Tat1) — Por i(7i | Td+1)‘ H Po- ; 9;+1,d+1(7—d+1 | {m})

t=1 Ty i=1 j=i1+1

k
Z Z Z ]EMh—l,i:Oh—hah—l [2b€171(Mh71,7,7 0h717 ah*l)}
t=1 h=1 i=1

O (dHVKOAMm ln(MmOAKHd/cS))

/\

We are only left to bound the term

B H-1 g1
ZT”(Bh d+1 — Bhrar1)bro1,d11(Th-1,a41)l[1 -7 leh 1,i(Th,i ]

t=1 h=1 T3

The condition we have is that with probability at least 1 — 9,

k—1H-1 /S
> N IBE 441 = Bras)brotasr (thorarn)|1 -7 [th 1i(Th) | = O (a\/k5d+1>-
t=1 h=1 7T,
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We similarly apply Eluder-Dimension lemma (Lemma ??), and we can achieve that

L= S H20A
Z Z ZH B, d+1 — Bu, a+1)br—1ar1(Th-1,a+1) |1 - 7' (Th) th Li(mhi)| = O (a \/kﬂdH) .
t=1 h=1 T

Therefore, we can achieve that the regret is bounded by

N 2
RF<O (S (;;10 VE(S2A + SO) x poly(H) + dHMm\/kOA) .
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