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Abstract001

In modern society, the widespread use of the002
Internet has led to the generation of massive003
amounts of textual data, creating a growing de-004
mand for advanced text mining techniques to005
efficiently extract valuable information. One006
such technique is topic modeling, which an-007
alyzes large document collections to uncover008
underlying latent topics. This approach has009
applications in document retrieval, classifica-010
tion, and beyond. Recently, research on neu-011
ral topic models, which leverage neural net-012
works for topic extraction, has gained atten-013
tion, particularly with the integration of con-014
textual embeddings from sentence embedding.015
Self-supervised learning, which uses pseudo-016
labels derived from the data itself, has shown017
promise in this domain. Variance-Invariance-018
Covariance (VIC) Regularization, originally019
introduced for multimodal analysis, has been020
shown to be effective for neural topic models021
using only word-based embeddings, however,022
its applicability to neural topic models incor-023
porating contextual embeddings remains unex-024
plored. This study proposes a self-supervised025
neural topic model incorporating VIC Regu-026
larization and contextual embeddings. Our ex-027
perimental results indicate improved topic co-028
herence compared to conventional neural topic029
models.030

1 Introduction031

In recent years, the widespread use of the Internet032

has led to the generation of massive amounts of033

textual data, making efficient text data processing034

and the extraction of valuable information increas-035

ingly important. One prominent technique for this036

purpose is topic modeling, which uncovers useful037

information from large document collections. A038

representative model in this field is Latent Dirich-039

let Allocation (LDA) (Blei et al., 2003), which040

assumes that each document is composed of multi-041

ple latent topics drawn from a document-specific042

distribution, with words generated according to 043

these topics. By estimating topics from observed 044

words, LDA facilitates the semantic analysis of en- 045

tire documents. However, the necessity to define 046

and derive inference algorithms for each modeling 047

objective poses a significant challenge. To address 048

these issues, neural variational inference was pro- 049

posed (Miao et al., 2017), while a logistic normal 050

prior was introduced for neural topic models (Sri- 051

vastava and Sutton, 2017), integrating deep neu- 052

ral networks with traditional topic models. How- 053

ever, these models struggle to capture semantic re- 054

lationships and complex patterns within documents. 055

To overcome this, a neural topic model with con- 056

trastive learning (Nguyen and Luu, 2021), which 057

leverages semantic relationships through a novel 058

sampling method, was proposed. Nevertheless, 059

these models rely on word-level embeddings that 060

disregard the sequential structure and contextual in- 061

formation in documents. To address this limitation, 062

Contextualized Topic Model (CTM) (Bianchi et al., 063

2021) was introduced, combining Bag-of-Words 064

(BoW) embeddings with context-aware document 065

embeddings. 066

Traditional machine learning models often rely 067

on supervised learning with large amounts of la- 068

beled data. However, creating labeled datasets is 069

labor-intensive and costly, particularly for large- 070

scale text corpora. Self-supervised learning, which 071

uses pseudo-labels generated from the data itself, 072

presents a promising alternative. Contrastive learn- 073

ing methods, such as SimCLR (Chen et al., 2020) 074

and SwAV (Caron et al., 2020), have shown re- 075

markable performance in various downstream tasks. 076

Meanwhile, Variance-Invariance-Covariance (VIC) 077

Regularization (VICReg) (Bardes et al., 2022) was 078

introduced to enhance self-supervised learning by 079

applying three distinct regularization terms: vari- 080

ance, invariance, and covariance. While VIC Regu- 081

larization has been shown to improve BoW-based 082

neural topic models (VICNTM) (Xu et al., 2025), 083

1



its potential when applied to CTM remains unex-084

plored.085

This study proposes a VIC-regularized contextu-086

alized neural topic model that integrates both BoW087

and contextual embeddings. We generate positive088

samples for contrastive learning using tf-idf (term089

frequency-inverse document frequency) based sam-090

pling and replace the traditional contrastive loss091

with VIC Regularization terms. We evaluate model092

performance using a topic coherence metric and093

demonstrate that our approach improves topic co-094

herence without sacrificing predictive performance.095

Additionally, we find that selecting an appropriate096

number of topics further enhances model effective-097

ness.098

2 Related Work099

2.1 Topic Model100

Topic modeling is an analytical method for discov-101

ering meaningful information from large collec-102

tions of documents. In each document, multiple103

latent topics are probabilistically generated, and104

words appearing in the document are assumed to105

be generated from these topics. By estimating the106

probability distribution of topics for each docu-107

ment and the probability of word generation for108

each topic based on observed words, it is possible109

to analyze topic similarities and document seman-110

tics. A representative model of this topic model111

is Latent Dirichlet Allocation (LDA) (Blei et al.,112

2003).113

2.2 Neural Topic Model114

Neural topic models integrate neural networks with115

topic modeling to overcome the computational chal-116

lenges posed by the increasing number of parame-117

ters in traditional models like LDA. Notable exam-118

ples include the Neural Topic Model (NTM) (Miao119

et al., 2017), which is based on the Variational120

Autoencoder (VAE) (Kingma and Welling, 2014),121

and ProdLDA (Srivastava and Sutton, 2017), which122

replaces Dirichlet priors with logistic normal pri-123

ors. Furthermore, SCHOLAR (Card et al., 2018)124

was developed as an extension of ProdLDA. In this125

model, latent variables are sampled from a multi-126

variate normal distribution with parameters sam-127

pled from a logistic normal prior, and these latent128

variables are subsequently mapped to multinomial129

parameters via a softmax function.130

2.3 Neural Topic Model with Context 131

Traditional neural topic models have primarily fo- 132

cused on the words present in document data. How- 133

ever, document embeddings based on the BoW ap- 134

proach disregard contextual information, making 135

it difficult to distinguish between words that have 136

different meanings depending on the context. To 137

address this issue, contextual embeddings have re- 138

cently been introduced to capture semantic and con- 139

textual relationships within document data. Con- 140

textual embeddings utilize pre-trained models such 141

as BERT (Devlin et al., 2018) and its extension 142

SBERT (Reimers and Gurevych, 2019) to repre- 143

sent words and sentences in a context-dependent 144

manner. SBERT employs triplet loss (Schroff et al., 145

2015) during fine-tuning, which brings the anchor 146

and positive samples (documents with the same la- 147

bels) closer while pushing the anchor and negative 148

samples (documents with different labels) apart. 149

Notable implementations include all-mpnet-base- 150

v21, based on MPNet (Song et al., 2020), and all- 151

distilroberta-v12, based on RoBERTa (Liu et al., 152

2019). Specifically, all-mpnet-base-v2 has been 153

fine-tuned using more than one billion document 154

samples, including Reddit comments (Henderson 155

et al., 2019). In recent years, large language mod- 156

els (LLM) have seen remarkable advancements. 157

One prominent model is LLaMA (Large Language 158

Model Meta AI) (Touvron et al., 2023), which con- 159

sists of tens of billions of parameters and achieves 160

state-of-the-art performance. These technological 161

advancements enable deeper, meaning-based doc- 162

ument analysis and are expected to improve the 163

quality of topic distributions in neural topic mod- 164

els. 165

2.4 Self-supervised Learning 166

Self-supervised learning is a learning method that 167

does not require explicit labels for the training data 168

but instead generates pseudo-labels automatically 169

from the data itself. From the perspective of not 170

providing explicit labels for the training data, self- 171

supervised learning can be considered a type of un- 172

supervised learning. This approach has the advan- 173

tage of avoiding the annotation costs, which often 174

hinder the processing of large-scale datasets. Con- 175

trastive learning, which is a type of self-supervised 176

learning, is a learning method that encourages sim- 177

1https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

2https://huggingface.co/sentence-transformers/all-
distilroberta-v1
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Figure 1: The process of learning positive samples in
VICReg is illustrated.

ilar data points to have similar embedding vectors178

in the latent space while ensuring that dissimilar179

data points have distinct embedding vectors. Con-180

sequently, contrastive learning requires similar data181

samples. To generate these positive samples, data182

augmentation techniques are applied to the orig-183

inal data. Data augmentation involves applying184

specific transformations to the data to create new185

samples that closely resemble the original data. In186

this framework, the original data serves as the an-187

chor, the augmented data as the positive sample,188

and a randomly selected data point as the negative189

sample, enabling the model to learn to distinguish190

between them.191

2.5 Variance-Invariance-Covariance192

Regularization193

This subsection provides a brief overview of VI-194

CReg (Bardes et al., 2022), a general theoritical195

framework in deep learning. The VICReg aims to196

minimize a loss function composed of three regu-197

larization terms: the variance term, the invariance198

term, and the covariance term. The process of199

learning positive samples in VICReg is illustrated200

in Figure 1. The input data D is transformed into201

x = t(i) and x′ = t′(i) following distributions202

T . These inputs are passed through encoders fρ203

and f ′
ρ′ with parameters ρ and ρ′, producing em-204

bedding vectors x and x′. Next, these embeddings205

are processed by expanders hϕ and h′ϕ′ with pa-206

rameters ϕ and ϕ′, resulting in latent vectors y and207

y′. For a mini-batch Y = [y1, . . . ,yn] and Y ′ =208

[y′
1, . . . ,y

′
n], the model learns to bring the embed-209

dings yi and y′
i closer while applying the loss func-210

tion composed of the three terms: variance, invari-211

ance, and covariance. First, let ϵ be a small scalar212

value, and define S(x, ϵ) =
√

Var(x) + ϵ. The213

variance term is then expressed as follows: 214

v(Y ) =
1

d

d∑
j=1

max(0, γ − S(yj , ϵ)) (1) 215

216

where yj represents the j-th component of the d- 217

dimensional latent space Y that contains all latent 218

vectors. This term uses a hinge loss to maintain the 219

standard deviation of each component of the em- 220

bedding vectors in the mini-batch above a certain 221

threshold. By using equation (1), the embeddings 222

of the samples within the mini-batch are encour- 223

aged to have distinct values from one another. Next, 224

the invariance term is shown as follows: 225

s(Y, Y ′) =
1

n

∑
i

||yi − y′
i ||22 (2) 226

227

which is the mean squared distance between the 228

embedding vectors. This encourages the paired 229

embedding vectors yi and y′
i to be close to each 230

other. Finally, the covariance term is shown as 231

follows: 232

c(Y ) =
1

d

∑
i ̸=j

[C(Y )]2i,j (3) 233

234

where C(Y ) denotes the covariance matrix for the 235

mini-batch Y . By using equation (3), the off- 236

diagonal elements of C(Y ) are minimized to sup- 237

press correlations between different dimensions 238

in the embedding space. This prevents the col- 239

lapse of information caused by high correlations 240

across dimensions (i.e., outputting redundant in- 241

formation). Therefore, the overall VICReg loss 242

function is given by the following equation: 243

l(Y, Y ′) = λs(Y, Y ′) 244

+ µ
[
v(Y ) + v(Y ′)

]
245

+ ν
[
c(Y ) + c(Y ′)

]
(4) 246

247

3 Proposed Method 248

3.1 A Brief Explanation of Neural Topic 249

Model 250

In neural topic models, given x as the encoder 251

input, z as the encoder output, and p(z) as the 252

prior distribution of z, the decoder is represented 253

by ϕ with pϕ(x|z) as the network that generates 254

documents from topics. The encoder is represented 255
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Figure 2: The architecture of proposed method.

by θ with qθ(z|x) as the variational distribution,256

and the following objective function is minimized:257

L(x) = −Eqθ(z|x) [log pϕ(x|z)]258

+KL [qθ(z|x)∥p(z)] (5)259

260

3.2 Baseline Neural Topic Model261

In this study, we propose a model that applies VIC262

Regularization and the tf-idf sampling method,as263

proposed in CLNTM (Nguyen and Luu, 2021)’, to264

the existing CTM (Bianchi et al., 2021) framework.265

While CLNTM is based on SCHOLAR (Card et al.,266

2018), CTM is based on ProdLDA (Srivastava and267

Sutton, 2017). For training, the input dataset D268

is used to obtain document embeddings xw us-269

ing BoW and contextual embeddings xc using270

SBERT (Reimers and Gurevych, 2019) for each271

document. These embeddings are concatenated to272

form the document embeddings x, and the anchor273

dataset Dcon is generated from these embeddings.274

3.3 Architecture275

In this study, we propose VICCTM, a contextu-276

alized neural topic model that incorporates VIC277

Regularization into CLNTM-based neural topic278

model to improve topic coherence. Thus, the ob-279

jective of this study is to examine the effectiveness280

of VIC Regularization in a contextualized neural281

topic model based on CLNTM by minimizing the 282

loss function: 283

L(x,θ, ϕ) =−
∑
x

[
Ez∼q(z|x) [log pϕ(x|z)] 284

+KL (qθ(z|x) || p(z))] 285

+ λs(Z,Z+) 286

+ µ
[
v(Z) + v(Z+)

]
287

+ ν
[
c(Z) + c(Z+)

]
(6) 288

Here, let Z be the set of latent vectors z obtained 289

by passing the anchor x through the encoder fθ, 290

and Z+ be the set of latent vectors z+ obtained 291

by passing the positive samples x+ through the 292

same encoder fθ. Note that the notation x indi- 293

cates the document embedding obtained by con- 294

catenating BoW-based embeddings xw and con- 295

textual embeddings xc , as described in Section 296

3.2. Similarly, x+ is obtained in the same man- 297

ner. The term s(Z,Z+) represents the invariance 298

term, v(Z) + v(Z+) represents the variance term, 299

and c(Z) + c(Z+) represents the covariance term. 300

The hyperparameters λ, µ, and ν control the im- 301

portance of each loss component. In the subse- 302

quent experiments, these hyperparameters will be 303

explored using Bayesian optimization. The pro- 304

posed learning model is illustrated in Figure 2. In 305

the proposed method, positive samples are first 306

generated for each mini-batch using a tf-idf based 307

method, as to be described in Section 3.4. Next, 308
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the anchor set Dcon and the positive set D+
con are309

passed through the encoder fθ and embedded into310

the latent vectors Z and Z+. By minimizing the311

loss function in equation (6), the latent topic dis-312

tributions of the anchor and positive samples are313

expected to become similar. Additionally, the vari-314

ance of the embedding vectors in each mini-batch315

is maintained above a certain threshold, and the co-316

variance between the dimensions in the embedding317

space of each mini-batch is expected to approach318

zero.319

3.4 Sampling Methodolgy320

In this study, positive sample sampling is per-321

formed using the tf-idf based method proposed at322

CLNTM. Tf-idf is a statistical measure that indi-323

cates the importance of each word token in a docu-324

ment based on its occurrence patterns. The term fre-325

quency (tf) represents how frequently a word token326

appears in a document, while the inverse document327

frequency (idf) measures how many documents328

contain that word token, taking the reciprocal of329

that value. The product of these two values is the330

tf-idf score. The tf-idf score has the characteristic331

that word tokens with lower scores are less relevant332

to the topic of the document in which they appear.333

Additionally, when generating positive samples, it334

is essential to augment the data without deviating335

from the existing topics. Therefore, positive sam-336

ples are generated by replacing word tokens with337

low tf-idf scores in a document with other word to- 338

kens. The sampling method for positive examples 339

used in this study is illustrated in Figure 3. First, the 340

tf-idf values of all word tokens in the input data are 341

computed. Next, the document x is passed through 342

the encoder and decoder to obtain the reconstructed 343

document xrecon. In this reconstructed document, 344

r word tokens with the lowest tf-idf values are se- 345

lected for replacement. These selected word tokens 346

are then replaced with their corresponding word 347

tokens from the original document xw, resulting 348

in the positive example x+
w . The obtained x+

w is 349

then concatenated with contextual embeddings xc 350

to form the positive dataset D+
con. 351

4 Experiments Setup 352

4.1 Datasets 353

In the experiment, we applied preprocessing in 354

the same manner as VICNTM (Xu et al., 2025), 355

which originates from CLNTM (Nguyen and Luu, 356

2021). This preprocessing was performed on three 357

different datasets by removing stopwords (single- 358

character words) and word types that appeared 359

fewer than 100 times: 360

• 20Newsgroups (20NG) (Lang, 1995): This 361

dataset consists of approximately 13,000 news 362

articles. This was split into training, valida- 363

tion, and test sets with proportions of 48%, 364

12%, and 40%, respectively. 365
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• IMDb movie reviews (IMDb) (Maas et al.,366

2011): This dataset consists of movie reviews367

collected from IMDb, which includes about368

43,000 movie reviews. The dataset was split369

of 70%, 15%, and 15%, respectively.370

• Wikitext-103 (Wiki) (Merity et al., 2017):371

This dataset contains approximately 28,000372

articles, consisting of Wikipedia articles that373

meet the "Good" or "Featured" criteria. The374

dataset was split into 50%, 25%, and 25% of375

ratio.376

Furthermore, the number of word tokens to be re-377

placed when generating positive samples was set378

to r = 15, which was found to achieve optimal per-379

formance (Nguyen and Luu, 2021). Additionally,380

the minimum effective word token count was set to381

30, and documents with fewer than 30 word tokens382

were excluded.383

4.2 Evaluation Metrics384

For model evaluation, we used the NPMI (Normal-385

ized Pointwise Mutual Information) (Chang et al.,386

2009) (Newman et al., 2010) as a metric for mea-387

suring topic coherence, following the approaches388

of CLNTM (Nguyen and Luu, 2021) and VIC-389

NTM (Xu et al., 2025), which serves as the base390

model in this study. NPMI is a metric for measur-391

ing topic coherence based on word co-occurrence392

frequencies within the corpus. In the experiment,393

we calculated the NPMI of the top ten word types394

for each topic on the test set using the model trained395

on the training set. The NPMI calculation formula396

is:397

PMI(v, v′) = log
P (v, v′)

P (v)P (v′)
398

NPMI(v, v′) =
PMI(v, v′)

− logP (v, v′)
(7)399

For each topic, let v and v′ be any two word types400

from the set of the top ten word types. With P (·)401

representing the probability, the pointwise mutual402

information (PMI) is first computed. Next, PMI is403

normalized to mitigate the influence of word type404

rarity, resulting in the NPMI calculation formula.405

In addition to the evaluation metrics used in pre-406

vious studies, we also evaluated the model’s pre-407

dictive performance using perplexity, a metric that408

has long been employed in topic modeling research.409

The formula for calculating perplexity is: 410

perplexity = exp

(
− 1

m

∑
d

∑
t

logP (wd,t)

)
(8)

411

where m be the total number of word tokens in 412

the test set, perplexity is defined based on the like- 413

lihood P (wd,t) that the model assigns to the t-th 414

word token of the d-th document in the test set. 415

4.3 Detailed Settings 416

The experiment was conducted by evaluating the 417

model using NPMI, which measures topic coher- 418

ence, and perplexity, which measures predictive 419

performance, for topic numbers k = 20, k = 50, 420

and k = 200. As a baseline, we used CTM 421

(Bianchi et al., 2021). For contextual embeddings, 422

we utilized the pre-trained SBERT-based model all- 423

mpnet-base-v23. To prevent overfitting, we calcu- 424

lated the model’s NPMI on the validation set after 425

each epoch. If no improvement was observed for 426

30 consecutive epochs, we considered the training 427

converged and applied early stopping. To exclude 428

the effect of locally optimal gradients when recon- 429

structing x, convergence detection was started only 430

after 150 epochs. Each mini-batch consisted of 70 431

documents randomly sampled from the training set. 432

The learning rate was set to 0.001, and the docu- 433

ment embedding dimension was dim(x) = 1068, 434

consisting of a BoW embedding dimension of 435

dim(xw) = 300 and a contextual embedding di- 436

mension of dim(xc) = 768. The hyperparameters 437

λ, µ, ν were optimized using Bayesian optimiza- 438

tion4. For this, batches were randomly sampled 439

from the training data, and 100 trials of hyperpa- 440

rameters searches were performed. 441

5 Results 442

5.1 Evaluation Results and Analysis 443

Table 1 summarizes the NPMI and perplexity re- 444

sults for all experiments conducted with topic num- 445

bers k = 20, k = 50, and k = 200. The re- 446

ported values represent the mean and sample stan- 447

dard deviation obtained from 10 runs with different 448

random seeds. From the results, we observe that 449

the proposed method consistently improves topic 450

coherence, as measured by NPMI, compared to 451

3https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

4https://optuna.org/
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Table 1: For each dataset, we present the NPMI and perplexity values along with their sample standard deviations
for topic numbers k = 50 and k = 200. A higher NPMI indicates better topic coherence, while a lower perplexity
indicates better predictive performance of the model.

Dataset
k = 20 k = 50 k = 200

NPMI Perplexity NPMI Perplexity NPMI Perplexity

20NG
CTM 0.395 (±0.016) 1532 (±34) 0.355 (±0.007) 1656 (±25) 0.286 (±0.005) 2878 (±78)
VICCTM 0.404 (±0.014) 1540 (±39) 0.362 (±0.007) 1675 (±44) 0.287 (±0.004) 2863 (±44)

IMDb
CTM 0.175 (±0.009) 1861 (±7) 0.158 (±0.004) 2092 (±10) 0.133 (±0.002) 3615 (±30)
VICCTM 0.176 (±0.008) 1860 (±14) 0.160 (±0.005) 2099 (±9) 0.131 (±0.003) 3608 (±44)

Wiki
CTM 0.498 (±0.020) 3661 (±40) 0.495 (±0.010) 3373 (±36) 0.446 (±0.004) 3167 (±16)
VICCTM 0.501 (±0.019) 3644 (±78) 0.498 (±0.010) 3357 (±46) 0.450 (±0.004) 3157 (±15)

the baseline CTM model across various datasets452

and topic numbers. Specifically, when k = 20453

and k = 50, the proposed model outperforms454

CTM, demonstrating higher NPMI values across455

all datasets. For k = 200, the model maintains456

better performance in two of the datasets, while457

in the remaining dataset, it achieves comparable458

results. The perplexity scores also show that the459

proposed model generally exhibits better predictive460

performance than CTM, with lower perplexity val-461

ues across most of the experimental settings. The462

results suggests that integrating CTM with VIC463

Regularization helps the model capture document-464

topic relationships more effectively. Furthermore,465

focusing on the case where k = 20, we observe a466

notable improvement in topic coherence with the467

proposed method. This experiment suggests that468

selecting an appropriate number of topics is crucial469

for maximizing the performance of the proposed470

method. If the number of topics is not suitable,471

overfitting or information dispersion may occur472

during model training, potentially degrading the473

quality of the learned topics.474

5.2 Ablation Study475

5.2.1 Effects of VIC Terms476

We evaluated the effects of each VIC Regulariza-477

tion term on NPMI and perplexity using the 20NG478

dataset with k = 50. The evaluation followed the479

same experimental settings and hyperparameters as480

in Table 1. Table 2 presents the NPMI and perplex-481

ity results for each VIC Regularization term. The482

results indicate that when only one term is present,483

the variance term (V) alone shows the best perfor-484

mance. However, when considering any combina-485

Table 2: For 20NG dataset, we present the NPMI and
perplexity values along with their sample standard de-
viations for topic numbers k = 50. A higher NPMI
indicates better topic coherence, while a lower perplex-
ity indicates better predictive performance of the model.

Used Reg Terms NPMI Perplexity

VIC 0.362 (±0.007) 1675 (±44)
VI 0.352 (±0.005) 1681 (±43)
VC 0.354 (±0.008) 1675 (±30)
IC 0.355 (±0.007) 1679 (±39)
V 0.354 (±0.006) 1665 (±30)
I 0.351 (±0.011) 1697 (±23)
C 0.352 (±0.010) 1688 (±36)

tion of two terms, the combination of invariance (I) 486

and covariance (C) yields better results. Neverthe- 487

less, the best performance is ultimately achieved 488

when all three terms—variance (V), invariance (I), 489

and covariance (C)—are applied together. 490

5.2.2 Effects of Combining Context 491

To examine the effect of contextual embeddings, 492

we evaluated the model using the 20NG dataset 493

with k = 50. Table 3 presents the results for four 494

cases: using only BoW embeddings (BoW), using 495

only contextual embeddings (SBERT), using only 496

BoW with VIC Regularization (VICNTM), and us- 497

ing a combination of both embeddings (CTM). The 498

results indicate that using only contextual embed- 499

dings significantly degrades the performance across 500

the evaluation metrics. In contrast, the model com- 501

bining BoW and contextual embeddings (CTM) 502

shows improved topic coherence compared to using 503

BoW embeddings alone. However, in all cases, the 504
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Table 3: For 20NG dataset, we present the NPMI and
perplexity values along with their sample standard de-
viations for topic numbers k = 50. A higher NPMI
indicates better topic coherence, while a lower perplex-
ity indicates better predictive performance of the model.

Embedding Representations NPMI Perplexity

BoW+SBERT+VICReg(VICCTM) 0.362 (±0.007) 1675 (±44)

BoW 0.353 (±0.006) 1655 (±31)
SBERT 0.163 (±0.032) 2610 (±408)
BoW+VICReg(VICNTM) 0.352 (±0.014) 1682 (±38)
BoW+SBERT(CTM) 0.355 (±0.007) 1656 (±25)

model utilizing VIC Regularization outperforms505

the others, demonstrating the effectiveness of the506

proposed approach.507

6 Conclusion508

In this study, we proposed a neural topic model509

incorporating VIC Regularization, which is com-510

monly used in multimodal analysis, with the expec-511

tation that it would also be effective in a contex-512

tualized neural topic model. The proposed model513

combines traditional BoW embeddings with con-514

textual embeddings and applies VIC Regulariza-515

tion to the loss function in contrastive learning,516

where positive samples are generated using a tf-idf-517

based measure. Instead of using a contrastive loss,518

the model applies the three regularization terms:519

Variance, Invariance, and Covariance. The per-520

formance of the proposed model was evaluated521

through experiments, which demonstrated that it522

improves topic coherence while maintaining pre-523

dictive performance compared to conventional neu-524

ral topic models. Additionally, the results showed525

that setting an appropriate number of topics further526

improves topic coherence. This improvement is527

attributed to the constraints imposed by VIC Regu-528

larization, which reduce redundancy and dispersion529

in topic representations during model training.530

7 Limitation531

Our experiments revealed that the proposed method532

maintains predictive performance while effectively533

capturing semantic relationships. However, sev-534

eral limitations remain. The model’s performance535

heavily depends on the selection of the topic num-536

ber; while appropriate topic numbers yield better537

results, excessively low or high values degrade538

topic coherence. This finding highlights the need539

for automated or dynamic optimization techniques540

for topic number selection. Additionally, the VI-541

CReg parameters—variance, invariance, and co-542

variance—significantly impact model performance. 543

Tuning these parameters requires substantial com- 544

putational resources, underscoring the need for 545

more efficient optimization strategies. 546
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