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Abstract

In modern society, the widespread use of the
Internet has led to the generation of massive
amounts of textual data, creating a growing de-
mand for advanced text mining techniques to
efficiently extract valuable information. One
such technique is topic modeling, which an-
alyzes large document collections to uncover
underlying latent topics. This approach has
applications in document retrieval, classifica-
tion, and beyond. Recently, research on neu-
ral topic models, which leverage neural net-
works for topic extraction, has gained atten-
tion, particularly with the integration of con-
textual embeddings from sentence embedding.
Self-supervised learning, which uses pseudo-
labels derived from the data itself, has shown
promise in this domain. Variance-Invariance-
Covariance (VIC) Regularization, originally
introduced for multimodal analysis, has been
shown to be effective for neural topic models
using only word-based embeddings, however,
its applicability to neural topic models incor-
porating contextual embeddings remains unex-
plored. This study proposes a self-supervised
neural topic model incorporating VIC Regu-
larization and contextual embeddings. Our ex-
perimental results indicate improved topic co-
herence compared to conventional neural topic
models.

1 Introduction

In recent years, the widespread use of the Internet
has led to the generation of massive amounts of
textual data, making efficient text data processing
and the extraction of valuable information increas-
ingly important. One prominent technique for this
purpose is topic modeling, which uncovers useful
information from large document collections. A
representative model in this field is Latent Dirich-
let Allocation (LDA) (Blei et al., 2003), which
assumes that each document is composed of multi-
ple latent topics drawn from a document-specific

distribution, with words generated according to
these topics. By estimating topics from observed
words, LDA facilitates the semantic analysis of en-
tire documents. However, the necessity to define
and derive inference algorithms for each modeling
objective poses a significant challenge. To address
these issues, neural variational inference was pro-
posed (Miao et al., 2017), while a logistic normal
prior was introduced for neural topic models (Sri-
vastava and Sutton, 2017), integrating deep neu-
ral networks with traditional topic models. How-
ever, these models struggle to capture semantic re-
lationships and complex patterns within documents.
To overcome this, a neural topic model with con-
trastive learning (Nguyen and Luu, 2021), which
leverages semantic relationships through a novel
sampling method, was proposed. Nevertheless,
these models rely on word-level embeddings that
disregard the sequential structure and contextual in-
formation in documents. To address this limitation,
Contextualized Topic Model (CTM) (Bianchi et al.,
2021) was introduced, combining Bag-of-Words
(BoW) embeddings with context-aware document
embeddings.

Traditional machine learning models often rely
on supervised learning with large amounts of la-
beled data. However, creating labeled datasets is
labor-intensive and costly, particularly for large-
scale text corpora. Self-supervised learning, which
uses pseudo-labels generated from the data itself,
presents a promising alternative. Contrastive learn-
ing methods, such as SImCLR (Chen et al., 2020)
and SwAV (Caron et al., 2020), have shown re-
markable performance in various downstream tasks.
Meanwhile, Variance-Invariance-Covariance (VIC)
Regularization (VICReg) (Bardes et al., 2022) was
introduced to enhance self-supervised learning by
applying three distinct regularization terms: vari-
ance, invariance, and covariance. While VIC Regu-
larization has been shown to improve BoW-based
neural topic models (VICNTM) (Xu et al., 2025),



its potential when applied to CTM remains unex-
plored.

This study proposes a VIC-regularized contextu-
alized neural topic model that integrates both Bow
and contextual embeddings. We generate positive
samples for contrastive learning using tf-idf (term
frequency-inverse document frequency) based sam-
pling and replace the traditional contrastive loss
with VIC Regularization terms. We evaluate model
performance using a topic coherence metric and
demonstrate that our approach improves topic co-
herence without sacrificing predictive performance.
Additionally, we find that selecting an appropriate
number of topics further enhances model effective-
ness.

2 Related Work

2.1 Topic Model

Topic modeling is an analytical method for discov-
ering meaningful information from large collec-
tions of documents. In each document, multiple
latent topics are probabilistically generated, and
words appearing in the document are assumed to
be generated from these topics. By estimating the
probability distribution of topics for each docu-
ment and the probability of word generation for
each topic based on observed words, it is possible
to analyze topic similarities and document seman-
tics. A representative model of this topic model
is Latent Dirichlet Allocation (LDA) (Blei et al.,
2003).

2.2 Neural Topic Model

Neural topic models integrate neural networks with
topic modeling to overcome the computational chal-
lenges posed by the increasing number of parame-
ters in traditional models like LDA. Notable exam-
ples include the Neural Topic Model (NTM) (Miao
et al., 2017), which is based on the Variational
Autoencoder (VAE) (Kingma and Welling, 2014),
and ProdLLDA (Srivastava and Sutton, 2017), which
replaces Dirichlet priors with logistic normal pri-
ors. Furthermore, SCHOLAR (Card et al., 2018)
was developed as an extension of ProdLDA. In this
model, latent variables are sampled from a multi-
variate normal distribution with parameters sam-
pled from a logistic normal prior, and these latent
variables are subsequently mapped to multinomial
parameters via a softmax function.

2.3 Neural Topic Model with Context

Traditional neural topic models have primarily fo-
cused on the words present in document data. How-
ever, document embeddings based on the BoW ap-
proach disregard contextual information, making
it difficult to distinguish between words that have
different meanings depending on the context. To
address this issue, contextual embeddings have re-
cently been introduced to capture semantic and con-
textual relationships within document data. Con-
textual embeddings utilize pre-trained models such
as BERT (Devlin et al., 2018) and its extension
SBERT (Reimers and Gurevych, 2019) to repre-
sent words and sentences in a context-dependent
manner. SBERT employs triplet loss (Schroff et al.,
2015) during fine-tuning, which brings the anchor
and positive samples (documents with the same la-
bels) closer while pushing the anchor and negative
samples (documents with different labels) apart.
Notable implementations include all-mpnet-base-
v2!, based on MPNet (Song et al., 2020), and all-
distilroberta-v12, based on RoBERTa (Liu et al.,
2019). Specifically, all-mpnet-base-v2 has been
fine-tuned using more than one billion document
samples, including Reddit comments (Henderson
et al., 2019). In recent years, large language mod-
els (LLM) have seen remarkable advancements.
One prominent model is LLaMA (Large Language
Model Meta Al) (Touvron et al., 2023), which con-
sists of tens of billions of parameters and achieves
state-of-the-art performance. These technological
advancements enable deeper, meaning-based doc-
ument analysis and are expected to improve the
quality of topic distributions in neural topic mod-
els.

2.4 Self-supervised Learning

Self-supervised learning is a learning method that
does not require explicit labels for the training data
but instead generates pseudo-labels automatically
from the data itself. From the perspective of not
providing explicit labels for the training data, self-
supervised learning can be considered a type of un-
supervised learning. This approach has the advan-
tage of avoiding the annotation costs, which often
hinder the processing of large-scale datasets. Con-
trastive learning, which is a type of self-supervised
learning, is a learning method that encourages sim-

"https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

“https://huggingface.co/sentence-transformers/all-
distilroberta-v1
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Figure 1: The process of learning positive samples in
VICReg is illustrated.

ilar data points to have similar embedding vectors
in the latent space while ensuring that dissimilar
data points have distinct embedding vectors. Con-
sequently, contrastive learning requires similar data
samples. To generate these positive samples, data
augmentation techniques are applied to the orig-
inal data. Data augmentation involves applying
specific transformations to the data to create new
samples that closely resemble the original data. In
this framework, the original data serves as the an-
chor, the augmented data as the positive sample,
and a randomly selected data point as the negative
sample, enabling the model to learn to distinguish
between them.

2.5 Variance-Invariance-Covariance
Regularization

This subsection provides a brief overview of VI-
CReg (Bardes et al., 2022), a general theoritical
framework in deep learning. The VICReg aims to
minimize a loss function composed of three regu-
larization terms: the variance term, the invariance
term, and the covariance term. The process of
learning positive samples in VICReg is illustrated
in Figure 1. The input data D is transformed into
x = t(i) and ' = t/(i) following distributions
T'. These inputs are passed through encoders f,
and f}, with parameters p and p', producing em-
bedding vectors x and x’. Next, these embeddings
are processed by expanders hy and hiz), with pa-
rameters ¢ and ¢, resulting in latent vectors y and
y'. For a mini-batch Y = [y;,...,y,] and Y’ =
[y1,--.,y,], the model learns to bring the embed-
dings y; and vy, closer while applying the loss func-
tion composed of the three terms: variance, invari-
ance, and covariance. First, let ¢ be a small scalar

value, and define S(z,¢) = (/Var(z) +¢€. The

variance term is then expressed as follows:
1 ‘
oY) = ;max(o, 7=8W.) M)

where 7 represents the j-th component of the d-
dimensional latent space Y that contains all latent
vectors. This term uses a hinge loss to maintain the
standard deviation of each component of the em-
bedding vectors in the mini-batch above a certain
threshold. By using equation (1), the embeddings
of the samples within the mini-batch are encour-
aged to have distinct values from one another. Next,
the invariance term is shown as follows:

1
sY) == v - will3 )
)

which is the mean squared distance between the
embedding vectors. This encourages the paired
embedding vectors y; and y! to be close to each
other. Finally, the covariance term is shown as
follows:

(V)= 2 S e, 3)
i#£]

where C(Y") denotes the covariance matrix for the
mini-batch Y. By using equation (3), the off-
diagonal elements of C(Y") are minimized to sup-
press correlations between different dimensions
in the embedding space. This prevents the col-
lapse of information caused by high correlations
across dimensions (i.e., outputting redundant in-
formation). Therefore, the overall VICReg loss
function is given by the following equation:

1(Y,Y') = Xs(Y,Y")
+p[o(Y) + oY)
+v [C(Y) + c(Y/)] 4)

3 Proposed Method

3.1 A Brief Explanation of Neural Topic
Model

In neural topic models, given x as the encoder
input, z as the encoder output, and p(z) as the
prior distribution of z, the decoder is represented
by ¢ with pg(x|z) as the network that generates
documents from topics. The encoder is represented
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Figure 2: The architecture of proposed method.

by 6 with gg(z|x) as the variational distribution,
and the following objective function is minimized:

L(x) = —Egy(2)a) [log po (x| 2)]
+ KL [go(2|2)|[p(2)] (5)

3.2 Baseline Neural Topic Model

In this study, we propose a model that applies VIC
Regularization and the tf-idf sampling method,as
proposed in CLNTM (Nguyen and Luu, 2021)’, to
the existing CTM (Bianchi et al., 2021) framework.
While CLNTM is based on SCHOLAR (Card et al.,
2018), CTM is based on ProdLDA (Srivastava and
Sutton, 2017). For training, the input dataset D
is used to obtain document embeddings x,, us-
ing BoW and contextual embeddings x. using
SBERT (Reimers and Gurevych, 2019) for each
document. These embeddings are concatenated to
form the document embeddings «, and the anchor
dataset D,,,, is generated from these embeddings.

3.3 Architecture

In this study, we propose VICCTM, a contextu-
alized neural topic model that incorporates VIC
Regularization into CLNTM-based neural topic
model to improve topic coherence. Thus, the ob-
jective of this study is to examine the effectiveness
of VIC Regularization in a contextualized neural

topic model based on CLNTM by minimizing the
loss function:

L(®,0,0) == [Eryzla) logps(|2)]
+KL (go(z|) || p(2))]
+As(Z,Z7T)

+ p[v(2) +v(Z)]
+v[c(Z2) +c(Z)] (6)

Here, let Z be the set of latent vectors z obtained
by passing the anchor x through the encoder fy,
and Z* be the set of latent vectors 21 obtained
by passing the positive samples & through the
same encoder fg. Note that the notation x indi-
cates the document embedding obtained by con-
catenating BoW-based embeddings «,, and con-
textual embeddings x. , as described in Section
3.2. Similarly, 1 is obtained in the same man-
ner. The term s(Z, Z1) represents the invariance
term, v(Z) + v(Z*) represents the variance term,
and ¢(Z) + ¢(Z™) represents the covariance term.
The hyperparameters A, i, and v control the im-
portance of each loss component. In the subse-
quent experiments, these hyperparameters will be
explored using Bayesian optimization. The pro-
posed learning model is illustrated in Figure 2. In
the proposed method, positive samples are first
generated for each mini-batch using a tf-idf based
method, as to be described in Section 3.4. Next,
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Figure 3: Positive example sampling method using tf-idf.

the anchor set D,,,, and the positive set Défm are
passed through the encoder fy and embedded into
the latent vectors Z and Z+. By minimizing the
loss function in equation (6), the latent topic dis-
tributions of the anchor and positive samples are
expected to become similar. Additionally, the vari-
ance of the embedding vectors in each mini-batch
1s maintained above a certain threshold, and the co-
variance between the dimensions in the embedding
space of each mini-batch is expected to approach
Zero.

3.4 Sampling Methodolgy

In this study, positive sample sampling is per-
formed using the tf-idf based method proposed at
CLNTM. Tf-idf is a statistical measure that indi-
cates the importance of each word token in a docu-
ment based on its occurrence patterns. The term fre-
quency (tf) represents how frequently a word token
appears in a document, while the inverse document
frequency (idf) measures how many documents
contain that word token, taking the reciprocal of
that value. The product of these two values is the
tf-idf score. The tf-idf score has the characteristic
that word tokens with lower scores are less relevant
to the topic of the document in which they appear.
Additionally, when generating positive samples, it
is essential to augment the data without deviating
from the existing topics. Therefore, positive sam-
ples are generated by replacing word tokens with

low tf-idf scores in a document with other word to-
kens. The sampling method for positive examples
used in this study is illustrated in Figure 3. First, the
tf-idf values of all word tokens in the input data are
computed. Next, the document x is passed through
the encoder and decoder to obtain the reconstructed
document x"°°", In this reconstructed document,
r word tokens with the lowest tf-idf values are se-
lected for replacement. These selected word tokens
are then replaced with their corresponding word
tokens from the original document x,,, resulting
in the positive example ;. The obtained ;] is
then concatenated with contextual embeddings x.
to form the positive dataset D}

4 Experiments Setup

4.1 Datasets

In the experiment, we applied preprocessing in
the same manner as VICNTM (Xu et al., 2025),
which originates from CLNTM (Nguyen and Luu,
2021). This preprocessing was performed on three
different datasets by removing stopwords (single-
character words) and word types that appeared
fewer than 100 times:

* 20Newsgroups (20NG) (Lang, 1995): This
dataset consists of approximately 13,000 news
articles. This was split into training, valida-
tion, and test sets with proportions of 48%,
12%, and 40%, respectively.



¢ IMDb movie reviews (IMDb) (Maas et al.,
2011): This dataset consists of movie reviews
collected from IMDb, which includes about
43,000 movie reviews. The dataset was split
of 70%, 15%, and 15%, respectively.

* Wikitext-103 (Wiki) (Merity et al., 2017):
This dataset contains approximately 28,000
articles, consisting of Wikipedia articles that
meet the "Good" or "Featured" criteria. The
dataset was split into 50%, 25%, and 25% of
ratio.

Furthermore, the number of word tokens to be re-
placed when generating positive samples was set
to 7 = 15, which was found to achieve optimal per-
formance (Nguyen and Luu, 2021). Additionally,
the minimum effective word token count was set to
30, and documents with fewer than 30 word tokens
were excluded.

4.2 Evaluation Metrics

For model evaluation, we used the NPMI (Normal-
ized Pointwise Mutual Information) (Chang et al.,
2009) (Newman et al., 2010) as a metric for mea-
suring topic coherence, following the approaches
of CLNTM (Nguyen and Luu, 2021) and VIC-
NTM (Xu et al., 2025), which serves as the base
model in this study. NPMI is a metric for measur-
ing topic coherence based on word co-occurrence
frequencies within the corpus. In the experiment,
we calculated the NPMI of the top ten word types
for each topic on the test set using the model trained
on the training set. The NPMI calculation formula
is:

/ P(v,v'
PMI(’U, v ) = log _P(’(E;}_P’lzv)/)
PMI !
NPMI(’U, UI) = —10g_P(/I()17)UU)/) (7)

For each topic, let v and v’ be any two word types
from the set of the top ten word types. With P(-)
representing the probability, the pointwise mutual
information (PMI) is first computed. Next, PMI is
normalized to mitigate the influence of word type
rarity, resulting in the NPMI calculation formula.

In addition to the evaluation metrics used in pre-
vious studies, we also evaluated the model’s pre-
dictive performance using perplexity, a metric that
has long been employed in topic modeling research.

The formula for calculating perplexity is:

1
perplexity = exp <_m Z Z log P(wd’t)>
d t
@)

where m be the total number of word tokens in
the test set, perplexity is defined based on the like-
lihood P(wg,) that the model assigns to the ¢-th
word token of the d-th document in the test set.

4.3 Detailed Settings

The experiment was conducted by evaluating the
model using NPMI, which measures topic coher-
ence, and perplexity, which measures predictive
performance, for topic numbers £ = 20, k = 50,
and £ = 200. As a baseline, we used CTM
(Bianchi et al., 2021). For contextual embeddings,
we utilized the pre-trained SBERT-based model all-
mpnet-base-v23. To prevent overfitting, we calcu-
lated the model’s NPMI on the validation set after
each epoch. If no improvement was observed for
30 consecutive epochs, we considered the training
converged and applied early stopping. To exclude
the effect of locally optimal gradients when recon-
structing &, convergence detection was started only
after 150 epochs. Each mini-batch consisted of 70
documents randomly sampled from the training set.
The learning rate was set to 0.001, and the docu-
ment embedding dimension was dim(x) = 1068,
consisting of a BoW embedding dimension of
dim(xz,) = 300 and a contextual embedding di-
mension of dim(x.) = 768. The hyperparameters
A, i, v were optimized using Bayesian optimiza-
tion*. For this, batches were randomly sampled
from the training data, and 100 trials of hyperpa-
rameters searches were performed.

5 Results

5.1 Evaluation Results and Analysis

Table 1 summarizes the NPMI and perplexity re-
sults for all experiments conducted with topic num-
bers k = 20,k = 50, and £k = 200. The re-
ported values represent the mean and sample stan-
dard deviation obtained from 10 runs with different
random seeds. From the results, we observe that
the proposed method consistently improves topic
coherence, as measured by NPMI, compared to

*https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

*https://optuna.org/



Table 1: For each dataset, we present the NPMI and perplexity values along with their sample standard deviations
for topic numbers £ = 50 and & = 200. A higher NPMI indicates better topic coherence, while a lower perplexity
indicates better predictive performance of the model.

k=20 k=50 k=200

Dataset

NPMI Perplexity NPMI Perplexity NPMI Perplexity
20NG
CTM 0.395 (£0.016) 1532 (£34) 0.355 (£0.007) 1656 (£25) 0.286 (£0.005) 2878 (£78)
VICCTM 0.404 (£0.014) 1540 (£39) 0.362 (£0.007) 1675 (+44) 0.287 (£0.004) 2863 (£44)
IMDb
CT™M 0.175 (£0.009) 1861 (£7)  0.158 (£0.004) 2092 (£10) 0.133 (£0.002) 3615 (£30)
VICCTM 0.176 (£0.008) 1860 (£14) 0.160 (£0.005) 2099 (£9) 0.131 (£0.003) 3608 (+44)
Wiki
CT™M 0.498 (£0.020) 3661 (£40) 0.495(£0.010) 3373 (£36) 0.446(£0.004) 3167 (£16)
VICCTM 0.501 (£0.019) 3644 (£78) 0.498 (£0.010) 3357 (£46) 0.450 (£0.004) 3157 (£15)

the baseline CTM model across various datasets
and topic numbers. Specifically, when k£ = 20
and £ = 50, the proposed model outperforms
CTM, demonstrating higher NPMI values across
all datasets. For k = 200, the model maintains
better performance in two of the datasets, while
in the remaining dataset, it achieves comparable
results. The perplexity scores also show that the
proposed model generally exhibits better predictive
performance than CTM, with lower perplexity val-
ues across most of the experimental settings. The
results suggests that integrating CTM with VIC
Regularization helps the model capture document-
topic relationships more effectively. Furthermore,
focusing on the case where £ = 20, we observe a
notable improvement in topic coherence with the
proposed method. This experiment suggests that
selecting an appropriate number of topics is crucial
for maximizing the performance of the proposed
method. If the number of topics is not suitable,
overfitting or information dispersion may occur
during model training, potentially degrading the
quality of the learned topics.

5.2 Ablation Study

5.2.1 Effects of VIC Terms

We evaluated the effects of each VIC Regulariza-
tion term on NPMI and perplexity using the 20NG
dataset with £ = 50. The evaluation followed the
same experimental settings and hyperparameters as
in Table 1. Table 2 presents the NPMI and perplex-
ity results for each VIC Regularization term. The
results indicate that when only one term is present,
the variance term (V) alone shows the best perfor-
mance. However, when considering any combina-

Table 2: For 20NG dataset, we present the NPMI and
perplexity values along with their sample standard de-
viations for topic numbers £ = 50. A higher NPMI
indicates better topic coherence, while a lower perplex-
ity indicates better predictive performance of the model.

Used Reg Terms NPMI Perplexity
VIC 0.362 (£0.007) 1675 (+44)
VI 0.352 (£0.005) 1681 (£43)
VC 0.354 (£0.008) 1675 (£30)
IC 0.355 (£0.007) 1679 (£39)
\% 0.354 (£0.006) 1665 (£30)
I 0.351 (£0.011) 1697 (£23)
C 0.352 (£0.010) 1688 (£36)

tion of two terms, the combination of invariance (I)
and covariance (C) yields better results. Neverthe-
less, the best performance is ultimately achieved
when all three terms—variance (V), invariance (I),
and covariance (C)—are applied together.

5.2.2 Effects of Combining Context

To examine the effect of contextual embeddings,
we evaluated the model using the 20NG dataset
with £ = 50. Table 3 presents the results for four
cases: using only BoW embeddings (BoW), using
only contextual embeddings (SBERT), using only
BoW with VIC Regularization (VICNTM), and us-
ing a combination of both embeddings (CTM). The
results indicate that using only contextual embed-
dings significantly degrades the performance across
the evaluation metrics. In contrast, the model com-
bining BoW and contextual embeddings (CTM)
shows improved topic coherence compared to using
BoW embeddings alone. However, in all cases, the



Table 3: For 20NG dataset, we present the NPMI and
perplexity values along with their sample standard de-
viations for topic numbers £ = 50. A higher NPMI
indicates better topic coherence, while a lower perplex-
ity indicates better predictive performance of the model.

Embedding Representations NPMI Perplexity

BoW+SBERT+VICReg(VICCTM) 0.362 (£0.007) 1675 (+44)
Bow 0.353 (£0.006) 1655 (£31)
SBERT 0.163 (£0.032) 2610 (+408)
BoW+VICReg(VICNTM) 0.352 (£0.014) 1682 (£38)
BoW+SBERT(CTM) 0.355 (£0.007) 1656 (£25)

model utilizing VIC Regularization outperforms
the others, demonstrating the effectiveness of the
proposed approach.

6 Conclusion

In this study, we proposed a neural topic model
incorporating VIC Regularization, which is com-
monly used in multimodal analysis, with the expec-
tation that it would also be effective in a contex-
tualized neural topic model. The proposed model
combines traditional BoW embeddings with con-
textual embeddings and applies VIC Regulariza-
tion to the loss function in contrastive learning,
where positive samples are generated using a tf-idf-
based measure. Instead of using a contrastive loss,
the model applies the three regularization terms:
Variance, Invariance, and Covariance. The per-
formance of the proposed model was evaluated
through experiments, which demonstrated that it
improves topic coherence while maintaining pre-
dictive performance compared to conventional neu-
ral topic models. Additionally, the results showed
that setting an appropriate number of topics further
improves topic coherence. This improvement is
attributed to the constraints imposed by VIC Regu-
larization, which reduce redundancy and dispersion
in topic representations during model training.

7 Limitation

Our experiments revealed that the proposed method
maintains predictive performance while effectively
capturing semantic relationships. However, sev-
eral limitations remain. The model’s performance
heavily depends on the selection of the topic num-
ber; while appropriate topic numbers yield better
results, excessively low or high values degrade
topic coherence. This finding highlights the need
for automated or dynamic optimization techniques
for topic number selection. Additionally, the VI-
CReg parameters—variance, invariance, and co-

variance—significantly impact model performance.
Tuning these parameters requires substantial com-
putational resources, underscoring the need for
more efficient optimization strategies.
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