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Abstract

The rising data privacy risks make it diffi-001
cult for automatic speech recognition (ASR)002
systems to acquire complete training data in003
practical application. Recently, the merge004
paradigm for acoustic model has been pro-005
posed to solve the issue. However, ASR still006
suffers from another salient issue on language007
model. Current efforts mainly focus on iso-008
morphic neural network models, while lan-009
guage model optimization is characterized by010
merging and matching heterogeneous models011
including n-gram and neural network models.012
In this paper, we propose a novel Match-and-013
Merge paradigm to fill up the vacuum for the014
language model optimization. Based on dif-015
ferent training datasets, we train multiple lan-016
guage model pairs. In order to merge them into017
a target pair with the best performance, we first018
propose a Genetic Match-and-Merge (GMM)019
method that can be specifically adopted to op-020
timize heterogeneous models. To improve the021
algorithm efficiency, we further propose a Re-022
inforced Match-and-Merge (RMM) method,023
which maintains superior recognition accu-024
racy while reducing convergence time. Exten-025
sive experiments demonstrate the effectiveness026
and generalization of our proposed methods,027
which significantly establishes the new state-028
of-the-art.029

1 Introduction030

Automatic speech recognition (ASR) has been031

widely used in many fields such as communication,032

education and automobiles. With the development033

of deep learning, training recognition models re-034

quires a huge amount of language and speech data035

from various domains as support. However, in re-036

cent years, it has become increasingly infeasible to037

train models with complete data due to the increas-038

ing data privacy risk which makes distinct curators039

reluctant to share their own private data.040

Compared with hard-to-obtain private data, it041

seems more realistic and reliable to utilize exist-042

Figure 1: The optimization of heterogeneous language
models in ASR. The n-gram LM and the NN LM are
heterogeneous, different curators use their own private
data to train the initial model pair locally. Multiple
pairs of source LMs need to be merged and matched
to obtain a better quality target model pair.

ing ASR models at hand that have been trained 043

with different datasets. A feasible strategy is to dis- 044

tribute the initial model to different curators, who 045

possesses their own private data. Each curator uses 046

their own private data to train the model locally 047

and then sends the model back instead of the data. 048

The model parameters of different versions trained 049

by different curators will be merged into param- 050

eters of one version as the final training result of 051

the initial model through a merge paradigm. The 052

merged model performs better than any local train- 053

ing model, and can be used as a pre-trained model 054

for future task transfer. 055

The main challenge of this strategy is how to 056

design a merge paradigm. Averaging all model 057

parameters is a simple and straightforward prac- 058

tice, and has been proved to be effective (McMa- 059

han et al., 2017). However, whether there is a 060

better merge paradigm is still worth discussing. 061

(Tan et al., 2020) first proposes a divide-and-merge 062

paradigm and successfully applies it to the acoustic 063

model merge. However, this method is limited to 064

neural network models, and cannot be applied to 065

other machine learning models that are not neural 066

network structures in ASR. 067

Although end-to-end speech recognition model 068

has been extensively studied in the research com- 069

munity, the real industrial deployment of ASR still 070
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contains two distinct components: the acoustic071

model (AM) and the language model (LM) (Li072

et al., 2020). For AM, the end-to-end deep neural073

network (DNN) is the first choice (Graves et al.,074

2006; Graves, 2012a; Chan et al., 2016), and for075

LM, n-best list is the most common practice (Si076

et al., 2012, 2013; Sundermeyer et al., 2015). Dif-077

ferent from AM that only uses DNN, LM first uses078

the n-gram model to identify the n-best list or lat-079

tice, and then uses a high-level model like DNN to080

re-mark these sentences to obtain the recognition081

result. Note that the n-gram model model is a non-082

neural network structure and is heterogeneous with083

the DNN model.084

In this paper, we do not solely focus on iso-085

morphic model optimization, but propose an unex-086

plored heterogeneous language model optimization087

problem in ASR as shown in Figure 1. Different088

from AM optimization, the main challenges for LM089

optimization can be summarized as the following090

aspects: 1) The existing AM optimization methods091

are only designed for isomorphic model, but the092

structure of n-gram LM has intra-class different093

structure from the DNN which is heterogeneous.094

2) The language part is a heterogeneous combi-095

nation of the n-gram LM and the DNN LM, two096

models require mutual matching to achieve the best097

performance. 3) Compared with AMs, LMs have098

larger parameters and are more difficult and time-099

consuming to train. Therefore, existing approaches100

for AM optimization could not be applied to LM101

optimization.102

To tackle the above issues, we propose a novel103

match-and-merge paradigm for LM optimization in104

ASR. We first propose a genetic match-and-merge105

method named GMM, which treats n-gram and106

DNN LMs as two populations merged separately,107

and then matches the two populations. The merge108

results caused by the operation of GMM are ran-109

dom. In order to further improve efficiency, then110

we propose a novel reinforced optimization method111

named RMM to utilize the current merge result as112

feedback information to guide the next merge op-113

eration. We set up the problem by formalizing the114

language model optimization into a mathematical115

problem. The agent observes the performance of116

target model pairs and select an action to modify117

the optimization strategy. Information thus feeds118

back from the validation stage to the training stage.119

Experiments show that RMM still obtains compa-120

rable merged model while reducing much compu-121

tation overhead. 122

Contributions in this paper include: 1) We iden- 123

tify a new task of merging heterogeneous language 124

models in ASR. 2) We propose two novel strategies 125

for the matching and merging of heterogeneous 126

LMs with defined formulation. 3) Extensive ex- 127

periments on public datasets demonstrate that the 128

ASR model transferred by our proposed method 129

can effectively improve the recognition accuracy 130

and time efficiency. 131

2 Related Work 132

2.1 Automatic Speech Recognition 133

Automatic speech recognition is widely used in the 134

industry. Considering the practical implementa- 135

tion, current mainstream framework for industrial 136

product is mainly composed of AM and LM (Li 137

et al., 2020). The AM extracts features from the 138

original speech signal and captures the relationship 139

between feature vectors and phonemes. The LM 140

predicts the word sequence with the highest proba- 141

bility. In addition, a dictionary counts phoneme-to- 142

word mappings to connect AM and LM. 143

For traditional ASR, the AM is represented by 144

the the Gaussian Mixture Model - Hidden Markov 145

Model (GMM-HMM) (Rabiner, 1989; Gales and 146

Young, 2007). This framework uses GMM to pre- 147

dict the observation probability of the speech state, 148

and then uses HMM to predict the transition proba- 149

bility of the speech state. The LM usually adopts 150

the n-gram LM (Ullmann, 1977; Suen, 1979) based 151

on a large-scale text or audio corpus to count the 152

frequency of adjacent words. Some subsequent 153

efforts further improve the performance of GMM- 154

HMM framework, including speaker adaptation 155

(Gauvain and Lee, 1994; Leggetter and Woodland, 156

1995) and discriminative training (Bahl et al., 1986; 157

Juang et al., 1997). 158

However, since the milestone breakthrough 159

of deep learning (Senior et al., 2012; Bengio, 160

2009), deep neural network (DNN) has swept the 161

speech field and has become the mainstream re- 162

search direction in both academic and industrial 163

circles. For AM, some works attempt to com- 164

bine DNN with HMM and replace the original 165

GMM. Typical representatives of this DNN-HMM 166

framework are FFDNN-HMM (Dahl et al., 2011), 167

CNN-HMM(Sainath et al., 2013) and RNN-HMM 168

(Graves et al., 2013). Other works focus on end-to- 169

end speech recognition solutions, such as connec- 170

tionist temporal classification (CTC) (Graves et al., 171
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2006) and Transducer (Graves, 2012b). Recently,172

the application of Attention (Bahdanau et al., 2016;173

Chiu et al., 2018) and Transformer (Dong et al.,174

2018; Zhou et al., 2018) in the end-to-end ASR175

has also achieved obvious improvements. How-176

ever, to the best of our knowledge, the AM based177

on the DNN-HMM framework has achieved the178

state-of-the-art performance at present.179

Compared with the AM, the LM has attracted180

slightly less attention. In addition to the traditional181

n-gram LM, some DNN based LMs have recently182

been applied to ASR. Especially, key Transformer-183

based models, such as GPT (Brown et al., 2020),184

BERT (Devlin et al., 2018) and XLNet (Yang et al.,185

2019), have achieved breakthrough improvements186

compared to previous LMs. ASR product usually187

uses the n-gram LM for rough selection, and uses188

the DNN LM for refinement. Although there have189

been many end-to-end LM researches in academic190

circles, the hybrid n-best list practice with two dis-191

tinct components n-gram LM and DNN LM still192

dominates the industrial area due to its robustness,193

and flexibility and modularization.194

2.2 Language Model Optimization195

We note that some efforts (Pickhardt et al., 2014;196

Liu et al., 2010; Goodman, 2000) focus on lan-197

guage model combination. Though model com-198

bination can deal with heterogeneous LMs, it is199

completely different from this task setting and we200

should clarify their differences. For model combi-201

nation, it does not require merging all models into202

a single one. In inference, all models predict the203

results separately, and these results are combined204

to get the final output. Therefore, model combina-205

tion is more similar to ensemble learning (Zhou,206

2012). However, our model merging is to distribute207

the model first, then merge the model parameters208

obtained from local training on different datasets,209

and use the merged parameters as the result of the210

model fitting on multiple datasets. Model combina-211

tion methods increase the target model size as the212

number of source models increases, while model213

merging methods can maintain the size of target214

model the same as initial model, which is more215

suitable for large-scale industrial deployment.216

In this paper we study the language model op-217

timization which requires the merged model to be218

improved iteratively. Existing works for model219

merging only focus on AM optimization. As for220

acoustic model, recently Tan et al. (Tan et al.,221

2020) first proposes a paradigm of model division 222

and merging with two novel algorithms. This tech- 223

nique has been successfully applied to the acoustic 224

model, but they are limited to deep neural networks 225

based models. However, as for language model, 226

n-best list is still the best performing system for 227

practical implementation which consists of n-gram 228

LM and DNN LM. The n-gram LM and the NN 229

LM are heterogeneous, and are a non-neural net- 230

work structure and a neural network structure, re- 231

spectively. The existing AM optimization methods 232

mainly study end-to-end neural network models. 233

Therefore, these methods cannot be applied to het- 234

erogeneous language models containing non-neural 235

network structures. In this paper, we are the first 236

to explore the LM optimization task in ASR. It re- 237

quires simultaneous optimization of neural network 238

and non-neural network models, and the match- 239

ing performance of the two heterogeneous models 240

should be better than the performance of source 241

model pairs. 242

3 Problem Formulation 243

Suppose that there is a set of n private datasets 244

for different business scenarios, T = {T1, ..., Tn}. 245

Each dataset Ti is trained on a pair of LM Mi = 246

(MN,i,MR,i), where MN,i represents the ith n- 247

gram LM and MR,i represents the ith DNN LM. 248

These n-gram LMs share the homogenous struc- 249

ture but different parameters, and so are the DNN 250

LMs. The n-gram LM and the DNN LM are hetero- 251

geneous with each other. We name these n paired 252

LMs as the source models. In this task, all the 253

source models will be merged into one paired tar- 254

get model MT = (MN,T ,MR,T ), which has better 255

performance than source models but still shares the 256

same architecture. 257

The n-gram LM is an n-dimensional matrix, and 258

each element of the matrix is based on the word 259

sequence frequency of the corpus. We denote each 260

column vector of the matrix MN,i as AjN,i(1 ≤ 261

j ≤ n). For each DNN LM MR,i we assume it has 262

L DNN layers, and we denote the parameters of 263

lth layer as W l
R,i(1 ≤ l ≤ L), which contains all 264

types of trainable parameter including weight and 265

bias. For notational simplicity, we utilize the add 266

operation on model MN,i and MR,i to represent 267

the merge operation on model parameters. 268

For evaluation setting, we require some samples 269

to validate the the performance of MT , and we 270

name these samples as the validation dataset. Al- 271
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Figure 2: Overview of Genetic Match-and-Merge. The heterogeneous language models are regarded as different
populations, and each population executes genetic operators separately to produce the next generation population.
The individuals of the two populations are matched one by one, and the combination with the highest matching
fitness is selected and reproduced to the next generation.

though extra validation dataset is essential, only272

very few data can significantly improve the per-273

formance of the model, which will be discussed274

in the following section. It implies that the LM275

can achieve comparable results with fewer train-276

ing samples. For fair comparison, we also need277

some extra datasets in the unknown business sce-278

narios to test MT , and we name those data as the279

test dataset. Besides, private datasets T is referred280

as the training dataset. We adopt the widely used281

metric Character Error Rate (CER) to assess the282

merging quality of LMs. It measures the the leven-283

shtein distance between the ground truth and our284

recognition hypothesis according to the number of285

characters in ground truth.286

4 Genetic Match-and-Merge287

In order to achieve the evolution of models, a288

straightforward idea is to apply the genetic algo-289

rithm (Sampson, 1976).290

We introduce a Genetic Match-and-Merge291

(GMM) algorithm, which is calibrated for the292

matching and merging paradigm of two different293

heterogeneous models n-gram LM and DNN LM.294

As shown in Figure 2, we can regard the source295

models as the initial population. The operators of296

generating offspring includes three classical prac-297

tices in the genetic algorithm: reproduction, mu-298

tation and crossover. The main difficulty lies in 299

adapting these three operators to the two hetero- 300

geneous LMs. We design the mutation and the 301

crossover operators as follows. 302

For DNN LM, we follow some common prac- 303

tices (Gupta and Wadhwa, 2014; McMahan et al., 304

2017). 305

• Mutation. It modifies the binary file of the 306

selected model and reverses one bit at random. 307

• Crossover. It selects two adjacent models and 308

randomly taking the lth (1 ≤ l ≤ L) layer as 309

the exchange point. The first l layers of one 310

model and the back L − 1 layer of another 311

model will be combined to generate a new 312

model. For example, for MR,i and MR,i+1 313

we can obtain two generated offsprings: 314

MR,i′ = {W 1
R,i′

, ...,W l
R,i′

,W l+1
R,i+1′

, ...,WL
R,i+1′

} 315

MR,i+1′ = {W 1
R,i+1′

, ...,W l
R,i+1′

,W l+1
R,i′

, ...,WL
R,i′
} 316

For n-gram LM, the optimization of MN = 317

{MN,1...MN,n} can be considered as combin- 318

ing all the elements of two parent matrices in a 319

weighted way to generate a new one. 320

• Mutation. It randomly selects one column 321

of the selected model and adds the elements 322

of this column by a coefficient k, where k 323

randomly samples from (0, 1), i.e., 324

4



Value
𝑣(𝑠௧)

Merged LM Pairs

Source
𝑛-gram LMs

𝜙௜

⨁ ⨁

⨁ ⨁

C
onstrained

connection

𝑜௜
௟

𝑜௜
௟ିଵ

𝑜௜
௟ାଵ

𝑜௜ାଵ
௟ାଵ

𝑜௜ାଵ
௟

𝑜௜ାଵ
௟ିଵ

𝑠௧
ெ

𝑓(𝑎௧; 𝑀ோ, 𝑀ே)

𝑠௧
ோ 

𝑔(𝑟௧; 𝑀்)

𝑠௧

(𝑠௧
ெ, 𝑠௧

ோ)

Layer
l + 1

Layer
l

Layer
l − 1

Policy
𝜋(𝑎௧|𝑠௧)

…

Source NN LMs

{Δ𝑊ோ,்
௟ , 𝜃௜

௟, 𝑊ோ,௜
௟ ,

Δ𝐴ெ,்
௜ , 𝜙௜|𝑖 = 1, … , 𝑚}

Environment

Agent

Target LM Pairs

𝑛-gram LMଵ 

𝑛-gram LM௠ 

…

NN LMଵ 

NN LM௠ 

…

Source models

RMMP

Figure 3: Overview of Reinforced Match-and-Merge. With a mathematical formulation, the merging problem can
be converted into a variable selection problem. Then a recurrent network predicts each variable for the LM with a
dynamic constraint. The reinforced architecture minimizes the CER of merged models on the validation dataset.

MN,i′ = [01, ..., 0j−1, k∗Aj
N,i, 0

j+1, ..., 0n]+MN,i325

• Crossover. It crosses two adjacent models in326

pairs and sums them weighted to generate a327

new model, i.e.,328

MN,i′ = λMN,i + (1− λ)MN,i+1329

where λ is a trade-off weight sampled from (0, 1)330

at random.331

For reproduction, in addition to copying the mod-332

els to the next generation, it also needs to match333

heterogeneous models. We can regard the n-gram334

LM and DNN LM as two different populations,335

and define the fitness as the degree of matching336

between the two populations. The reproduction337

determines the parents of next generation for each338

population according to this new fitness. It first339

matches the best K n-gram LMs with the best K340

DNN LMs one by one, and then measures the fit-341

ness of each paired heterogeneous models. Finally342

it copies the K groups of models with the highest343

fitness to the next generation. To assess the fitness344

of the population, we adopt CER as the metric and345

the lower the CER, the better the fitness. Note that346

these K groups may have the same model, and347

as the selection number K increases, the diversity348

of the population increases. Although expanding349

the number of population can enlarge the search350

space and obtain better results, it also increases the351

computational overhead. Therefore, we evaluate352

the CER of each pair of heterogeneous LMs on the353

validation dataset for each generation. The top K354

pairs with the lowest CERs will be chosen as the 355

the parents of the next generation. 356

5 Reinforced Match-and-Merge 357

Although GMM can generate high quality LMs, 358

it still takes much training time to get a accurate 359

solution. This is because GMM is purposeless ran- 360

dom crossover and mutation leading to the slow 361

convergence speed of the algorithm. Therefore, the 362

genetic algorithm is still some distance from the 363

real world application. To solve the above bottle- 364

neck, we propose a Reinforced Match-and-Merge 365

(RMM) paradigm which adopts a reinforcement 366

learning agent (Mnih et al., 2013). It utilizes the 367

feedback of each evolution to guide the following 368

optimization, which can produce comparable re- 369

sults as GMM but more efficient. 370

The major challenge of this idea is to convert 371

the merging problem for LM into a mathematical 372

formulation that the agent can task actions. In this 373

work, we use the rigorous proposition from (Tan 374

et al., 2020) to present the following mathematical 375

formulation of DNN LM: 376

W l
R,T =

n∑
i=1

θliW
l
R,i + ∆W l

R,T

s.t. θli > 0,

n∑
i=1

θli = 1

(1) 377

where (1 ≤ l ≤ L) and the extra variable ∆W l
R,T 378

denotes the changes caused by the mutation opera- 379
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tor. The summation term
∑n

i=1 θ
l
iW

l
R,i stimulates380

the crossover operator.381

From Equation 1 we can conclude that the off-382

spring generated by the operators of the genetic383

algorithm follows the above pattern. Therefore,384

similar to the above proposition, we can observe385

that the merge of n-gram LM can be presented by386

the following formula:387

MN,T =

n∑
i=1

φiMN,i +

n∑
j=1

∆AjM,T

s.t. φi > 0,
n∑
i=1

φi = 1

(2)388

where (1 ≤ l ≤ L) and the extra variable AjM,T389

denotes the changes caused by the mutation opera-390

tor. The summation term
∑n

i=1 φiMN,i stimulates391

the crossover operator.392

Now, we have already formulate the pattern of393

n-gram LM and DNN LM. The target model is394

to follow this pattern and the overall optimization395

problem can be defined as:396

min
∆W l

R,T ,θ
l
i,W

l
R,i,∆A

j
M,T ,φi

`(MN,T ,MR,T )

s.t. W l
R,T =

n∑
i=1

θliW
l
R,i + ∆W l

R,T

MN,T =

n∑
i=1

φiMN,i +

n∑
j=1

∆AjM,T

θli > 0, φi > 0,
n∑
i=1

θli = 1,
n∑
i=1

φi = 1

(3)397

where MN,T and MR,T are parameters of the398

target n-gram LM and DNN LM, respectively.399

`(MN,T ,MR,T ) is the loss function of paired mod-400

els assessed on validation sets.401

Next we describe a novel reinforced paradigm402

for match-and-merge upgrade. The framework is403

illustrated in Figure 3. Typically, the set of source404

models can be viewed as an environment. Accord-405

ing to the above mathematical formulation, we can406

define the action set A as a sequence of tokens407

[a1, ..., at] that decide what variables to participate408

in the merge function, and thus update the environ-409

ment state. The state st is made up of two com-410

ponents sMt and sRt . sMt is the output model pairs411

of the merge function f(at;MR,MN ) guided by412

actions at. sRt is the measurement output produced413

by a non-differentiable evaluation operation that414

executed on the validation dataset. After taking ac- 415

tions at each timestep t, the agent receives a reward 416

signal rt from the environment. The agent tends to 417

predict more favorable evolution strategy with the 418

positive reward. 419

The agent is an actor-critic structure (Konda and 420

Tsitsiklis, 2000) containing a policy part and a 421

value part. The policy part implements a recurrent 422

neural network (Zaremba et al., 2014) sering as a 423

actor. It provides a policy π(at|st) that represents 424

the probability of selecting each action under the 425

state st. Different from common architecture, the 426

output sequence is subject to the Equation 1 and 2. 427

Therefore, we design a constrained connection to 428

convert the static structure into a dynamic one. At 429

timestep t, a coefficient v is added to the network. 430

It is the sum of previous predictions at timestep 431

1, ..., t − 1. It controls the activation function ∂ 432

to limit its output under the constraint of previous 433

layers. Each ∂ produces the current state and the 434

next state as follows: 435

ot = ∂(vT tanh(Wpst−1 + Ucot−1)) (4) 436

where st represents the hidden state of the agent at 437

timestep t, ot represents the output state at timestep 438

t, and the matrices Wp, Uc and v are trainable pa- 439

rameters. We sample from the output results to de- 440

termine the current action, and use it for the input 441

and control variables of the next layer. Note that 442

this constraint exists only between homogeneous 443

models, but not between heterogeneous models. 444

The value part serves as the critic which approx- 445

imates the expected value under the state st. Here 446

the agent receives the value of 1 − CER as the 447

reward signal rt on the validation dataset at con- 448

vergence. The training process will not be finished 449

until the reward exceeds the threshold. Since the 450

value part is a non-differentiable function, we can 451

define the following policy gradient strategy based 452

on the REINFORCE rule (Williams, 1992): 453

∇ωaJ = [∇ωa log π(at|st;ωa)]EP (a1:t;ωa)[rt],
(5) 454

where ωa represents the parameters of the 455

agent, and J(ωa) denotes the expected reward 456

EP (a1:T ;ωa)[rt] for the proposed permutation and 457

combination of actions. Once the agent predicts the 458

actions for merging optimization, the merged mod- 459

els are built and matched. The parameters ωa are 460

optimized according to the Equation 5 to minimize 461

the expected CER of the validation dataset. 462

6



6 Experiment463

6.1 Experimental Setup464

To ensure that our method described in this paper465

is reproducible, we select public available datasets466

to conduct all experiments. Specifically, we choose467

seven speech datasets from the OpenSLR 1 website,468

which are SLR18, SLR33, SLR38, SLR47, SLR62,469

SLR68, SLR93. Each dataset can be regarded as470

the private data owned by each curator, and does471

not participate in the model training of other cura-472

tors. Some datasets have been divided into training473

sets, validation sets and test sets in advance, and474

we conduct experiments according to the existing475

divisions. For some datasets without splitting, we476

randomly split them into training, validation and477

test datasets with proportions 60%:20%:20%. The478

CER of the merged model on the held-out valida-479

tion dataset will be recorded.480

For fair comparison, we use SLR33, SLR38,481

SLR47, SLR62 and SLR93 to train five pairs of482

n-gram LMs and DNN LMs, respectively. These483

five paired models can be viewed as the source484

models (MN ,MR). SLR18 and SLR68 are used485

as the unknown dataset to evaluate the generaliza-486

tion performance of the merged model. Each pair487

of LMs is trained by the same training criterion for488

the DNN model named maximum mutual informa-489

tion (Bahl et al., 1986) with the same initialization.490

Due to the low efficiency of GMM, we collect the491

validation sets of the five datasets and randomly492

sample 10% of the data for evaluation.493

We use the open source toolkit Kaldi (Povey494

et al., 2011) to establish the ASR system. Its built-495

in "Chain" model can be utilized as the acoustic496

model which consists of the pre-trained HMM and497

DNN. Here we adopt the Time Delay Neural Net-498

work (TDNN) (Waibel et al., 1989) as the struc-499

ture of the acoustic neural network. For LM, we500

choose the RNN (Mikolov et al., 2010) as the DNN501

LM and the tri-gram model as the backoff n-gram502

LM. The n-gram LM is trained by the open-source503

toolkit SRILM (Stolcke, 2002). All experiments504

are conducted on Intel Xeon CPU of 72 cores,505

NVIDIA Tesla K80 GPU and 314GB memory.506

To the best of our knowledge, we are the first507

to study the merging of heterogeneous models and508

there is no related methods reporting results. So we509

design the following baseline methods and compare510

our model with them: (a) Fine-tuning. We use the511

1http://www.openslr.org/resources.php

Figure 4: CER on the test sets of SLR18 and SLR68.
Lower values are better.

Figure 5: Average CER on test sets of SLR33, SLR38,
SLR47, SLR62 and SLR93. Lower values are better.

pre-trained source n-gram LM and DNN LM and 512

fine-tune them on the validation dataset. (b) Direct 513

Average. We directly average the parameters of all 514

source models to obtain the target model. (c) GMM. 515

(d) RMM. All baseline methods are assessed on 516

the validation dataset to optimize the target paired 517

models by default. 518

6.2 Effectiveness Evaluation 519

We compare the performance of direct average, 520

GMM, RMM and fine-tuning. All these methods 521

use the same source models and we ensure that 522

all models have been trained to convergence. In 523

detail, GMM runs for 100 generations, and each 524

population in each generation selects the 15 best 525

individuals for matching. 526

We reports the CERs of all the models, includ- 527

ing the source models. All results are evaluated on 528

the test set of each dataset. Figure 5 presents the 529

performance of all models on test datasets SLR33, 530

SLR38, SLR47, SLR62 and SLR93. We can easily 531

conclude that the four baseline methods achieve 532

better results than the source models. This is be- 533

cause the source model only fits better on their 534

7



Figure 6: Convergence curves of GMM and RMM. The secondary axis corresponds to GMM, and the primary axis
corresponds to the remaining methods.

respective datasets, but cannot be well generalized535

to other domains. The performances of different536

source models also vary a lot due to the distinct537

size and quality of the training dataset. The dif-538

ferences between the source models increase the539

challenge of model merging. Among them, RMM540

obviously surpasses all other optimization methods541

and proves to be the best method.542

In order to further study the model generaliza-543

tion, we assess all models on other test datasets of544

SLR18 and SLR68, respectively, and the results545

are reported in Figure 4. Although fine-tuning can546

slightly improve the quality of the target model547

and surpasses most source models, it is still worse548

than source model SLR62 and SLR93. The SLR62549

and SLR93 datasets contains more speech records550

than other ones, and the data distribution of the551

curator’s private dataset is more general. Other552

source models reports the highest CER on both553

two datasets. The direct average method outper-554

forms the source models and fine-tuning, but it is555

obviously not as good as the results achieved by556

the GMM and RMM. GMM and RMM report the557

lowest CER on both two datasets. Between them,558

RMM achieves sightly lower CER than GMM and559

sets up a new state-of-the-art.560

6.3 Efficiency Evaluation561

We compare the efficiency between GMM and562

RMM, and the CERs of the best-so-far merged563

models over iterations are summarized in Figure564

6. We define the iteration as one model passes565

through the validation dataset, and GMM should566

take more than 1000 iterations to evaluate each567

pair of models on the validation dataset. By con-568

trast, RMM only needs to run for 30 iterations. We569

can observe that RMM converges more quickly570

than GMM. The CER of RMM drops significantly571

after just one iteration, and the network finally con-572

verges to the optimal in less than 30 iterations. On 573

the contrary, GMM performs optimization in a very 574

slow process. In the first 60 iterations, the perfor- 575

mance of its top-K models did not exceed the direct 576

average models and the transfer learning models. 577

Although it can generate a better pair of models 578

than the above two methods after 660 iterations, it 579

still falls behind RMM. Under the same computing 580

resources and experimental setting, GMM takes 15 581

days to merge models, while RMM only takes 2 582

days to complete model merging. This suggests the 583

benefits of RMM, which utilizes the CER of the 584

merged models as a reward to guide the network to 585

search for a better merging strategy. GMM lacks 586

information support, which makes the search effi- 587

ciency much low. Though both two methods can 588

generate comparable results in terms of the merged 589

model quality, RMM substantially performs more 590

accurately and efficiently than GMM, and is more 591

practical to apply to the large-scale data processing. 592

7 Conclusion 593

In this paper, we explore the optimization of het- 594

erogeneous language models in ASR and propose a 595

novel Match-and-Merge paradigm. We train multi- 596

ple pairs of n-gram LM and DNN LM on different 597

datasets as source models. In order to merge them 598

into the target paired models which have better 599

quality, we propose two novel algorithms: GMM 600

and RMM. GMM is based on the genetic evolution, 601

and RMM utilizes the strategy of reinforcement 602

learning with a novel mathematical formulation. 603

Experiments demonstrate that both two algorithms 604

can significantly improve the performance of lan- 605

guage model with a few-sample validation dataset. 606

Furthermore, RMM that employs the feedback in- 607

formation to guide the search shows superior effi- 608

ciency and can be applied to the real world with 609

large-scale data. 610

8



References611

Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk,612
Philemon Brakel, and Yoshua Bengio. 2016. End-to-613
end attention-based large vocabulary speech recog-614
nition. In 2016 IEEE international conference on615
acoustics, speech and signal processing (ICASSP),616
pages 4945–4949. IEEE.617

Lalit Bahl, Peter Brown, Peter De Souza, and Robert618
Mercer. 1986. Maximum mutual information es-619
timation of hidden markov model parameters for620
speech recognition. In ICASSP’86. IEEE Interna-621
tional Conference on Acoustics, Speech, and Signal622
Processing, volume 11, pages 49–52. IEEE.623

Yoshua Bengio. 2009. Learning deep architectures for624
AI. Found. Trends Mach. Learn., 2(1):1–127.625

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie626
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind627
Neelakantan, Pranav Shyam, Girish Sastry, Amanda628
Askell, et al. 2020. Language models are few-shot629
learners. arXiv preprint arXiv:2005.14165.630

William Chan, Navdeep Jaitly, Quoc Le, and Oriol631
Vinyals. 2016. Listen, attend and spell: A neural632
network for large vocabulary conversational speech633
recognition. In 2016 IEEE International Confer-634
ence on Acoustics, Speech and Signal Processing635
(ICASSP), pages 4960–4964. IEEE.636

Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Ro-637
hit Prabhavalkar, Patrick Nguyen, Zhifeng Chen,638
Anjuli Kannan, Ron J Weiss, Kanishka Rao, Eka-639
terina Gonina, et al. 2018. State-of-the-art speech640
recognition with sequence-to-sequence models. In641
2018 IEEE International Conference on Acoustics,642
Speech and Signal Processing (ICASSP), pages643
4774–4778. IEEE.644

George E Dahl, Dong Yu, Li Deng, and Alex Acero.645
2011. Context-dependent pre-trained deep neural646
networks for large-vocabulary speech recognition.647
IEEE Transactions on audio, speech, and language648
processing, 20(1):30–42.649

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and650
Kristina Toutanova. 2018. Bert: Pre-training of deep651
bidirectional transformers for language understand-652
ing. arXiv preprint arXiv:1810.04805.653

Linhao Dong, Shuang Xu, and Bo Xu. 2018. Speech-654
transformer: a no-recurrence sequence-to-sequence655
model for speech recognition. In 2018 IEEE Interna-656
tional Conference on Acoustics, Speech and Signal657
Processing (ICASSP), pages 5884–5888. IEEE.658

Mark J. F. Gales and Steve J. Young. 2007. The applica-659
tion of hidden markov models in speech recognition.660
Found. Trends Signal Process., 1(3):195–304.661

J-L Gauvain and Chin-Hui Lee. 1994. Maximum a pos-662
teriori estimation for multivariate gaussian mixture663
observations of markov chains. IEEE transactions664
on speech and audio processing, 2(2):291–298.665

Joshua T Goodman. 2000. Putting it all together: lan- 666
guage model combination. In 2000 IEEE Interna- 667
tional Conference on Acoustics, Speech, and Sig- 668
nal Processing. Proceedings (Cat. No. 00CH37100), 669
volume 3, pages 1647–1650. IEEE. 670

Alex Graves. 2012a. Sequence transduction with 671
recurrent neural networks. arXiv preprint 672
arXiv:1211.3711. 673

Alex Graves. 2012b. Supervised Sequence Labelling 674
with Recurrent Neural Networks, volume 385 of 675
Studies in Computational Intelligence. Springer. 676

Alex Graves, Santiago Fernández, Faustino Gomez, 677
and Jürgen Schmidhuber. 2006. Connectionist 678
temporal classification: labelling unsegmented se- 679
quence data with recurrent neural networks. In Pro- 680
ceedings of the 23rd international conference on Ma- 681
chine learning, pages 369–376. 682

Alex Graves, Abdel-rahman Mohamed, and Geoffrey 683
Hinton. 2013. Speech recognition with deep recur- 684
rent neural networks. In 2013 IEEE international 685
conference on acoustics, speech and signal process- 686
ing, pages 6645–6649. Ieee. 687

Hitesh Gupta and Deepinder Singh Wadhwa. 2014. 688
Speech feature extraction and recognition using ge- 689
netic algorithm. International Journal of Emerging 690
Technology and Advanced Engineering, 4(1):363– 691
369. 692

Biing-Hwang Juang, Wu Hou, and Chin-Hui Lee. 693
1997. Minimum classification error rate methods for 694
speech recognition. IEEE Transactions on Speech 695
and Audio processing, 5(3):257–265. 696

Vijay R Konda and John N Tsitsiklis. 2000. Actor- 697
critic algorithms. In Advances in neural information 698
processing systems, pages 1008–1014. 699

Christopher J Leggetter and Philip C Woodland. 1995. 700
Maximum likelihood linear regression for speaker 701
adaptation of continuous density hidden markov 702
models. Computer speech & language, 9(2):171– 703
185. 704

Jinyu Li, Rui Zhao, Eric Sun, Jeremy HM Wong, Amit 705
Das, Zhong Meng, and Yifan Gong. 2020. High- 706
accuracy and low-latency speech recognition with 707
two-head contextual layer trajectory lstm model. 708
In ICASSP 2020-2020 IEEE International Confer- 709
ence on Acoustics, Speech and Signal Processing 710
(ICASSP), pages 7699–7703. IEEE. 711

Xunying Liu, Mark JF Gales, Jim L Hieronymus, and 712
Philip C Woodland. 2010. Language model com- 713
bination and adaptation usingweighted finite state 714
transducers. In 2010 IEEE International Conference 715
on Acoustics, Speech and Signal Processing, pages 716
5390–5393. IEEE. 717

Brendan McMahan, Eider Moore, Daniel Ramage, 718
Seth Hampson, and Blaise Aguera y Arcas. 2017. 719
Communication-efficient learning of deep networks 720

9



from decentralized data. In Artificial Intelligence721
and Statistics, pages 1273–1282. PMLR.722

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan723
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A More details about GMM818

Genetic algorithm is an evolutionary algorithm, and819

its basic principle is to imitate the evolutionary laws820

of the nature. It starts from a population that rep-821

resents the potential solution set of the problem,822

and each generation evolves to produce a better823

approximate solution according to their fitness in824

the problem domain. The key factor is to use the825

genetic operators to combine the crossover and mu-826

tation of the population to produce a new potential827

population. This process will cause the population828

to be like natural evolution, the offspring popula-829

tion is more adapted to the environment than the830

previous generation, and the optimal individual in831

the last generation population can be used as the832

approximate optimal solution to the problem.833

The overall workflow of GMM is shown in Al-834

gorithm 1, where two additional hyper parameters835

p1 and p2 denote the probabilities of mutation and836

crossover, respectively.837

Algorithm 1 Genetic Match-and-Merge Algorithm
Input:source paired models M1,M2,...,Mn

Initialize P = {M1, M2, ... ,Mn},
PN = {MN,1, MN,2, ..., MN,n}, PR = {MR,1,
MR,2, ..., MR,n}

1: while not converged do
2: for each MN,i in PN do
3: With probability p1 let

PN = PN ∪Mutation(MN,i)
4: end for
5: for each MR,i in PR do
6: With probability p1 let

PR = PR ∪Mutation(MR,i)
7: end for
8: Randomly shuffle P
9: for each adjacent models MN,i; MN,i+1 in

PN do
10: With probability p2 let

PN = PN ∪ Crossover(MN,i,MN,i+1)
11: end for
12: for each adjacent models MR,i; MR,i+1 in

PR do
13: With probability p2 let

PR = PR ∪ Crossover(MR,i,MR,i+1)
14: end for
15: Reproduction(PN × PR)
16: Let P be the set of top-K pairs (PN,T , PR,T )
17: end while

Although experiments show that the genetic strat-838

Figure 7: CERs of the target models optimized on dif-
ferent size of validation set.

egy is an effective method, the limitation is that the 839

results of each genetic operator are random, which 840

leads to the generated offspring not necessarily 841

achieving better quality. This inspires us to utilize 842

the evolution results at each time step to pass the in- 843

formation to the next round of evolution, and guide 844

each evolution towards a good quality direction as 845

much as possible. Reinforcement learning regards 846

the learning process as a trial evaluation where a 847

agent selects an action for the environment. After 848

the environment accepts the action, the state of the 849

agent changes, and at the same time, a reward or 850

punishment signalis generated and fed back to the 851

agent. The agent selects the next action based on 852

the reinforcement signal and the current state of 853

the environment. The principle of selection is to 854

increase the probability of receiving positive award. 855

The selected action not only affects the immedi- 856

ate enhancement value, but also affects the state of 857

the environment at the next moment and the final 858

enhancement value. This reinforcement strategy 859

can make up for the deficiencies of GMM, thereby 860

improving time efficiency. 861

B Dataset Collection 862

The detailed statistics of all datasets are shown in 863

Table 1. 864

C Variation of Validation Data Size 865

Both GMM and RMM use an extra validation 866

dataset for model merging. To understand the im- 867

portance of validation data size on the final results, 868

we vary the size of validation dataset and analyze 869

the changes of CERs on the test dataset. We ran- 870

domly take samples from the complete validation 871

dataset of SLR33, SLR38, SLR47, SLR62 and 872

SLR93 with different proportions at 1%; 2%; 5%; 873
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Dataset Name Training Validation Test
no.wav duration(h) no.wav duration(h) no.wav duration(h)

SLR18 THCHS-30 8032 20.5 2667 6.7 2689 6.8
SLR33 Aishell 120018 151.2 14331 18.1 7176 10.0
SLR38 Free ST Chinese Mandarin Corpus 61560 65.5 20520 22.0 20520 22.0
SLR47 Primewords Chinese Corpus Set 1 30232 59.2 10076 19.8 10076 19.8
SLR62 aidatatang 200zh 164905 139.9 24216 20.2 48144 40.2
SLR68 Chinese Read Speech Corpus 621665 727.0 12140 13.9 24279 27.9
SLR93 AISHELL-3 63262 61.1 12387 12.0 12386 12.0
Total N/A 1069674 1224.4 96337 112.7 125270 138.7

Table 1: Statistics of the datasets

Figure 8: CERs of the target models optimized on dif-
ferent number of the source models.

10%; 20%; 50%; 100%. Then, we perform GMM874

and RMM based on the subsets and compare the875

results of these two algorithms with direct average.876

All Note that when the size of validation subsets877

is greater than 10%, we no longer test GMM be-878

cause of its low efficiency. The evaluation results879

are reported in Figure 7, and we can find that both880

GMM and RMM benefit from larger validation881

dataset and can yield better pair of target models.882

Moreover, only a limited validation subset with 1%883

proportion can make both two algorithms surpass884

the direct average. Considering that 1% of the vali-885

dation data only accounts for approximately 0.3%886

of the training data, our method is sufficiently prac-887

tical for real world application, using only a small888

amount of data to significantly reduce test CER.889

However, further expansion of data volume does890

not bring greater improvement to the RMM since891

the size of validation set is already large enough.892

D Influence of Source Model Number893

We study the target model quality obtained by dif-894

ferent numbers of source models, and all the source895

models are sequentially and separately added as in-896

put to the comparison methods for training. Note897

that genetic algorithm and transfer learning cannot898

be input sequentially, so they do not participate in 899

this study. We ensure that the input of all methods 900

is the same sequence, and the results are presented 901

in Figure 8. We can find that the more the number 902

of merged models, the more obvious the perfor- 903

mance will be improved. Moreover, our method 904

only needs a smaller number of models to merge 905

a target model with a quality comparable to the 906

target model merged with more models by the di- 907

rect averaging method. However, it can be seen 908

that not merging all models together can produce 909

better results. The quality of the merging obviously 910

depends on the quality of the individual source 911

models. Because the direct averaging method is 912

only a simple averaging, it has increased the error 913

rate after some models are merged. As our method 914

uses reinforcement learning to guide the search, 915

the searcher assigns lower weights to models with 916

lower quality and higher weights to models with 917

better performance according to the reward. 918
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