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Abstract

The rising data privacy risks make it diffi-
cult for automatic speech recognition (ASR)
systems to acquire complete training data in
practical application. Recently, the merge
paradigm for acoustic model has been pro-
posed to solve the issue. However, ASR still
suffers from another salient issue on language
model. Current efforts mainly focus on iso-
morphic neural network models, while lan-
guage model optimization is characterized by
merging and matching heterogeneous models
including n-gram and neural network models.
In this paper, we propose a novel Match-and-
Merge paradigm to fill up the vacuum for the
language model optimization. Based on dif-
ferent training datasets, we train multiple lan-
guage model pairs. In order to merge them into
a target pair with the best performance, we first
propose a Genetic Match-and-Merge (GMM)
method that can be specifically adopted to op-
timize heterogeneous models. To improve the
algorithm efficiency, we further propose a Re-
inforced Match-and-Merge (RMM) method,
which maintains superior recognition accu-
racy while reducing convergence time. Exten-
sive experiments demonstrate the effectiveness
and generalization of our proposed methods,
which significantly establishes the new state-
of-the-art.

1 Introduction

Automatic speech recognition (ASR) has been
widely used in many fields such as communication,
education and automobiles. With the development
of deep learning, training recognition models re-
quires a huge amount of language and speech data
from various domains as support. However, in re-
cent years, it has become increasingly infeasible to
train models with complete data due to the increas-
ing data privacy risk which makes distinct curators
reluctant to share their own private data.
Compared with hard-to-obtain private data, it
seems more realistic and reliable to utilize exist-
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Figure 1: The optimization of heterogeneous language
models in ASR. The n-gram LM and the NN LM are
heterogeneous, different curators use their own private
data to train the initial model pair locally. Multiple
pairs of source LMs need to be merged and matched
to obtain a better quality target model pair.

ing ASR models at hand that have been trained
with different datasets. A feasible strategy is to dis-
tribute the initial model to different curators, who
possesses their own private data. Each curator uses
their own private data to train the model locally
and then sends the model back instead of the data.
The model parameters of different versions trained
by different curators will be merged into param-
eters of one version as the final training result of
the initial model through a merge paradigm. The
merged model performs better than any local train-
ing model, and can be used as a pre-trained model
for future task transfer.

The main challenge of this strategy is how to
design a merge paradigm. Averaging all model
parameters is a simple and straightforward prac-
tice, and has been proved to be effective (McMa-
han et al., 2017). However, whether there is a
better merge paradigm is still worth discussing.
(Tan et al., 2020) first proposes a divide-and-merge
paradigm and successfully applies it to the acoustic
model merge. However, this method is limited to
neural network models, and cannot be applied to
other machine learning models that are not neural
network structures in ASR.

Although end-to-end speech recognition model
has been extensively studied in the research com-
munity, the real industrial deployment of ASR still



contains two distinct components: the acoustic
model (AM) and the language model (LM) (Li
et al., 2020). For AM, the end-to-end deep neural
network (DNN) is the first choice (Graves et al.,
2006; Graves, 2012a; Chan et al., 2016), and for
LM, n-best list is the most common practice (Si
et al., 2012, 2013; Sundermeyer et al., 2015). Dif-
ferent from AM that only uses DNN, LM first uses
the n-gram model to identify the n-best list or lat-
tice, and then uses a high-level model like DNN to
re-mark these sentences to obtain the recognition
result. Note that the n-gram model model is a non-
neural network structure and is heterogeneous with
the DNN model.

In this paper, we do not solely focus on iso-
morphic model optimization, but propose an unex-
plored heterogeneous language model optimization
problem in ASR as shown in Figure 1. Different
from AM optimization, the main challenges for LM
optimization can be summarized as the following
aspects: 1) The existing AM optimization methods
are only designed for isomorphic model, but the
structure of n-gram LM has intra-class different
structure from the DNN which is heterogeneous.
2) The language part is a heterogeneous combi-
nation of the n-gram LM and the DNN LM, two
models require mutual matching to achieve the best
performance. 3) Compared with AMs, LMs have
larger parameters and are more difficult and time-
consuming to train. Therefore, existing approaches
for AM optimization could not be applied to LM
optimization.

To tackle the above issues, we propose a novel
match-and-merge paradigm for LM optimization in
ASR. We first propose a genetic match-and-merge
method named GMM, which treats n-gram and
DNN LMs as two populations merged separately,
and then matches the two populations. The merge
results caused by the operation of GMM are ran-
dom. In order to further improve efficiency, then
we propose a novel reinforced optimization method
named RMM to utilize the current merge result as
feedback information to guide the next merge op-
eration. We set up the problem by formalizing the
language model optimization into a mathematical
problem. The agent observes the performance of
target model pairs and select an action to modify
the optimization strategy. Information thus feeds
back from the validation stage to the training stage.
Experiments show that RMM still obtains compa-
rable merged model while reducing much compu-

tation overhead.

Contributions in this paper include: 1) We iden-
tify a new task of merging heterogeneous language
models in ASR. 2) We propose two novel strategies
for the matching and merging of heterogeneous
LMs with defined formulation. 3) Extensive ex-
periments on public datasets demonstrate that the
ASR model transferred by our proposed method
can effectively improve the recognition accuracy
and time efficiency.

2 Related Work

2.1 Automatic Speech Recognition

Automatic speech recognition is widely used in the
industry. Considering the practical implementa-
tion, current mainstream framework for industrial
product is mainly composed of AM and LM (Li
et al., 2020). The AM extracts features from the
original speech signal and captures the relationship
between feature vectors and phonemes. The LM
predicts the word sequence with the highest proba-
bility. In addition, a dictionary counts phoneme-to-
word mappings to connect AM and LM.

For traditional ASR, the AM is represented by
the the Gaussian Mixture Model - Hidden Markov
Model (GMM-HMM) (Rabiner, 1989; Gales and
Young, 2007). This framework uses GMM to pre-
dict the observation probability of the speech state,
and then uses HMM to predict the transition proba-
bility of the speech state. The LM usually adopts
the n-gram LM (Ullmann, 1977; Suen, 1979) based
on a large-scale text or audio corpus to count the
frequency of adjacent words. Some subsequent
efforts further improve the performance of GMM-
HMM framework, including speaker adaptation
(Gauvain and Lee, 1994; Leggetter and Woodland,
1995) and discriminative training (Bahl et al., 1986;
Juang et al., 1997).

However, since the milestone breakthrough
of deep learning (Senior et al., 2012; Bengio,
2009), deep neural network (DNN) has swept the
speech field and has become the mainstream re-
search direction in both academic and industrial
circles. For AM, some works attempt to com-
bine DNN with HMM and replace the original
GMM. Typical representatives of this DNN-HMM
framework are FFDNN-HMM (Dahl et al., 2011),
CNN-HMM(Sainath et al., 2013) and RNN-HMM
(Graves et al., 2013). Other works focus on end-to-
end speech recognition solutions, such as connec-
tionist temporal classification (CTC) (Graves et al.,



2006) and Transducer (Graves, 2012b). Recently,
the application of Attention (Bahdanau et al., 2016;
Chiu et al., 2018) and Transformer (Dong et al.,
2018; Zhou et al., 2018) in the end-to-end ASR
has also achieved obvious improvements. How-
ever, to the best of our knowledge, the AM based
on the DNN-HMM framework has achieved the
state-of-the-art performance at present.

Compared with the AM, the LM has attracted
slightly less attention. In addition to the traditional
n-gram LM, some DNN based LMs have recently
been applied to ASR. Especially, key Transformer-
based models, such as GPT (Brown et al., 2020),
BERT (Devlin et al., 2018) and XLNet (Yang et al.,
2019), have achieved breakthrough improvements
compared to previous LMs. ASR product usually
uses the n-gram LM for rough selection, and uses
the DNN LM for refinement. Although there have
been many end-to-end LM researches in academic
circles, the hybrid n-best list practice with two dis-
tinct components n-gram LM and DNN LM still
dominates the industrial area due to its robustness,
and flexibility and modularization.

2.2 Language Model Optimization

‘We note that some efforts (Pickhardt et al., 2014,
Liu et al., 2010; Goodman, 2000) focus on lan-
guage model combination. Though model com-
bination can deal with heterogeneous LMs, it is
completely different from this task setting and we
should clarify their differences. For model combi-
nation, it does not require merging all models into
a single one. In inference, all models predict the
results separately, and these results are combined
to get the final output. Therefore, model combina-
tion is more similar to ensemble learning (Zhou,
2012). However, our model merging is to distribute
the model first, then merge the model parameters
obtained from local training on different datasets,
and use the merged parameters as the result of the
model fitting on multiple datasets. Model combina-
tion methods increase the target model size as the
number of source models increases, while model
merging methods can maintain the size of target
model the same as initial model, which is more
suitable for large-scale industrial deployment.

In this paper we study the language model op-
timization which requires the merged model to be
improved iteratively. Existing works for model
merging only focus on AM optimization. As for
acoustic model, recently Tan et al. (Tan et al.,

2020) first proposes a paradigm of model division
and merging with two novel algorithms. This tech-
nique has been successfully applied to the acoustic
model, but they are limited to deep neural networks
based models. However, as for language model,
n-best list is still the best performing system for
practical implementation which consists of n-gram
LM and DNN LM. The n-gram LM and the NN
LM are heterogeneous, and are a non-neural net-
work structure and a neural network structure, re-
spectively. The existing AM optimization methods
mainly study end-to-end neural network models.
Therefore, these methods cannot be applied to het-
erogeneous language models containing non-neural
network structures. In this paper, we are the first
to explore the LM optimization task in ASR. It re-
quires simultaneous optimization of neural network
and non-neural network models, and the match-
ing performance of the two heterogeneous models
should be better than the performance of source
model pairs.

3 Problem Formulation

Suppose that there is a set of n private datasets
for different business scenarios, 7' = {71, ..., T, }.
Each dataset T; is trained on a pair of LM M; =
(Mn,i, MR,;), where My ; represents the ith n-
gram LM and Mg ; represents the ith DNN LM.
These n-gram LMs share the homogenous struc-
ture but different parameters, and so are the DNN
LMs. The n-gram LM and the DNN LM are hetero-
geneous with each other. We name these n paired
LMs as the source models. In this task, all the
source models will be merged into one paired tar-
get model Mp = (My,7, Mg 1), which has better
performance than source models but still shares the
same architecture.

The n-gram LM is an n-dimensional matrix, and
each element of the matrix is based on the word
sequence frequency of the corpus. We denote each
column vector of the matrix My ; as Ag\/,i(l <
J < n). For each DNN LM MF, ; we assume it has
L DNN layers, and we denote the parameters of
Ith layer as W}“(l <1 < L), which contains all
types of trainable parameter including weight and
bias. For notational simplicity, we utilize the add
operation on model My ; and Mpg; to represent
the merge operation on model parameters.

For evaluation setting, we require some samples
to validate the the performance of My, and we
name these samples as the validation dataset. Al-
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Figure 2: Overview of Genetic Match-and-Merge. The heterogeneous language models are regarded as different
populations, and each population executes genetic operators separately to produce the next generation population.
The individuals of the two populations are matched one by one, and the combination with the highest matching

fitness is selected and reproduced to the next generation.

though extra validation dataset is essential, only
very few data can significantly improve the per-
formance of the model, which will be discussed
in the following section. It implies that the LM
can achieve comparable results with fewer train-
ing samples. For fair comparison, we also need
some extra datasets in the unknown business sce-
narios to test M, and we name those data as the
test dataset. Besides, private datasets 7' is referred
as the training dataset. We adopt the widely used
metric Character Error Rate (CER) to assess the
merging quality of LMs. It measures the the leven-
shtein distance between the ground truth and our
recognition hypothesis according to the number of
characters in ground truth.

4 Genetic Match-and-Merge

In order to achieve the evolution of models, a
straightforward idea is to apply the genetic algo-
rithm (Sampson, 1976).

We introduce a Genetic Match-and-Merge
(GMM) algorithm, which is calibrated for the
matching and merging paradigm of two different
heterogeneous models n-gram LM and DNN LM.

As shown in Figure 2, we can regard the source
models as the initial population. The operators of
generating offspring includes three classical prac-
tices in the genetic algorithm: reproduction, mu-

tation and crossover. The main difficulty lies in
adapting these three operators to the two hetero-
geneous LMs. We design the mutation and the
crossover operators as follows.

For DNN LM, we follow some common prac-
tices (Gupta and Wadhwa, 2014; McMabhan et al.,
2017).

o Mutation. It modifies the binary file of the
selected model and reverses one bit at random.

e Crossover. It selects two adjacent models and
randomly taking the [th (1 < < L) layer as
the exchange point. The first [ layers of one
model and the back L — 1 layer of another
model will be combined to generate a new
model. For example, for Mpg; and Mg ;11
we can obtain two generated offsprings:

M., — (W Wi ! wk

R — { R, R, R,i-‘,—ll""’ R,i+l’}
— (W Wl Wi+l Wl

Mp ;1 ={ Rit+1 0 " Rip1 VR R,i'}

For n-gram LM, the optimization of My =
{MnN,...Mypy} can be considered as combin-
ing all the elements of two parent matrices in a
weighted way to generate a new one.

e Mutation. It randomly selects one column
of the selected model and adds the elements
of this column by a coefficient k, where k
randomly samples from (0, 1), i.e.,
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Figure 3: Overview of Reinforced Match-and-Merge. With a mathematical formulation, the merging problem can
be converted into a variable selection problem. Then a recurrent network predicts each variable for the LM with a
dynamic constraint. The reinforced architecture minimizes the CER of merged models on the validation dataset.

My o = [0, .., 097 kAL 07FL 0"+ My

e Crossover. It crosses two adjacent models in
pairs and sums them weighted to generate a
new model, i.e.,

My =AMy + (1 =AMy i1

where A is a trade-off weight sampled from (0, 1)
at random.

For reproduction, in addition to copying the mod-
els to the next generation, it also needs to match
heterogeneous models. We can regard the n-gram
LM and DNN LM as two different populations,
and define the fitness as the degree of matching
between the two populations. The reproduction
determines the parents of next generation for each
population according to this new fitness. It first
matches the best K n-gram LMs with the best K
DNN LMs one by one, and then measures the fit-
ness of each paired heterogeneous models. Finally
it copies the K groups of models with the highest
fitness to the next generation. To assess the fitness
of the population, we adopt CER as the metric and
the lower the CER, the better the fitness. Note that
these K groups may have the same model, and
as the selection number K increases, the diversity
of the population increases. Although expanding
the number of population can enlarge the search
space and obtain better results, it also increases the
computational overhead. Therefore, we evaluate
the CER of each pair of heterogeneous LMs on the
validation dataset for each generation. The top K

pairs with the lowest CERs will be chosen as the
the parents of the next generation.

5 Reinforced Match-and-Merge

Although GMM can generate high quality LMs,
it still takes much training time to get a accurate
solution. This is because GMM is purposeless ran-
dom crossover and mutation leading to the slow
convergence speed of the algorithm. Therefore, the
genetic algorithm is still some distance from the
real world application. To solve the above bottle-
neck, we propose a Reinforced Match-and-Merge
(RMM) paradigm which adopts a reinforcement
learning agent (Mnih et al., 2013). It utilizes the
feedback of each evolution to guide the following
optimization, which can produce comparable re-
sults as GMM but more efficient.

The major challenge of this idea is to convert
the merging problem for LM into a mathematical
formulation that the agent can task actions. In this
work, we use the rigorous proposition from (Tan
et al., 2020) to present the following mathematical
formulation of DNN LM:

n
WIZ%,T = Z eéwzl%,z‘ + AWJI;{,T
i=1

n (1)
st 600>0,) 6 =1
=1

where (1 <1 < L) and the extra variable AW}, -
denotes the changes caused by the mutation opera-



tor. The summation term ;" , 9§W}% ; stimulates
the crossover operator. 7

From Equation 1 we can conclude that the off-
spring generated by the operators of the genetic
algorithm follows the above pattern. Therefore,
similar to the above proposition, we can observe
that the merge of n-gram LM can be presented by
the following formula:

n n
Myr=> ¢iMyi+ > AA) L
i=1 =1

. )
st ¢ >0, ¢i=1

i=1

where (1 < [ < L) and the extra variable AgMT
denotes the changes caused by the mutation opefa—
tor. The summation term 2?21 ¢; M ; stimulates
the crossover operator.

Now, we have already formulate the pattern of
n-gram LM and DNN LM. The target model is
to follow this pattern and the overall optimization
problem can be defined as:

min j LM M
AWIZE,T’%’WILZ,'L’AA%LT’(ZSZ'( N R’T)

n
s.t. W}l%,T = Z ngllm + AW}%T

=1
n n )
My = Z ¢iMn,; + Z AAY 7
=1 =1

00>0,0, >0, Oi=1,> ¢ =1
=1 =1
3)

where My 1 and Mpr are parameters of the
target n-gram LM and DNN LM, respectively.
U(Mp 1, Mg 1) is the loss function of paired mod-
els assessed on validation sets.

Next we describe a novel reinforced paradigm
for match-and-merge upgrade. The framework is
illustrated in Figure 3. Typically, the set of source
models can be viewed as an environment. Accord-
ing to the above mathematical formulation, we can
define the action set .4 as a sequence of tokens
[a1, ..., a;] that decide what variables to participate
in the merge function, and thus update the environ-
ment state. The state s; is made up of two com-
ponents s;/ and st. s} is the output model pairs
of the merge function f(a;; Mr, My) guided by
actions ay. sf is the measurement output produced
by a non-differentiable evaluation operation that

executed on the validation dataset. After taking ac-
tions at each timestep ¢, the agent receives a reward
signal 4 from the environment. The agent tends to
predict more favorable evolution strategy with the
positive reward.

The agent is an actor-critic structure (Konda and
Tsitsiklis, 2000) containing a policy part and a
value part. The policy part implements a recurrent
neural network (Zaremba et al., 2014) sering as a
actor. It provides a policy 7(a;|s;) that represents
the probability of selecting each action under the
state s;. Different from common architecture, the
output sequence is subject to the Equation 1 and 2.
Therefore, we design a constrained connection to
convert the static structure into a dynamic one. At
timestep ¢, a coefficient v is added to the network.
It is the sum of previous predictions at timestep
1,...,t — 1. Tt controls the activation function 9
to limit its output under the constraint of previous
layers. Each 0 produces the current state and the
next state as follows:

oy = O(vT tanh(Wps;_1 + Ueor1))  (4)

where s; represents the hidden state of the agent at
timestep ¢, o; represents the output state at timestep
t, and the matrices W), U, and v are trainable pa-
rameters. We sample from the output results to de-
termine the current action, and use it for the input
and control variables of the next layer. Note that
this constraint exists only between homogeneous
models, but not between heterogeneous models.

The value part serves as the critic which approx-
imates the expected value under the state s;. Here
the agent receives the value of 1 — CER as the
reward signal r; on the validation dataset at con-
vergence. The training process will not be finished
until the reward exceeds the threshold. Since the
value part is a non-differentiable function, we can
define the following policy gradient strategy based
on the REINFORCE rule (Williams, 1992):

Ve = [V, log m(at|st; wa)]EP(alzz;wa) [rt],

)
where w, represents the parameters of the
agent, and J(w,) denotes the expected reward
Ep(ay.71.) (7] for the proposed permutation and
combination of actions. Once the agent predicts the
actions for merging optimization, the merged mod-
els are built and matched. The parameters w, are
optimized according to the Equation 5 to minimize
the expected CER of the validation dataset.



6 Experiment

6.1 Experimental Setup

To ensure that our method described in this paper
is reproducible, we select public available datasets
to conduct all experiments. Specifically, we choose
seven speech datasets from the OpenSLR ! website,
which are SLR18, SLR33, SLR38, SLR47, SLR62,
SLR68, SLR93. Each dataset can be regarded as
the private data owned by each curator, and does
not participate in the model training of other cura-
tors. Some datasets have been divided into training
sets, validation sets and test sets in advance, and
we conduct experiments according to the existing
divisions. For some datasets without splitting, we
randomly split them into training, validation and
test datasets with proportions 60%:20%:20%. The
CER of the merged model on the held-out valida-
tion dataset will be recorded.

For fair comparison, we use SLR33, SLR38,
SLR47, SLR62 and SLLR93 to train five pairs of
n-gram LMs and DNN LMs, respectively. These
five paired models can be viewed as the source
models (My, Mr). SLR18 and SLR68 are used
as the unknown dataset to evaluate the generaliza-
tion performance of the merged model. Each pair
of LMs is trained by the same training criterion for
the DNN model named maximum mutual informa-
tion (Bahl et al., 1986) with the same initialization.
Due to the low efficiency of GMM, we collect the
validation sets of the five datasets and randomly
sample 10% of the data for evaluation.

We use the open source toolkit Kaldi (Povey
et al., 2011) to establish the ASR system. Its built-
in "Chain" model can be utilized as the acoustic
model which consists of the pre-trained HMM and
DNN. Here we adopt the Time Delay Neural Net-
work (TDNN) (Waibel et al., 1989) as the struc-
ture of the acoustic neural network. For LM, we
choose the RNN (Mikolov et al., 2010) as the DNN
LM and the tri-gram model as the backoff n-gram
LM. The n-gram LM is trained by the open-source
toolkit SRILM (Stolcke, 2002). All experiments
are conducted on Intel Xeon CPU of 72 cores,
NVIDIA Tesla K80 GPU and 314GB memory.

To the best of our knowledge, we are the first
to study the merging of heterogeneous models and
there is no related methods reporting results. So we
design the following baseline methods and compare
our model with them: (a) Fine-tuning. We use the

"http://www.openslr.org/resources.php
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Figure 5: Average CER on test sets of SLR33, SLR38,
SLR47, SLR62 and SLR93. Lower values are better.

pre-trained source n-gram LM and DNN LM and
fine-tune them on the validation dataset. (b) Direct
Average. We directly average the parameters of all
source models to obtain the target model. (c) GMM.
(d) RMM. All baseline methods are assessed on
the validation dataset to optimize the target paired
models by default.

6.2 Effectiveness Evaluation

We compare the performance of direct average,
GMM, RMM and fine-tuning. All these methods
use the same source models and we ensure that
all models have been trained to convergence. In
detail, GMM runs for 100 generations, and each
population in each generation selects the 15 best
individuals for matching.

We reports the CERs of all the models, includ-
ing the source models. All results are evaluated on
the test set of each dataset. Figure 5 presents the
performance of all models on test datasets SLR33,
SLR38, SLR47, SLR62 and SLR93. We can easily
conclude that the four baseline methods achieve
better results than the source models. This is be-
cause the source model only fits better on their
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Figure 6: Convergence curves of GMM and RMM. The secondary axis corresponds to GMM, and the primary axis

corresponds to the remaining methods.

respective datasets, but cannot be well generalized
to other domains. The performances of different
source models also vary a lot due to the distinct
size and quality of the training dataset. The dif-
ferences between the source models increase the
challenge of model merging. Among them, RMM
obviously surpasses all other optimization methods
and proves to be the best method.

In order to further study the model generaliza-
tion, we assess all models on other test datasets of
SLR18 and SLR68, respectively, and the results
are reported in Figure 4. Although fine-tuning can
slightly improve the quality of the target model
and surpasses most source models, it is still worse
than source model SLR62 and SLR93. The SLR62
and SLR93 datasets contains more speech records
than other ones, and the data distribution of the
curator’s private dataset is more general. Other
source models reports the highest CER on both
two datasets. The direct average method outper-
forms the source models and fine-tuning, but it is
obviously not as good as the results achieved by
the GMM and RMM. GMM and RMM report the
lowest CER on both two datasets. Between them,
RMM achieves sightly lower CER than GMM and
sets up a new state-of-the-art.

6.3 Efficiency Evaluation

We compare the efficiency between GMM and
RMM, and the CERs of the best-so-far merged
models over iterations are summarized in Figure
6. We define the iteration as one model passes
through the validation dataset, and GMM should
take more than 1000 iterations to evaluate each
pair of models on the validation dataset. By con-
trast, RMM only needs to run for 30 iterations. We
can observe that RMM converges more quickly
than GMM. The CER of RMM drops significantly
after just one iteration, and the network finally con-

verges to the optimal in less than 30 iterations. On
the contrary, GMM performs optimization in a very
slow process. In the first 60 iterations, the perfor-
mance of its top-K models did not exceed the direct
average models and the transfer learning models.
Although it can generate a better pair of models
than the above two methods after 660 iterations, it
still falls behind RMM. Under the same computing
resources and experimental setting, GMM takes 15
days to merge models, while RMM only takes 2
days to complete model merging. This suggests the
benefits of RMM, which utilizes the CER of the
merged models as a reward to guide the network to
search for a better merging strategy. GMM lacks
information support, which makes the search effi-
ciency much low. Though both two methods can
generate comparable results in terms of the merged
model quality, RMM substantially performs more
accurately and efficiently than GMM, and is more
practical to apply to the large-scale data processing.

7 Conclusion

In this paper, we explore the optimization of het-
erogeneous language models in ASR and propose a
novel Match-and-Merge paradigm. We train multi-
ple pairs of n-gram LM and DNN LM on different
datasets as source models. In order to merge them
into the target paired models which have better
quality, we propose two novel algorithms: GMM
and RMM. GMM is based on the genetic evolution,
and RMM utilizes the strategy of reinforcement
learning with a novel mathematical formulation.
Experiments demonstrate that both two algorithms
can significantly improve the performance of lan-
guage model with a few-sample validation dataset.
Furthermore, RMM that employs the feedback in-
formation to guide the search shows superior effi-
ciency and can be applied to the real world with
large-scale data.
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A More details about GMM

Genetic algorithm is an evolutionary algorithm, and
its basic principle is to imitate the evolutionary laws
of the nature. It starts from a population that rep-
resents the potential solution set of the problem,
and each generation evolves to produce a better
approximate solution according to their fitness in
the problem domain. The key factor is to use the
genetic operators to combine the crossover and mu-
tation of the population to produce a new potential
population. This process will cause the population
to be like natural evolution, the offspring popula-
tion is more adapted to the environment than the
previous generation, and the optimal individual in
the last generation population can be used as the
approximate optimal solution to the problem.

The overall workflow of GMM is shown in Al-
gorithm 1, where two additional hyper parameters
pl and p2 denote the probabilities of mutation and
crossover, respectively.

Algorithm 1 Genetic Match-and-Merge Algorithm
Input:source paired models M;,Mos,....M,
Initialize P = { M7, M>, ... ,M,},
Py = {Mnj, Mg, ... Mny}, PR = {MRg;,
Mgo, ... Mg}
1: while not converged do
2:  for each My ; in Py do
3: With probability p1 let
Py = Py U Mutation(My ;)
end for
for each Mp ; in Pr do
With probability p1 let
Pr=PruU Mutation(MR,i)
end for
Randomly shuffle P
for each adjacent models My ;; My ;41 in
P, N do
With probability p2 let
Py = Py U Crossover(My ;, My i+1)
end for
for each adjacent models Mg ;; Mg ;41 in
PR do
With probability p2 let
Pr = Pg U Crossover(Mp ;,Mpg ;1)
end for
15:  Reproduction(Py X Pg)
16:  Let P be the set of top-K pairs (Pn,7, Pr,T)
17: end while

10:

11:
12:

13:

14:

Although experiments show that the genetic strat-
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Figure 7: CERs of the target models optimized on dif-
ferent size of validation set.

egy is an effective method, the limitation is that the
results of each genetic operator are random, which
leads to the generated offspring not necessarily
achieving better quality. This inspires us to utilize
the evolution results at each time step to pass the in-
formation to the next round of evolution, and guide
each evolution towards a good quality direction as
much as possible. Reinforcement learning regards
the learning process as a trial evaluation where a
agent selects an action for the environment. After
the environment accepts the action, the state of the
agent changes, and at the same time, a reward or
punishment signalis generated and fed back to the
agent. The agent selects the next action based on
the reinforcement signal and the current state of
the environment. The principle of selection is to
increase the probability of receiving positive award.
The selected action not only affects the immedi-
ate enhancement value, but also affects the state of
the environment at the next moment and the final
enhancement value. This reinforcement strategy
can make up for the deficiencies of GMM, thereby
improving time efficiency.

B Dataset Collection

The detailed statistics of all datasets are shown in
Table 1.

C Variation of Validation Data Size

Both GMM and RMM use an extra validation
dataset for model merging. To understand the im-
portance of validation data size on the final results,
we vary the size of validation dataset and analyze
the changes of CERs on the test dataset. We ran-
domly take samples from the complete validation
dataset of SLR33, SLR38, SLR47, SLR62 and
SLR93 with different proportions at 1%; 2%; 5%:;



Dataset Name Training . Validatiog Test .
no.wav | duration(h) | no.wav | duration(h) | no.wav | duration(h)
SLRI18 THCHS-30 8032 20.5 2667 6.7 2689 6.8
SLR33 Aishell 120018 151.2 14331 18.1 7176 10.0
SLR38 | Free ST Chinese Mandarin Corpus 61560 65.5 20520 22.0 20520 22.0
SLR47 | Primewords Chinese Corpus Set 1 30232 59.2 10076 19.8 10076 19.8
SLR62 aidatatang 200zh 164905 139.9 24216 20.2 48144 40.2
SLR68 Chinese Read Speech Corpus 621665 727.0 12140 13.9 24279 27.9
SLR93 AISHELL-3 63262 61.1 12387 12.0 12386 12.0
Total N/A 1069674 1224.4 96337 112.7 125270 138.7

Table 1: Statistics of the datasets

BN 2 models
BN 3 models
BN 4 models

5 models

&40
30
20
10

Dlroect Jverage RMM Direct Average RMM Direct Average

SLR18 SLR68 Test

Figure 8: CERs of the target models optimized on dif-
ferent number of the source models.

10%; 20%; 50%; 100%. Then, we perform GMM
and RMM based on the subsets and compare the
results of these two algorithms with direct average.
All Note that when the size of validation subsets
is greater than 10%, we no longer test GMM be-
cause of its low efficiency. The evaluation results
are reported in Figure 7, and we can find that both
GMM and RMM benefit from larger validation
dataset and can yield better pair of target models.
Moreover, only a limited validation subset with 1%
proportion can make both two algorithms surpass
the direct average. Considering that 1% of the vali-
dation data only accounts for approximately 0.3%
of the training data, our method is sufficiently prac-
tical for real world application, using only a small
amount of data to significantly reduce test CER.
However, further expansion of data volume does
not bring greater improvement to the RMM since
the size of validation set is already large enough.

D Influence of Source Model Number

We study the target model quality obtained by dif-
ferent numbers of source models, and all the source
models are sequentially and separately added as in-
put to the comparison methods for training. Note
that genetic algorithm and transfer learning cannot
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be input sequentially, so they do not participate in
this study. We ensure that the input of all methods
is the same sequence, and the results are presented
in Figure 8. We can find that the more the number
of merged models, the more obvious the perfor-
mance will be improved. Moreover, our method
only needs a smaller number of models to merge
a target model with a quality comparable to the
target model merged with more models by the di-
rect averaging method. However, it can be seen
that not merging all models together can produce
better results. The quality of the merging obviously
depends on the quality of the individual source
models. Because the direct averaging method is
only a simple averaging, it has increased the error
rate after some models are merged. As our method
uses reinforcement learning to guide the search,
the searcher assigns lower weights to models with
lower quality and higher weights to models with
better performance according to the reward.



