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Abstract

Time series analysis is a widespread task in Natural Sciences, Social Sciences
and Engineering. A fundamental problem is finding an expressive yet efficient-
to-compute representation of the input time series to use as a starting point to
perform arbitrary downstream tasks. In this paper, we build upon recent work using
signature of a path as a feature map, and investigate a computationally efficient
technique to approximate these features based on linear random projections. We
present several theoretical results to justify our approach, we analyze and showcase
its empirical performance on the task of learning a mapping between the input
controls of a Stochastic Differential Equation (SDE) and its corresponding solution.
Our results show that the representational power of the proposed random features
allows to efficiently learn the aforementioned mapping.

1 Introduction

Modeling time series is a common task in finance, physics, and engineering. Differential (or
Difference) equations are the most widespread approach, as they allow to specify the controls of the
dynamics (i.e. external fields, time, input signals, noise, etc.) as well as their precise influence.

Unfortunately, guessing the true algebraic expression of such equations from first principles con-
siderations is often impossible. Given a dataset of several input-output pairs, one can approach the
problem from a data-driven perspective and construct a surrogate of the underlying operator mapping
controls (inputs) to output. However, the size of the available datasets is not often sufficiently large to
support the requirements of modern over-parametrized deep learning algorithms [Brown et al., 2020,
Kaplan et al., 2020]. Additionally, these techniques do not come with guarantees on their ability to
extract provably robust features from the input paths, and their training can be highly computationally
demanding.

In this work, we build on ideas from rough path theory and reservoir computing [Friz and Hairer,
2020, Schrauwen et al., 2007] to extract a highly expressive set of (random) features from the input
controls, allowing efficient learning of the dynamics of complicated SDEs. The features we consider
are obtained by integrating over a fixed time window a latent SDE whose dynamic is modulated
by linear random vector fields and driven by the input controls. The output, i.e. the solution to the
original SDE, is simply given by a trained linear projection of the random features.
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This approach presents several advantages: a) Our random features provably approximate the
signature of the control paths. In particular, we circumvent their potentially expensive calculation (see
e.g. Lyons [2014], Kidger and Lyons [2020]) preserving their information content and geometrical
properties (see also discussion in the next section); b) The features we extract are non-local, in the
sense that they are the result of the evolution of an SDE over a fixed time window and therefore
encode information about the whole considered time interval; c) Contrarily to many deep neural
networks for time series analysis, our approach is not limited to uniformly sampled sequences [Fawaz
et al., 2019].

This paper is structured as follows: In Section 2, we present some theoretical insights motivating our
method, in Section 3, we empirically validate the performance of our method on various simulated
datasets, in Section 4 with link the proposed approach with related works in the literature, and in
Section 5, we discuss our conclusion and possible future work.

2 Background

2.1 Randomized Signature of a Path

Let X : [0, T ]→ Rd be a continuous piecewise smooth d−dimensional path X =
(
X1, · · · , Xd

)
.

We will refer to X as the control and to its single components Xi as controls. We denote by
{e1, . . . , ed} the canonical basis of Rd.

Definition 1 (Signature) For any t ∈ [0, T ], the Signature of a continuous piecewise smooth path

X : [0, T ]→ Rd on [0, t] is the countable collection SX[0,t] :=
(
1, SX,1[0,t], S

X,2
[0,t], . . .

)
∈
∏∞
k=0

(
Rd
)⊗k

where, for each k ≥ 1, the entries SX,k[0,t] are the iterated integrals defined as

SX,k[0,t] :=
∑

(i1,...,ik)∈{1,...,d}k

(∫
0≤s1≤···≤sk≤t

dXi1
s1 . . . dX

ik
sk

)
ei1 ⊗ · · · ⊗ eik .

We define the Truncated Signature of X of order M ≥ 0 as SX,M[0,t] :=
(
1, SX,1[0,t], . . . , S

X,M
[0,t]

)
∈∏M

k=0

(
Rd
)⊗k

=: T M
(
Rd
)
.

Remark 1 We highlight that SX,k[0,t] lives in
(
Rd
)⊗k

, which is the space of tensors of shape (d, . . . , d)
given by Rd ⊗ · · · ⊗ Rd for k times.

Theorem 1 (Signature is a Reservoir) Let Vi : Rm → Rm, i = 1, . . . , d be vector fields regular
enough such that dYt =

∑d
i=1 V

i (Yt) dX
i
t , Y0 = y ∈ Rm, admits a unique solution Yt : [0, T ]→

Rm. Then, for any smooth test function F : Rm → R and for every M ≥ 0 there is a time-
homogeneous linear operator L : T M

(
Rd
)
→ R which depends only on (V1, . . . , Vd, F,M, y) such

that F (Yt) = L
(
SX,M[0,t]

)
+O

(
tM+1

)
, and t ∈ [0, T ].

This theorem suggests the first M entries of the signature of X are sufficient to linearly explain
the solution of any differential equation driven by it. Unfortunately, calculating SX,M[0,t] requires

the calculation of dM+1−1
d−1 iterated integrals – which in total quickly becomes computationally

expensive. Of course several techniques have been developed to circumvent this problem, in particular
kernelization techniques, see, e.g., Kidger and Lyons [2020]. The next result provides a practical
description of how it is possible to reduce the computational burden without losing too much
explanatory power. The formal statements are provided in Appendix.

Theorem 2 (Randomized Signature (Informal)) For any k ∈ N big enough and appropriately
chosen random matrices A1, . . . , Ad in Rk×k and random shifts b1, . . . , bd in Rk×1, and any fixed
sigmoid function σ, the solution of

dZXt =

d∑
i=1

σ
(
AiZ

X
t + bi

)
dXi

t , ZX0 = (1, 0, · · · , 0) ∈ Rk, t ∈ [0, T ] (1)

– called the Randomized Signature of X – has comparable approximation power as signature itself.
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To conclude, we highlight that the computational complexity of calculating ZXt is k2 × d for each
time step.

3 Experiments

3.1 1-Dimensional Stochastic Double Well

Let us recall that the dynamics of the 1-Dimensional Stochastic Double Well process is given by

dYt = θYt
(
µ− Y 2

t

)
dt+ σdWt, Y0 = y0 ∈ R, t ∈ [0, 1]

where Wt is a 1-dimensional Brownian motion, and (µ, θ, σ) ∈ R× R+ × R+. Let us fix y0 = 1 and
(µ = 2, θ = 1, σ = 1), and the partition D of [0, 1] to have N = 101 equally spaced time steps. We
train a Ridge Regression with regularization parameter λ = 0.001 to map instances of Randomized
Signature of the controls Z [t,Wt] into the respective solution Yt. We repeat the experiment on different
values of the number NTrain of train samples and dimension k of the Z [t,Wt]. On the left of Figure 1,
we plot an example of the trajectory of Z [t,Wt] while, on its right, we plot the comparison of the true
and the generated time series on an out of sample case. The following table shows the performance
in terms of L2 relative error on 10000 test samples:

NTrain = 1 NTrain = 10 NTrain = 100 NTrain = 1000 NTrain = 10000
k = 111 0.197858 0.029245 0.015954 0.007171 0.005397
k = 222 0.322285 0.039826 0.023862 0.0066585 0.0052776
k = 708 0.363072 0.321875 0.069075 0.010936 0.0050793

Table 1: Double Well: Relative L2 Error
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Figure 1: Double Well: Random Signatures (left) - Test Sample (right)

3.2 4-Dimensional Ornstein–Uhlenbeck process

Let us recall that the dynamics of the 4-Dimensional Ornstein–Uhlenbeck process is given by

dYt = (µ−ΘYt) dt+ ΣdWt, Y0 = y0 ∈ R4, t ∈ [0, 1]

where Wt is a 4-dimensional Brownian motion, and (µ,Θ,Σ) ∈ R4 × R4×4 × R4×4. Let us fix
y0 = 1, µ = 1, Σ = 14, Θi.j = i/j, the partition D of [0, 1] to have N = 101 equally spaced time
steps, and k = 708. Finally, we train a Ridge Regression with λ = 0.001 on NTrain train sample and
Figure 2 shows the comparison of Out of Sample generated and true trajectories while Table 3 in
Appendix reports the performance in terms of L2 relative error on 10000 test samples.

3.3 1-Dimensional Stochastic Double Well - Irregularly Sampled Time Grid

In this experiment, we fix y0 = 1 and (µ = 2, θ = 1, σ = 1). On the other hand, for each train and
test sample, the partition D of [0, 1] is made of N randomly drawn times. More precisely, D =
{0, t1, · · · , tN−1, 1} such that tk = 1/(1− exp(−sk)) and {s1, · · · , sN−1} are N − 2 independent
realizations of a uniform distribution U [0, 1] sorted increasingly. As a result, the probability that two
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Figure 2: 4-Dimensional Ornstein–Uhlenbeck process: Test Sample

samples share the same D is null. We train a Ridge Regression with λ = 0.001 on NTrain = 10000
train samples and Figure 3 in Appendix shows the comparison of an Out of Sample generated and
true trajectory. Finally, Table 2 shows the Relative L2 Error on 10000 test samples as we vary the
number of time steps N and k and compare it to the respective experiment in case the time grid is
regularly spaced.

(N, k) = (10, 56) (N, k) = (100, 222) (N, k) = (1000, 332)
Irregular 0.073190 0.016717 0.007677
Regular 0.028876 0.005128 0.002763

Table 2: Irregularly Sampled Double Well: Relative L2 Error

4 Related Works

Random Features and Reservoir Computing. The idea of extracting features based on random
operations is not new and has seen a number of successful applications over the past years. On partic-
ular note for our method, the seminal work of Rahimi and Recht [2008] proposes to accelerate kernel
machines by learning random features whose inner product matches that of a target shift-invariant
kernel. The trade-off between generalization and computational efficiency of learning with random
features has then been rigorously studied by Rudi and Rosasco [2017]. A conceptually very similar
rationale is introduced by a parallel series of works exploring the topic of Reservoir Computing
[Schrauwen et al., 2007]. Similarly to our work, Echo State Networks [Jaeger, 2003] evolve the input
state by a series of fixed random projection (the reservoir) and generate the output by applying a
trainable linear projection over the hidden states. However, we make the additional step of linking
the random features to the signature of the input path and, in our case, the evolution of the features is
dictated by the differential equation shown in equation 1.
Controlled Differential Equations. Our work is also related with a series of recent papers investi-
gating the problems of how to process irregular time series and to condition a model on incoming
information through the lens of controlled differential equations [Kidger et al., 2020, Morrill et al.,
2021]. Differently from them, our method is way more efficient since the only parameters we need to
train are those of the final (often) linear readout layer.
Rough Path Theory. Rough path theory is about describing how possibly highly oscillatory (rough)
control path interact with nonlinear systems [Lyons, 2014]. The concept of signature is introduced in
this context to provide a powerful description of the input path upon which the theory is built. Recent
years have seen a resurgence of these ideas, which have been revisited from a machine learning
perspective [Bonnier et al., 2019, Kidger and Lyons, 2020]. Our analysis is strongly influenced by the
work of Cuchiero et al. [2021b], who firstly establishes a connection between reservoir computing
and signature of a paths (in a discrete setting).
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5 Conclusions
In this work, we empirically analyze an approach based on random features to find a powerful
representation of an input path. Our randomly extracted features approximate the signature of the
given path and thus find theoretical support in the theory of rough path. We empirically assess
the effectiveness of our method by inspecting its performance on several tasks based on learning a
map between possibly multivariate and irregularly sampled input controls into the solution of the
corresponding SDEs.
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A Appendix

A.1 Basic Definitions

First of all, we define the concept of admissible tensor norms, which we assume to have in this work.

Definition 2 (Admissible Tensor Norms) Let E := Rd and ⊗ be a tensor product such that the ten-
sor powers of E,

(
E⊗k : k ≥ 1

)
, are equipped with a family (‖ · ‖E⊗k : k ≥ 1) of norms satisfying:

1. For j, k ∈ N and for all h ∈ E⊗j and l ∈ E⊗k

‖h⊗ l‖E⊗(j+k) ≤ ‖h‖E⊗j‖l‖E⊗k ;

2. For any permutation σ of {1, . . . , k},

‖l1 ⊗ . . .⊗ lk‖E⊗k =
∥∥lσ(1) ⊗ . . .⊗ lσ(k)∥∥E⊗k ;

3. For any bounded linear functionals f on E⊗j and g on E⊗k, there exists a unique bounded
linear functional, denoted as f ⊗ g, on E⊗(j+k) such that for all h ∈ V ⊗j and l ∈ E⊗k

f ⊗ g(h⊗ l) = f(h)g(l).

A family of tensor norms satisfying these conditions is called a family of admissible tensor norms.

Then we define the space in which the signature of a path lies in, that is the following Tensor Algebra.

Definition 3 (Tensor Algebra T
(
Rd
)
) We define the tensor algebra on Rd as

T
(
Rd
)
:=

∞∏
k=0

(
Rd
)⊗k

as well as its truncated version of order M ≥ 0 as

T M
(
Rd
)
:=

M∏
k=0

(
Rd
)⊗k

,

where
(
Rd
)⊗k

is the space of tensors of shape (d, . . . , d) given by Rd ⊗ · · · ⊗ Rd for k times.

Definition 4 (Concatenation Operation) We define the Concatenation Operation ∗ such that for
any given couple of continuous piecewise smooth paths X : [0, s]→ Rd and Y : [s, t]→ Rd, their
image through ∗ is the continuous piecewise smooth path X ∗ Y : [0, t]→ Rd defined by

X ∗ Yu :=

{
Xu if u ∈ [0, s]
Xs + Yu − Ys if u ∈ [s, t]

Definition 5 (Inverse Operation) We define the Inverse Operation←− such that for any continuous
piecewise smooth path X : [0, T ]→ Rd, its image through←− is the continuous piecewise smooth
path

←−
X t := XT−t, for each t ∈ [0, T ].

Definition 6 (Topological Space) A topological space is an ordered pair (X, τ), where X is a set
and τ is a collection of subsets of X , satisfying the following axioms:

1. The empty set and X itself belong to τ ;

2. Any arbitrary (finite or infinite) union of members of τ still belongs to τ ;

3. The intersection of any finite number of members of τ still belongs to τ .

The elements of τ are called open sets and the collection τ is called a topology on X .
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Definition 7 (Arcwise Connected Topological Space) A topological space (X, τ) is said to be ar-
cwise connected if any two distinct points x, y ∈ X can be joined by an arc, that is a continuous map
α : [0, 1]→ X such that α(0) = x and α(1) = y.
We say that X is uniquely arcwise connected if for any two distinct points x, y ∈ X , there exists a
unique path in X that joins them.

Definition 8 (R-tree) An R-tree is a uniquely arcwise connected metric space, in which the arc
between two points is isometric to an interval.

Definition 9 (Tree-Like) A continuous piecewise smooth path x : [0, T ]→ Rd is tree-like if there
exists an R-tree τ , a continuous map φ : [0, T ]→ τ and a map ψ : τ → V such that φ(0) = φ(T )
and x = ψ ◦ φ.

As T. Levy showed in Section 5.7 of [], a continuous piecewise smooth path is tree-like if and only if
it is contractible to the constant path within its own image.

A.2 Supporting Results

Theorem 3 Given a continuous piecewise smooth path X : [0, T ]→ Rd, its Signature is the banal
signature 1 := (1, 0, 0, · · · ) if and only if X is tree-like. In particular S(X ∗

←−
X ) = 1.

Lemma 4 (Johnson-Lindenstrauss Lemma) Given an M -dimensional Hilbert space (H, 〈·, ·〉H)
and Q a N -point subset of H , for any 0 < ε < 1, for each k ∈ N satisfying the so called Johnson-
Lindenstrauss constraint

k ≥ 24 logN

3ε2 − 2ε3
,

there exists a linear map f{Q,M,k} : H → Rk that embeds Q into Rk in an almost isometric manner.
More specifically, we have that

(1− ε) ‖a1 − a2‖2H ≤
∥∥∥f{Q,M,k} (a1)− f{Q,M,k} (a2)

∥∥∥2 ≤ (1 + ε) ‖a1 − a2‖2H
for each a1,a2 ∈ Q.

Remark 2 When there is no need to specify the dependence of f{Q,M,k} from Q, M , or k, we will
omit them up to referring to is simply as f . Finally, we define f∗ : Rk → H to be the adjoint map of
f with respect to a fixed inner product 〈·, ·〉 in Rk.

To apply such Lemma in our context, we select M ≥ 0, equip TM
(
Rd
)

with an inner product such
that

〈ei1 ⊗ · · · ⊗ eiM , ej1 ⊗ · · · ⊗ ejM 〉 := δi1j1 · · · δiM jM ,

where {ei1 ⊗ · · · ⊗ eiM }i1,...,iM∈{1,...,d} is the canonical basis of TM
(
Rd
)
. Therefore, we have that(

TM
(
Rd
)
, 〈·, ·〉

)
is an Hilbert space.

Theorem 5 (Existence and Uniqueness of the Signature) The following controlled differential
equation

dSXt =

d∑
i=1

SXt ⊗ eidXi
t , SX0 = 1

has a unique solution SXt which, at each t ∈ [0, T ] is the signature SX[0,t] of X on [0, t].

Notation 1 In the light of the previous result, if there is no ambiguity about [0, t], we will often refer
to SX[0,t] as SX and as SXt to stress its path-like nature. Analogously, we will use SX,M and SX,Mt in

place of SX,M[0,t] .

Now, we provide results to show the relevance of these features. First of all, the following theorem
ensures that SX encodes the essence of X and characterizes it completely.

7



According to Theorem 3, the concatenation X ∗
←−
X of X with its inverse1←−X has the same signature as

the constant path, but cannot be reparametrised to be constant. Similarly, if X,Y, Z are non-constant
paths, then SX∗Y ∗

←−
Y ∗Z∗

←−
Z ∗
←−
X = 1, but X ∗ Y ∗

←−
Y ∗ Z ∗

←−
Z ∗
←−
X is not a path of the form γ ∗←−γ for

any path γ. While the formal definition of tree-like path is given in Definition 10, Figure 1 guides
our intuition as we notice that these paths look like trees and can be reduced to a constant path by
removing possibly infinitesimal pieces of the form γ ∗←−γ .

Theorem 6 (Characterizing Nature of the Signature) Given a couple of continuous piecewise

smooth paths X and X̂ , then SX = SX̂ if and only if X ∗
←−
X̂ is tree-like.

This result is actually much stronger as it implies that the solution of any differential equation
controlled by X is fully determined by the vector fields and SX . In particular, Theorem 1 shows that
the solution of any differential equation controlled by X is essentially linear in SX .

Adapting Theorem III.7 in [Cuchiero et al., 2021b] it can be be shown that (asymptotically) the JL
projected vector fields stem from random matrices:

Theorem 7 (ZX is a random dynamical system) For k 7−→ ∞, for each i ∈ {1, · · · , d} the lin-
ear vector fields f{k}

(
f{k}∗(·)ei

)
: Rk → Rk are square matrices with asymptotically normally

distributed, independent entries.

Adapting Theorem III.8. [Cuchiero et al., 2021b] as done in [Cuchiero et al., 2021a] one obtains:

Theorem 8 (Randomized Signature) For any fixed integer M ≥ 0, any fixed partition D =
{t1, · · · , tN} of [0, T ] such that 0 ≤ t1 < · · · < tN ≤ T , let us consider the Truncated Signature of

X at such times, that is Q :=
{
SX,Mt1 , · · · , SX,MtN

}
such that its elements all lie in

(
TM

(
Rd
)
, 〈·, ·〉

)
.

Let us now select 0 < ε < 1, k ∈ N satisfying the associated Johnson-Lindenstrauss constraint,
let f be the implied Johnson-Lindenstrauss map and f∗ its adjoint map. Then, the solution of the
controlled differential equation in Rk

dZXt =

d∑
i=1

f
(
f∗
(
ZXt
)
ei
)
dXi

t , ZX0 = f(1),

on D, that is
{
ZXt1 , · · · , Z

X
tN

}
, are called the Randomized Signature of X on D. Each ZXtk is the

projection of SX,Mtk
from

(
TM

(
Rd
)
, 〈·, ·〉

)
onto Rk via f and thus preserves its geometric properties

and its approximation power.

Definition 10 (Localized Randomized Signature) For any random matrices A1, . . . , Ad in Rk×k

and shifts b1, . . . , bd in Rk×1 such that maximal non-integrability holds on a starting point z ∈ Rk,
any fixed sigmoid function σ, and d-dimensional control X , the solution of

dZXt =

d∑
i=1

σ
(
AiZ

X
t + bi

)
dXi

t , ZX0 = z, t ∈ [0, T ] (2)

is called the localized randomized signature of X .

1←−X t := XT−t
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A.3 Experiments: Supporting material

k = 708 NTrain = 1 NTrain = 10 NTrain = 100 NTrain = 1000 NTrain = 10000
Y 1 0.375016 0.076250 0.011959 0.002199 0.001648
Y 2 0.385306 0.096566 0.014064 0.002837 0.002002
Y 3 0.353375 0.117444 0.016048 0.003129 0.001995
Y 4 0.468581 0.091604 0.015304 0.002707 0.001814

Table 3: 4-Dimensional Ornstein–Uhlenbeck process: Relative L2 Error
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Figure 3: Irregularly Sampled Double Well: Test Sample
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