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Abstract

Audio-Visual Event Localization (AVEL) is the task of temporally localizing and classifying
audio-visual events, i.e., events simultaneously visible and audible in a video. In this paper,
we solve AVEL in a weakly-supervised setting, where only video-level event labels (their
presence/absence, but not their locations in time) are available as supervision for training.
Our idea is to use a base model to estimate pseudo labels on the training data at a finer
temporal resolution than at the video level (“label-refinement”) and then re-train the model
with these new labels. In label-refinement, we estimate the subset of labels for each slice
of frames in a training video by (i) replacing the frames outside the slice with those from
a second video having no overlap in video-level labels, and (ii) feeding this synthetic video
into the base model to extract labels for just the slice in question. To handle the out-of-
distribution nature of our synthetic videos, we propose an auxiliary objective to train the
base model that induces more reliable predictions of the localized event labels as desired.
Our three-stage pipeline outperforms several existing AVEL methods with no architectural
changes and improves performance on a related weakly-supervised task as well. We also find
that the evaluation of existing AVEL methods has been seriously misleading and therefore
propose new metrics for a better sense of performance.

1 Introduction

A crucial milestone in bridging the gap between human and machine intelligence is to have machines jointly
reason about the multiple modalities of information (e.g., visual, audio, and text) in the world. To this end,
researchers have introduced various subproblems (Tian et al., 2018; 2020; Arandjelovic & Zisserman, 2017)
in multimodal learning to drive innovation in the field. An important joint reasoning problem is the task
of Audio-Visual Event Localization (AVEL) (Tian et al., 2018), illustrated in Fig. 1. Given a video, the
objective is to temporally localize events that are both audible and visible at the same instant, i.e., audio-
visual events, and classify them into a set of known event categories. Events/actions that are either audible
or visible but not both (e.g., commentary during a televised football game) are not classified as audio-visual
events. For a network to perform well at such a task, it needs to implicitly learn to combine information
from the two modalities at each instant and determine whether they correspond or not.

Some of the most notable advances in deep learning (He et al., 2016; Brown et al., 2020) have stemmed
from access to large-scale datasets. Large-scale, fully annotated datasets for videos would require watching
and listening to hundreds of thousands of videos and manually labeling each frame in each video. Weakly-
supervised learning (learning from underspecified labels) aims to alleviate this cost. In our context, weak
supervision is the scenario where only the set of audio-visual events occurring in a video is available for that
video in the training data (we are still required to temporally localize events in the test phase).

In this paper, we present a novel method to solve AVEL in a weakly-supervised setting. While much progress
(Zhou et al., 2021; Xuan et al., 2020; Lin et al., 2019; Ramaswamy & Das, 2020; Ramaswamy, 2020; Xu
et al., 2020; Lin & Wang, 2020) has been made for weakly-supervised AVEL since the pioneering work of
Tian et al. (2018), this has mainly taken the form of architectural and feature-aggregation modifications
(see Sec. 2). Different from these approaches, however, we fix the network architecture to that of the very
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Figure 1: The AVEL task. The event “Singing” occurs during [0, 4] seconds and [8, 10] seconds in the visual
modality. It also occurs during [0, 7] seconds in the audio modality. However, only the segments where it
occurs in both modalities are labeled audio-visual events (AVEs). In this case, the AVE “Singing” is said to
occur during [0, 4] seconds (see blue dashed lines).

first baseline for AVEL (Tian et al., 2018) and show how to exploit its existing predictive power with a
carefully designed training strategy that yields significant performance gains. Moreover, while architectural
changes may constrain a method to the task at hand, better training strategies could potentially generalize
to related tasks. E.g., our method is easily extended to enhance performance on the more challenging
weakly-supervised Audio-Visual Video Parsing (AVVP) (Tian et al., 2020) task. Our key idea is to create
a middle-ground between the fully- and weakly-supervised settings by employing a base model to estimate
pseudo-labels on the training data that are more localized in time than at just the video level. We achieve
this by feeding special synthetic videos to the trained base model and extracting its video-level predictions.
Since the out-of-distribution (OOD) nature of our synthetic videos w.r.t. the base model could lead to
unreliable estimates, we design an auxiliary training objective for training base model that prepares it to
handle such OOD inputs. Finally, we re-train the base model with the refined labels.

2 Related Work

Weakly-Supervised Event Localization in Videos. Several methods (Islam et al., 2021; Luo et al.,
2020; Nguyen et al., 2018; Shi et al., 2020; Wang et al., 2017) have been proposed for weakly-supervised
Temporal Action Localization (TAL), which aims to classify and localize visual events in videos. For the
more challenging AVEL task, existing methods have mainly focused on better audio-visual feature aggre-
gation. Tian et al. (2018) proposed Audio-Guided Visual Attention (AGVA) to select visual features that
correspond most to the audio. Lin et al. (2019) processed local and global audio-visual features with an
LSTM-based network. Xuan et al. (2020) proposed spatial and temporal attention mechanisms to select
the most discriminative event-related information. Similarly, Lin & Wang (2020) proposed an audio-visual
transformer module that aggregates relevant intra- and inter-frame visual information. Ramaswamy (2020)
explored audio-visual feature fusion methods to capture intra- and cross-modal relations. Zhou et al. (2021)
constructed an all-pair audio-visual similarity matrix to inform feature aggregation across video frames.

Audio-Visual Video Parsing (AVVP) (Tian et al., 2020) aims at labeling events in a video as audi-
ble/visible/both, as well as temporally localizing and classifying them under weak supervision. Tian et al.
(2020) formulated AVVP as a Multimodal Multiple-Instance Learning (MMIL) problem and proposed a
hybrid attention network to capture unimodal and cross-modal contexts. Our train-infer-retrain pipeline
was inspired by Wu & Yang (2021), who inferred modality-aware labels (MA) for AVVP by exchanging the
audio/visual streams between pairs of videos. However, we note crucial differences: (i) We refine labels along
the temporal axis with a sliding window instead of estimating them for an entire modality. Re-training with
such labels does not follow from MA since their labels are not localized in time. (ii) MA could not effectively
localize events in time without a separate contrastive loss, meaning temporal refinement is not a trivial ex-
tension. (iii) Our synthetic videos are discontinuous in time while theirs remain coherent, and our auxiliary
objective helps the base model maintain reliable predictions for such videos. (iv) Unlike MA, which specifically
solves AVVP, our method applies to AVEL and AVVP and might inspire weakly-supervised methods more
generally.
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Pseudo-Labeling refers to estimating labels for unlabeled data using the predictions of a trained model.
Pseudo-labeling has been used to improve performance on several weakly-supervised tasks including object
detection (Tang et al., 2017; Zhou et al., 2016; Bilen & Vedaldi, 2016) and image classification (Ge et al.,
2019; Cabral et al., 2014; Hu et al., 2019). A few works (Zhai et al., 2020; Luo et al., 2020; Pardo et al., 2021)
have employed pseudo-labeling to improve performance on Temporal Action Localization (TAL), generating
labels from model outputs or attention weights.

3 Problem Definition

Preliminaries. In the AVEL problem, an input video V is partitioned into a set of T non-overlapping
(but contiguous) temporal segments {(Sv

t , Sa
t )}T

t=1, where Sv and Sa are the visual and audio streams,
respectively. Each segment is 1s long, and the number of segments T is the same across videos. Given a
video, the objective is to classify each segment (Sv

t , Sa
t ) into one of C + 1 classes, where the first C represent

audio-visual events (e.g., “man speaking”, “violin”, etc., that are simultaneously visible and audible in the
segment). The last class is background, which applies when the event occurring in the segment is either visible
or audible but not both (or when it does not belong to any of the first C). We denote each segment-level
label by a one-hot vector yt ∈ {0, 1}C+1, where

∑C+1
c=1 yt(c) = 1.

Weak-Supervision. In the weakly-supervised setting, we do not have access to the segment-level labels
{yt}T

t=1 for training. For each training video, we are instead provided with a video-level label Y ∈ {0, 1}C+1

that indicates only the presence/absence of audio-visual events in the video, but not their locations in time.
Note that Y (C + 1) = 1 if no segment in the video contains an audio-visual event. For c ∈ [1, C], Y (c) = 1
if some segment contains that audio-visual event.

Some prior work (Lin et al., 2019; Xuan et al., 2020; Zhou et al., 2021) has adopted an alternative definition
of the weakly-supervised setting, where the weak labels for training are taken as Y = 1

T

∑T
t=1 yt ∈ [0, 1]C+1.

I.e., they assume access to not just the set of audio-visual events in a video but also the durations (not
locations) for which they occur. E.g., if Y (c) = 0.9 for some c ∈ [1, C], then that event must have occurred
in almost all (90% of) segments in the video. Weak labels of this form encode more information than in
the original formulation. However, it is no easier to collect such labeled data than it is to collect a fully-
annotated dataset. We, therefore, adhere to the original weakly-supervised formulation in our experiments
and comparisons with prior work.

4 Method

4.1 Base Model Architecture

Since our objective is to improve weakly-supervised performance without relying on architectural changes,
we follow the baseline architecture from Tian et al. (2018), outlined below.

Feature Extraction. For each video segment, pre-trained CNNs Φv and Φa extract visual and audio
representations, fv

t = Φv(Sv
t ) ∈ Rw2×nc and fa

t = Φa(Sa
t ) ∈ Rna , respectively. Here, w is the spatial

dimension of the output of the CNN layer, nc is the number of channels, and na is the dimension of the
audio feature.

Audio-Guided Visual Attention. This aims to exploit the natural correspondence between audio and
video signals to allow the former to inform the network about the most relevant image regions that correspond
to it. The visual features representing these regions are then weighted favorably in feature aggregation. I.e.,
each visual segment is represented with the spatial-aggregate fv,att

t =
∑w2

k=1 αt(k)fv
t (k) ∈ Rnc , where the

attention weights αtαtαt are inferred for the segment as:

zt = Uv(fv
t )Wv + WaUa(fa

t )1T ∈ Rw2×d

αtαtαt = SoftMax(tanh(zt)Wf ) ∈ [0, 1]w
2
, (1)
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where Uv : Rw2×nc 7→ Rw2×h and Ua : Rna 7→ Rh are fully-connected (ReLU) layers, Wv ∈ Rh×d, Wa ∈
Rw2×h, and Wf ∈ Rd are learnable projection matrices, and 1 ∈ {1}d.

Temporal Modeling. Temporal context from neighboring segments is incorporated into the visual and
audio features fv,att

t and fa
t , respectively, using separate bi-directional LSTMs (Hochreiter & Schmidhuber,

1997):

{hv
t }T

t=1 = Bi-LSTMv({fv,att
t }T

t=1) (2)
{ha

t }T
t=1 = Bi-LSTMa({fa

t }T
t=1), (3)

where hv
t ∈ R2h and ha

t ∈ R2h are the hidden states of the two LSTMs.

Multimodal Fusion. The resulting segment-level visual and audio representations are concatenated along
the feature dimension to obtain:

h∗
t = Concat[hv

t ; ha
t ] ∈ R4h. (4)

MIL and Classification. The fused features are first transformed into raw segment-level class scores

xt = WoUo(h∗
t) ∈ RC+1, (5)

where Uo : R4h 7→ Rh′ is a fully-connected (ReLU) layer, and Wo ∈ R(C+1)×h′ is a learnable projection
matrix. Finally, Multiple-Instance Learning (Dietterich et al., 1997) (MIL) is used to train the base model
with the weak labels provided. The video-level prediction Ŷ is computed as:

Ŷ = SoftMax(MaxPool({xt}T
t=1)) ∈ [0, 1]C+1. (6)

Ŷ is optimized to match Y with the multi-class soft margin loss function. During inference, segment-level
predictions are obtained by finding the largest entry in xt.

4.2 Temporal Label-Refinement

Our goal here is to estimate event labels for slices (windows) of segments in training videos and then re-train
the base model using the derived labels. “Slice” here means N consecutive segments in a video (N < T ).

Notation. Consider the i-th training video V (i). Let L(i) be the set of audio-visual events (if any) occurring
in the video. Let L(i)[t1, t2] be the set of audio-visual events occurring within segments [t1, t2] (both segments
included), where 1 ≤ t1 ≤ t2 ≤ T , and t1, t2 ∈ N. Finally, let [t1, t2]c be the complementary duration
[1, t1 − 1] ∪ [t2 + 1, T ], and L(i)[t1, t2]c be the set of audio-visual events occurring in this duration. Clearly,
L(i)[t1, t2] ⊆ L(i) and L(i)[t1, t2]c ⊆ L(i).

Motivation. In terms of this notation, the weakly-supervised setting can be described as having access to
L(i) = L(i)[1, T ] during training. The fully-supervised setting, on the other hand, allows access to L(i)[t, t] for
each t in V (i), and is the ideal training scenario for model performance. We seek to create a middle-ground
setting where we have access to L(i)[t, t + N − 1] for training, with 1 < N ≪ T and N ∈ N. We will achieve
this by merely exploiting the ability of our base model (Sec. 4.1) in making video-level predictions, a task it
was directly trained for.

Note that such labels are more informative than labels at the video level because they are localized over a
shorter duration (N as opposed to T s) in the video. E.g., the audio-visual event of a church bell ringing
may only last for the first 3 segments in a video (out of, say, T = 10), after which it stops ringing and is
no longer audible. With localized labels (say N = 5), this event would be included in L(i)[1, 5] but not in
L(i)[4, 8]. In the absence of such labels, the event would be included in L(i)[1, 10], with no extra information
about its extent in time. Thus, localized labels, once obtained, would provide stronger supervision in the
training phase.
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Figure 2: The “label-refinement” (slice-level pseudo-label extraction) method. We start with two training
videos V (1) and V (2) with no common events and wish to determine localized labels for the N -segment window
in V (1). We feed the synthetic video into a trained base model and extract the video-level predictions on
the right. The event “Bus” receives a probability of 0.5 in the synthetic video but could not have occurred
anywhere in V (1), which we know from access to the video-level labels L(1) = {Dog, Person}. “Person” does
occur in V (1) but receives a very low probability (0.01) in the synthetic video. Therefore, the estimated
answer to ‘??’ is just the set {"Dog"}. The dashed lines mean the model is re-trained to predict {“Dog”} for
this window in the next training stage. We repeat this for all slices in V (1), moving at a stride s ≥ 1.

Method. Consider two training videos V (i) and V (j), and their corresponding label sets L(i) and L(j). We
have:

L(i) ∩
(

L(i)[t1, t2] ∪ L(j)[t1, t2]c
)

=
(

L(i) ∩ L(i)[t1, t2]
)

∪
(

L(i) ∩ L(j)[t1, t2]c
)

= L(i)[t1, t2] ∪
(

L(i) ∩ L(j)[t1, t2]c
)

. (7)

Now, assume that V (j) is chosen such that it has no overlap in video-level labels with V (i), i.e., L(i)∩L(j) = ∅.
Since L(j)[t1, t2]c ⊆ L(j), Eq. (7) reduces to:

L(i)[t1, t2] = L(i) ∩
(

L(i)[t1, t2] ∪ L(j)[t1, t2]c
)

︸ ︷︷ ︸
Term (*)

. (8)

This suggests a way to obtain the localized labels L(i)[t1, t2] we seek. L(i) is available in the training data.
Term (*) represents the union of audio-visual events occurring in [t1, t2] from V (i) and in [t1, t2]c from V (j).
In other words, if we synthesize a video Ṽ (i) by retaining the segments in [t1, t2] from V (i) and replacing
the rest with those taken from V (j), Term (*) would represent the set of video-level labels for Ṽ (i). Since
we already have a base model trained under weak supervision to make video-level predictions, it could be
expected to act as an accurate video-level predictor (but not as a segment-level predictor). So, we feed our
synthetic video Ṽ (i) to the base model to obtain an estimate of Term (*), and then use Eq. (8) to estimate
L(i)[t1, t2] as desired.

Implementation Steps:

1. Training a Base Model. We first train the model (Φ0) described in Sec. 4.1 in the weakly-supervised
setting, i.e., Ŷ(i) = Φ0(V (i)) ∈ [0, 1]C+1.

2. Label-Refinement. For each training video V (i), we randomly sample a second video V (j) having no
common labels with V (i). We fix a window size of N segments and proceed in a sliding-window fashion to
estimate L(i)[t1, t1 + N − 1] for each permissible starting segment t1 as described below.
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First, we create the synthetic video by taking V (i) and replacing its segments outside [t1, t1 + N − 1] with
the corresponding segments from V (j). We call the resulting video Ṽ (i;t1), computed as follows:

Ṽ (i;t1)[1, T ] := V (i)[1, T ]
Ṽ (i;t1)[t1, t1 + N − 1]c = V (j)[t1, t1 + N − 1]c. (9)

Next, we use Φ0 to make video-level predictions on Ṽ (i;t1) and filter them with the video-level label vector
Y(i) (⊙ is the element-wise product), following Eq. (8):

Ẑ(i;t1) = Y(i) ⊙ Φ0(Ṽ (i;t1)) ∈ [0, 1]C+1. (10)

Finally, we estimate L(i)[t1, t1 + N − 1] using an event-detection threshold τ ∈ (0, 1) as follows:

L(i)[t1, t1 + N − 1] = {c ∈ [1, C] | Ẑ(i;t1)(c) ≥ τ}. (11)

We repeat this for all slices by moving the starting location, t1, forward at a fixed stride s ≥ 1 such that
s|(T − N). We store all the slice-level pseudo-labels for each video in the training data for re-training.

3. Re-training with Refined Labels. Once we have obtained localized labels for all training videos, we re-
train the base architecture under this more strongly-supervised setting. This is straightforward because the
MIL pooling operation (Sec. 4.1) is indifferent to the number of instances taken in a bag. Specifically, we first
feed V (i) into the base architecture and extract the raw segment-level class scores {x(i)

t }T
t=1. Representing

each estimated L(i)[t1, t1 + N − 1] as a vector Y(i;t1) ∈ {0, 1}C+1, we calculate the label-refinement loss LLR
for V (i) as:

Ŷ(i;t1) = SoftMax(Pool({x(i)
t }t1+N−1

t=t1
)) (12)

LLR = 1
T1

∑
t1

g
(

Ŷ(i;t1), Y(i;t1)
)

, (13)

where g is the classifier loss function applied in the weakly-supervised setting, i.e., LMIL = g(Ŷ(i), Y(i)),
t1 ∈ {1, 1 + s, 1 + 2s, ..., T − N + 1} is the starting location of the window, and T1 is the number of window
locations permissible. We re-train from scratch imposing this additional refinement loss (averaged over
training examples). Note that MIL pooling is now performed over N instances as opposed to all T instances
originally. At test time, we use segment-level predictions as usual. Thus, our method lets us exploit the base
model’s video-level predictive ability to estimate labels for training videos that are more localized in time.
Fig. 2 illustrates the label-refinement idea.

4.3 Auxiliary Training Objective

Motivation. One caveat with the label-refinement approach is that the synthetic videos Ṽ (i) do not belong
to the distribution of examples V (i) used to train the base model in Step1. Replacing segments introduces
temporal discontinuities in the input that did not exist in the original training data. Moreover, by replacing
most segments in V (1) with segments from V (2) (see Fig. 2), the synthetic video is dominated by the events
in V (2). When such videos are passed into the base model to obtain video-level predictions in Step2, it may
lose confidence in the events occurring in the few retained segments from V (1), leading to false negatives in
the refined labels for V (1).

Method. We propose to mitigate this by encouraging the base model (during Step1) to maintain the audio-
visual information from the retained segments when faced with the new information from the second video.
Recall from Sec. 4.2 that the video-level labels for the synthetic video Ṽ (i;t1) are given by L(i)[t1, t1 + N −
1] ∪ L(j)[t1, t1 + N − 1]c. Our main idea is that with appropriate choices for the window size N and stride
s, the following relation holds:⋃

t1

L(i)[t1, t1 + N − 1] ∪ L(j)[t1, t1 + N − 1]c = L(i) ∪ L(j). (14)
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Figure 3: A schematic of the proposed auxiliary training objective. We start with two training videos with
no common events. We synthesize three new videos as shown and feed each into the base architecture to
extract raw score predictions. The scores are then pooled and optimized to predict the video-level labels
L(1) ∪ L(2), encouraging the model not to ignore the events in V (1).

To see this, note that at the first location (t1 = 1), the refinement window extends up to segment N in V (i).
At its final location, it extends back up to segment T −N +1. Thus, [t1, t1 +N −1]c will cover every segment
of V (j) as long as T − N + 1 > N , or N < T +1

2 .

Since L(i) ⊆ L(i) ∪ L(j), we can encourage information retention for V (i) under segment replacement by
aggregating the base model’s outputs on the T1 possible synthetic combinations {Ṽ (i;t1)}t1 for V (i), and
optimizing the aggregate to predict all the labels in L(i) ∪ L(j), which we have access to in the training
set. In other words, our objective should impose that when the video-level predictions for different synthetic
videos are combined, all the events in V (i) (and V (j)) can be recovered.

Implementation. The above idea is simple to incorporate into Step1, and prepares the base model for Step2.
We randomly create synthetic videos as described and feed each video Ṽ (i;t1) into the base architecture to
extract the raw segment-level class scores {x̃(i;t1)

t }T
t=1. We MIL-Pool these raw scores within and then across

the T1 synthetic videos as follows:

x̃(i;t1) = Pool({x̃(i;t1)
t }T

t=1) (15)
x̃(i) = Pool({x̃(i;t1)}t1) ∈ RC+1. (16)

Finally, we generate an aggregate prediction Ỹ(i) and optimize it w.r.t. Y(ij) ∈ {0, 1}C+1, representing
L(i) ∪ L(j). So, our auxiliary loss is computed as:

Ỹ(i) = SoftMax(x̃(i)) (17)

LA = g
(

Ỹ(i), Y(ij)
)

, (18)

and is added to LMIL while training the base model in Step1. Fig. 3 illustrates the idea.

Comparison with Mixup. Our auxiliary objective has some similarity with Mixup regularization (Zhang
et al., 2018), which implements the prior (for an image classifier) that a convex sum of inputs be predicted
as a convex sum of labels. In contrast, we implement the prior that across all convex concatenations of
inputs, all individual labels are recoverable by the base model (see Eq. (14)). Like Mixup, we perform data
augmentation with synthetic examples when training the base model in Step1, preparing it for inference on
out-of-distribution examples in Step2.

5 Experiments

5.1 Experimental Setup

Dataset. We use the publicly available AVE dataset collected by Tian et al. (2018). It contains 4143
10s-long videos (T = 10) with a train/val/test split of 3339/402/402 videos. Each video consists of a single
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Table 1: Performance metrics for naive prediction strategies. ‘-’ means the value is undefined. ‘*’ indicates
reproduced performance. All numbers are percentages.

Method Accuracy Non-AVE F1 (R/P)
AVE (Tian et al., 2018)* 67.1 2.1 (1.1/25.8)

AVE-repeat 69.1 - (0.0/-)
GT-repeat 82.2 - (0.0/-)

audio-visual event belonging to one of C = 28 categories and each event is at least 2s long. There are an
additional 178 videos that contain no audio-visual events.

Evaluation Metrics. So far, the only metric (Tian et al., 2018; Xuan et al., 2020; Lin et al., 2019;
Ramaswamy & Das, 2020; Zhou et al., 2021; Ramaswamy, 2020; Xu et al., 2020; Lin & Wang, 2020) to
evaluate AVEL performance has been segment-level classification accuracy. We argue that accuracy on its
own is a seriously misleading performance metric for AVEL. To see this, we report the accuracies achieved
by some naive prediction strategies in Tab. 1. We also report their F1 scores (along with recall/precision)
in detecting non-audio-visual events (the background class). Here, AVE represents the base model trained
in Step1. In AVE-repeat, we take the audio-visual class with the highest predicted video-level probability
and repeat this prediction across all 10 segments. In GT-repeat, we take the ground truth video-level audio-
visual event and repeat this prediction across all 10 segments. GT-repeat has an accuracy of 82.2% despite
never having predicted a non-AVE correctly (0% non-AVE recall). This means only a minority (17.8%) of
all segments in the AVE dataset do not contain audio-visual events. Consequently, AVE-repeat outperforms
AVE in terms of accuracy but suffers in terms of non-AVE recall. Note that AVE itself achieves a relatively
low non-AVE F1 score of 2.1%.

To summarize, a network could achieve high accuracy on the dataset by simply treating AVEL as a video-
level classification problem as opposed to an event-localization problem. In Sec. 5.2, we show that previous
methods indeed achieve high accuracies by predicting the same events everywhere. Therefore, we report
all of the following segment-level metrics in our performance evaluations to get a better sense of model
performance: (i) accuracy, (ii) overall (weighted) F1 score, (iii) F1 score in detecting non-AVE segments,
and (iv) F1 score in classifying audio-visual events.

Implementation Details. We use VGG-19 (Simonyan & Zisserman, 2015) pre-trained on ImageNet as
the visual feature extractor Φv. 16 video frames are sampled per second and their features are averaged to
obtain a single representation per segment. We use a VGG-like (Hershey et al., 2017) network pre-trained
on AudioSet (Gemmeke et al., 2017) as the audio feature extractor Φa. Each 1s audio is transformed into a
log-Mel spectrogram before being fed into the network. We use the Adam optimizer (Kingma & Ba, 2015)
with a batch size of 64 and a learning rate of 0.001 and train Step1 for 200 epochs and Step3 for 100 epochs
to prevent overfitting. We take the detection threshold τ = 0.05 in Eq. (11), based on performance on the
validation set. For N and s, we require N < T +1

2 (Sec. 4.3), want a roughly equal coverage of segments, and
for faster training, only a few forward passes T1 = (T − N)/s + 1 per video. Within these constraints, we
find the best values, N = 4 and s = 2, using the validation set. More details are in Appendix A.2. Finally,
because the AVE dataset has videos containing no audio-visual events, we conveniently sample the second
video V (j) from these since L(i) ∩ L(j) = ∅ holds trivially for any V (i) considered. Note that these videos
still contain valid events in their audio and visual streams, but they do not co-occur.

5.2 Comparisons with Existing Methods

To make fair comparisons, we ensure that all methods considered (i) use the same pre-trained visual and
audio feature extractors, (ii) are trained under the weakly-supervised setting opted for in Sec. 3, and (iii)
are trained, validated, and tested on the train/val/test split provided in the AVE dataset.

Quantitative. We compare methods in Tab. 2 on all the segment-level performance metrics listed earlier.
We report only the accuracy wherever the code bases are not publicly available. We can see that our
method outperforms several existing methods on accuracy, overall F1 score, and non-AVE detection F1
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Table 2: Performance comparison with previous methods under the weakly-supervised setting opted for in
Sec. 3. ‘*’ indicates reproduced performance. ‘-’ means the code is not publicly available. Ours (XYZ) means
we are using XYZ as the base model for our method.

Method Accuracy Wt. F1 Non-AVE F1 (R/P) AVE F1 (R/P)
AVE* (Tian et al., 2018) 67.1 61.5 2.1 (1.1/25.8) 73.7 (81.3/67.4)

CMAN (Xuan et al., 2020) 67.8 - - -
AVSDN (Lin et al., 2019) 68.4 - - -

AVFB (Ramaswamy & Das, 2020) 68.9 - - -
AVIN (Ramaswamy, 2020) 69.4 - - -

CMRA* (Xu et al., 2020) 69.6 63.5 0.5 (0.3/8.3) 76.6 (84.6/70.0)
PSP* (Zhou et al., 2021) 70.0 64.6 5.9 (3.3/29.3) 77.2 (84.7/70.9)
AVT (Lin & Wang, 2020) 70.2 - - -

Ours (AVE) 70.2 68.6 32.3 (25.5/43.9) 76.4 (79.9/73.2)

GT

PSP
Ours  Motorcycle

Motorcycle

            Motorcycle

GT

PSP
Ours                         Bus

                 Bus

BusTruck

Figure 4: Qualitative comparison with PSP on two videos. “GT” is the ground truth.

score. In particular, we achieve an improvement of 26.4 points over PSP (Zhou et al., 2021), a state-of-the-
art architecture, on non-AVE detection, with significantly higher recall and precision. Thus, our method
can effectively discern the instances when the audio and visual signals are synchronized in a video leading
to audio-visual events, and does not merely perform video classification, as discussed in Sec. 5.1. Moreover,
since we use the same architecture as AVE and yet significantly outperform it, our results highlight the
potential of training strategies to improve performance in the weakly-supervised setting.

Qualitative. We qualitatively compare the performance of our method (with an AVE base model) with PSP
in Fig. 4. Previous methods often assign the predicted categories to every segment, despite achieving high
accuracies on the dataset, as discussed in Sec. 5.1. On the other hand, our method classifies and localizes
events more accurately. Appendix A.3 shows ten more examples.

5.3 Ablations

We report an ablation study in Tab. 3 to assess our proposed components. Here, AVE represents the base
model trained in Step1. AVE+LR represents the model trained in Step3 with the refined labels obtained in
Step2. To validate the effectiveness of label-refinement in determining the correct subset for each window,
we train a model with the loss defined in Eq. (13), where we take L(i)[t1, t1 + N − 1] ≡ L(i) everywhere.
We call this AVE+LRdummy. Finally, AVE+A+LR represents the three-step approach that includes the auxiliary
objective in Step1 and re-training in Step3.

As expected, AVE+A+LR outperforms AVE+LR on all metrics. In particular, we get a near 5-point improve-
ment in non-AVE precision, supporting our hypothesis in Sec. 4.3– there is now a decreased tendency of
Step2 to lose confidence in legitimate audio-visual events (in the retained segments), reducing false-negative
predictions on the training data. Similarly, AVE+LR outperforms AVE on all metrics, with a considerable
improvement in non-AVE detection. It is interesting that while AVE+LRdummy outperforms AVE on accuracy,
it is worse at determining whether a segment contains an audio-visual event or not. This is in line with
our discussion in Sec. 5.1– encouraging each window to predict the global label L(i) is akin to solving video
classification.

9
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Table 3: Ablation study for our proposed Label-Refinement (LR) and Auxiliary Objective (A) ideas.
Method Accuracy Wt. F1 Non-AVE F1 (R/P) AVE F1 (R/P)

AVE 67.1 61.5 2.1 (1.1/25.8) 73.7 (81.3/67.4)
AVE+PL 67.5 62.3 3.2 (1.7/23.5) 74.3 (81.7/68.1)

AVE+LRdummy 67.8 61.9 0.5 (0.3/6.9) 74.6 (82.4/68.2)
AVE+LR 69.1 67.7 30.7 (25.3/39.1) 75.7 (78.6/73.0)

AVE+A+LR 70.2 68.6 32.3 (25.5/43.9) 76.4 (79.9/73.2)

Table 4: Impact of τ on AVE+A+LR accuracy.
τ 0.01 0.03 0.05 0.07 0.10

% Accuracy 67.3 68.1 70.2 68.7 67.8

We also create a pseudo-labeling baseline AVE+PL, where the base model’s segment-level label predictions on
the training data (pseudo-labels) are taken as ground truth for fully-supervised re-training. However, unlike
AVE+LR, AVE+PL only marginally improves on AVE. The reason is while AVE+PL requires accurate segment-
level predictions for re-training, AVE+LR only requires video-level predictions (see Fig. 2). The base model
is more reliable for the latter since the loss during MIL training (Step1) is only applied at the video level.
This validates the need for synthetic videos in our approach– we can estimate localized predictions from
video-level outputs alone.

Detection Threshold. The hyperparameter τ ∈ (0, 1) in Eq. (11) is a measure of our trust in the model’s
predictions for the retained segments of the synthetic videos. We first obtain a candidate range for τ by
performing Step2 on videos taken from the validation set and comparing our localized labels to the available
ground truth. Tab. 4 shows the test accuracy of AVE+A+LR for different choices of τ in this range. The
optimal value is τ = 0.05. Note that we are using the SoftMax activation (not Sigmoid) (Eq. (6)) since
AVEL assumes that only one event can occur at a given instant. Out of the 28 possible categories, the
predicted one must receive a probability exceeding 1/28 ≈ 0.036 (not 0.5). Thus, our empirical value of 0.05
supports intuition.

5.4 Improving a different Base Model

To check if our method works with a different base model, we report performance using PSP (Zhou et al.,
2021), a state-of-the-art architecture for AVEL, in Tab. 5. We did not expect our method to improve upon
an already highly performant model, yet it significantly increases performance for both AVE and PSP on all
the metrics considered. This shows that large performance gains may be possible by simply improving the
training strategy, without architectural changes. We also show results for the challenging AVVP task (Tian
et al., 2020) in Appendix A.1 and significantly outperform the baseline model in a setting where the model
architecture, dataset, and task are different from AVEL.

5.5 Computational Cost

We take the number of forward passes per training example in Step1 (or Step2), T1 = (T − N)/s + 1 as a
measure of computational cost. Our method is O(T1) times as expensive as training the base model alone,
due to the auxiliary objective in Step1 and label refinement in Step2. Tab. 7 in Appendix A.2 compares
performance for different costs. We find that performance is worst when the cost is lowest (T1 = 2) since the
labels would not be estimated at a fine enough resolution for meaningful re-training. The best performance
was for a moderate cost of T1 = 4.

10
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Table 5: Performance for two different base models.
Method Accuracy Wt. F1 Non-AVE F1 (R/P) AVE F1 (R/P)

AVE 67.1 61.5 2.1 (1.1/25.8) 73.7 (81.3/67.4)
AVE+A+LR 70.2 68.6 32.3 (25.5/43.9) 76.4 (79.9/73.2)

PSP 70.0 64.6 5.9 (3.3/29.3) 77.2 (84.7/70.9)
PSP+A+LR 72.2 69.7 25.8 (18.2/44.3) 79.0 (84.1/74.5)

6 Conclusion

We presented a method that uses the predictive power of a decent base architecture for weakly supervised
AVEL to produce temporally refined event labels for the training data. We introduced a novel auxiliary
training objective that aids in the reliable generation of these labels. We showed how to re-train the base
architecture using the generated labels. We then highlighted the issues with using a single metric to evaluate
performance on AVEL. Finally, we carried out extensive evaluations and showed that our method outperforms
several existing methods with no architectural novelty.

Limitations and Future Work.

1. Our label-refinement procedure is computationally expensive. Step2 and the auxiliary objective for
Step1 require T1 forward passes through the base model for each V (i), scaling linearly with video
length T (but all passes within a step can be parallelized).

2. Performance is sensitive to the threshold τ and requires precise tuning on a validation set since a
wrong choice of τ means Step3 gets trained with incorrect labels under stronger supervision. Future
work could directly use the predicted probabilities instead of binarizing them with a threshold. It
could also explore training several iterations of our method, with a continually improving base model.

3. It is not clear how many related video-/image-based prediction tasks our method can generalize
to. As an encouraging first step, we have provided results for AVVP, a video-based temporal- and
modality-level prediction task (see Sec. 2) in Appendix A.1, and achieve large improvements on
several metrics over the baseline model, which uses self- and cross-attention (Vaswani et al., 2017)
instead of a Bi-LSTM. However, more evidence of adapting our method to related tasks would be
useful in future work.

To conclude, we hope this paper will inspire future work to devise even better training strategies that push
the limits of weakly-supervised performance.
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A Appendix

A.1 Performance on AVVP

Tab. 6 shows results on the challenging Audio-Visual Video Parsing task. We start with the base architecture
HAN (Tian et al., 2020) and re-train it with our refined labels (HAN+LR), as discussed in the paper. HAN+LR
outperforms HAN on almost all the metrics proposed by Tian et al. (2020) while requiring no changes to the
base architecture.

Table 6: Performance comparison with the HAN baseline.

Method Audio Visual Audio-Visual Type@AV Event@AV
Seg. Event Seg. Event Seg. Event Seg. Event Seg. Event

HAN 60.1 51.3 52.9 48.9 48.9 43.0 54.0 47.7 55.4 48.0
HAN+LR 59.7 52.2 57.9 54.0 52.6 46.9 56.7 51.1 56.6 49.2

A.2 Choices of N and s

Tab. 7 shows results for different choices of the refinement window size N and stride s. Reasonable choices
must satisfy the following: (i) s|(T − N) so all segments are covered by the window, (ii) the number of
forward passes T1 = (T − N)/s + 1 is small to reduce the computational cost, (iii) N < T +1

2 (see Sec. 4.3),
and (iv) the window covers each segment a roughly equal number of times. We tune the detection threshold
τ separately for each choice. We get the worst performance with N = 5 and s = 5 since the event labels
here are not estimated at a fine-enough resolution (i.e., 1 for every 5 segments). Performance is comparable
amongst the other choices.

Table 7: Performance of AVE+A+LR for different N and s choices. T1 is a measure of the computational cost
during training. All other numbers are percentages.

Choice Accuracy Wt. F1 Non-AVE F1 (R/P) AVE F1 (R/P) T1

N = 2, s = 2 69.5 68.7 40.1 (35.4/46.3) 75.0 (76.9/73.2) 5
N = 3, s = 1 69.4 68.3 33.6 (27.5/43.3) 75.5 (78.5/72.7) 8
N = 4, s = 2 70.2 68.6 32.3 (25.5/43.9) 76.4 (79.9/73.2) 4
N = 5, s = 5 68.7 66.0 23.6 (16.1/43.9) 75.0 (80.1/70.5) 2

A.3 Qualitative Results

We qualitatively compare the performance of our method (AVE+A+LR) with PSP in Figs. 5 to 14. We also
include the ground truth for each example. As discussed in the paper, our method more accurately localizes
the audio-visual events in addition to classifying them into known categories. Previous methods often fail
to handle the localization task very well.
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Motorcycle
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                 Motorcycle

Figure 5: Motorcycle. Previous methods (e.g., PSP) often predict the video-level category for every frame,
while our method can accurately localize the audio-visual event within the video.

                    Shofar

GT

PSP
Ours

Shofar

                    Shofar

Figure 6: Shofar (instrument). While our method localizes the event better than the previous method, it
incorrectly predicts the event during [5, 7] seconds.
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Figure 7: Helicopter.
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Figure 8: Helicopter.
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Figure 9: Toilet Flush. Our method incorrectly predicts the event during [2, 4] seconds.
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Figure 10: Toilet Flush.
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Figure 11: Woman Speaking.
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Figure 12: Bus. In addition to not localizing the event well, the previous method predicts an incorrect
category (Truck) when no audio-visual event occurs in the video.
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Figure 13: Man Speaking.
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Figure 14: Cat.
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