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ABSTRACT

Recently introduced implicit field representations offer an effective way of generat-
ing 3D object shapes. They leverage implicit decoder trained to take a 3D point
coordinate concatenated with a shape encoding and to output a value which indi-
cates whether the point is outside the shape or not. Although this approach enables
efficient rendering of visually plausible objects, it has two significant limitations.
First, it is based on a single neural network dedicated for all objects from a training
set which results in a cumbersome training procedure and its application in real life.
More importantly, the implicit decoder takes only points sampled within voxels
(and not the entire voxels) which yields problems at the classification boundaries
and results in empty spaces within the rendered mesh.
To solve the above limitations, we introduce a new HyperCube architecture based
on interval arithmetic network, that enables direct processing of 3D voxels, trained
using a hypernetwork paradigm to enforce model convergence. Instead of pro-
cessing individual 3D samples from within a voxel, our approach allows to input
the entire voxel (3D cube) represented with its convex hull coordinates, while the
target network constructed by a hypernet assigns it to an inside or outside category.
As a result our HyperCube model outperforms the competing approaches both in
terms of training and inference efficiency, as well as the final mesh quality.

1 INTRODUCTION

Recently introduced implicit field representations of 3D objects offer high quality generations of 3D
shapes (Chen & Zhang, 2019). This method relies on an implicit decoder, called IM-NET, trained to
take a 3D point coordinate concatenated with a shape encoding and to assign it a value indicating
whether it belongs inside or outside of a given shape. Using this formulation, a shape is constructed
out of points assigned to the inside class and it is typically rendered via the iso-surface extraction
method such as Marching Cubes.

The IM-NET architecture has several advantages over a standard convolutional model. First of all, it
can produce outputs of various resolutions, including those not observed in the training. Furthermore,
IM-NET learns shape boundaries instead of voxel distributions over the volume, which results in
surfaces of a higher quality.

On the other hand, however, IM-NET has some limitations. First of all, the point coordinates
processed by the model are concatenated with the shape embedding and to reconstruct an object
the model needs to possess the knowledge about all objects present in the entire dataset. Therefore
IM-NET architecture is hard to train on many different classes. Moreover, the implicit decoder
processes only points sampled from within a voxel, instead of the entire voxels. This, in turn, yields
problems at the classification boundaries at object edges and gives severe rendering artifacts, see
Fig. 1.

In this paper, we address the above limitations by introducing a novel approach to 3D object
representation based on implicit fields called HyperCube. Contrary to the baseline IM-NET model,
our approach leverages a hyper-network architecture to produce weights of a target implicit decoder,
based on the input feature vector defining a voxel. This target decoder assigns an inside or outside
of a shape label to each processed voxel. Such architecture is more compact than IM-NET and
therefore much faster to train, while it does not need to know the distribution of all objects in the
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Figure 1: Comparison between our HyperCube approach and the state-of-the-art implicit field method
based on the IM-NET Chen & Zhang (2019). IM-NET takes as an input 3D points sampled within
voxels, while HyperCube leverages an interval arithmetic to process the entire voxels. As a result,
HyperCube offers a high quality 3D object rendering without missing important parts of object close
to the implicit decoder’s decision boundary, as done by IM-NET.

training dataset to obtain object reconstructions. Furthermore, its design allows a flexible adjustment
of the target network processing feature vectors. This enables us to input the entire voxels into the
model leveraging interval arithmetic and the IntervalNet architecture (Gowal et al., 2018; Morawiecki
et al., 2019) and leading to the inception of our HyperCube-Interval model. The HyperCube-Interval
architecture takes as an input relatively small 3D cubes (hence the name), instead of 3D points samples
within the voxels. Therefore, it does not produce empty space in reconstructed mesh representation,
as done by the IM-NET and visualized in Fig. 1.

To summarize, our contributions are the following:

• We introduce a new HyperCube architecture for representing voxelized 3D models based on
implicit field representation.

• We incorporate a hypernetwork paradigm into our architecture which leads to significant
simplification of the resulting model and reduces training time.

• Our approach offers unprecedented flexibility of integrating various target network models,
and we show on the example of the IntervalNet how this can be leveraged to work with the
entire voxels, and not their sampled versions, which significantly improves the quality of
generated 3D models.

2 RELATED WORKS

3D objects can be represented using different approaches including voxel grids (Choy et al., 2016;
Girdhar et al., 2016; Liao et al., 2018; Wu et al., 2016), octrees (Häne et al., 2017; Riegler et al., 2017;
Tatarchenko et al., 2017; Wang et al., 2018b), multi-view images (Arsalan Soltani et al., 2017; Lin
et al., 2018; Su et al., 2015), point clouds (Achlioptas et al., 2018; Fan et al., 2017; Qi et al., 2017a;b;
Yang et al., 2018), geometry images (Sinha et al., 2016; 2017), deformable meshes (Girdhar et al.,
2016; Sinha et al., 2017; Wang et al., 2018a; Yang et al., 2018), and part-based structural graphs (Li
et al., 2017; Zhu et al., 2018).

All the above representations are discreet which hinders their application in real-life scenarios.
Therefore recent works introduced 3D representations modeled as a continuous function (Dupont
et al., 2021). In such a case the implicit occupancy (Chen & Zhang, 2019; Mescheder et al.,
2019; Peng et al., 2020), distance field (Michalkiewicz et al., 2019; Park et al., 2019) and surface
parametrization (Yang et al., 2019; Spurek et al., 2020a;b; Cai et al., 2020) models use a neural
network to represent a 3D object. These methods do not use discretization (e.g., fixed number of
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(a) IM-NET (b) HyperCube (c) HyperCube-Interval

Figure 2: Comparison of the network architectures: (a) IM-NET, (b) HyperCube and (c) HyperCube-
Interval. (a) IM-NET uses a binary classifier that takes a point coordinate (x, y, z) concatenated with
a feature vector encoding a shape and outputs a value which indicates whether the point is outside the
shape or not. IM-NET is a single neural network dedicated to all object from the training dataset. (b)
HyperCube takes feature vectors and produce a new network, dubbed target network which classifies
points sampled from voxel into one of two categories: inside or outside. For object reconstruction,
only a target network run on a 3D cube is needed, which makes this solution significantly faster.
(c) HyperCube-Interval extends HyperCube idea by incorporating interval arithmetic which in turn
allows to process the entire voxel by an IntervalNet, instead of samples of voxels, as done in the
IM-NET.

voxels, points, or vertices), but represent shapes in a continuous manner and handle complicated
shape topologies.

In Mescheder et al. (2019) the authors propose that the occupancy networks implicitly represent
the 3D surface as a continuous decision boundary of a deep neural network classifier. Thus, the
occupancy networks produce continuous representation instead of a discrete one, and render realistic
high-resolution meshes. In (Chen & Zhang, 2019), which is the most relevant baseline to our
approach, the authors propose an implicit decoder (IM-NET). Such a model uses a binary classifier
that takes a point coordinate concatenated with a feature vector encoding a shape and outputs a
value that indicates inside or outside label. The above-mentioned implicit approaches are limited
to rather simple geometries of single objects and do not scale to more complicated or large-scale
scenes. In (Peng et al., 2020), the authors propose Convolutional Occupancy Networks, dedicated for
the representations of 3D scenes. The authors use convolutional encoders and implicit decoders. In
general, all above method uses conditioning mechanism. In our paper, we use the hyper network,
which gives a more flexible model which can be trained faster.

In Park et al. (2019) the authors introduce DeepSDF representation of 3D objects that produce
high-quality meshes. DeepSDF represents a shape surface by a continuous volumetric field. Points
represent the distance to the surface boundary, and the sign indicates whether the region is inside or
outside. Such representation implicitly encodes a shape’s border as a classification boundary.

In (Spurek et al., 2020a;b) the authors propose HyperCloud model that uses a hyper network to
output weights of a generative network to create 3D point clouds, instead of generating a fixed size
reconstruction. One neural network is trained to produce a continuous representation of an object. In
(Yang et al., 2019) authors propose to use a conditioning mechanism to produce a flow model which
transfers gaussian noise into a 3D object.

Our solution can be interpreted as a generalization of all the above methods. We use data repre-
hension approach described in IM-NET, but extend it to follow the hypernetwork paradigm used in
HyperCloud. As a consequence, we take the best of both wordls and obtain a reconstruction quality
of the IM-NET, while reducing the training and inference time as in the case of a HyperCloud.

3 HYPER IMPLICIT FIELD

In this section, we present the HyperCube model designed to produce a continuous representation of
Implicit Fields. More precisely, for each 3D object represented by voxels, we would like to create
a neural network that classifies elements from R3 to the inside or outside classes. We define voxel
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representation as a unit cube [0, 1]× [0, 1]× [0, 1] divided into small cubes with a given resolution
n ∈ N:

Vn =

{
[xi, x̄i]× [yi, ȳi]× [zi, z̄i] where xi, yi, zi = 0,
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}
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During the training, we use binary labels for each element of the voxel grid: X = {Ii}n
3

i=1 , y ⊂
{0, 1}n3

, where Ii = [xi, x̄i] × [yi, ȳi] × [zi, z̄i] ∈ Vn. Although the labels are assigned to the
voxels defined as 3D cubes, a classical neural networks are not able to process them in the raw
continuous format. Therefore, such methods use points uniformly sampled from a voxel: X =

{(xi, yi, zi) : (xi, yi, zi) ∼ UIi}
n3

i=1 , y ⊂ {0, 1}n
3

, where UIi is uniform distribution in 3D cube Ii.
In the paper, we present a method that works directly with voxels.

We assume that we have feature vectors for each element from the training set. Our goal is to build
a continuous representation of 3D objects. More precisely we have to model function f : R3 → {0, 1},
which takes coordinate of 3D point and returns an inside/outside label. Reconstruction of the object
is produced by labeling all elements from the voxel grid using the Marching Cubes algorithm.

In this section, we first describe a general hyper network architecture used in our model. We follow
up with the description of our HyperCube method, which uses hyper networks to efficiently process
3D points. Finally, we introduce interval arithmetic, which allows us to propagate 3D cubes instead
of point sampled from voxels, and we show how we can use incorporate is within our approach
HyperCube-Interval.

3.1 HYPERNETWORK

Hyper networks, introduced in (Ha et al., 2016), are defined as neural models that generate weights for
target network solving a specific task. The authors aim to reduce trainable parameters by designing a
hyper-network with a smaller number of parameters than the target network.

In the context of 3D point clouds, various methods make use of a hyper network to produce a
continuous representation of objects (Spurek et al., 2020a; 2021a;b). HyperCloud (Spurek et al.,
2020a) proposes a generative autoencoder-based model that relies on a decoder to produce a vector
of weights θ of a target network Tθ : R3 → R3. The target network is designed to transform a prior
into target objects (reconstructed data). In practice, we have one neural network architecture that uses
different weights for each 3D object.

3.2 HYPERCUBE

In this section, we introduce our HyperCube approach that draws the inspiration from the above
methods to address the limitations of the baseline IM-NET model. We produce weights for a target
network that describes a 3D object. Instead of transferring a prior distribution, as done in the
HyperCloud, we transfer through a network a voxel grid to predict inside/outside label for each
coordinate, see Fig. 2(b).

HyperCube model uses a hyper network to output weights of a small neural network that creates
a 3D voxel representation of a 3D object, instead of generating a directly inside/outside label to a
fixed grid on a 3D cube. More specifically, we parametrize the surface of 3D objects as a function
f : R3 → {0, 1}, which returns ab inside/outside category, given a point from grid (x, y, z). In other
words, instead of producing a 3D voxel representation, we construct a model which create multiple
neural networks (a different neural network for each object) that model the surfaces of the objects.

In practice, we have one large architecture (hyper network) that produces different weights for each
3D object (target network). More precisely, we model function Tθ : R3 → R (neural network
classifier with weights θ), which takes an element from the voxel grid and predicts an inside/outside
label. In consequence, we can generate a 3D shape at any resolution by creating grids of different
sizes and predict labels for its voxels.
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Figure 3: Interpolations produce by HyperCube. We take two 3d objects and obtain a smooth
transition between them.

The target network is not trained directly. We use a hyper-network Hφ : R3 ⊃ X → θ, which for
a voxel representation returns weights θ to the corresponding target network Tθ : X → {0, 1}. Thus,
a 3D object is represented by a function (classifier)

T ((x, y, x); θ) = T ((x, y, x);Hφ(X)).

More precisely, we take a voxel representation X and pass it to Hφ. The hyper network returns
weights θ to target network Tθ. Next, the input voxel representation X (points sampled from X ) is
compared with the output from the target network Tθ (we take voxel grid and predict inside/outside
labels). To train our model we use mean squared error loss function.

We train a single neural model (hypernetwork), which allows us to produce a variety of functions at
test time. By interpolating in the space of hypernetwork parameters, we are able to produce multiple
shapes that bear similarity to each other, as Fig. 3 shows.

The above architecture gives competitive qualitative and quantitative results to IM-NET, as we show
in Section 4.2, yet it offers a significant processing speedup confirmed by the results presented in
Section 4.1. However, the remaining shortcoming of IM-NET, namely the reconstruction artifacts
close to classification boundaries resulting from sampling strategy, remains. To address this limitation
and process entire 3D cubes instead of sampled points, we leverage interval arithmetic (Dahlquist
& Björck, 2008) and a neural architecture that implements it, IntervalNet (Gowal et al., 2018;
Morawiecki et al., 2019).

3.3 INTERVAL ARITHMETIC

Interval arithmetic allows to address the problems with precise numerical calculations caused by the
rounding errors that appear within the computer representations of real numbers. In neural networks
interval arithmetic is used to train models on interval data (Chakraverty & Sahoo, 2014; 2017; Sahoo
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& Chakraverty, 2020) and produce neural networks that are robust against adversarial attacks (Gowal
et al., 2018; Morawiecki et al., 2019).

For the convenience of the reader, we give a short description of interval arithmetic. Interval
arithmetic (Dahlquist & Björck, 2008)(Chapter 2.5.3) is based on the operations on segments. Let us
assumeA andB as numbers expressed as interval. For all ā, a, b̄, b ∈ R whereA = [a, ā] , B = [b, b],
the main operations of intervals may be written as Lee (2004):

• addition: [a, ā] + [b, b̄] = [a+ b, ā+ b̄]

• subtraction: [a, ā]− [b, b̄] = [a− b, ā− b̄]
• multiplication: [a, ā] ∗ [b, b̄] = [min(a ∗ b, a ∗ b̄, ā ∗ b, ā ∗ b̄),max(a ∗ b, a ∗ b̄, ā ∗ b, ā ∗ b̄)]
• division: [a, ā]÷ [b, b̄] = [min(a÷ b, a÷ b̄, ā÷ b, ā÷ b̄),max(a÷ b, a÷ b̄, ā÷ b, ā÷ b̄)]

excluding the case b = 0 or b̄ = 0.

The above operations allow the construction of a neural network, which uses intervals instead of
points on neural networks input. The following subsection shows that we can substitute classical
arithmetic on points to the arithmetic on intervals and, consequently, directly work on voxels.

Figure 4: Illustration of IntervalNet 3D interval (illustrated in 2D for clarity) is propagated through
MLP. At each layer, the 3D cube is deformed by linear transformation (FC layer). Then we construct
interval bound (marked by gray color) and use the ReLU activation function. Interval bound (in gray)
is propagated to the next layer. In logit space, it becomes easy to compute an upper bound on the
worstcase violation. Interval bound (in gray) is moved on one side of the decision boundary and
consequently transformed 3D cube (in green) is correctly classified. The figure is inspired by Fig. 2
from (Gowal et al., 2018).

3.4 HYPERCUBE-INTERVAL

Thanks to the interval arithmetic, we can construct IntervalNet (Gowal et al., 2018; Morawiecki
et al., 2019) that is able to process 3D cubes defined as intervals in the 3D space. Let us consider the
feed-forward neural network trained for a classification task. We assume that the network is defined
by a sequence of transformations hk for each of its K layers. That is, for input z0, we have

zk = hk(zk−1) for k = 1, . . . ,K.

The output zK ∈ RN hasN logits corresponding toN classes. In the IntervalNet each transformation
hk uses interval arithmetic. More precisely, the input of a layer is a 3D interval (3D cube).

Let us consider a classical dense layer:

h(x) = Wx+ b.

In IntervalNet, the input of the network is an interval and consequently the output of a dense layer is
also a vector of intervals:

[h(x), h̄(x)] = W [x, x̄] + b.

Therefore, the IntervalNet is defined by a sequence of transformations hk for each of its K layers.
That is, for an input [x, x̄], we have

[zk, z̄k] = hk([zk−1, z̄k−1]) for k = 1, . . . ,K.

6



Under review as a conference paper at ICLR 2022

Figure 5: Comparison of training times and GPU memory used by IM-NET and HyperCube. Our
HyperCube method offers over an order of magnitude decrease in both training time and memory.

The output [zK , z̄K ] has N interval logits corresponding to N classes. Propagating intervals through
any element-wise monotonic activation function (e.g., ReLU, tanh, sigmoid) is straightforward. If hk
is an element-wise increasing function, we have:

zk = hk(zk−1), z̄k = hk(z̄k−1).

Our goal is to obtain a classification rate for all elements from the interval. Therefore, we consider
the worst-case prediction for the whole interval bound [zK , z̄K ] of the final logits. More precisely,
we need to ensure that the entire bounding box is classified correctly, i.e., no perturbation changes
the correct class label. In consequence, the logit of the true class is equal to its lower bound, and the
other logits are equal to their upper bounds:

ẑK,y =

{
zK,y, for y 6= ytrue,

zK,ytrue
, otherwise .

Finally, one can apply softmax with the cross-entropy loss to the logit vectors ẑK representing the
worst-case prediction, see Fig. 4. For more detailed information see Gowal et al. (2018); Morawiecki
et al. (2019).

Such architecture can be simply added to HyperCube as a target network. It turns out that the output
of the interval layer can be calculated only by two matrix multiplies:

zk−1 =
z̄k−1+zk−1

2 , rk−1 =
z̄k−1−zk−1

2 ,

zk = Wkzk−1 + bk−1, rk = |Wk|rk−1,

zk = zk − rk, z̄k = zk + rk,

where | · | is the element-wise absolute value operator and rk is a radius of the interval.

Consequently, IntervalNet has exactly the same number of weights as in a fully connected architecture
with the some architecture. HyperCube-Interval is a copy of HyperCube with using IntervalNet
instead of MLP as a target network. We use worst-case accuracy instead of mse to ensure that the
whole voxel is correctly classified.

It should be highlighted that IntervalNet can not be added to IM-NET since we concatenate feature
vectors with 3D coordinates. More precisely, feature vectors must be propagated by fully connected
architecture and 3D cube by interval arithmetic, which is hard to implement in one neural network.

4 EXPERIMENTS

In this section, we describe the experimental results of the proposed generative models in various
tasks, including 3D mesh generation and interpolation. We show that our model is essentially
faster and requires less memory in training time. Then, we compare our model with a baseline on
reconstruction and generative tasks.

4.1 TRAINING TIME AND MEMORY FOOTPRINT COMPARISON

Fig. 5 displays a comparison between our HyperCube method and the competing IM-NET. For a fair
comparison we evaluated the architectures proposed in (Chen & Zhang, 2019) . The models were
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Plane Car Chair Rifle Table

MSE IM-NET 2.14 4.99 11.43 1.91 10.67
HyperCube 2.44 4.37 9.07 1.91 9.37

IoU IM-NET 78.77 89.26 65.65 72.88 71.44
HyperCube 65.35 90.05 72.61 63.97 73.78

CD IM-NET 4.23 5.44 9.05 3.77 11.54
HyperCube 4.74 3.36 8.35 4.20 8.82

Table 1: The mean is calculated for reconstructions of 100 first elements from test set in each category.
MSE is multiplied by 103, IoU by 102, and CD by 104.

trained on the ShapeNet dataset. Our HyperCube approach leads to a significant reduction in both
training time and memory footprint due to a more compact architecture.

4.2 RECONSTRUCTION CAPABILITIES

For the quantitative comparison of our method with the current state-of-the-art solutions in the
reconstruction task, we follow the approach introduced in (Chen & Zhang, 2019). Metrics for
encoding and reconstruction are based on point-wise distances, e.g., Chamfer Distance (CD), Mean
Squared Error (MSE) and Intersection over Union (IoU) on voxels.

The results are presented in Table 2. HyperCube obtain comparable results to the reference method.

Plane Car Chair Rifle Table

MSE

IM-NET 2.98 10.98 17.11 2.41 13.38
IM-NET % 0.45 0.70 0.68 0.56 0.64
HyperCube 2.99 7.47 16.46 2.61 13.23

HyperCube % 0.57 0.70 0.72 0.68 0.69

IoU

IM-NET 56.05 77.36 50.46 51.53 54.08
IM-NET % 0.61 0.71 0.72 0.69 0.75
HyperCube 61.68 86.34 53.52 59.80 61.23

HyperCube % 0.67 0.71 0.76 0.73 0.77

CD

IM-NET 7.38 5.72 13.99 8.06 17.36
IM-NET 0.58 0.71 0.78 0.72 0.82

HyperCube 5.02 4.28 12.92 4.96 12.49
HyperCube % 0.66 0.74 0.78 0.74 0.81

Table 2: Generation. Mean of minimum MSE/CD, maximum IoU between test set and 5*test set size
generated objects, % of test set objects matched as the closest ones.

4.3 GENERATIVE MODEL

We examine the generative capabilities of the provided HyperCube model compared to the existing
reference IM-NET. Our model similarly to IM-NET can be used for generating 3D objects. For 3D
shape generation, we employed latent-GANs (Dong et al., 2014) on feature vectors learned by a 3D
autoencoder. By analogy to IM-NET we did not apply traditional GANs trained on voxel grids since
the training set is considerably smaller compared to the size of the output. Therefore, the pre-trained
AE serves as a dimensionality reduction method, and the latent-GAN was trained on high-level
features of the original shapes. In Table 2 we present compression between IM-NET and HyperCube.
As we can see we obtain similar results than classical approaches.
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Figure 6: Competition between models between architectures working on points (HyperCube) and
interval architecture (HyperCube-Interval). As we can see, IntervalNet can fill some empty spaces in
meshes.

Figure 7: We calculate the number of connected components produced by mesh obtained by
architecture with intervals and without. Our HyperCube-Interval approach provides better models for
classes Airplane, Rifle, Car.

4.4 INTERVALS VS POINTS

As it was shown in previous section, HyperCube-Interval is essentially faster than IM-NET. Both
architectures give similar reconstruction and generative capability. Since HyperCube as well as
IM-NET works directly on points the classification boundary is not smooth and we can see artifacts
in mesh reconstruction, see Fig. 6. Since mesh representation is produced by the Marching Cubes
algorithm such artefacts appear with object with similar value of MSE, CD, and IoU. As it was shown
in (Chen & Zhang, 2019; Sorkine et al., 2003) such measures do not describe visual quality.

The classification boundary can be regularized using IntervalNet. In Fig. 6 we present such examples.
As we can see HyperCube-Interval models produce single objects without empty space. To verify
it, we calculate the number of connected components produced by mesh and visualize them on
histograms, see Fig. 7. Our model produces better models for classes: Airplane, Rifle, Car. On the
other hand, in the Tables, we have a similar result.

5 CONCLUSIONS

In this work we introduce a new implicit field representation of 3D models. Contrary to the existing
solutions, such as IM-NET, it is more light-weight and faster to train thanks to the hypernetwork
architecture, while offering competitive or superior quantitative results. Finally, our method allows to
incorporate interval arithmetic which enables processing entire 3D voxels, instead of their sampled
version, and hence yielding more plausible and higher quality 3D reconstructions.
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A APPENDIX

A.1 ARCHITECTURE

Our networks were trained on 32-element mini-batches for 1000 epochs using ADAM optimizer with
learning rate 5e− 5. For the first 200 epochs, we train on points sampled on 163 resolution, next –
200 epochs with points sampled on 323 resolution, and the rest of the training is performed using
points sampled on 643 resolution (as in Chen & Zhang (2019)). Our decoder consists of encoder and
generator. Encoder encodes 643 voxel, generator determines target network weights. Architecture of
encoder is the same as in Chen & Zhang (2019). Architecture of generator and target network is the
same as in Spurek et al. (2020a). Output of target network is of size 1 for HyperCube and of 2 for
HyperCube-Interval.
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