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ABSTRACT

This paper provides a novel framework that learns canonical embeddings for non-
rigid shape matching. In contrast to prior work in this direction, our framework
is trained end-to-end and thus avoids instabilities and constraints associated with
the commonly-used Laplace-Beltrami basis or sequential optimization schemes.
On multiple datasets, we demonstrate that learning self symmetry maps with a
deep functional map projects 3D shapes into a low dimensional canonical embed-
ding that facilitates non-rigid shape correspondence via a simple nearest neighbor
search. Our framework outperforms multiple recent learning based methods on
FAUST and SHREC benchmarks while being computationally cheaper, data effi-
cient, and robust.

1 INTRODUCTION

Shape correspondence is a fundamental problem in computer vision, computer graphics and related
fields (Thomas et al., 2021), since it facilitates many applications such as texture or deformation
transfer and statistical shape analysis (Bogo et al.,|2014)) to name a few. Although shape correspon-
dence has been studied from many viewpoints, we focus here on a functional map-based approaches
(Ovsjanikov et al.| [2012) as this framework is quite general, scalable and thus, has been extended
to various other applications such as pose estimation (Neverova et al., |2020), matrix completion
(Sharma & Ovsjanikov, 2021) and graph matching (Wang et al., 2020).

While recent learning based deep functional map approaches have made impressive gains in non
rigid isometric full shape matching (Litany et al.,[2017b; Roufosse et al.,|2019j |Halimi et al., [2019;
Sharma & Ovsjanikov, 2020), partial shape matching (Rodola et al.l 2017} [Litany et al., 2017b)
has received little attention despite it being of great interest in robotics (Chavdar et al., 2012) and
Virtual reality applications (Sharma et al., 2016). The progress is mainly hindered by the difficulty
of learning a suitable embedding or basis functions for partial 3D data. The majority of works in this
domain use the Laplace-Beltrami basis (Ovsjanikov et al., | 2017), which are biased towards near-
isometries and can be unstable under significant partiality (Kirgo et al., |2020). As a consequence,
there is no unified framework that excels at learning both partial as well as full non-rigid shape
matching despite some efforts in this direction (Sharma & Ovsjanikov, [2020; [Marin et al., [2020).
While the former approach [Sharma & Ovsjanikov| (2020) is class-specific and requires retraining
a network for each class, the latter (Marin et al.l [2020) employs a two stage optimization strategy
without adequate regularization which, as we show later, is suboptimal.

Instead of using predefined basis functions in the functional map framework, learning an embedding,
to be used as a basis in the functional map, is a promising direction towards obtaining a unified shape
matching framework for both partial as well as full shape matching. However, there exist few works
that exploit prior information on such embeddings. Marin et al.| (2020) make the first attempt by
assuming such embeddings to be linearly invariant between a pair of shapes. However, as we show
later, learning such an embedding without exploiting natural priors on 3D shapes, such as their
symmetry structure, leads to overfitting as no regularization or constraint is enforced on the linear
transformation between a pair of shape embeddings (Marin et al., 2020).

In this paper, we present a novel non-rigid shape matching method based on a nearest neighbour ap-
proach in canonical embedding. We work with point cloud representation of 3D shapes and assume
to be given a self symmetry map for each shape during training. We make two assumptions on the
canonical embedding: our first assumption is to learn an embedding of each shape that would make
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the given self-symmetry map linear in some higher-dimensional space. This is advantageous for
two reasons: first, it significantly simplifies the embedding learning pipeline and makes it learnable
end-to-end. This is because the linearly invariant assumption is made on a self-symmetry map and
not on the pairwise map between shapes as done in (Marin et al.| [2020). This alleviates the need
to retrieve this linear transformation for shape matching at test time and thereby, reduces the two
stage sequential optimization scheme of [Marin et al.| (2020) to joint optimization. Secondly, mod-
elling a self symmetry map enables us to explicitly enforce the pointwise map between two shapes
to take into account the intrinsic self-symmetry during training. Thus, our second contribution is a
novel regularizer that, combined with the learned self symmetry map during training, significantly
improves generalization and robustness to sampling resolution as well as the size of embedding.
Our method obtains superior results on multiple shape matching benchmarks such as FAUST and
SHREC when compared to recent learning-based methods while being computationally cheaper,
more robust and data efficient.

2 RELATED WORK

Functional Maps Computing point-to-point maps between two 3D discrete surfaces is a very
well-studied problem. We refer to a recent survey (Sahillioglu, [2019) for an in-depth discussion.
Our method is closely related to the functional map pipeline, introduced in (Ovsjanikov et al.| [2012)
and then significantly extended in follow-up works (see, e.g.,Ovsjanikov et al.[{(2017)). The key idea
of this framework is to encode correspondences as small matrices, by using a reduced functional
basis, thus greatly simplifying many resulting optimization problems. The functional map pipeline
has been further improved in accuracy, efficiency and robustness by many recent works including
(Kovnatsky et al., [2013} |Huang et al., 2014} Burghard et al., 2017} |Rodola et al., [2017; Nogneng
& Ovsjanikov, 2017; [Ren et al., 2018; |[Eisenberger et al.l [2020; |Ginzburg & Ravivl 2020). There
also exist other works (Wei et al., 2016} Boscaini et al., 2016 Monti et al., 2017) that treat shape
correspondence as a dense labeling problem but they typically require a lot of data as the label space
is very large.

Learning from raw 3D shape Although early approaches in functional maps literature used hand-
crafted features (Ovsjanikov et al.,2017)), more recent methods directly aim to learn either the opti-
mal transformations of hand crafted descriptors (Litany et al., 2017bj; |[Roufosse et al.,[2019) or even
features directly from 3D geometry itself (Donati et al.,|2020; Sharma & Ovsjanikov, [2020). Initial
efforts in this direction used classical optimisation techniques (Corman et al., 2014). In contrast,
Deep Functional Maps (Litany et al., 2017a) proposed a deep learning architecture called FMNet
to optimize a non-linear transformation of SHOT descriptors (Tombari et al. 2010), that was fur-
ther extended to unsupervised setting (Roufosse et al., [2019; [Halimi et al.l [2019). To alleviate the
sensitivity to SHOT descriptor, recent works including (Groueix et al., 2018} [Donati et al.l [2020;
Sharma & Ovsjanikovl, [2020) learn shape matching directly from the raw 3D data without relying
on pre-defined descriptors, thus leading to improvements in both robustness and accuracy. However,
all these works are aimed at full (complete) shape correspondence and do not handle partial shape
matching effectively.

Self Supervised Learning Self supervised learning has been exploited for learning representa-
tions and embedding in various domains where a proxy task is used to learn the representation. e.g.
Sharma et al.|(2016)) uses an autoencoder to complete the partial shapes and uses the resulting rep-
resentation of shape completion for shape classification task. |Gidaris et al.| (2018) learns to predict
image rotations and uses the resulting representation for image classification. Our formulation is in
the same spirit as we learn to inject the symmetry information in a 3D shape and use the resulting
representation for 3D shape matching. However, we choose symmetry learning as a proxy task for
embedding learning for a principled reason which we describe in detail in the methodology section.

Learning Basis from Data Most of the functional map frameworks can not handle partiality
in data as they rely on Laplacian eigenfunctions that are shown to be unstable under partial data.
(Rodola et al.| [2017} |Litany et al.;2017b; [Wu et al.,2020) deal with partiality but they are based on
hand-crafted features and require an expensive optimization scheme and are instance specific. While
Sharma & Ovsjanikov| (2020) proposes to learn a suitable alignment of pre-computed Laplacian
Eigen basis functions, the approach still relies on the Laplacian basis and can therefore be unsta-
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ble. [Marin et al.| (2020) proposed a two stage architecture to learn a linear transformation invariant
shape embedding to bypass the difficulties associated with LBO. However, as we demonstrate later
in experiments, the two stage architecture is suboptimal due to the lack of adequate regularization.

Symmetry for Non Rigid Shape Matching Matching shapes with intrinsic symmetries involves
dealing with symmetric ambiguity problem which has been very well studied and explored in ax-
iomatic methods (Raviv et al.,|2010; |Lipman et al.,2010; Mitra et al., 2012;|Ovsjanikov et al.,|[2013]).
More recently, Shi et al.| (2020) proposes an end to end method to learn extrinsic 3D symmetries from
a RGB-D image. However, none of the existing learning based non-rigid shape matching method
models or learn symmetry explicitly as a regularizer for shape matching.

Rest of the paper is structured as follows: In the next section, we briefly cover the necessary back-
ground on the functional map. Afterwards, we propose a novel learning strategy to learn canonical
embedding and introduce our novel regularization based on intrinsic symmetry prior. Lastly, we val-
idate our framework on three benchmark datasets by comparing it to various state-of-the-art methods
and providing ablation studies.

3 BACKGROUND

Before describing our method, we provide a brief overview of the basic pipeline to compute a func-
tional map (Ovsjanikov et al.|[2012).

Functional Map Computation The typical functional map pipeline (Ovsjanikov et al., [2012)
assumes that we are given a source and a target shape, X, Y, containing, respectively, n, and n,
vertices, a small set of k basis functions, e.g. of the respective Laplace-Beltrami operators (LBO).
We are also given a set of descriptors on each shape, to be preserved by the unknown map, whose
coefficients in the basis functions are stored as columns of matrices ®x, ®y. The optimal functional
map Cgp is computed by solving the following optimization problem:

Copt = argénin Eese (C> + aEreg (C) , (D

where Fgesc (C) = HCfbx — <I>YH2 aims at the descriptor preservation whereas the second term
acts as a regularizer on the map by enforcing its overall structural properties, such as bijectivity
of the map. The optimization problem in equation [I] can be solved with any convex solver. Once
the optimal functional map Cp is computed, one can use nearest neighbor search in the spectral
embedding to convert it to a point to point correspondence.

Note that when the basis functions are neural network-based, instead of optimizing over C, we are
optimizing the functional in equation[Tjover C, ®x and ®+v. In this case, joint optimization over C,
®x and P is challenging as C is computed via an iterative solver itself.

4 LEARNING CANONICAL EMBEDDING

In the previous section, we outlined a basic mechanism to compute a functional map given a set of
basis functions. Due to the instability of Laplace-Beltrami operator on partial 3D shapes, our main
goal is to avoid using its eigenfunctions and instead aim to learn a embedding that can replace the
spectral embedding given by the LBO. This section details how to learn such an embedding whilst
working in the symmetric space.

Input Shape Representation In contrast to several recent works (Halimi et al., |2019; [Sharma &
Ovsjanikov, 2020) that assume to be given a mesh representation of 3D shapes in non-rigid shape
matching, we do not impose any such constraint and directly work the with point cloud representa-
tion.

Type of Supervision In addition to the pointwise map between shapes, we assume to be given a
collection of shapes with a self-symmetry ground truth map for each shape and our goal is to find
an embedding that respects the given symmetry of each shape and that ultimately can reduce shape
correspondence between a pair of shapes to a nearest neighbor search between their embeddings.
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When compared to our main baseline (Marin et al.,[2020), this is an additional supervision and thus,
we also evaluate Marin et al.| (2020) with the same supervision for fair comparison.

Our work is most closely related to a recent work (Marin et al.| 2020) that proposes to replace the
Laplace-Beltrami basis by learning embeddings that are related by a linear transformation across
pairs of shapes. Intuitively, this formulation aims to embed a shape from the 3D space, in which
complex non-rigid deformations could occur, to another higher-dimensional space, in which trans-
formations across shapes are linear. However, using a supervised loss to learn this embedding with-
out enforcing any structural properties on the underlying linear transform provides little guarantee
that the learned transform will generalize from the train to test setting.

Linearly Invariant self-symmetry embedding We denote a map between a pair of shapes X and
Y by Txy : X — Y such that Txy (z;) = y;, Vi € {1,...,nx} and some j € {1,...,ny}. This
map can be represented by a matrix IIxy € R™*™¥ such that ITxvy (i, ) = 1 if Txy(x;) = y;
and 0 otherwise. We use the same notation 7" for self symmetry map Txx, as well. We use Px to
denote the 3D coordinates of X.

Our network takes a shape X as input as well as its point to point symmetry map denoted as Txx,.
We then perform a reflection (flip) of each shape along one axis resulting in a shape denoted as Xg.
The original and flipped shapes are then forwarded to a Siamese architecture, based on a PointNet|Qi|
let al] feature extractor, that embeds these two shapes into some fixed & dimensional space.
We illustrate in Figure [T] one such flip. The intuition behind this operation is to help the network
learn representation that can disambiguate left from right in shape matching. Our first key idea is
to learn an embedding of each shape that would make the given self-symmetry map linear in some
higher-dimensional space.

Figure 1: Original Shape and its Flipped version from Surreal dataset

Let ®x and ®x, denote the matrices, whose rows can be interpreted as embeddings of the points
of X and Xy. In the functional map framework, there exists a functional map Cxx, that aligns
the corresponding embeddings. Given a self symmetry ground truth pointwise map Txx,, we can
estimate C'xx, by solving the following optimization problem:

Cxx; = argc{nin [®xCT — Txx,Px, |2 @

The optimal symmetry map Cxx, is given by: Cxx, = (@;Txxfcbxf)T, that is differentiable
using the closed-form expression of derivatives of matrix inverses, as also mentioned in Section 3.
Similarly, we can compute Cyvy, for shape Y.

4.1 LOSS FUNCTIONS

Given a set of pairs of shapes X, Y for which ground truth correspondences Tg(tY are known along
with a pointwise symmetry map, our network computes an embedding ®x, Py for each shape as
well as a self symmetry functional map Cxx, and Cyy, respectively as described above. We
then optimize the sum of three loss functions, one each defined for linearly invariant self symmetry
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embedding, nearest neighbour based loss for pairwise (shape pair) embedding and a commutativity
loss for explicitly enforcing intrinsic symmetry during training.

Linearly Invariant Loss The first two loss functions are based on a soft-correspondence matrix,
also used in (Litany et al. 2017a)) and (Marin et al.| |2020). To define it for self symmetry map,

we transform each shape embedding ‘f’x = dx C’)T(Xf by applying the optimal symmetry map. We
then compare the rows of <T>X to those of ®x, to obtain the soft correspondence matrix Sxx, that
approximates the self-symmetry map in a differentiable way as follows:

1T —2, I

3)

Sxx,)ii = _
(Sxxe)is L

We then define our loss that uses this soft-map to transfer the Euclidean coordinates and compares
the result to transferring the coordinates using the ground truth map.

L(®x, Px,, Py, Pyy)iin. = Z [ Sxx Px; — TgéfoXfH% + Z I1Svy, Py, — T%];YfPYfH%
4)

Note that this does not assume that the Euclidean coordinates to correspond. Instead, this loss
measures how well the predicted map transfers a particular set of functions, compared to the ground
truth map. This loss was introduced in [Marin et al.| (2020) but we enforce it on the self-symmetry
map.

Euclidean Loss The loss described in the previous paragraph only considers the embedding of
each shape independently and aims to promote the structural property of this embedding: i.e., that
the symmetry map should be linear in the embedding space.

Our next loss links the embeddings of the two shapes and is designed to preserve the given ground
truth mapping. Specifically, we first compute the soft correspondence matrix Sxvy between a pair of
shapes, by comparing the rows of ®x to those of @y in a differentiable way as done in equation 3]
We then evaluate the computed soft map, again, by evaluating how well it transfers the coordinate
functions, compared to the given ground truth mapping.

L(®x, By )eue. = Y [|1Sxy Py — TXy Py |l3. ©)

Note that unlike the linearly invariant loss that we impose on the symmetry maps, this loss is based
on comparing ®x and &+ directly, without computing any linear transformations. This significantly
simplifies the learning process and in particular, reduces the computation of the correspondence at
test time to a simple nearest-neighbor search. Despite this, as we show below, due to our strong
regularization, our approach achieves superior results compared to the method of Marin et al.|(2020),
based on computing an optimal linear transformation at test time.

Symmetry Commutativity Loss Our final loss aims to link the symmetry map computed for
each shape and the correspondence across the two shapes. We achieve this by using the algebraic
properties of the functional representation, and especially using the fact that map composition can
simply be expressed as matrix multiplication.

Specifically, given a self-symmetry pointwise map on shapes X and shape Y, we aim to promote
the consistency between the computed correspondence and the symmetries on each shape. We do
this by imposing the following commutativity loss during training:

L(®x, Pv)comm. = 1Sy, v Sxy — SxvSx,:x|/2 (6)

Intuitively, this loss considers the difference between mapping from X to Y and applying the sym-
metry map on Y, as opposed to applying the symmetry on X and then mapping from X to Y. Note
that this is similar to the commonly used Laplacian commutativity in the functional maps literature.
However, rather than promoting isometries, our loss enforces that the computed map respects the
self-symmetry structure of each shape, which holds regardless of the deformation class, and is not
limited to isometries.
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Overall training Loss We combine the two embedding losses defined in equation[d]and equation|3]
with that of commutativity loss defined in equation[6]and define the training loss as follows:

Ltot. = LeuCA + A x Llin. + 7y * Lcomm. (7)

The scalars A and -y allow us to weigh the symmetry information differently in partial and full shape
matching. Naturally, we set them higher for full shape matching where enforcing symmetry structure
makes more sense than partial setting where symmetry is partial at times. We set A and « to 5 for
full shape matching and 1 and .1 for partial shape matching based on a small validation set.

Test Phase At test time, once the network is trained, we simply compute the embedding ®x
and ®v and do a nearest neighbour search between them to find correspondence between the two
shapes.

Implementation Details We implemented our method in Pytorch |Paszke et al.|(2019). All exper-
iments are run on a Nvidia RTX 2080 graphics processing card and require 16 GB of GPU memory.
For our experiments, similar to prior work (Sharma & Ovsjanikov, [2020; [Marin et al., 2020), we
train over randomly selected 5000 shapes from the SURREAL dataset (Varol et all |[2017), where
each point cloud is resampled randomly at 3K vertices. We learn a k£ = 50 dimensional embedding
(basis) for each point cloud.

During training, we require self-symmetry ground truth as well as pairwise ground truth map. Fol-
lowing (Sharma & Ovsjanikov, |2020; Marin et al., |2020), our feature extractor is also based on
the semantic segmentation architecture of PointNet. We use a batch size of 20 and learning rate of
le — 4 and optimize our objective with Adam optimizer in Pytorch |Paszke et al.| (2019). Training
iterations as well as other hyperparameters are validated on a small validation set of 500 shapes
from the SURREAL dataset. Unlike Marin et al.|(2020)) that uses fixed 1000 points during train and
test time, we use full resolution at test time. In the SURREAL dataset, all point cloud contain 6890
points. During training, we randomly sample 3000 points from the point cloud and also augment the
training set with random rotations applied to input data. We obtain an embedding of 50 dimensions
during training by validating from the set 40, 50, 60. Our results are not sensitive to small changes
in these two parameters. We probe the effect of changing size of embedding as well as the amount
of training data on the resulting performance and report it in the last section.

5 RESULTS

This section is divided into two subsections. First subsection[5.1]shows the experimental comparison
of our approach with two state-of-the art methods for near-isometric full shape matching. Section
demonstrates the effectiveness on partial shape matching. We evaluate all results by reporting
the per-point-average geodesic distance between the ground truth map and the computed map. All
results are multiplied by 100 for the sake of readability.

5.1 FULL SHAPE MATCHING

We present our results on a full shape matching benchmark dataset FAUST Bogo et al.| (2014).
This dataset contains 100 shapes of 10 different subjects in different poses where each point cloud
contains 6890 points. Following prior work, we use the last 20 shapes as a test set and report the
performance on this test set. We compare our results with Marin et al.[(2020); Sharma & Ovsjanikov
(2020) in Table 2 as they are applicable, in principle, to both partial and complete shape matching.
Note that|Marin et al.| (2020) presents results on the FAUST data that is subsampled to 1000 points
both during train and test. Our method obtains significantly better results than Marin et al.| (2020).
Methods based on LBO eigen functions already form a good basis for shapes and thus, prior work
based on LBO eigen basis obtains impressive performance. However, performance of this line of
work degrades significantly under partiality, as shown in the next section and also in Marin et al.
(2020).

Baselines We compare with the following two state-of-the-art methods that are shown to outper-
form existing competitors and our ablated baselines:



Under review as a conference paper at ICLR 2022

Sharma & Ovsjanikov| (2020) This baseline, although weakly supervised, assumes to be given as
input a mesh representation of a shape and LBO basis. We include it to demonstrate we can achieve
competitive performance with the methods that excel in full shape matching where LBO basis are
stable.

Marin et al.[(2020) This is considered state of the art for learning embedding directly from data.
Since we are testing with point clouds of much higher resolution compared to the experiments in
Marin et al.[ (2020), we retrain their models with 3k subsampled points for each point cloud and
show their results with the best performing resolution of 3k. The rest of the parameters such as
embedding size are used as specified in their paper as they were found to be optimal. We use their
open source code and retrain it on our subset of Surreal dataset. Note that this baseline is somewhat
different from others since it requires and thus, learns both basis functions and probe functions
(feature descriptors).

Euc. Emb. This baseline ablates the overall performance of our method and quantifies the gain
brought in by the euclidean loss alone during training. It shows the performance if we learn an em-
bedding by just projecting the shapes into a 50 dimensional space with a nearest neighbour euclidean
loss.

Euc. Emb. + comm. This baseline combines the above baseline with the commutativity loss and
quantifies what can be achieved without the linearly invariant assumption on self-symmetry map.
We denote our results with Euc. Emb. + comm. + Lin. Inv. in the following Table. We also show
the corresponding curves below that are consistent with average geodesic error shown in the Table
below.

Cumulative Error Curves on Faust
: e

[ Method \ Dataset [ Faust | |
Marin et al, (2020)-3k 08 | 5o
Marin et al.[(2020) + sym. 09 Sost
Euc. Emb. 12 gos
Euc. Emb. + comm. 10 8o
Euc. Emb. + comm. + Lin. Inv. (Ours) | 05 sl
Sharma & Ovsjanikov|(2020) 05 ‘g o — e

°

0.2 0.4 06 0.8 1 1.2 14
Geodesic error

Discussion Our ablation study shows that all three loss functions improve the overall performance.
We note that the performance gains brought in by linearly invariant loss on self-symmetry embed-
dings are significant. We also remark that We attribute our superior quantitative results over other
learning based methods to a range of factors. First, in contrast toMarin et al.|(2020) that is based on
two stage sequential architecture, our embedding is learned end to end in one phase. Second, none
of the state-of-the-art methods takes symmetry structure into account even though symmetry ambi-
guities for shape matching is a well known problem and studied extensively in axiomatic methods.
Third, performance of Marin et al.| (2020) is sensitive to the size of embedding 20. In contrast, our
method is quite robust and can train with twice their embedding size. We compete well with Sharma
& Ovsjanikov|(2020) even though this approach relies on LBO and exploiting mesh connectivity.

5.2 PARTIAL SHAPE MATCHING

Datasets For a fair comparison with (Sharma & Ovsjanikov, 2020; [Litany et al., 2017b), we
follow the same experimental setup and test our method on the challenging SHREC’16 Partial
Correspondence dataset (Cosmo et al [2016). The dataset is composed of 200 partial shapes, each
containing about few hundreds to 9000 vertices, belonging to 8 different classes (humans and
animals), undergoing nearly-isometric deformations in addition to having missing parts of various
forms and sizes. Each class comes with a “null” shape in a standard pose which is used as the full
template to which partial shapes are to be matched. The dataset is split into two sets, namely cuts
(removal of a few large parts) and holes (removal of many small parts). We use the same test set
following (Sharma & Ovsjanikov} 2020). Overall, this test set contains 20 shapes each for cuts and
holes datasets chosen randomly from the two sets respectively. In addition to Marin et al.| (2020),
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Table 1: Avg. Geodesic Error on two partial SHREC benchmarks

| Method \ Dataset | Holes [ Cuts |
Litany et al.| (2017b)) 16 13
Sharma & Ovsjanikov| (2020) 14 16
Marin et al.| (2020)-3k 12 15
Euc. Emb. 18 20
Ours 10 13

we compare with the following two baselines:

Sharma & Ovsjanikov| (2020). This baseline relies on learning LBO alignment and thus, is de-
pendent on class that needs to be retrained for each of the 8 classes. We include their results even
though our results are class agnostic and thus, significantly more robust and efficient. We obtain
these results by running the code provided by the authors.

Litany et al.| (2017b). This baseline is not learning based and relies on hand crafted features and an
expensive optimization scheme on the Stiefel manifold for every pair of shapes at test time. Thus,
in terms of computation and ground truth map requirement, it is most expensive.

Results and Discussion We present our findings on partial shape matching in Table |1| where we
obtain superior performance on both benchmark datasets for partial shape matching. In addition, our
result outperforms the euclidean embedding competitive baseline by a significant margin and thus,
validating the importance of working in the symmetric space while learning canonical embedding.
We would like to stress that baseline such as Sharma & Ovsjanikov| (2020) are class specific and
need to be trained each time whereas our method is class agnostic and can obtain good results with
a fraction of computational time. Similarly, Marin et al.| (2020) trains a similar network as our two
times. First, it learns an embedding with a network similar to ours, followed by a similar network
training to compute the optimal linear transformation between the two embeddings. Moreover, the
test phase also requires running the network twice. Therefore, our method is at least twice faster
than this baseline in computational complexity.

Robustness to Embedding size Our method is not sensitive to small variations in the embedding
size. We demonstrate this by changing the embedding size and plotting the average error on the
FAUST test set. Note that in contrast, Marin et al.| (2020) is extremely sensitive to changes in the
size of feature descriptors (probe functions). We show the sensitivity in Figure 2.

Training Data Efficient We experiment with 3 training set of different sizes 1000, 3000, 5000
sampled randomly and plot the results in Figure 3. We observe a drop in the performance of our
method but the drop is slightly better than our baseline (Marin et al., 2020).

Figure 2: Figure 3:
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6 CONCLUSION AND FUTURE WORK

In shape correspondence literature, partial shape matching and complete shape matching are gen-
erally tackled by two different sets of methods which obtain impressive results in one of the two
respective domains. We presented a simple, general but effective method that reduces shape match-
ing to a nearest neighbour search problem in a canonical embedding and apply it to both partial and
complete shape matching. Our key idea is to learn an embedding of each shape that would make the
given self-symmetry map linear in some higher-dimensional space. Our idea of injecting symme-
try into the learning pipeline also serves as a regularizer and provides competitive performance on
multiple shape matching benchmarks in comparison to all recent learning based methods.

There are several promising future directions to our work. First, our architecture is based on a
very simple PointNet feature extractor and thus, there is a scope to integrate more advanced feature
extractor that can exploit the neighbourhood structure better while learning the embedding. Second,
following the advances in unsupervised deep functional maps, it would be interesting to explore
learning of canonical embedding with minimal supervision.

7 REPRODUCIBILITY

We have not included the code in the supplement due to the time constraints before the deadline to
clean and anonymize it but we promise to upload it in the next chance to update this submission. We
use publicly available datasets which can be downloaded by anyone.
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