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ABSTRACT

Non-contrastive self-supervised learning (NC-SSL) methods like BarlowTwins
and VICReg have shown great promise for label-free representation learning in
computer vision. Despite the apparent simplicity of these techniques, researchers
must rely on several empirical heuristics to achieve competitive performance, most
notably using high-dimensional projector heads and two augmentations of the
same image. In this work, we provide theoretical insights on the implicit bias
of the BarlowTwins and VICReg loss that can explain these heuristics and guide
the development of more principled recommendations. Our first insight is that
the orthogonality of the features is more important than projector dimensional-
ity for learning good representations. Based on this, we empirically demonstrate
that low-dimensional projector heads are sufficient with appropriate regulariza-
tion, contrary to the existing heuristic. Our second theoretical insight suggests
that using multiple data augmentations better represents the desiderata of the SSL
objective. Based on this, we demonstrate that leveraging more augmentations per
sample improves representation quality and trainability. In particular, it improves
optimization convergence, leading to better features emerging earlier in the train-
ing. Remarkably, we demonstrate that we can reduce the pretraining dataset size
by up to 4x while maintaining accuracy and improving convergence simply by
using more data augmentations. Combining these insights, we present practical
pretraining recommendations that improve wall-clock time by 2x and improve
performance on CIFAR-10/STL-10 datasets using a ResNet-50 backbone. Thus,
this work provides a theoretical insight into NC-SSL and produces practical rec-
ommendations for improving its sample and compute efficiency.

1 INTRODUCTION

Unsupervised representation learning, i.e., learning features without human-annotated labels, is crit-
ical for progress in computer vision. Modern approaches, grouped under the self-supervised learn-
ing (SSL) umbrella, build on the core insight that similar images should map to nearby points in
the learned feature space. Current SSL methods can be broadly categorized into contrastive and
non-contrastive algorithms. While both categories aim to learn the desired features using “positive”
samples, which refer to different augmentations of the same image, they diverge in using “negative”
samples. Contrastive methods use augmentations obtained from completely different images as neg-
ative samples to avoid the trivial solution of mapping all samples to the same point in the feature
space (i.e., representational collapse). But, this necessitates an elaborate sampling scheme and huge
batch sizes. Non-contrastive methods, on the other hand, eliminate the need for negative samples
altogether and instead rely on regularizing the feature space to avoid representational collapse.

A prominent subgroup among non-contrastive SSL methods is the family of Canonical Correla-
tion Analysis (CCA) algorithms, which includes BarlowTwins (Zbontar et al., 2021) and VICReg
(Bardes et al., 2021). These methods aim to enforce orthogonality among the learned features in
addition to learning to map similar images to nearby points in feature space and have been shown to
achieve competitive performance on benchmark computer vision datasets. These methods have be-
come the preferred strategy for representation learning in several domains due to the lack of need for
negative samples and their simple formulation. However, despite the apparent simplicity of their loss
functions, the behavior of this family of algorithms is not well understood. Therefore, researchers
often use empirically-driven heuristics to design successful applications, such as using (i) a high-
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dimensional projector head or (ii) two augmentations per image. Although these heuristics help in
practice, their theoretical underpinnings are unclear.

Figure 1: Existing SSl algorithms make design choices often driven by heuristics. (A) We investigate
the theoretical underpinnings of two choices (i) the number of augmentations (ii) the dimensionality
of the projector. (B) We show that generalized NC-SSL algorithm with multiple augmentations, low-
dimensional projectors outperform existing heuristics while using ∼ 4× fewer unlabelled samples.

Alongside relying on heuristics and researchers’ intuition for design, existing SSL algorithms are
extremely data-hungry. In particular, state-of-the-art algorithms often rely on large-scale datasets
(Russakovsky et al., 2015) or data engines (Oquab et al., 2023) to achieve good representations.
While this strategy works exceptionally well in natural-image settings, its application is limited in
other critical domains, such as medical imaging, where the number of samples is scarce.

With these challenges in mind, the primary focus of this work is making progress toward establish-
ing theoretical foundations underlying the family of non-contrastive SSL algorithms (NC-SSL) with
an eye toward sample efficiency. In particular, we analyse the BarlowTwins and VICReg losses and
show that they implicitly learn the data similarity kernel that is defined by the chosen augmentations.
We find that learning the data similarity kernel is helped by greater orthogonality in the projector
outputs and more data augmentations. As such, increasing the orthogonality of the projector out-
put eliminates the requirement for a high-dimensional projector head, and increasing the number
of data augmentations decreases the number of unique samples required. Our theoretical analysis
establishes a principled grounding for the role of multiple augmentations, and the sufficiency of
low-dimensional projectors, together outlining a framework for improving the sample-efficiency of
NC-SSL while maintaining representation quality.

We empirically verify our theoretical insights using the popular ResNet-50 backbone on benchmark
datasets, CIFAR-10 and STL-10. Strikingly, we show that our multi-augmentation approach can
learn good features even with a quarter of the number of samples in the pretraining dataset. As such,
this suggests that SSL training can be done with smaller datasets and opens interesting questions in
the design of performance enhancing transformations. In summary, our core contributions are:

• Eigenfunction interpretation: We demonstrate that the loss functions of the CCA family
of non-contrastive SSL algorithms are equivalent to the objective of learning eigenfunctions
of the augmentation-defined data kernel.

• Role of heuristics: We provide a mechanistic explanation for the role of projector dimen-
sionality and the number of data augmentations, and empirically demonstrate that low-
dimensional projector heads are sufficient and using more augmentations leads to learning
better representations.

• Data efficient NC-SSL: Leveraging the convergence benefits of the multi-augmentation
framework, we demonstrate that we can learn good features with significantly smaller
datasets (upto 25%) without harming downstream performance.

2 PRELIMINARIES

We start by formally defining the unsupervised representation learning problem for computer vision.
In particular, we assume access to a dataset D = {x1, x2, ..., xn} with xi ∈ Rp consisting of unla-
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Figure 2: Schematic of augmentation graph. (A) Augmentations from each image span a region in
the image space which could overlap with the augmentation span of other images. (B) An augmen-
tation graph schematic that uses probabilities to characterize the interactions among augmentation
spans of different instances.

beled instances (often natural images), and the objective is to learn a d-dimensional representation
(d < p) that are useful across multiple downstream applications. We focus on learning the param-
eters of a deep neural network fθ ∈ FΘ, using the multi-view invariance SSL framework, wherein
multiple views of an example are used to optimize pretraining loss function, Lpretrain(fθ,D)

Non-Contrastive Self-Supervised Learning (NC-SSL) algorithms impose invariance to data-
augmentations, which are used to define multiple views of the same image while imposing certain
regularization on the geometry of the learned feature space. More generally, both families can be
thought of as decomposing Lpretrain into two terms (i) Linvariance : to learn invariance to data
augmentations and (ii) Lcollapse to prevent collapsing the feature space to some trivial solution with
no discriminative power.

Lpretrain := Linvariance + βLcollapse (1)

where β denotes a hyperparameter that controls the importance of the collapse-preventing term
relative to the invariance term.

This formulation separates instance-level attributes invariant to augmentations, highlighting the se-
mantic information of the instance. The ideal feature space is less sensitive to varying attributes and
more sensitive to semantic ones, facilitating generalization to new examples. Understanding the in-
terplay between pretraining loss and preserved attributes is critical for time and compute-efficiency.

Data Augmentation graph was introduced by HaoChen et al. (2021) to analyze contrastive losses,
like SimCLR (Chen et al., 2020). Briefly, we define a graph G(X ,W) with the vertex set (X , ρX )
comprising the result of all possible data augmentations from each sample in a dataset (could be
infinite when continuous augmentation functions are used) and W denoting the adjacency matrix.
Let x0 be an image in X , and let z = M(x0) be a random data augmentation of the image, x0. We
define the probability density of reaching z from x0 via a choice of mapping M :

p(z | x0) = P(z = M(x0)), (2)

Since mapping are not generally invertible (e.g. crops), observe that p(x0 | z) ̸= p(z | x0). Using
this definition, we now define the strength of edge between nodes x and z of the augmentation graph
as the joint probability of generating augmentations x, z from the same image x0 ∼ ρX . Formally,

wxz := Ex0∼ρX
[p(x | x0)p(z | x0)] (3)

It is worth noting that the magnitude of wxz captures the relative similarity between x and z. A
higher value of wxz indicates a higher likelihood that both patches came from the same image.

HaoChen et al. (2021) showed that optimizing a functionally equivalent form of the SimCLR loss,
termed the spectral contrastive loss (Lc, essentially learns features whose covariance structure
matches the adjacency matrix of the augmentation graph.

Lc ∝ ∥ZZT − W̄∥2F (4)

where Z denotes the output of the neural network, W̄ denotes the degree-normalized adjacency
matrix and ∥.∥F denotes the Frobenius norm operator. This perspective implies that the features
learned by a contrastive SSL framework would align with the top eigenvectors of W̄ . As observed
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by HaoChen et al. (2021), all rotations of Z that don’t change its span define an equivalence class
of solutions to the above optimization problem and make no difference for the downstream gener-
alization of a linear probe. Based on this insight, we define a notion of equivalence among learned
feature spaces.
Definition 2.1. Let F (x) = (f1(x), . . . fd(x)) be a d-dimensional feature vector (a vector of func-
tions). Define the subspace

V = V (F ) = {h : X → R | h(x) = w · F (x), w ∈ Rd} (5)

to be the span of the components of F . Given an n-dimensional feature vector, G(x) =
(g1(x), . . . , gn(x)) we say the features G and F are equivalent, if V (F ) = V (G).

3 DATA AUGMENTATION KERNEL PERSPECTIVE OF NON-CONTRASTIVE SSL

Following the previous section, we will now present an augmentation kernel perspective of Bar-
lowTwins and VICReg losses. Specifically, we show that the these losses are equivalent to the
optimization problem of learning eigenfunctions of the augmentation-defined data covariance ker-
nel. Subsequently, we argue that using a high-dimensional projector yields better overlap with the
top eigenvectors of the data augmentation kernel at initialization as compared to a low-dimensional
projector. Therefore, our analysis suggests using a stronger orthogonalization constraint during op-
timization for lower-dimensional projectors to ensure that features learned are equivalent to those
learned with high-dimensional projectors. Furthermore, we also argue that using more number of
augmentations improves our estimate of the augmentation-defined data covariance kernel, thereby
aiding the eigenfunction optimization problem. Therefore, our analysis suggests using an averaging
operator with more data augmentations to better estimate the true augmentation kernel.

3.1 FEATURES IN TERMS OF DATA AUGMENTATION KERNELS

We will define two notions of the data augmentation kernel. Given two images, x, z, the first kernel,
which we call the forward data augmentation covariance kernel, is given by

kDAF (x, z) = Ex0∼ρX

[
p(x | x0)

ρ(x)

p(z | x0)

ρ(z)

]
(6)

This covariance kernel measures the similarity between x, z in terms of how likely they are to be
reached from x0, weighted by the distribution of x0. Note that this is indeed the edge strength
between nodes x, z in the augmentation graph. We can also define a (backwards) data augmentation
covariance kernel which reverses the roles of (x,z) and x0:

kDAB(x, z) = Ex0∼ρX

[
p(x0 | x)
ρ(x0)

p(x0 | z)
ρ(x0)

]
(7)

The goal of SSL is to learn features that preserve the covariance kernel structure (imposed by this
choice of mapping M ) (Dubois et al., 2022). Therefore, we want to define a loss which determines
vector features, F : X → Rd, which factor a data augmentation kernel kDA(x, z) = F (x)⊤F (z).
Doing this directly is prohibitively data intensive at scale, since it involves a search over data aug-
mented images. However, since the covariance kernels are PSD, they define a Reproducing Kernel
Hilbert space (RKHS). This allows us to apply Mercer’s theorem to find vector features as in Deng
et al. (2022a;b); Pfau et al. (2018).

The construction of features using Mercer’s theorem goes as follows. Given a PSD data augmenta-
tion kernel, kDA, define the Tk operator, which takes a function f and returns its convolution with
the data augmentation kernel.

Tkf(x) = Ez∼ρX
[k(z, x)f(z)] (8)

We will also make use of the the following operator,

TMf(x) = Ex0∼M(x) [f(x0)] =
∑
x0

[p(x0 | x)f(x0)] (9)

which averages the values of function, f , over the augmented images x0 = M(x) of the data, x.
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Since the operator Tk is compact and positive, it has a spectral decomposition consisting of eigen-
functions ϕi and corresponding eigenvalues λi. Using these eigenpairs, we can define the (infi-
nite sequence of square summable) spectral features, G : X → ℓ2, (where ℓ2 represents square
summable sequences), by

G(x) = (
√
λ1ϕ1(x), . . . ,

√
λdϕd(x), . . . ) (10)

Then, Mercer’s theorem gives
kDA(x, z) = G(x) ·G(z) (Mercer)

and ensures that the inner product is finite. These are the desired features, which factor the kernel.
However, computing the eigenfunctions of Tk is costly. Instead we propose an alternative using the
more efficient operator TM . Both operators lead to equivalent features, according to Definition 2.1.
Theorem 3.1. Let G(x) be the infinite Mercer features of the backward data augmentation covari-
ance kernels, kDAB . Let F (x) = (f1(x), f2(x), . . . , fk(x)) be the features given by minimizing the
following data augmentation invariance loss

L(F ) =

Nk∑
i=1

∥TMfi − fi∥2L2(ρX), subject to (fi, fj)ρX
= δij (11)

which includes the orthogonality constraint. Then, V (F ) ⊂ V (G) , V (F ) → V (G) as Nk → ∞.

The idea of the proof uses the fact that, as linear operators, TkDAB = T⊤
MTM and that TkDAF =

TMT⊤
M . Then we use spectral theory of compact operators, which is analogue of the Singular Value

Decomposition in Hilbert Space, to show that eigenfunctions of T⊤
MTM operator are the same as

those obtained from optimizing L(F ). A similar result can be obtained using kDAF and T⊤
M .

Note that L(F ) is the constrained optimization formulation of the BarlowTwins loss. Furthermore,
L(F ) with the additional constraint that (fi, fi) ≥ γ ∀i ∈ {1, 2 . . . Nk} is the constrained optimiza-
tion formulation of the VICReg loss.

3.2 COROLLARY 1: LOW-DIMENSIONAL PROJECTORS ARE SUFFICIENT

While BarlowTwins and VICReg frameworks have advocated the use of high-dimensional projec-
tors to facilitate good feature learning on Imagenet, our kernel perspective challenges this notion.
Since the intrinsic dimensionality of Imagenet is estimated to be ∼ 40 (Pope et al., 2020), it is not
unreasonable to expect that the span of desired features would be of similar dimensionality. It is,
thus, intriguing that these frameworks mandate the use of an ∼ 8192 − d projector head to cap-
ture the intricacies of corresponding data augmentation kernel. This discrepancy can be explained
by observing the learning dynamics of a linearized model under the BarlowTwins loss optimiza-
tion (Simon et al., 2023). These dynamics reveal that initializing the projection weight matrix in
alignment with the eigenfunctions of the data kernel retains this alignment throughout the learning
process. Notably, a high-dimensional projector is more likely to have a greater span at initialization
compared to its low-dimensional counterpart, increasing the likelihood of overlap with the relevant
eigenfunctions. We hypothesize that it is possible to rectify this issue by using a stronger orthog-
onalization constraint for low-dimensional projectors, thereby rendering them sufficient for good
feature learning.

3.3 COROLLARY 2: MULTIPLE AUGMENTATIONS IMPROVE OPTIMIZATION

Theorem 3.1 implies that the invariance loss optimization would ideally entail using the TM operator,
thereby requiring many augmentations for each sample x. Using only two augmentations per sample
yields a noisy estimate of TM , yielding spurious eigenpairs (Vershynin, 2010) (see Appendix). These
spurious eigenpairs add stochasticity to the learning dynamics, and hinder the alignment of the
learned features with the eigenfunctions of the data kernel (Simon et al., 2023). We hypothesize that
improving this estimation error by increasing the number of augmentations could ameliorate this
issue and improve the speed and quality of feature learning.

Increasing the number of augmentations (say m) in BarlowTwins and VICReg comes with added
compute costs. A straightforward approach would involve computing the invariance loss for every
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pair of augmentations, resulting in O(m2) operations. However, Theorem 3.1 proposes an alterna-
tive method that uses the sample estimate of TM , thereby requiring only O(m) operations. Both
these strategies are functionally equivalent (see Appendix), but the latter is computationally more
efficient. In summary, Theorem 3.1 establishes a mechanistic role for the number of data augmenta-
tions, paving the way for a computationally efficient multi-augmentation framework:

L̂(F ) = Ex∼ρX

Nk∑
i=1

m∑
j=1

∥fi(x)− fi(xj)∥2L2(ρX)

 , subject to (fi, fj)ρX
= δij (12)

where fi(x) =
1
m

∑m
j=1 fi(xj) is the sample estimate of TMfi(x).

4 EXPERIMENTS

In our experiments, we seek to serve two purposes (i) provide empirical support for our theoretical
insights and (ii) present practical primitives for designing efficient self-supervised learning routines.
In summary, with extensive experiments across learning algorithms (BarlowTwins, VICReg) and
training datasets (CIFAR-10/STL-10), we establish that

• low-dimensional projectors as sufficient for learning good representations.

• multi-augmentation improves downstream accuracy and convergence.

• multi-Augmentation improves sample efficiency in SSL pretraining, i.e. recovering simi-
lar performance with significantly fewer unlabelled samples.

Experiment Setup: We evaluate the effectiveness of different pretraining approaches for non-
contrastive SSL algorithms using image classification as the downstream task. Across all experi-
ments, we use linear probing with Resnet-50 as the feature encoder backbone. On CIFAR-10, all
models are pretrained for 100 epochs, while STL-10 models are pretrained for 50 epochs. All runs
are averaged over 3 seeds, and errorbars indicate standard deviation. Other details related to opti-
mizers, learning rate, etc. are presented in the Appendix.

4.1 SUFFICIENCY OF LOW-DIMENSIONAL PROJECTORS

Figure 3: Low-dimensional projectors are sufficient for good feature learning. We demonstrate
that using a higher orthogonality constraint (λ for D, F and λeff = 1

dλ for E) for lower projector
dimensionality can achieve similar performance over a wide range of projector dimensions (d).
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Existing works recommend using high-dimensional MLPs as projectors (e.g., d=8192 for Imagenet
in Zbontar et al. (2021); Bardes et al. (2021)), and show significant degradation in performance for
a fixed redundancy coefficient (λ). To reproduce this result, we run a grid search to find the optimal
coefficient (λ∗

8192) for d = 8192 and show that performance progressively degrades for lower d if
the same coefficient λ∗

8192 is reused for d ∈ {64, 128, 256, 512, 1024, 2048, 4096, 8192}.

Our insights in Section 3.2 suggest low-dimensional projectors should recover similar performance
with appropriate orthogonalization. To test this, we find the best λ by performing a grid search
independently for each d ∈ {64, 128, 256, 512, 1024, 2048, 4096, 8192}. As illustrated in Figure 3,
low-dimensional projectors are indeed sufficient. Strikingly, we also observe that the optimal λd ∝
1/d, is in alignment with our theoretical insights.

Recommendataions: Start with low-dimensional projector, using λ = O( 1d ), and sweep over
(pdim = d, λ = O

(
1
d

)
) if needed.

4.2 MULTIPLE AUGMENTATIONS IMPROVE PERFORMANCE AND CONVERGENCE

Although some SSL pretraining approaches, like SWaV, incorporate more than two views, the most
widely used heuristic in non-contrastive SSL algorithms involve using two views jointly encoded by
a shared backbone. In line with this observation, our baselines for examining the role of multiple
augmentations use two views for computing the cross-correlation matrix.

Figure 4: Using multiple augmentations improves representation learning performance and conver-
gence. (A-C) Across BarlowTwins and VICReg for CIFAR-10 and STL-10 pretraining, using 4
augmentations instead of 2 helps improve performance. (D-F) Although the 4-augmentations take
longer for each epoch, its performance still trumps the 2-augmentation version of the algorithm at
the same wall clock time.

To understand the role of multiple augmentations in pretraining in light of the augmentation-kernel
interpretation, we propose Equation (12), which generalizes Barlow-Twins and VICReg to the multi-
augmentation setting. In particular, for #augs ∈ {2, 4, 8}, we pretrain Resnet-50 with the general-
ized NC-SSL loss for 100 epochs on CIFAR-10 and 50-epochs for STL-10. Building on the insight
from the previous section, we use a 256-dimensional projector head for all experiments.

In Figure 4, we track the downstream performance of the pre-trained models across training epochs,
i.e., we extract features from intermediate checkpoints and train a linear classifier on top of the
features. Here, we use the linear evaluation protocol as outlined by Chen et al. (2022). Figure 4(A-
C), shows that pretraining with multiple augmentations outperforms the 2-augmentation baseline.
Furthermore, we observe that the four-augmentation pre-trained models converge faster (both in
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terms of the number of epochs and wall-clock time) than their two-augmentation counterparts (see
Figure 4(D-F)).

Recommendatation: Using multiple augmentations ( > 2) with the generalized NC-SSL loss
is likely to improve convergence as well as downstream accuracy.

4.3 SAMPLE EFFICIENT MULTI-VIEW LEARNING

Data Augmentation can be viewed as a form of data-inflation, where the number of training samples
is increased by a factor of k (for k augmentations). In this section, we examine the role of multi-
augmentation in improving sample efficiency. In particular, we are interested in understanding if the
same performance can be achieved with a fraction of the pretraining dataset.

Figure 5: Multi-augmentation improves sample efficiency, recovering similar performance with
significantly less number of unique samples in the pretraining dataset. Across BarlowTwins and
VICReg pretraining on CIFAR-10 and STL-10, for the same effective dataset size (#augs ×
#unique samples), using more patches improves performance at the same epoch (A-C) or wall
clock time (D-F). However, there exists a tradeoff wherein doing more data augmentations fails to
improve performance in the very low data regime.

To examine the relation between the number of augmentations and sample efficiency, we fixed the
effective size of the inflated dataset. This is achieved by varying the fraction of the unique samples in
the pretraining dataset depending on the number of augmentations k ∈ {2, 4, 8}, e.g. we use 1/2 the
dataset for 4 views. We then evaluate the performance of the pre-trained models on the downstream
task, where the linear classifier is trained on the same set of labeled samples. Strikingly, Figure 5
shows that using multiple augmentations can achieve similar (sometimes even better) performance
with lesser pretraining samples, thereby indicating that more data augmentations can be used to
compensate for smaller pretraining datasets.

Recommendation: Use more, diverse augmentations for sample efficient pretraining.

5 RELATED WORK

Self-Supervised Pretraining requires significant compute resources, and with the lack of a uni-
fied theoretical framework, most practitioners rely on empirical heuristics. The SSL cookbook
(Balestriero et al., 2023) provides a comprehensive summary of several such widely adopted prac-
tices. While recent advances in SSL theory explore learning dynamics in linear (or shallow) models
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(Tian et al., 2020; 2021), with a focus on understanding dimensionality collapse (Jing et al., 2021),
the theoretical underpinnings of most “recipes” essential for good feature learning, are missing.

Contrastive SSL has received more theoretical attention, owing to its connection with metric learn-
ing and noise contrastive estimation (Li et al., 2021; Balestriero & LeCun, 2022; Johnson et al.,
2023). In particular, HaoChen et al. (2021) provide a theoretical framework for the SimCLR loss
from an augmentation graph perspective, which leads to practical recommendations. Subsequently,
Garrido et al. (2022) establish a duality between contrastive and non-contrastive learning objectives,
further bridging the gap between theory and practice.

Non-Contrastive SSL algorithms have comparitively scarce theoretical foundations. In prior work
(Agrawal et al., 2022; Garrido et al., 2022) find that with modified learning objectives, low-
dimensional projectors are sufficient for good downstream performance. Similarly, previous works
have demonstrated notable performance boosts when using a multi-patch framework in contrastive
(Dwibedi et al., 2021) and non-contrastive SSL. However, the theoretical basis for the benefits and
trade-offs of either low-dimensional projectors or multiple augmentations is unclear.

Deep Learning theory has made significant strides in understanding the optimization landscape
and dynamics of supervised learning (Advani et al., 2020). In recent work, Simon et al. (2023) use
a simpler formulation of the BarlowTwins loss and investigate the learning dynamics in linearized
models for the case when the invariance and orthogonalization losses have equal penalties.

6 DISCUSSION

Summary: Our work presents a fresh theoretical analysis that sheds light on the implicit bias of
non-contrastive SSL algorithms. We use these insights to unravel the impact of key design heuris-
tics and offer practical recommendations that improve convergence while maintaining accuracy (on
CIFAR-10/STL-10). We also show that the multi-augmentation framework can be used to learn good
features from fewer unique samples in the pretraining dataset, simply by improving the estimation
of the data augmentation kernel.

Pareto Optimal SSL In the context of sam-
ple efficiency, training a model using two aug-
mentations with different fractions of the dataset
leads to a natural Pareto frontier, i.e. training on
the full dataset achieves the best error but takes
the most time (Baseline (2-Aug)). Our exten-
sive experiments demonstrate that using more
than two augmentations improves the overall
Pareto frontier, i.e. achieves better convergence
while maintaining accuracy (Multi-Aug). Strik-
ingly, as shown in Figure 6, we observe that
for a target error level, we can either use a
larger pretraining dataset or more augmenta-
tions. Therefore, the number of augmentations
can be used as a knob to control the sample ef-
ficiency of the pretraining routine.

Figure 6: Using > 2 augmentations with a frac-
tion of the dataset improves overall Pareto fron-
tier, speeding runtime by upto ∼ 2×.

Open Questions: Looking ahead, it would be exciting to extend this analysis to other categories of
SSL algorithms, such as Masked AutoEncoders (MAE). Furthermore, our insights provide opportu-
nities to explore sample-efficient methods that rely on less data, which is particularly important in
critical domains such as medical imaging, where data is often scarce and expensive to obtain.

Limitations Our algorithm relies on multiple views of the same image to improve estimation of the
data-augmentation kernel. Although this approach does add some extra computational overhead, it
significantly speeds up the learning process. We can explore the possibility of making the current
design more computationally efficient to further improve it.
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A ICLR REVIEWER RESPONSE: ADDITIONAL EXPERIMENTS AND
DISCUSSION

A.1 LONGER PRETRAINING

Figure 7: BarlowTwins pretraining on full CIFAR-10 dataset for 400 epochs.

Algorithm Best accuracy Best accuracy @ epoch
Barlow-Twins (2-augs) w/ pdim=256 92.04 +/- 0.16 400
Barlow-Twins (4-augs) w/ pdim=256 92.39 +/- 0.17 340
Barlow-Twins (8-augs) w/ pdim=256 92.64 +/- 0.10 140

Table 1: BarlowTwins pretraining on full CIFAR-10 dataset at 400 epochs (with early stopping)

A.2 SWAV-LIKE AUGMENTATIONS FOR COMPUTE EFFICIENT MULTI-AUGMENTATION
FRAMEWORK

Figure 8: BarlowTwins pretraining on full STL-10 dataset for 100 epochs using SwAV-like augmen-
tations. Specifically, the 2-augmentations setting uses two views that are 64× 64, whereas the 4 (or
8) augmentation setting uses additional two (or six) augmentations that are 32× 32.
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A.3 ON TRAINING WITH FULL DATASET WITH 4/8 AUGMENTATIONS

Figure 9: BarlowTwins pretraining on full CIFAR-10 dataset.

Algorithm #augs=2 #augs=4 #augs=8
Barlow-Twins w/ pdim=256 86.43 +/- 0.72 91.73 +/- 0.16 92.71 +/- 0.19
Barlow-Twins w/ pdim=8192 85.44 +/- 0.54 91.40 +/- 0.32 92.40 +/- 0.13

Table 2: BarlowTwins pretraining on full CIFAR-10 dataset at 100 epochs
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B HILBERT SPACE OF FUNCTIONS

B.1 FUNCTIONS AND INNER PRODUCT SPACE

Definition B.1. Given X, ρX , and f, g : X → R, define the L2(ρX) inner product and norm,
respectively,

(f, g)ρX
=

∫
f(x)g(x)dρX(x), ∥f∥2ρX

= (f, f)ρX
(13)

Define
L2(ρ,X) =

{
f : X → R | ∥f∥2ρX

< ∞
}

to be the (equivalence class) of functions with finite ρX norm.

B.2 SPECTRAL THEORY

In this section we quote the relevant (abstract) Hilbert Space theory.
Definition B.2 (Spectral Operator). Given orthogonal functions, Φ = (ϕi)i∈I in L2(ρX), and non-
negative Λ = (λi)i∈I , with ∥Λ||22 =

∑
i∈I λ

2
i < ∞. Call (Φ,Λ) a spectral pair and define the

corresponding spectral operator by

TΦ,Λ(h) =

∞∑
j=1

λj (h, ϕj)ϕj , (14)

Theorem B.3 (Spectral Decomposition). Suppose H is a Hilbert space. A symmetric positive-
definite Hilbert-Schmidt operator T : H → H admits the spectral decomposition equation 14 with
orthonormal ϕj which are the eigenfunctions of T , i.e. T (ϕj) = λjϕj . The ϕj can be extended
to a basis by adding a complete orthonormal system in the orthogonal complement of the subspace
spanned by the original ϕj .
Remark B.4. The ϕj in equation 14 can thus be assumed to form a basis, but some λj may be zero.

From Horváth & Kokoszka (2012). Theorem proved in Gohberg (1990). Denote by L the space of
bounded (continuous) linear operators on H with the norm

∥T∥L = sup{∥T (x)∥ | ∥x∥ ≤ 1}.

Definition B.5 (Compact Operators). An operator T ∈ L is said to be compact if there exist two
orthonormal bases {gj} and {fj}, and a real sequence {λj} converging to zero, such that

T (h) =

∞∑
j=1

λj(h, gj)fj , h ∈ H, (Compact)

The λj may be assumed positive. The existence of representation equation Compact is equivalent
to the condition: T maps every bounded set into a compact set. Compact operators are also called
completely continuous operators. Representation equation Compact is called the singular value
decomposition.
Definition B.6 (Hilbert-Schmidt Operators). A compact operator admitting representation equa-
tion Compact is said to be a Hilbert-Schmidt operator if

∑∞
j=1 λ

2
j < ∞. The space S of Hilbert-

Schmidt operators is a separable Hilbert space with the scalar product

⟨T1, T2⟩S =

∞∑
i=1

(T1 (fi) , T2 (fi)) , (15)

where {fi} is an arbitrary orthonormal basis. Note the value of equation 15 is independent of the
basis. The corresponding norm is

∥T∥2S =
∑
j≥1

λ2
j (HS)

One can show that
∥T∥L ≤ ∥T∥S
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Definition B.7. An operator T ∈ L is said to be symmetric if
⟨T (f), g⟩ = ⟨f, T (g)⟩, f, g ∈ H,

and positive-definite if
⟨T (f), f⟩ ≥ 0, f ∈ H.

(An operator with the last property is sometimes called positive semidefinite, and the term positive-
definite is used when the inequality is strict.)

C DATA AUGMENTATION KERNEL PERSPECTIVE OF NON-CONTRASTIVE SSL

Theorem C.1. Let G(x) be the infinite Mercer features of the backward data augmentation covari-
ance kernels, kDAB . Let F (x) = (f1(x), f2(x), . . . , fk(x)) be the features given by minimizing the
following data augmentation invariance loss

L(F ) =

Nk∑
i=1

∥TMfi − fi∥2L2(ρX), subject to (fi, fj)ρX
= δij (16)

which includes the orthogonality constraint. Then, V (F ) ⊂ V (G) , V (F ) → V (G) as Nk → ∞.

The idea of the proof uses the fact that, as linear operators, TkDAB = T⊤
MTM and that TkDAF =

TMT⊤
M . Then we use spectral theory of compact operators, which is analogue of the Singular Value

Decomposition in Hilbert Space, to show that eigenfunctions of T⊤
MTM operator are the same as

those obtained from optimizing L(F ). A similar result can be obtained using kDAF and T⊤
M .

Note that L(F ) is the constrained optimization formulation of the BarlowTwins loss. Furthermore,
L(F ) with the additional constraint that (fi, fi) ≥ γ ∀i ∈ {1, 2 . . . Nk} is the constrained optimiza-
tion formulation of the VICReg loss.

C.1 PROOF OF THEOREM 3.2

We show we can factor the linear operator, leading to a practical algorithm. Here, we show that we
can capture the backward data augmentation kernel with the forward data augmentation averaging
operator
Lemma C.2. Using the definitions above, and with k in equation 8 given by kDAB ,

Tk = T⊤
MTM

Proof. First, define the non-negative definite bilinear form

BV AR(f, g) = (TMf, TMg)ρX
(17)

Given the backwards data augmentation covariance kernel, kDAB , define

BDAB(f, g) = (Tkf, g)ρX

We claim, that
BV AR = BDA,B (18)

This follows from the following calculation,

BDA,B(f, g) = (Tkf, g)ρX
(19)

= Ex[Tkf(x), g(x)] = ExEz[kDA,B(z, x)f(z)g(x)] (20)

= ExEzEx0

[
p(x0 | x)
ρ(x0)

p(x0 | z)
ρ(x0)

f(z)g(x)

]
(21)

= Ex0

[∑
x

(
ρ(x)p(x0 | x)

ρ(x0)
g(x)

)∑
z

(
ρ(z)p(x0 | z)

ρ(x0)
f(z)

)]
(22)

= Ex0

[∑
x

(p(x | x0)g(x))
∑
z

(p(z | x0)f(z))

]
[Using Bayes’ rule] (23)

= Ex0
[TMf(x0)TMg(x0)] = (TMf, TMg)ρX

= BV AR(f, g) (24)
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For implementations, it is more natural to consider invariance to data augmentations.

Theorem C.3 (equivalent eigenfunctions). Assume that TM is a compact operator. Define the in-
variance bilinear form

BINV (f, g) = (TMf − f, TMg − g) (25)

Then BINV , BV AR share the same set of eigenfunctions. Moreover, these are the same as the
eigenfunctions of BDA,B . In particular, for any eigenfunction fj of BV AR, with eigenvalue λj , then
fj is also and eigenfunction of BINV , with the corresponding eigenvalue given by (

√
λj − 1)2.

Proof. Define TMM by,
TMMf = T⊤

MTMf (26)

Define
TMS = (TM − I)⊤(TM − I) (27)

Note, by the assumption of compactness, TM has the Singular Value Decomposition, (see the Hilbert
Space section for equation SVD),

TM (h) =

∞∑
j=1

λj(h, gj)fj (SVD)

Let fj be any right eigenvector of TM , with eigenvalue µj . Then fj is also a right eigenvector
TM − I , with eigenvalue µj − 1. So we see that TMM has fj as an eigenvector, with eigenvalue
λj = µ2

j and TMS has fj as an eigenvector, with eigenvalue (
√
λj − 1)2. Finally, the fact that there

are no other eigenfunctions also follows from equation SVD.

The final part follows from the previous lemma.

D MULTI-AUGMENTATION LEARNING

D.1 AUGMENTATION GRAPH

We use the population augmentation graph formulation introduced in HaoChen et al. (2021). Briefly,
we define a graph G(X ,W), where the vertex set X comprises of all augmentations from the dataset
(could be infinite when continuous augmentation functions are used) and W denotes the adjacency
matrix with edge weights as defined below:

wxx′ := Ex̄∼PX̄
[A(x|x̄)A(x′|x̄)] (28)

, i.e. the joint probability of generating ‘patches’ x, x′ from the same image x̄. Here A defines the
set of augmentation functions used in the SSL pipeline. It is worth noting that the magnitude of wxx′

captures the relative similarity between x and x′. A higher value of wxx′ indicates that it is more
likely that both patches came from the same image, and thereby are more similar. The marginal
likelihood of each patch x can also be derived from this formulation:

wx = Ex′∼X [wxx′ ] (29)

D.2 CONTRASTIVE AND NON-CONTRASTIVE LOSSES SUFFER FROM THE SAME ISSUES

We will now show that the proposal of using multiple patches for the Linvariance is pertinent to
both the contrastive and non-contrastive SSL. Following HaoChen et al. (2021), we use the spectral
contrastive loss formulation and incorporate the augmentation graph relations:

Lc = −Ex,x+

[
f(x)T f(x+)

]
+ βEx,x′

[(
f(x)T f(x′)

)2]
Lc ∝ ∥ZZT −D− 1

2WD− 1
2 ∥2F = ∥ZZT − W̄∥2F (30)

where z :=
√
wxf(x), D is a N ×N diagonal matrix with entries {wx} and W̄ = D− 1

2WD− 1
2 .
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We extend the duality results between contrastive and non-contrastive SSL loss, established by Gar-
rido et al. (2022), to demonstrate how eq. (30) can be decomposed into the invariance and collapse-
preventing loss terms.

∥ZZT − W̄∥2F = ∥ZTZ − Id∥2F + 2Tr
[
ZT (IN − W̄)Z

]
+ κ (31)

= ∥ZTZ − Id∥2F + 2
∑
i

∑
x

(1− w̄x)z
2
i − 2

∑
i

∑
x,x′

w̄xx′ziz
′
i + κ (32)

where κ is some constant independent of Z. The first term in eq. (31) is the covariance regularization
term in non-contrastive losses like BarlowTwins (implicit) or VIC-Reg (explicit), and the second
term in eq. (32) is the variance regularization. Simplifying the third term in eq. (32) gives us:∑

i

∑
x,x′

w̄xx′ziz
′
i =

∑
i

∑
x,x′

wxx′f(x)if(x
′)i =

∑
i

∑
x,x′

Ex̄∼PX̄
[A(x|x̄)A(x′|x̄)f(x)if(x′)i]

=
∑
i

Ex̄∼PX̄

[∑
x

A(x|x̄)(f(x)if(x)i − f(x)2i )

]

= Ex̄∼PX̄

[∑
x

A(x|x̄)
(
f(x)T f(x)− ∥f(x)∥2

)]
(33)

This term encourages f(x) to be similar to f(x), i.e. the mean representation across all augmen-
tations of x̄, thereby requiring to “sufficiently” sample A(.|x̄). Given that both the contrastive and
non-contrastive losses rely on learning invariance properties from data augmentations, we believe
that our multi-patch proposal would improve the probability density estimation of A(.|x̄) and yield
better performance with few training epochs.

D.3 EXPLAINING TRAINING DYNAMICS IN LOW PATCH SAMPLING REGIME

We now turn to a simple form of the augmentation graph to understand how using low number of
augmentations affects the evolution of ZZT . Minimizing eq. (30) implies that the spectral decom-
position of Z would align with the top eigenvectors (and values) of W . We will demonstrate that in
the low sampling regime (using few augmentations), the eigenvectors of the sampled augmentation
graph W̃ may not align with those of W .

Augmentation graph setup. We define an augmentation graph with only two instances from two
different classes, similar to the one presented in (Shen et al., 2022). Let us denote the four instances
as x̄i for i ∈ 1, 2, 3, 4, where x̄1, x̄2 belong to class 1 (i.e. y1, y2 = 1) and x̄3, x̄4 belong to
class 2 (i.e. y3, y4 = 4). Let us further assume that x̄1, x̄3 have the highest pixel-level similarity
among (x̄1, x̄i)∀i ∈ 2, 3, 4, thereby making it more likely to have similar patches (see Figure 2 for
illustration). We denote this relationship among input examples using G to indicate (pixel-wise)
global similarity groups. So, G1,G3 = 1 and G2,G4 = 2. We can use the following probabilistic
formulation to model our augmentation functions (see Figure 2B):

A(xj |x̄i) =


ρ′ if j = i

µ′ if j ̸= i and yj = yi and Gj ̸= Gi

ν′ if j ̸= i and yj ̸= yi and Gj = Gi

δ′ if j ̸= i and yj ̸= yi and Gj ̸= Gi

(34)

In our setting, ρ′ + µ′ + ν′ + δ′ = 1. The adjacency matrix of our augmentation graph (as shown in
Figure 2C) is as follows:

W =

ρ µ ν δ
µ ρ δ ν
ν δ ρ µ
δ ν µ ρ

 (35)

We defer the relations between ρ′, µ′, ν′δ′ and ρ, µ, ν, δ to the appendix. The eigenvalues of this
matrix are: (ρ + µ + ν + δ, ρ + µ − ν − δ,ρ − µ + ν − δ, ρ − µ − ν + δ). Corresponding
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Figure 10: Empirical verification of the subsampling Ansatz.

eigenvectors are along [1, 1, 1, 1]
T , [1, 1,−1,−1]

T . [1,−1, 1,−1]
T , [1,−1,−1, 1]

T . Assuming
that the augmentation functions induce semantically-relevant invariance properties that are relevant
for identifying yi from f(xi), we can say that ρ′ > max{µ′, ν′} and min{ν′, µ′} > δ′. When
we have sufficiently sampled the augmentations, any SSL loss will learn Z such that its singular
values are span the top eigenvectors of the augmentation graph, and the eigenspectrum of ZZT

would simply be the above eigenvalues. In practical settings, the augmentation graph would have
significantly higher dimension that the feature/embedding dimension 1. Therefore, singular vectors
of Z would span the top eigenvectors of W and the smaller eigenmodes are not learned. When
we have accurately sampled the augmentation graph, µ > ν and therefore, the class-information
preserving information is preferred over pixel-level preserving information during learning. But
what happens when we do not sufficiently sample the augmentation space?

Ansatz. Based on our empirical experience, we define an ansatz pertaining to the eigenvalues of a
sampled augmentation graph and validate it in tractable toy settings, such as the one described above.
Specifically, we claim that when the augmentation space is not sufficiently sampled, {|µ− ν|, δ} →
0. In other words, we claim that when only few augmentations per example are used, it is more
likely to have an equal empirical likelihood for augmentations that preserve (pixel-level) global
information and class/context information. Moreover, it is very unlikely to have augmentations that
change both the class and global information. This is demonstrated in Figure 10.

Consequences of the Ansatz. When only a few augmentations are sampled, learning can suppress
the class information at the cost of preserving the pixel-level information, thereby leading to an
increased smoothness in the learned feature space.

E IMPLEMENTATION DETAILS

Image Classification Datasets Across all experiments, our settings mainly follow Chen et al.
(2022). In particular, we run Table 3a summarizes our pretraining settings on Cifar-10 Krizhevsky
& Hinton (2009), and STL-10 Coates et al. (2011). In Table 3b, we outline the corresponding linear
evaluation settings for Resnet-50. Note that we add a linear classifier layer to the encoder’s features
and discard the projection layers for evaluation.

E.1 EMPIRICAL RESULTS ON TRANSFER LEARNING

In this section, we present extended version of results presented in Figure 4, Figure 5 but pretraining
on CIFAR-10 (or STL-10) and evaluating on STL-10 (or CIFAR-10). These results, coupled with
the ones in Figure 4 Figure 5, present a strong case for the advantage of using the proposed multi-
augmentation loss for better convergence as well as downstream accuracy.

1Contrastive algorithms use a large batch size, thereby optimizing a high-dimensional ZZT whereas non-
contrastive algorithms use a large embedding dimension, thereby optimizing a high-dimensional ZTZ.
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Figure 11: BarlowTwins pretraining on CIFAR-10, linear evaluation on STL-10 labelled set.

Figure 12: VICReg pretraining on CIFAR-10, linear evaluation on STL-10 labelled set.

Figure 13: BarlowTwins pretraining on STL-10, linear evaluation on CIFAR-10 labelled set.

19



Under review as a conference paper at ICLR 2024

Figure 14: BarlowTwins pretraining on fraction of CIFAR-10 trainset, linear evaluation on STL-10
labelled set.

Figure 15: VICReg loss pretraining on fraction of CIFAR-10 trainset, linear evaluation on STL-10
labelled set.

Figure 16: BarlowTwins loss pretraining on fraction of STL-10 unlabelled set, linear evaluation on
CIFAR-10 train set.
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config value
optimizer Adam
learning rate 1e-3
batch size 128
epochs 100 (CIFAR10), 50 (STL10)
weight-decay 1e-6

(a) Pretraining

config value
optimizer Adam
learning rate 1e-3
batch size 512
epochs 200
weight-decay 1e-6
test-patches 16

(b) Linear Evaluation

Table 3: Experiment Protocol for comparing SSL algorithms
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