

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ASTRA: ACTIVATION-SPACE TAIL-EIGENVECTOR LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Parameter-Efficient Fine-Tuning (PEFT) methods, especially LoRA, are widely used for adapting pre-trained models to downstream tasks due to their computational and storage efficiency. However, LoRA and its successors often focus on well-optimized principal subspaces of model activations, yielding diminishing returns and potentially destabilizing pretrained representations, while the subspaces correspond to tail eigenvectors remain largely under-utilized. In this work, we propose **Astra** (Activation-Space Tail-Eigenvector Low-Rank Adaptation), a novel PEFT method that leverages the tail eigenvectors of the model output activations—estimated from a small task-specific calibration set—to construct task-adaptive low-rank adapters. By constraining updates to the subspace spanned by the tail eigenvectors of output activations, Astra avoids interfering with pretrained task-relevant semantic structure and adapts in directions that minimize energy in the original task-specific representational space, leading to faster convergence and improved downstream performance. Extensive experiments across natural language understanding (NLU) and natural language generation (NLG) tasks demonstrate that Astra consistently outperforms existing PEFT baselines across 16 benchmarks and even surpasses full fine-tuning (FFT) in certain scenarios.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable success across a wide range of tasks (Achiam et al., 2023; Dubey et al., 2024; Guo et al., 2025). A common strategy for adapting these pretrained models to downstream tasks is full fine-tuning (FFT), in which all model parameters are updated. However, the substantial computational and memory costs associated with this process severely limit its practicality in resource-constrained environments (Singh et al., 2024; Liu et al., 2024a). To overcome these limitations, parameter-efficient fine-tuning (PEFT) methods have emerged as a promising alternative. By introducing a small number of additional trainable components while keeping the pretrained parameters frozen (Liu et al., 2021; Li & Liang, 2021; Hu et al., 2023b), PEFT methods significantly reduce the number of trainable parameters while maintaining competitive performance on downstream tasks.

Among various PEFT methods, LoRA (Hu et al., 2022) has gained considerable attention for its simplicity and effectiveness. A theoretical motivation for the effectiveness of LoRA is offered by the intrinsic dimension hypothesis (Li et al., 2018; Aghajanyan et al., 2021), which posits that the solution space of fine-tuning lies in a low-dimensional subspace. However, the default initialization scheme of LoRA often results in very small gradients in the early stages of training, potentially leading to slow convergence and suboptimal adaptation (Meng et al., 2024; Wang et al., 2024b)

To address these limitations, recent research has proposed alternative initialization strategies for LoRA, which can be broadly categorized into two types. **Weight-driven** approaches (Meng et al., 2024; Wang et al., 2024a) leverage the structure of pretrained weights to guide the initialization of low-rank adapters, whereas **data-driven** methods (Yang et al., 2024; Wang et al., 2024b; Paischer et al., 2024) utilize data distributions and task-specific signals for initialization. However, most existing works overlook two critical aspects: (1) The output activations of LLM exhibit low-rank structure, where the major components are captured in a low-dimensional subspace (Yu & Wu, 2023; Liu et al., 2024a). This principal low-rank subspace is progressively formed and optimized during pretraining to capture rich semantic information (Wu et al., 2024). However, further updates within this subspace

054 during fine-tuning yield diminishing returns, potentially disturbing the learned representations and
 055 causing unstable convergence (Kumar et al., 2022). (2) Meanwhile, the dimensions corresponding to
 056 tail eigenvalues remain under-utilized (Nayak et al., 2025). These observations suggest that adapting
 057 in such under-explored subspaces may increase the effective rank (Roy & Vetterli, 2007), enhancing
 058 task-specific representational capacity and improving model’s adaptability to downstream tasks.

059 Building on this insight, we propose **Astra (Activation-Space Tail-Eigenvector Low-Rank**
 060 **Adaptation)**, a novel PEFT method that exploits the under-explored tail subspaces of output activa-
 061 tions to construct learnable adapters. Specifically, Astra begins by performing eigendecomposition
 062 on the covariance matrix of the output activations using a small task-specific calibration dataset
 063 D , i.e., $Cov(Y) = Q\Lambda Q^\top$, where Q denotes the eigenvectors and Λ is the diagonal matrix of
 064 corresponding eigenvalues. To constrain optimization within the under-explored subspaces, Astra
 065 then projects the weight matrix W onto the subspace spanned by the tail eigenvectors, thereby
 066 deriving task-adaptive low-rank adapters aligned with the under-utilized activation directions, i.e.,
 067 $A = Q_{[:, -r]}^\top W$ and $B = Q_{[:, -r]}$, where r denotes the LoRA rank. This initialization strategy offers
 068 twofold advantages: (1) **Orthogonality to task-relevant pretrained semantic structure**: By initial-
 069 izing LoRA adapters in directions orthogonal to the principal activation subspace, Astra minimizes
 070 interference with the model’s native task competence, ensuring stability and semantic consistency
 071 during fine-tuning. (2) **Energy-minimizing initialization**: Among all possible low-rank update
 072 directions, Astra selects those that minimize perturbation energy in the original task-relevant output
 073 space. This enables efficient adaptation by enhancing task-relevant representations along previously
 074 under-utilized dimensions, accelerating convergence and improving downstream performance.

075 We conduct extensive experiments on a wide range of tasks to evaluate the effectiveness of Astra,
 076 including natural language understanding (NLU) and multiple natural language generation (NLG)
 077 tasks such as *Mathematical Reasoning*, *Code Generation*, and *Commonsense Reasoning*. Experi-
 078 mental results demonstrate that Astra consistently outperforms existing PEFT baselines across 16
 079 benchmarks and even surpasses full fine-tuning (FFT) on certain tasks. Our contributions can be
 080 summarized as follows:

- 081 • We propose **Astra**, a novel initialization method for LoRA that leverages the under-utilized
 082 eigenspace of output activations for low-rank adaptation. Astra provably preserves task-relevant
 083 representations and minimizes perturbation energy in the task-specific output space, enabling
 084 efficient and stable fine-tuning.
- 085 • We conduct extensive experiments on a wide range of NLU and NLG tasks, including general
 086 language understanding, mathematical reasoning, code generation, and commonsense reasoning.
 087 Extensive experimental results demonstrate that Astra consistently outperforms existing PEFT
 088 methods, demonstrating its effectiveness and adaptability.
- 089 • We present systematic ablations on eigenvectors, LoRA ranks, and calibration data, which
 090 consistently confirm the effectiveness and efficiency of our approach. In addition, effective rank
 091 analysis supports the core hypothesis that Astra enhances task-specific representational capacity
 092 while preserving pretrained semantics.

093 2 METHOD

094 2.1 PRELIMINARIES OF LORA’S INITIALIZATION

095 LoRA (Hu et al., 2022) introduces trainable updates by reparameterizing weight modifications as the
 096 product of two low-rank matrices. Formally, given a pre-trained weight matrix $W_0 \in \mathbb{R}^{m \times n}$, LoRA
 097 decomposes the weight changes as:

$$100 \quad \tilde{W} = W_0 + \Delta W = W_0 + \frac{\alpha}{r} BA \quad (1)$$

101 where ΔW denotes the weight change, which is decomposed into two low-rank matrices $B \in \mathbb{R}^{m \times r}$
 102 and $A \in \mathbb{R}^{r \times n}$ with an intrinsic rank $r \ll \min(m, n)$, α is a scaling constant. This parameterization
 103 reduces the number of trainable parameters from mn to $(m+n)r$, significantly improving fine-tuning
 104 efficiency. In practice, A is initialized from the Gaussian distribution, while B is initialized as an
 105 all-zero matrix to ensure that the initial model output remains unchanged. However, such random
 106 initialization can lead to slower convergence, as the gradients of the trainable adapters can be very
 107 small or in random directions during the early stages of fine-tuning (Meng et al., 2024).

108 2.2 ACTIVATION-SPACE TAIL-EIGENVECTOR LOW-RANK ADAPTATION
109

110 To address these challenges, we propose Astra, a novel initialization method for LoRA designed to
111 enhance adaptation efficiency and stability. The method consists of two main steps: (1) orthogonal
112 decomposition of the activation space to preserve original semantic structure, and (2) projection of
113 the weights onto the tail subspace for LoRA initialization. Below, we describe each step in detail.

114 **Step 1: Orthogonal Decomposition.** Astra begins by collecting the covariance matrix of output
115 activations that are relevant to the downstream task. Specifically, we randomly sample a small set of
116 data (e.g., 64 samples) from the training set to form the calibration dataset. These samples are then
117 passed to the LLM for forward propagation. Denoting $Y \in \mathbb{R}^{d_{\text{out}} \times N}$ as the output activation of a
118 linear layer, where N is the number of calibration samples, we compute the covariance matrix as:

$$119 \quad \text{Cov}(Y) = \mathbb{E}[YY^\top] - \mathbb{E}[Y]\mathbb{E}[Y]^\top \quad (2)$$

120 where $\mathbb{E}[\cdot]$ denotes the expectation operator. Since $\text{Cov}(Y)$ is positive semi-definite, it can be de-
121 composed as $\text{Cov}(Y) = Q\Lambda Q^\top$, where $Q \in \mathbb{R}^{d_{\text{out}} \times d_{\text{out}}}$ is an orthogonal matrix, and each eigenvector
122 q_i represents an orthogonal direction in the output activation space, defining an independent axis
123 that captures a distinct mode of variation. We then perform an orthogonal decomposition of output
124 activations Y based on the eigenvectors, given by:

$$125 \quad Y = Q[:, :d_{\text{out}} - r]Q[:, :d_{\text{out}} - r]^\top Y + Q[:, -r:]Q[:, -r:]^\top Y \quad (3)$$

$$126 \quad = Q[:, :d_{\text{out}} - r]Q[:, :d_{\text{out}} - r]^\top (Wx + b) + Q[:, -r:]Q[:, -r:]^\top (Wx + b) \quad (4)$$

$$127 \quad = \underbrace{Q[:, :d_{\text{out}} - r]Q[:, :d_{\text{out}} - r]^\top Wx + b}_{\text{Frozen}} + \underbrace{Q[:, -r:]Q[:, -r:]^\top Wx}_{\text{Trainable}} \quad (5)$$

128 **Theorem 2.1** (Tail-Space Ensures Orthogonality to Pretrained Semantics). *Suppose output activation*
129 *Y exhibits a low-rank structure and its primary information is captured in a low-dimensional principal*
130 *subspace. Then, the **target fine-tuning space** that minimizes the impact on the existing semantic*
131 *structure, i.e., Y_{main} , represented by the principal subspace is the orthogonal space spanned by the*
132 *tail eigenvectors, i.e., Y_{tail} , given by $Y_{\text{main}}^\top Y_{\text{tail}} = 0$.*

133 *Proof.* Let $\Sigma \in \mathbb{R}^{d_{\text{out}} \times d_{\text{out}}}$ be a symmetric positive semi-definite matrix with eigendecomposition
134 $\Sigma = Q\Lambda Q^\top$, where $Q = [Q_{\text{main}} | Q_{\text{tail}}]$ partitions the eigenvectors into main- $(d_{\text{out}} - r)$ and tail- r
135 components. For any $Y \in \mathbb{R}^{d_{\text{out}} \times N}$, define the projections as:

$$136 \quad Y_{\text{main}} := Q_{\text{main}}Q_{\text{main}}^\top Y, \quad Y_{\text{tail}} := Q_{\text{tail}}Q_{\text{tail}}^\top Y.$$

137 where Y_{main} captures the primary information. Since Q is orthogonal, the submatrices Q_{main} and
138 Q_{tail} form the orthonormal bases for the output activation covariance matrix, i.e. $Q_{\text{main}}^\top Q_{\text{tail}} = 0$. We
139 expand the inner product between the principal and residual projections:

$$140 \quad Y_{\text{main}}^\top Y_{\text{tail}} = (Q_{\text{main}}Q_{\text{main}}^\top Y)^\top (Q_{\text{tail}}Q_{\text{tail}}^\top Y) = Y^\top Q_{\text{main}}Q_{\text{main}}^\top Q_{\text{tail}}Q_{\text{tail}}^\top Y.$$

141 Since $Q_{\text{main}}^\top Q_{\text{tail}} = 0$, we have $Q_{\text{main}}Q_{\text{main}}^\top Q_{\text{tail}} = 0$, which implies:

$$142 \quad Y_{\text{main}}^\top Y_{\text{tail}} = 0.$$

143 Thus, building on the projection decomposition in Eq.5, Astra is enforced to operate entirely within
144 the residual activation subspace orthogonal to the dominant directions, thereby avoiding interference
145 with existing semantic structure. \square

146 **Step 2: Tail-Subspace Projection.** Then based on Eq.5, the initialization scheme of the two
147 learnable low-rank matrices A and B in LoRA can be formally expressed as:

$$148 \quad A_{\text{init}} = Q[:, -r:]^\top W \in \mathbb{R}^{r \times d_{\text{in}}}. \quad (6)$$

$$149 \quad B_{\text{init}} = Q[:, -r:] \in \mathbb{R}^{d_{\text{out}} \times r}, \quad (7)$$

162 where A_{init} and B_{init} serve as the two learnable low-rank matrices in LoRA. Since the additional term
 163 $\Delta W = BA$ is non-zero at initialization, we adjust the frozen component to ensure that the original
 164 model outputs remain unchanged. Formally, this yields:

$$165 \quad W' = W^{(0)} + \Delta W = \underbrace{(W^{(0)} - B_{\text{init}}A_{\text{init}})}_{\text{Frozen}} + \underbrace{B'A'}_{\text{Trainable}} \quad (8)$$

168 where the learnable matrices A' and B' parameterize the task-specific update ΔW . By constraining
 169 optimization within the subspace spanned by the tail eigenvectors, Astra utilize the under-explored
 170 subspace and thus effectively improves adaptation efficiency and stability. Below, we present the
 171 detailed Algorithm 1, and a PyTorch-like implementation for Astra in provided in Appendix I.

Algorithm 1: Astra: Activation-Space Tail-Eigenvector Low-Rank Adaptation

174 **Input:** Model M , LoRA rank r , calibration data x , weight matrices $W \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}$

175 **Output:** Initialized parameters $W_{\text{frozen}}, A_{\text{init}}, B_{\text{init}}$

176 1: $\hat{Y} \leftarrow M(x; W)$ ▷ Forward propagation

177 2: $\text{Cov}(Y) \leftarrow \mathbb{E}[YY^{\top}] - \mathbb{E}[Y]\mathbb{E}[Y]^{\top}$

178 3: $\text{Cov}(Y) = Q\Lambda Q^{\top}$ ▷ Eigen-decomposition

179 4: Initialize trainable low-rank matrices:

$$180 \quad A_{\text{init}} = Q_{[:, -r:]}^{\top} W \in \mathbb{R}^{r \times d_{\text{in}}}$$

$$181 \quad B_{\text{init}} = Q_{[:, -r:]} \in \mathbb{R}^{d_{\text{out}} \times r}$$

182 ▷ Astra Initialization

183 5: Compute frozen and update terms:

$$184 \quad W_{\text{frozen}} = W^{(0)} - B_{\text{init}}A_{\text{init}}$$

$$185 \quad W_{\text{trainable}} = B_{\text{init}}A_{\text{init}}$$

186 **return** $W_{\text{frozen}}, A_{\text{init}}, B_{\text{init}}$

190 2.3 THEORETICAL ANALYSIS OF ASTRA INITIALIZATION

191 Below, we provide further theoretical guarantees demonstrating that the initialization schemes in Eq.6
 192 and Eq.7 minimize perturbation energy with respect to the spectral geometry of the output activations,
 193 thereby preventing the disruption of the existing semantic structure and ensuring stable and efficient
 194 task adaptation.

195 **Theorem 2.2** (Tail-Space Minimizes Output Perturbation Energy). *Let $W \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}$ denote the
 196 pretrained model weights, and let $\Sigma_X := \mathbb{E}[XX^{\top}]$ be the input covariance matrix. The output
 197 activation can be defined covariance as:*

$$198 \quad \Sigma_Y := \mathbb{E}[YY^{\top}] = W\Sigma_XW^{\top}.$$

199 For any orthogonal projection $P = UU^{\top}$ with $U \in \mathbb{R}^{d_{\text{out}} \times r}$, $U^{\top}U = I$, define the low-rank
 200 initialization path as $\Delta W := UU^{\top}W$. The expected squared output perturbation is:

$$201 \quad \mathcal{E}(U) := \mathbb{E}_x[\|\Delta W x\|^2] = \text{Tr}(U^{\top}\Sigma_Y U).$$

202 Then this energy is minimized when U spans the eigenspace corresponding to the r smallest eigenvalues
 203 of Σ_Y . That is:

$$204 \quad \text{Tr}(U^{\top}\Sigma_Y U) \geq \text{Tr}(Q_{\text{tail}}^{\top}\Sigma_Y Q_{\text{tail}}) = \sum_{i=d-r+1}^d \lambda_i,$$

205 where $\lambda_1 \geq \dots \geq \lambda_d$ are the eigenvalues of Σ_Y .

206 The detailed proof of Theorem 2.2 is provided in Appendix B.

212 3 EXPERIMENTS

213 In this section, we provide a comprehensive evaluation of Astra from three perspectives. 1) We first
 214 assess the Natural Language Understanding (NLU) capabilities using the GLUE (Wang et al., 2018)

216 benchmark (Section 3.2). 2) Next, we evaluate the performance of our method on Natural Language
 217 Generation (NLG) tasks, covering mathematical reasoning, code generation, and commonsense
 218 reasoning (Section 3.3). 3) Finally, we conduct ablation studies to analyze the effectiveness of our
 219 approach with respect to varying eigenvectors, LoRA ranks and calibration datasets (Section 3.4).
 220 All experiments are conducted on NVIDIA A100-SXM4 (80GB) GPUs.
 221

222 3.1 BASELINES

224 To substantiate the effectiveness of our method, we compare Astra against full fine-tuning (FFT),
 225 vanilla LoRA, and 6 representative LoRA variants. These variants can be grouped as follows:

226 1. Weight-driven initialization variants:

- 227 – *PiSSA* (Meng et al., 2024) initializes adapters with principal components and freezes the residual.
- 228 – *MiLoRA* (Wang et al., 2024a) initializes adapters with the smallest singular components.

229 2. Data-driven initialization variants:

- 230 – *CorDA* (Yang et al., 2024) builds adapters conditioned on context for task-specific adaptations.
- 231 – *LoRA-GA* (Wang et al., 2024b) constructs low-rank matrices by approximating the gradient from
 232 the first step of full fine-tuning.

233 3. Other LoRA variants (with modified structure, hyperparameters, etc.):

- 235 – *rsLoRA* (Kalajdzievski, 2023) introduces a square-root scaling factor to LoRA.
- 236 – *DoRA* (Liu et al., 2024b) decomposes pretrained weights into magnitude and direction compo-
 237 nents, tuning the magnitude and direction matrix separately.

238 3.2 NATURAL LANGUAGE UNDERSTANDING

240 **Models and Datasets.** We fine-tune the T5-base model (Raffel et al., 2020) on a subset of tasks from
 241 the GLUE benchmark (Wang et al., 2018), including MNLI, QNLI, SST-2, CoLA and MRPC. The
 242 model is evaluated on the corresponding development sets, and accuracy is reported as the evaluation
 243 metric for all tasks. Additional details regarding the benchmarks are presented in Appendix E.1.

244 **Implementation Details.** We follow the experimental setup described in (Wang et al., 2024b) to
 245 ensure a fair comparison. Specifically, we convert the labels into tokens (e.g., "positive" or "negative")
 246 and use the prompt tuning to fine-tune the model for 1 epoch on each dataset. The normalized
 247 probabilities assigned to these tokens are then used for classification. Further experimental setup and
 248 implementation details can be found in Appendix F.1.

249 Table 1: Performance of T5-base fine-tuned with different adaptation methods on 5 datasets of the
 250 GLUE benchmark. We report accuracy for all tasks, and the results are averaged over three runs with
 251 different random seeds. Bold values indicate the best performance.

	#Params	MNLI 393k	SST-2 67k	QNLI 105k	CoLA 8.5k	MRPC 3.7K	Average
255 Full FT	223M	86.95 ± 0.04	97.02 ± 0.03	98.78 ± 0.02	84.52 ± 0.01	84.19 ± 0.05	90.29
256 LoRA	3.2M	86.97 ± 0.01	96.62 ± 0.02	98.75 ± 0.03	49.95 ± 1.33	47.67 ± 0.06	75.99
257 DoRA	3.4M	87.05 ± 0.02	97.19 ± 0.01	98.79 ± 0.02	84.23 ± 0.03	49.88 ± 0.05	83.43
258 rsLoRA	3.2M	87.06 ± 0.01	97.13 ± 0.02	98.79 ± 0.02	83.89 ± 0.02	49.63 ± 0.04	83.30
260 PiSSA	3.2M	87.01 ± 0.01	97.08 ± 0.01	98.82 ± 0.01	84.80 ± 0.01	82.84 ± 0.01	90.11
261 CorDA	3.2M	87.11 ± 0.03	97.19 ± 0.02	98.81 ± 0.05	84.71 ± 0.22	69.12 ± 0.23	87.39
262 LoRA-GA	3.2M	87.07 ± 0.01	97.13 ± 0.02	98.83 ± 0.01	84.76 ± 0.11	84.19 ± 0.14	90.40
263 Ours	3.2M	87.09 ± 0.01	96.45 ± 0.01	98.83 ± 0.01	87.87 ± 0.06	88.36 ± 0.12	91.72

264 **Main Results.** Table 1 presents the performance of T5-base fine-tuned with different adaptation
 265 methods on five GLUE datasets. Our proposed approach consistently surpasses existing baselines,
 266 achieving the highest average accuracy across all tasks. The improvement is particularly pronounced
 267 on low-resource datasets such as MRPC and CoLA, where effective utilization of gradient information
 268 plays a critical role. These results suggest that our method can fully exploit the limited training
 269 signals, leading to stable and fast convergence even under data-scarce conditions.

270
271
272
Table 2: Comparison of full fine-tuning (Full FT) and several LoRA variants on 2 mathematical
reasoning and 4 code generation benchmarks. The best PEFT results are highlighted in **bold**.

273 Model	274 Method	275 #Params	276 GSM8K	277 Math	278 HumanEval	279 HumanEval+	280 MBPP	281 MBPP+	282 Average
283 LLaMA2-7B	Full FT	6738M	58.76	12.04	32.9	31.1	43.9	36.8	35.92
	LoRA	320M	41.40	5.42	22.0	20.1	34.9	27.2	25.17
	MiLoRA	320M	39.12	5.06	20.1	18.9	36.8	29.4	24.90
	PiSSA	320M	51.63	7.36	23.2	20.1	36.7	29.5	28.08
	CorDA	320M	52.99	8.08	25.0	23.2	36.2	29.6	29.18
	Ours	320M	55.19	8.98	25.0	23.2	38.4	31.2	30.33
283 LLaMA3-8B	Full FT	8366M	75.36	24.04	56.7	53.7	64.0	54.5	54.72
	LoRA	336M	73.31	24.24	53.7	48.8	65.6	54.8	53.41
	MiLoRA	336M	73.24	23.90	52.4	48.2	68.3	56.1	53.69
	PiSSA	336M	76.50	26.92	57.1	52.0	68.0	56.3	56.14
	CorDA	336M	77.26	26.52	55.5	50.0	67.7	57.7	55.78
	Ours	336M	77.56	27.92	57.7	53.0	68.4	58.2	57.13

284
285
Table 3: Zero-shot performance of LLaMA2-7B and LLaMA3-8B fine-tuned with different adaptation
methods on seven commonsense reasoning benchmarks. The best PEFT results are shown in **bold**.

287 Model	288 Method	289 #Params	290 BoolQ	291 PIQA	292 HellaSwag	293 WinoGrande	294 ARC-e	295 ARC-c	296 OBQA	297 Average
298 LLaMA2-7B	Full FT	6738M	82.81	75.08	55.57	73.64	72.69	41.72	32.00	61.93
	LoRA	320M	79.97	78.35	57.30	68.82	78.07	46.16	32.40	63.01
	PiSSA	320M	83.03	78.18	57.52	70.72	78.41	47.35	33.40	64.09
	MiLoRA	320M	79.66	78.13	57.53	69.22	77.31	45.39	32.40	62.81
	CorDA	320M	82.87	78.45	56.24	71.82	75.67	43.09	33.00	63.02
	Ours	320M	83.76	78.51	57.28	71.74	79.63	48.72	34.20	64.83
298 LLaMA3-8B	Full FT	8366M	82.14	68.82	49.30	66.06	65.95	38.05	31.60	57.42
	LoRA	336M	85.02	79.76	59.88	74.74	82.53	53.50	34.00	67.06
	PiSSA	336M	86.76	80.47	60.63	76.64	81.94	52.82	36.00	67.89
	MiLoRA	336M	84.07	79.92	60.31	74.59	81.27	51.62	34.80	66.65
	CorDA	336M	85.84	80.74	60.43	76.56	82.70	54.44	35.20	67.99
	Ours	336M	86.48	80.41	60.02	78.22	82.87	53.99	36.60	68.37

298
3.3 NATURAL LANGUAGE GENERATION300
301
Models and Datasets. We conduct experiments using LLaMA2-7B (Touvron et al., 2023) and
LLaMA3-8B (Dubey et al., 2024) across three NLG tasks: **Math**, **Code** and **Commonsense**.302
303
• **Math:** For mathematical reasoning tasks, the models are fine-tuned on the MetaMathQA dataset (Yu
304
et al., 2023) and evaluated on two widely used benchmarks, GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021), using PASS@1 accuracy as the evaluation metric.305
306
• **Code:** To evaluate programming proficiency, we fine-tune the models on the CodeFeedback-
307
Python105k dataset (Zheng et al., 2024) and assess performance on HumanEval (Chen et al., 2021)
308
and MBPP (Austin et al., 2021) benchmarks. Additionally, we employ the EvalPlus framework (Liu
309
et al., 2023) to test on the extended versions of these datasets, namely MBPP+ and HumanEval+,
310
which provide a greater number of test cases compared to the original versions. We report the
311
PASS@1 metric for these evaluations.312
313
• **Commonsense:** For commonsense reasoning, the models are fine-tuned on the Commonsense170K
314
dataset (Hu et al., 2023a) and tested on seven established benchmarks—BoolQ (Clark et al., 2019),
315
PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2020),
316
ARC-e, ARC-c (Clark et al., 2018), and OpenBookQA (Mihaylov et al., 2018). All tasks are tested
317
in a zero-shot setting using the LM-Evaluation-Harness framework (Gao et al., 2024).318
319
Implementation Details. To ensure a fair comparison, we adopt the experimental configurations
320
delineated in (Meng et al., 2024; Wang et al., 2024b; Yang et al., 2024). Specifically, we set the LoRA
321
rank to 128, with the LoRA alpha consistently equal to the rank, and insert adapters into all linear
322
layers of the base model. All the experiments were conducted on the first 100,000 samples from
323
each dataset and trained for one epoch to reduce computational overhead. Additional implementation
324
details are provided in the Appendix F.2.325
Main Results. Table 2 summarizes the results on mathematical reasoning and code generation
326
tasks, and Table 3 reports the performance on commonsense reasoning benchmarks. Overall, our

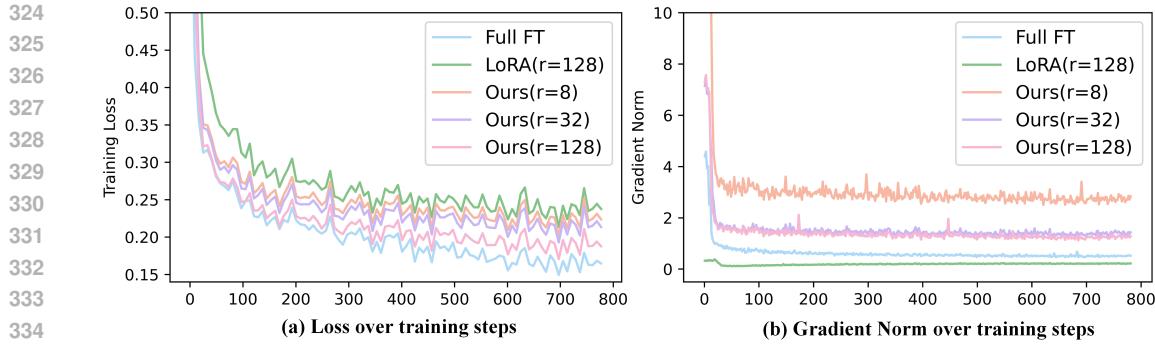


Figure 1: Training loss and gradient norm curves for FFT, LoRA (rank=128), and Astra with varying ranks on the MetaMathQA dataset. Our method (rank=8) performs even better+ than LoRA (rank=128), and higher ranks lead to faster loss reduction, approaching the performance of FFT.

approach consistently surpasses existing PEFT baselines, demonstrating robust generalization across diverse task categories. Below, we provide a breakdown of the results by task type:

- **Math:** Astra outperforms all other PEFT baselines on both the GSM8K and MATH datasets, achieving the best results overall, with the exception of a slight gap compared to Full FT on LLaMA2-7B. Figure 1 illustrates the loss curves and gradient norm trends during fine-tuning of LLaMA2-7B on the MetaMathQA dataset. Notably, Astra (with rank=8) converges faster than LoRA (rank=128), highlighting its efficiency in downstream task adaptation with minimal resources.
- **Code:** For code generation tasks, Astra also achieves outstanding results, even surpassing Full FT on LLaMA3-8B. Our method shows remarkable programming proficiency, as reflected in the results across HumanEval and MBPP benchmarks.
- **Commonsense:** Astra demonstrates consistently strong performance across seven commonsense reasoning benchmarks. Although it slightly lags on HellaSwag, it achieves the best overall average performance among all baselines.

3.4 ABLATION STUDIES

Eigenvectors. To investigate the impact of eigenvectors corresponding to eigenvalues of varying magnitudes on fine-tuning performance, we initialize the adapters injected into LLaMA2-7B with eigenvectors selected from different quantiles of the eigenvalue spectrum. Specifically, we use eigenvectors corresponding to the top, tail, middle, lower quartile, and upper quartile eigenvalues, as well as randomly selected eigenvectors. The models are then fine-tuned on the MetaMathQA dataset and evaluated on the GSM8K and MATH benchmarks. As shown in Table 4, adapters initialized with tail eigenvectors achieve the best performance on both benchmarks, underscoring the efficacy of our strategy in leveraging tail eigenvectors from activation-space for fine-tuning.

LoRA Rank. In this experiment, we explore the effects of varying LoRA rank from 8 to 128, aiming to assess whether our approach consistently outperforms other PEFT baselines across different rank values. Following the setup described in Section 3.3, we fine-tune LLaMA2-7B on the MetaMathQA dataset and evaluate it on the GSM8K and MATH benchmarks. Figures 2 (a)-(b) show that Astra consistently outperforms alternative PEFT methods with the same number of trainable parameters. Figure 2 (c) illustrates the final training loss across different ranks, demonstrating that our method achieves a better fit to the training data compared to LoRA, PiSSA, and CorDA. It is noteworthy that our approach outperforms LoRA at rank = 128 even with rank = 8, underscoring its efficiency in achieving better performance with fewer trainable parameters.

Table 4: Performance of LLaMA2-7B fine-tuned with adapters initialized using eigenvectors from different quantiles of the eigenvalue spectrum.

Eigenvectors	GSM8K	MATH
Random	40.49	5.64
Top	40.71	5.48
Upper Quartile (Q3)	40.49	5.64
Medium	38.74	5.60
Lower Quartile (Q1)	42.76	5.70
Tail	55.19	8.98

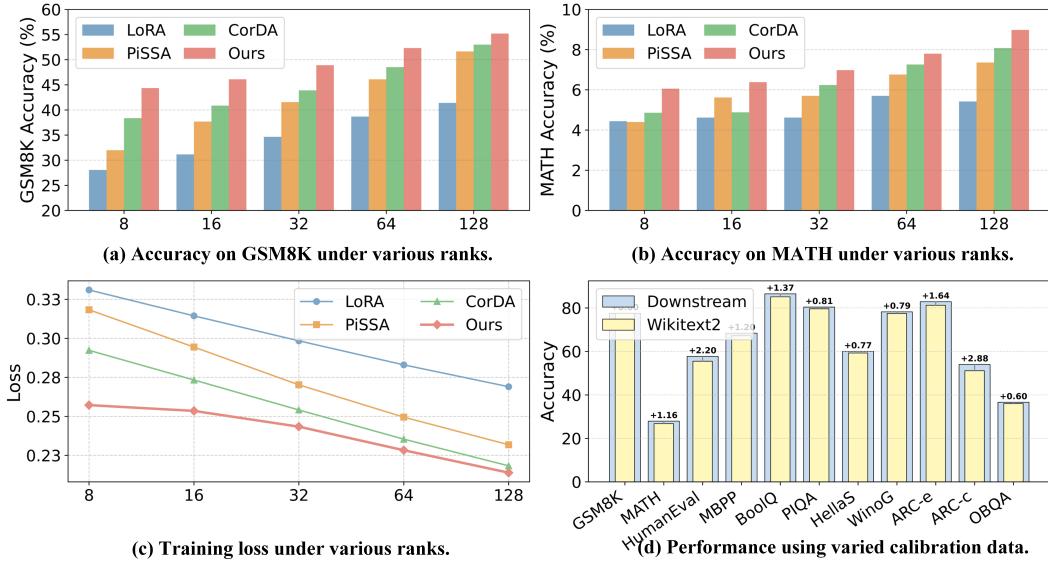


Figure 2: (a) and (b) report the performance of different LoRA variants on GSM8K and MATH under various ranks, respectively. (c) shows the final training loss on the MetaMathQA dataset under various ranks. (d) illustrates the performance using different calibration data.

Calibration Data. To assess the robustness of Astra with respect to the calibration datasets, we conduct experiments using a general-purpose dataset (i.e. WikiText-2) for calibration, and compare it with the default setting, where the downstream training set itself is used for calibration. The results, presented in Figure 2 (d), demonstrate that Astra achieves stable performance across different calibration datasets, while leveraging the downstream training set yields marginally better results.

4 DISCUSSION

Enhancing Representation Capacity via Increased Effective Rank. To evaluate the improvement in representational capacity introduced by our approach, we employ *effective rank* (Roy & Vetterli, 2007) as a metric to characterize the spectral structure of output activations before and after fine-tuning. Formally, the effective rank is defined as:

$$\mathcal{R}_{X,i} = \exp \left(- \sum_{j=1}^{d_{out}} \tilde{\lambda}_j \ln(\tilde{\lambda}_j) \right) \quad \text{and} \quad \tilde{\lambda}_j = \frac{\lambda_j}{\sum_{k=1}^{d_{out}} \lambda_k} \quad (9)$$

where λ_j denotes the eigenvalues obtained from the eigendecomposition of the output activation covariance matrix, $X \in \{Q, K, V, O, \text{Up}, \text{Down}\}$ represents the projection layer type within the Transformer architecture, and i indexes the corresponding Transformer layer.

A higher effective rank indicates that the output activations are distributed across more directions in the feature space, suggesting a richer and more diverse representational capacity. Conversely, a lower effective rank (only a few eigenvalues are large) implies that the activations are concentrated along a few dominant directions, reflecting more constrained or redundant representations (Li et al., 2025).

For each layer type, we aggregate the effective rank across all layers and compute the total, which is then compared before and after fine-tuning to quantify the overall change. As shown in Figure 3, both LoRA and Astra lead to an increase in effective rank. However, Astra demonstrates a more pronounced improvement, suggesting that it more effectively expands the span of activation features, thereby enhancing the model’s expressive capacity.

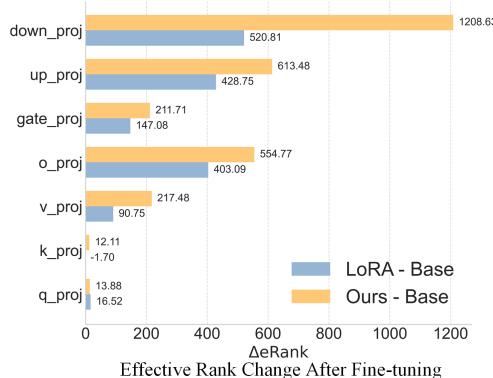


Figure 3: Comparison of effective rank before and after fine-tuning.

432 **Bridging PEFT and ReFT.** Representation Fine-Tuning (ReFT; [Wu et al., 2024](#)) has recently
 433 been proposed as a paradigm that departs from traditional parameter-efficient fine-tuning (PEFT)
 434 methods. Instead of directly modifying model parameters, ReFT operates in the representation
 435 space by applying lightweight transformations to intermediate activations. This design preserves the
 436 representational information acquired during pretraining and enables stable adaptation even in data-
 437 scarce scenarios. The connection between Astra and ReFT is shown in the following formulations:

$$\begin{aligned} Y &= \underbrace{Q[:, :d_{\text{out}} - r] Q[:, :d_{\text{out}} - r]^T}_{Y_{\text{main}}} Y + \underbrace{Q[:, -r:] Q[:, -r]^T}_{Y_{\text{tail}}} Y && \triangleright \text{Astra} \\ &= \underbrace{Y}_{\text{Frozen}} + \underbrace{R^T (WY + b - RY)}_{\text{Trainable}} && \triangleright \text{ReFT} \end{aligned}$$

438 where Y_{main} encodes major semantic information, i.e., $Y_{\text{main}} \approx Y$ and $R \in \mathbb{R}^{r \times d}$ is a learnable
 439 projection matrix with an orthogonality constraint, ensuring that updates remain separated from
 440 the dominant activation directions and thus avoid interfering with the pretrained semantic structure.
 441 When $R = W = Q[:, -r:]^T$ and $b = 0$, the formulation is identical to Astra's initialization
 442 form. Astra therefore can be viewed as a method that inherits the representational advantages
 443 of ReFT while simultaneously retaining the flexibility of PEFT. Specifically, Astra enforces low-
 444 rank adaptation entirely within the tail activation subspace, which are orthogonal to the dominant
 445 directions of pretrained representations. This design introduces minimum perturbation energy and
 446 avoids interference with the pretrained semantics. Further discussion is provided in [Appendix C](#).

447 5 RELATED WORK

448 **PEFT.** Parameter-efficient fine-tuning (PEFT) offers a lightweight alternative to full fine-tuning
 449 by updating only a small subset of parameters, effectively reducing computational overhead while
 450 maintaining strong performance in downstream task adaptation. PEFT methods can be broadly
 451 categorized into prompt-based ([Lester et al., 2021](#); [Li & Liang, 2021](#); [Liu et al., 2021](#)), adapter-
 452 based ([Houlsby et al., 2019](#); [Rücklé et al., 2020](#); [Hu et al., 2023b](#)), and LoRA-based approaches ([Hu
 453 et al., 2022](#); [Dettmers et al., 2023](#)). Prompt-based methods introduce trainable tokens or embeddings
 454 that are prepended to the input or intermediate representations, while Adapter-based methods insert
 455 small trainable modules within each transformer layer to adapt the pre-trained model to new tasks.

456 **LoRA and Its Variants.** Among these methods, low-rank adaptation (LoRA) has gained particular
 457 attention for enabling effectively fine-tuning without modifying the original architecture or introducing
 458 additional inference latency ([Li et al., 2018](#); [Aghajanyan et al., 2021](#)). Building on the success
 459 of LoRA, subsequent research has explored a variety of directions to improve its effectiveness and
 460 flexibility. Several works have investigated **dynamic rank allocation** ([Valipour et al., 2022](#); [Zhang
 461 et al., 2023b](#); [Liu et al., 2024c](#)), aiming to better balance expressivity and parameter efficiency. For
 462 instance, AdaLoRA ([Zhang et al., 2023b](#)) adaptively allocates parameter budgets across weight
 463 matrices based on their importance scores. In addition, **structural modifications** of LoRA ([Liu
 464 et al., 2024b](#); [Feng et al., 2024](#); [Li et al., 2024](#)) have been proposed to generalize LoRA beyond
 465 its original design. For example, DoRA ([Liu et al., 2024b](#)) decouples the learning process into
 466 magnitude and direction. Some research also focuses on optimizing the **hyperparameters** within
 467 LoRA to enhance fine-tuning efficiency and stability ([Kalajdzievski, 2023](#); [Hayou et al., 2024](#)). For
 468 example, LoRA+ ([Hayou et al., 2024](#)) introduces differential learning rates for the low-rank matrices
 469 A and B, with a higher learning rate for B to accelerate convergence. Another line of work focuses on
 470 improving **initialization strategies** to stabilize training and accelerate convergence ([Meng et al., 2024](#);
 471 [Wang et al., 2024a](#); [Yang et al., 2024](#)). For instance, PiSSA ([Meng et al., 2024](#)) and LoRA-GA ([Wang
 472 et al., 2024b](#)) conduct SVD on pretrained weights and sampled gradients to initialize the low rank
 473 adapters of LoRA. We provide a detailed comparison between these LoRA variants in [Appendix D](#).

474 6 CONCLUSION

475 In this paper, we proposed Astra, a novel PEFT method that leverages the under-explored tail
 476 eigenspace of output activations for low-rank adaptation. By focusing on optimizing these under-
 477 utilized directions, Astra improves adaptation efficiency and stability. Extensive experiments across
 478 multiple benchmarks show that Astra consistently outperforms existing PEFT methods in both
 479 accuracy and efficiency, highlighting the superiority of our method.

ETHICS STATEMENT

Our research adheres to the Code of Ethics, prioritizing transparency, responsible data usage, and careful consideration of potential social impacts.

All datasets employed in this work are publicly available and have been properly cited, ensuring full compliance with data usage agreements and privacy regulations. We acknowledge the critical importance of ethical AI development and are committed to aligning our work with responsible practices. The proposed Astra method, by optimizing pretrained LLMs within the under-utilized activation spaces, enhances the model’s adaptability and representational capacity while preserving the integrity of the underlying pretrained task-relevant semantic structure. However, we remain cognizant of the potential for unintended consequences and emphasize the need for continued reflection on the broader social implications of such advancements in AI.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide all necessary resources to facilitate the replication of our results. The pseudocode 1 is presented in Section 2, and a PyTorch-like implementation of the Astra algorithm is provided in Appendix I. Additionally, we provide an anonymous repository of our code, which can be accessed at <https://anonymous.4open.science/r/Anonymous-Astra/>.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the effectiveness of language model fine-tuning. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 7319–7328, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.568.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. *arXiv preprint arXiv:2108.07732*, 2021.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 7432–7439, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint arXiv:1905.10044*, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv preprint arXiv:1803.05457*, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.

- 540 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 541 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 542 *arXiv preprint arXiv:2407.21783*, 2024.
- 543
- 544 Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Yu Han, and Hao Wang. Mixture-of-loras: An efficient
 545 multitask tuning method for large language models. In *Proceedings of the 2024 Joint International
 546 Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING
 547 2024)*, pp. 11371–11380, 2024.
- 548 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
 549 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
 550 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
 551 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
 552 language model evaluation, 07 2024.
- 553
- 554 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 555 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 556 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- 557
- 558 Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: efficient low rank adaptation of large models.
 559 In *Proceedings of the 41st International Conference on Machine Learning*, ICML'24. JMLR.org,
 560 2024.
- 561
- 562 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 563 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,
 564 2021.
- 565
- 566 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
 567 Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
 568 nlp. In *International conference on machine learning*, pp. 2790–2799. PMLR, 2019.
- 569
- 570 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
 571 Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *International Conference
 572 on Learning Representations*, 2022.
- 573
- 574 Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
 575 Poria, and Roy Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning of large
 576 language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023
 577 Conference on Empirical Methods in Natural Language Processing*, pp. 5254–5276, Singapore,
 578 December 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
 579 319.
- 580
- 581 Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
 582 Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
 583 of large language models. *arXiv preprint arXiv:2304.01933*, 2023b.
- 584
- 585 Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. *arXiv preprint
 586 arXiv:2312.03732*, 2023.
- 587
- 588 Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
 589 distort pretrained features and underperform out-of-distribution. *arXiv preprint arXiv:2202.10054*,
 590 2022.
- 591
- 592 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 593 tuning. *arXiv preprint arXiv:2104.08691*, 2021.
- 594
- 595 Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
 596 of objective landscapes. *arXiv preprint arXiv:1804.08838*, 2018.
- 597
- 598 Dengchun Li, Yingzi Ma, Naizheng Wang, Zhengmao Ye, Zhiyuan Cheng, Yinghao Tang, Yan Zhang,
 599 Lei Duan, Jie Zuo, Cal Yang, et al. Mixlora: Enhancing large language models fine-tuning with
 600 lora-based mixture of experts. *arXiv preprint arXiv:2404.15159*, 2024.

- 594 Ming Li, Yanhong Li, Ziyue Li, and Tianyi Zhou. How instruction and reasoning data shape post-
 595 training: Data quality through the lens of layer-wise gradients. *arXiv preprint arXiv:2504.10766*,
 596 2025.
- 597
- 598 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. *arXiv*
 599 *preprint arXiv:2101.00190*, 2021.
- 600
- 601 Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
 602 chatGPT really correct? rigorous evaluation of large language models for code generation. In
 603 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- 604
- 605 Kainan Liu, Yong Zhang, Ning Cheng, Zhitao Li, Shaojun Wang, and Jing Xiao. Grasp: Replace
 606 redundant layers with adaptive singular parameters for efficient model compression. *arXiv preprint*
 607 *arXiv:2501.00339*, 2024a.
- 608
- 609 Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
 610 Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In *Forty-first*
 611 *International Conference on Machine Learning*, 2024b.
- 612
- 613 Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang.
 P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks.
arXiv preprint arXiv:2110.07602, 2021.
- 614
- 615 Zequan Liu, Jiawen Lyn, Wei Zhu, Xing Tian, and Yvette Graham. ALoRA: Allocating low-rank
 616 adaptation for fine-tuning large language models. In Kevin Duh, Helena Gomez, and Steven Bethard
 617 (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the Association*
 618 *for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp.
 619 622–641, Mexico City, Mexico, June 2024c. Association for Computational Linguistics. doi:
 620 10.18653/v1/2024.naacl-long.35.
- 621
- 622 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
arXiv:1711.05101, 2017.
- 623
- 624 Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
 625 adaptation of large language models. *Advances in Neural Information Processing Systems*, 37:
 626 121038–121072, 2024.
- 627
- 628 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 629 electricity? a new dataset for open book question answering. In Ellen Riloff, David Chiang,
 630 Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings of the 2018 Conference on Empirical*
 631 *Methods in Natural Language Processing*, pp. 2381–2391, Brussels, Belgium, October–November
 2018. Association for Computational Linguistics.
- 632
- 633 Nikhil Shivakumar Nayak, Krishnateja Killamsetty, Ligong Han, Abhishek Bhandwaldar, Prateek
 634 Chanda, Kai Xu, Hao Wang, Aldo Pareja, Oleg Silkin, Mustafa Eyceoz, et al. Sculpting subspaces:
 635 Constrained full fine-tuning in llms for continual learning. *arXiv preprint arXiv:2504.07097*, 2025.
- 636
- 637 Fabian Paischer, Lukas Hauenberger, Thomas Schmied, Benedikt Alkin, Marc Peter Deisenroth, and
 638 Sepp Hochreiter. One initialization to rule them all: Fine-tuning via explained variance adaptation.
arXiv preprint arXiv:2410.07170, 2024.
- 639
- 640 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 641 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 642 transformer. *Journal of machine learning research*, 21(140):1–67, 2020.
- 643
- 644 Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In *2007*
15th European signal processing conference, pp. 606–610. IEEE, 2007.
- 645
- 646 Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and
 647 Iryna Gurevych. Adapterdrop: On the efficiency of adapters in transformers. *arXiv preprint*
arXiv:2010.11918, 2020.

- 648 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 649 adversarial winograd schema challenge at scale. *Proceedings of the AAAI Conference on Artificial*
 650 *Intelligence*, 34(05):8732–8740, Apr. 2020.
- 651 Arjun Singh, Nikhil Pandey, Anup Shirgaonkar, Pavan Manoj, and Vijay Aski. A study of optimiza-
 652 tions for fine-tuning large language models. *arXiv preprint arXiv:2406.02290*, 2024.
- 653 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 654 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 655 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.
- 656 Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter
 657 efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. *arXiv*
 658 *preprint arXiv:2210.07558*, 2022.
- 659 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
 660 A multi-task benchmark and analysis platform for natural language understanding. *arXiv preprint*
 661 *arXiv:1804.07461*, 2018.
- 662 Hanqing Wang, Yixia Li, Shuo Wang, Guanhua Chen, and Yun Chen. Milora: Harnessing minor
 663 singular components for parameter-efficient llm finetuning. *arXiv preprint arXiv:2406.09044*,
 664 2024a.
- 665 Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
 666 *Advances in Neural Information Processing Systems*, 37:54905–54931, 2024b.
- 667 Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D Manning,
 668 and Christopher Potts. ReFT: Representation finetuning for language models. In *The Thirty-
 669 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=fykjplMc0V>.
- 670 Yibo Yang, Xiaojie Li, Zhongzhu Zhou, Shuaiwen Song, Jianlong Wu, Liqiang Nie, and Bernard
 671 Ghanem. Corda: Context-oriented decomposition adaptation of large language models for task-
 672 aware parameter-efficient fine-tuning. *Advances in Neural Information Processing Systems*, 37:
 673 71768–71791, 2024.
- 674 Hao Yu and Jianxin Wu. Compressing transformers: features are low-rank, but weights are not! In
 675 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 11007–11015, 2023.
- 676 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
 677 Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
 678 large language models. *arXiv preprint arXiv:2309.12284*, 2023.
- 679 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
 680 machine really finish your sentence? In Anna Korhonen, David Traum, and Lluís Márquez (eds.),
 681 *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp.
 682 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics.
- 683 Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
 684 low-rank adaptation for large language models fine-tuning. *arXiv preprint arXiv:2308.03303*,
 685 2023a.
- 686 Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng,
 687 Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient fine-
 688 tuning. *arXiv preprint arXiv:2303.10512*, 2023b.
- 689 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 690 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
 691 Judging LLM-as-a-judge with MT-bench and chatbot arena. In *Thirty-seventh Conference on*
 692 *Neural Information Processing Systems Datasets and Benchmarks Track*, 2023.
- 693 Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhui Chen, and
 694 Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement. *arXiv*
 695 *preprint arXiv:2402.14658*, 2024.

The Supplementary Material for The Paper “Astra: Activation-Space Tail-Eigenvector Low-Rank Adaptation for Large Language Models”

- In Section **A**, we clarify the role of large language models (LLMs) in this work, explicitly stating that they were used only for language polishing and grammar refinement.
 - In Section **B**, we provide detailed proof of Theorem 2.2 to better understand the rationale behind Astra’s initialization strategy.
 - In Section **C**, we provide a detailed discussion of how Astra represents a unique intersection between parameter-efficient fine-tuning (PEFT) and representation fine-tuning (ReFT)
 - In Section **D**, we provide a systematic comparison of existing LoRA variants to highlight their relative strengths and differences.
 - In Section **E**, we provide detailed descriptions of the benchmark datasets used in our evaluation. These descriptions cover the domains, sizes, and task characteristics of the datasets employed in both NLU and NLG experiments.
 - In Section **F**, we present the implementation details in the main text. This includes the hyperparameter configurations and training details in our experiments.
 - In Section **G**, we present additional experimental results that complement the findings reported in the main text. These include loss curves, more detailed evaluation outcomes, and further analyses of our method’s behavior.
 - In Section **H**, we present a series of case studies to demonstrate the improved performance in instruction-following of models that have been fine-tuned with Astra, providing qualitative evidence that complements the quantitative results in the main text.
 - In Section **I**, we present a PyTorch-like implementation sketch to clarify the workflow, which facilitates reproducibility and bridge the gap between the theoretical formulation introduced in the main text and its practical implementation.

A THE USE OF LARGE LANGUAGE MODELS (LLMs)

We disclose the use of large language models (LLMs) in preparing this manuscript. They were employed solely for language polishing and grammar refinement, while all scientific content, ideas, and analyses were conceived and performed solely by the authors.

B PROOF OF THEOREMS

Theorem 2.2. Let $W \in \mathbb{R}^{d_{\text{out}} \times d_m}$ denote the pretrained model weights, and let $\Sigma_X := \mathbb{E}[XX^\top]$ be the input covariance matrix. The output activation can be defined covariance as:

$$\Sigma_Y := \mathbb{E}[YY^\top] = W\Sigma_X W^\top.$$

For any orthogonal projection $P = UU^\top$ with $U \in \mathbb{R}^{d_{\text{out}} \times r}$, $U^\top U = I$, define the low-rank initialization path as $\Delta W := UU^\top W$. The expected squared output perturbation is:

$$\mathcal{E}(U) := \mathbb{E}_x[\|\Delta W x\|^2] = \text{Tr}(U^\top \Sigma_Y U).$$

Then this energy is minimized when U spans the eigenspace corresponding to the r smallest eigenvalues of $\Sigma_{\mathbf{X}}$. That is:

$$\text{Tr}(U^\top \Sigma_Y U) \geq \text{Tr}(Q_{tail}^\top \Sigma_Y Q_{tail}) = \sum_{i=d-x+1}^d \lambda_i,$$

where $\lambda_1 \geq \dots \geq \lambda_d$ are the eigenvalues of Σ_Y , and $Q_{tail} := [q_{d-r+1}, \dots, q_d]$ are the corresponding eigenvectors.

756 *Proof.* We begin with the definition of the perturbation energy:

$$757 \quad \mathcal{E}(U) := \mathbb{E}_x[\|\Delta Wx\|^2], \quad \text{with } \Delta W := UU^\top W.$$

759 By the linearity of expectation and standard matrix norm identities, we express the expected energy
760 as:

$$761 \quad \mathcal{E}(U) = \mathbb{E}_x[\|UU^\top Wx\|^2] = \text{Tr}(UU^\top W\Sigma_X W^\top UU^\top).$$

762 We simplify this using the cyclic property of the trace:

$$763 \quad \mathcal{E}(U) = \text{Tr}(U^\top W\Sigma_X W^\top U) = \text{Tr}(U^\top \Sigma_Y U),$$

764 where we define the output activation covariance as:

$$765 \quad \Sigma_Y := W\Sigma_X W^\top.$$

767 Thus, minimizing the output perturbation energy reduces to the classical trace-form optimization:

$$768 \quad \min_{U^\top U = I} \text{Tr}(U^\top \Sigma_Y U).$$

770 Since Σ_Y is symmetric and positive semi-definite, this trace-form optimization falls under the
771 classical Ky Fan minimum trace theorem. It states that for any $U \in \mathbb{R}^{d \times r}$ with $U^\top U = I$, the trace
772 $\text{Tr}(U^\top \Sigma_Y U)$ is minimized when U spans the eigenspace corresponding to the r smallest eigenvalues
773 of Σ_Y .

774 Formally, if $\Sigma_Y = Q\Lambda Q^\top$ is the eigendecomposition with eigenvalues $\lambda_1 \geq \dots \geq \lambda_d$, and
775 $Q_{\text{tail}} := [q_{d-r+1}, \dots, q_d]$, then:

$$776 \quad \text{Tr}(U^\top \Sigma_Y U) \geq \text{Tr}(Q_{\text{tail}}^\top \Sigma_Y Q_{\text{tail}}) = \sum_{i=d-r+1}^d \lambda_i,$$

779 with equality if and only if $U = Q_{\text{tail}}$. This completes the proof. \square

781 C BRIDGING REFT AND PEFT

783 Representation Fine-Tuning (ReFT; [Wu et al., 2024](#)) was recently proposed as a departure from
784 classical PEFT methods by shifting adaptation from the parameter space into the representation space.
785 Instead of directly modifying model weights, ReFT can be formalized as learning a lightweight
786 transformation to the pretrained activations:

$$787 \quad \Phi_{\text{ReFT}}(Y) = Y + \Delta(Y; \theta), \quad (10)$$

788 where Y denotes hidden activations, and $\Delta(\cdot; \theta)$ is a lightweight trainable function applied to
789 intermediate representations while keeping all pretrained parameters frozen. This formulation
790 highlights the central idea of ReFT: task-specific adaptation is achieved entirely through controlled
791 interventions on hidden states. Building on this paradigm, LoReFT (Low-rank Linear Subspace ReFT)
792 introduces additional structure by restricting the intervention to a low-rank subspace. Specifically,
793 LoReFT defines

$$794 \quad \Phi_{\text{LoReFT}}(Y) = Y + R^\top(WY + b - RY), \quad (11)$$

795 where $R \in \mathbb{R}^{r \times d}$ has orthonormal rows, and $W \in \mathbb{R}^{r \times d}$ together with $b \in \mathbb{R}^r$ parameterize the
796 projected source. The orthogonality constraint ensures that learned updates remain disentangled from
797 dominant directions in the hidden space, thereby preserving pretrained semantics while still enabling
798 effective adaptation:

$$799 \quad \begin{aligned} Y &= Y + R^\top(WY + b - RY) && \triangleright \text{LoReFT} \\ 800 &= Y - R^\top RY + R^\top(WY + b) && \triangleright \text{LoReFT} \\ 801 &= \underbrace{Q_{[:, :d_{\text{out}} - r]} Q_{[:, :d_{\text{out}} - r]}^\top Y}_{Y_{\text{main}}} + \underbrace{Q_{[:, -r:]} Q_{[:, -r:]}^\top Y}_{Y_{\text{tail}}} && \triangleright \text{Astra} \end{aligned}$$

804 where Y_{main} encodes major semantic information, i.e., $Y_{\text{main}} \approx Y$. It is worth noting that when
805 $R = W = Q[:, -r:]^\top$ and $b = 0$, the formulation of LoReFT is identical to the initialization form of
806 Astra. This equivalence indicates that Astra inherits the advantages of ReFT, particularly in terms
807 of modifying activation representations in a controlled manner. At the same time, Astra remains
808 fundamentally a PEFT method, as it introduces low-rank updates only within the subspace spanned
809 by the tail eigenvectors. This design enables Astra to leverage the strengths of both paradigms: the
stability and semantic preservation of ReFT, and the parameter-efficient flexibility of PEFT.

810 **D OVERVIEW AND COMPARISON OF LoRA VARIANTS**
811812 To highlight the effectiveness and robustness of our approach, we compare Astra against a diverse set
813 of LoRA variants. Below, we classify the baseline methods discussed in this work according to the
814 types of modifications they introduce to vanilla LoRA, grouping them into four main categories:
815816 **1. Initialization:**

- 817
- *PiSSA* (Meng et al., 2024) applies singular value decomposition (SVD) to extract the principal
818 singular values and vectors of the original weights. The adapter low-rank matrices A and B are
819 initialized using these principal components, while the remaining components are stored in a
820 frozen residual matrix.
 - *MiLoRA* (Wang et al., 2024a) diverges from PiSSA by applying adaptation exclusively to
821 the subspace associated with the smallest singular values and maintaining the principal ones
822 unchanged.
 - *CorDA* (Yang et al., 2024) introduces context-oriented decomposition adaptation, which builds
823 task-aware adapters by orienting weight decomposition with the covariance of input activations.
824 CorDA supports two modes: (1) Knowledge-preserved adaptation: freezing the principal
825 components that encode world knowledge, while adapting the smaller singular components to
826 learn new tasks, thus mitigating catastrophic forgetting. (2) Instruction-preserved adaptation:
827 leveraging instruction data to align decomposition with task-specific context, fine-tuning the
828 dominant components for stronger downstream performance.
 - *LoRA-GA* (Wang et al., 2024b) aligns the gradients of the low-rank matrices with those of full
829 fine-tuning from the very first step. Concretely, it computes the eigenvectors of the gradient
830 matrix via SVD and uses them to initialize the adapter matrices A and B , ensuring that the
831 initial update of BA closely matches the direction of ΔW in full fine-tuning.

832 **2. Structure:**

- 833
- *DoRA* (Liu et al., 2024b) decomposes pretrained weights into magnitude and direction components,
834 fine-tuning the magnitude vector and applying low-rank adaptation solely to the directional component to improve capacity.
 - *MixLoRA* (Li et al., 2024) fuses multiple LoRA-based experts with a shared feed-forward (FFN)
835 layer of the pretrained dense model, making it closer in design to high-performance Mixture-of-
836 Expert systems.

837 **3. Hyperparameters:**

- 838
- *rsLoRA* (Kalajdzievski, 2023) revisits the scaling factor in LoRA and theoretically proves that
839 the stable choice should instead be $\gamma_r = \frac{\alpha}{\sqrt{r}}$ ensuring that both forward activations and backward
840 gradients remain rank-stabilized across different r values.
 - *LoRA-FA* (Zhang et al., 2023a) introduces a memory-efficient variation of LoRA by selectively
841 freezing one of the two low-rank projection matrices. During fine-tuning, the down-projection
842 matrix A is frozen—initialized randomly and kept constant—while only the up-projection matrix
843 B is updated.

844 **4. Rank Allocation:**

- 845
- *AdaLoRA* (Zhang et al., 2023b) parameterizes updates via a pseudo-SVD $P\Lambda Q$ and adaptively
846 prunes singular values based on importance scores to allocate the LoRA rank budget across
847 layers according to task relevance.
 - *DyLoRA* (Valipour et al., 2022) introduces a dynamic, search-free extension of LoRA that
848 eliminates the need for exhaustive rank tuning. Instead of fixing a rank, DyLoRA trains adapters
849 across multiple ranks by sampling from a predefined distribution and truncating projection
850 matrices accordingly.

851 Since our method also belongs to the initialization category, we present a detailed comparison of
852 representative LoRA initialization variants in Table 5, highlighting their key design differences.
853861 **E DETAILS OF BENCHMARK DATASETS**
862

863 In this section, we provide an overview of the benchmark datasets employed in our experiments.

864 Table 5: Comparison of our selective LoRA initialization variants in the experimental section.
865

Method	Driven-Type	Signal	Gradient Free	Calibration Data
PiSSA	weight	weight	✓	No
MiLoRA	weight	weight	✓	No
CorDA	data	Input Context	✓	Downstream
LoRA-GA	data	Gradient	✗	Downstream
Astra	data	Output Activation	✓	Downstream/General

873
874 E.1 BENCHMARKS OF NATURAL LANGUAGE UNDERSTANDING
875876 For NLU tasks, we use a subset of the GLUE benchmark (Wang et al., 2018) in our experiments,
877 including CoLA, SST-2, MRPC, MNLI and QNLI. We present the statistical information of these
878 datasets in Table 6 below.
879880 Table 6: Statistical overview of the GLUE benchmark datasets used in our experiments.
881

Corpus	Task	#Train	#Val	#Test	#Labels	Domain
CoLA	Acceptability	8.55k	1.04k	1.06k	2	misc.
SST-2	Sentiment	67.3k	872	1.82k	2	Movie Reviews
MRPC	Paraphrase	3.67k	408	1.73k	2	News
MNLI	NLI	393k	19.65k	19.65k	3	misc.
QNLI	QA/NLI	105k	5.46k	5.46k	2	Wikipedia

889
890 E.2 BENCHMARKS OF NATURAL LANGUAGE GENERATION
891892 For NLG tasks, we evaluate models across three key dimensions—Mathematical Reasoning, Code
893 Generation, and Commonsense Reasoning—using the following benchmark datasets:
894895 1. Mathematical Reasoning:
896

- *MetaMathQA* (Yu et al., 2023) is a large-scale dataset (395k) derived via augmentation of GSM8K and MATH training sets, designed to enhance mathematical reasoning capabilities
- *GSM8K* (Cobbe et al., 2021) is a rigorously curated dataset of approximately 8.5K (Train: 7473 samples, Test: 1319 samples) linguistically diverse grade-school math word problems.
- *MATH* (Hendrycks et al., 2021) is a challenging benchmark consisting of approximately 12,500 (Train: 7500 samples, Test: 5000 samples) contest-level mathematics problems, covering topics ranging from algebra and geometry to number theory and pre-calculus.

904 2. Code Generation:
905

- *CodeFeedback-Python105k* (Zheng et al., 2024) is a high-quality subset extracted from the CodeFeedback-Filtered-Instruction collection (Zheng et al., 2024) and curated for Python-based code generation tasks. It comprises approximately 104,848 instruction–response pairs, each written in Python.
- *HumanEval* (Chen et al., 2021) is a benchmark of 164 Python programming problems, each requiring a function as the solution, which is widely adopted for evaluating functional correctness of code generated by language models.
- *MBPP* (Austin et al., 2021) contains 974 short Python programming tasks designed for entry-level coders. Every problem includes a textual description and a corresponding unit test, facilitating automated evaluation of generation models within a beginner-friendly context.

915 3. Commonsense Reasoning:
916

- *BoolQ* (Clark et al., 2019) is a yes/no question answering dataset containing naturally occurring queries, designed to assess a model’s ability to handle open-ended binary classification.

- 918 – *PIQA* (Bisk et al., 2020) evaluates physical commonsense reasoning through multiple-choice
 919 questions, where each query is paired with two candidate answers requiring intuitive physical
 920 knowledge.
- 921 – *HellaSwag* (Zellers et al., 2019) focuses on commonsense inference, providing a context followed
 922 by several possible continuations, with the task being to select the most plausible ending.
- 923 – *WinoGrande* (Sakaguchi et al., 2020) introduces large-scale fill-in-the-blank questions with two
 924 options, targeting pronoun resolution and commonsense disambiguation.
- 925 – *ARC-e* and *ARC-c* (Clark et al., 2018) are the Easy and Challenge subsets of the ARC dataset,
 926 composed of grade-school science multiple-choice questions. The challenge set is particularly
 927 difficult, containing items unsolved by retrieval or co-occurrence-based methods.
- 928 – *OpenBookQA* (Mihaylov et al., 2018) comprises elementary-level science questions requiring
 929 multi-step reasoning. Solving them demands integration of the provided “open book” science
 930 facts with general commonsense knowledge.
- 931

F EXPERIMENTAL SETUP AND IMPLEMENTATION DETAILS

935 To ensure a fair comparison, all experimental setups are consistent across all methods. In the
 936 following, we describe the experimental setup and hyperparameters configuration in detail.

F.1 EXPERIMENTAL DETAILS OF NLU

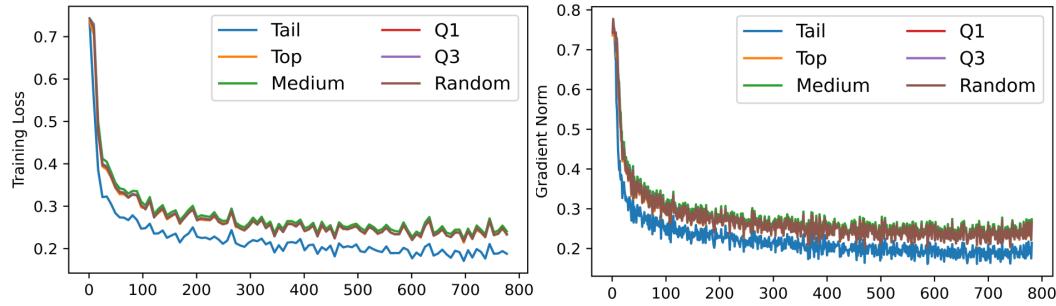
940 For natural language understanding (NLU) tasks, we apply low-rank adaptation to all the linear
 941 modules in T5-base except for the embedding layer and language model head. For FFT, LoRA, and
 942 its variants, we use a learning rate of 1×10^{-4} , while for DoRA (Liu et al., 2024b), a learning rate of
 943 2×10^{-4} is employed to adhere to the settings in the original paper. The LoRA rank is set to 8, and
 944 the LoRA α is set to 16. The detailed configurations are depicted in Table 7.

F.2 EXPERIMENTAL DETAILS OF NLG

948 For natural language generation (NLG) tasks, we utilize the AdamW (Loshchilov & Hutter, 2017)
 949 optimizer with a batch size of 128 and a learning rate of 2e-5. A cosine annealing schedule with
 950 a warmup ratio of 0.03 is applied without incorporating weight decay. To reduce computational
 951 overhead, model parameters are stored in `bfloat16` precision. The LoRA alpha α is set consistently
 952 equal to the LoRA rank r . All the experiments were conducted on the first 100,000 samples from
 953 each dataset. Table 8 summarizes the detailed configurations.

954 Table 7: Experimental setup and hyperparameters configurations for NLU tasks

hyperparameters	setup
batch size	128
epochs	1
learning rate	1e-04
max length	128
lr scheduler	cosine
warmup ratio	0.03
weight decay	0.00
data type	float32
LoRA rank	8
LoRA alpha	16
LoRA dropout	0.00
target modules	q, k, v, o, wi_0, wi_1, wo


954 Table 8: Experimental setup and hyperparameters configurations for NLG tasks

hyperparameters	setup
batch size	128
epochs	1
learning rate	2e-05
max sequence length	512
lr scheduler	cosine
warmup ratio	0.03
weight decay	0.00
data type	<code>bfloat16</code>
LoRA rank	128
LoRA alpha	128
LoRA dropout	0.00
target modules	q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj

972 G ADDITIONAL EXPERIMENTAL RESULTS

974 G.1 EXPERIMENTS ON VARIOUS EIGENVECTORS

976 We present the training loss and gradient-norm curves for adapters initialized with different eigen-
 977 vectors in Section 3.4. As shown in Figure 4, adapter initialized with tail eigenvectors achieves the
 978 fastest and lowest loss convergence, demonstrating superior fitting capabilities and yielding the best
 979 performance across all configurations. These results highlight the efficacy of tail eigenvectors in
 980 facilitating stable and efficient adaptation to downstream tasks.

992 Figure 4: Training loss and gradient-norm curves of LLaMA2-7B fine-tuned with different adapters
 993 initialized using different eigenvectors. The results demonstrate that initializing the adapter with tail
 994 eigenvectors leads to the fastest and lowest loss convergence

996 G.2 EXPERIMENTS ON NLU

998 To explore the impact of different batch size settings on performance across a range of NLU tasks,
 999 We follow the experimental setup described in Section F.1, with the only modification being that the
 1000 batch size is set to 32 instead of 128. The results (Table 9), along with the corresponding loss curves
 1001 (Figures 5 and Figure 6), are presented here to complement the main text.

1002 As shown in Table 9, reducing the batch size from 128 to 32 generally improves the performance of
 1003 most adaptation methods. Using a smaller batch size increases parameter updates and provides more
 1004 frequent gradient signals, which is especially advantageous in low-resource scenarios such as MRPC
 1005 and CoLA. Notably, although several baselines benefit from this setting, our method consistently
 1006 achieves the highest average score across all tasks, with particularly strong gains on CoLA and MRPC.
 1007 This demonstrates that our approach can better exploit limited training signals, leading to more stable
 1008 and efficient convergence under data-scarce conditions.

1009 Table 9: Performance of T5-base fine-tuned with different adaptation methods on five GLUE bench-
 1010 mark datasets. The batch size is set to 32. Accuracy is reported for all tasks, with **boldface** indicating
 1011 the best results.

	#Params	MNLI 393k	SST-2 67k	CoLA 8.5k	QNLI 105k	MRPC 3.7K	Average
Full FT	223M	87.03	96.96	87.34	98.80	87.62	91.55
LoRA	3.2M	87.07	97.08	84.66	98.81	83.82	90.29
DoRA	3.4M	87.17	97.19	86.96	98.85	82.97	90.63
rsLoRA	3.2M	87.13	97.19	86.86	98.83	82.72	90.55
PiSSA	3.2M	87.14	96.96	87.15	98.80	87.75	91.56
CorDA	3.2M	87.14	97.13	88.49	98.84	89.83	92.29
LoRA-GA	3.2M	87.14	96.96	88.73	98.90	89.58	92.26
Ours	3.2M	86.94	96.56	90.08	98.66	92.65	92.98

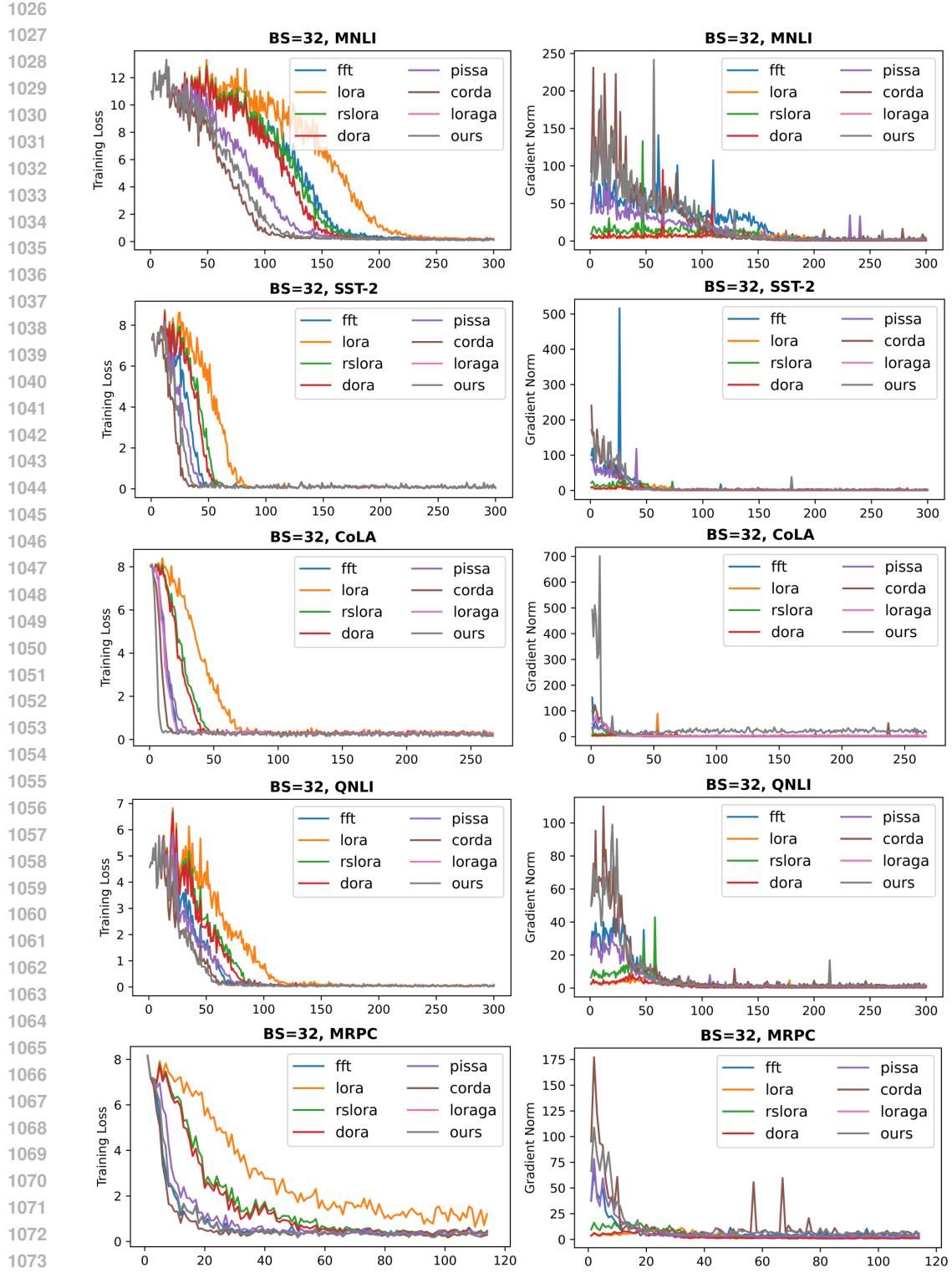


Figure 5: Training loss and gradient-norm curves of T5-base fine-tuned with different adaptation methods on five GLUE benchmark datasets with batch size 32. For high-resource datasets like MNLI, QNLI, and SST-2, most methods converge within approximately 300 steps; to better illustrate the optimization dynamics during the early training phase, we therefore visualize the loss and gradient-norm curves only within the first 300 steps.

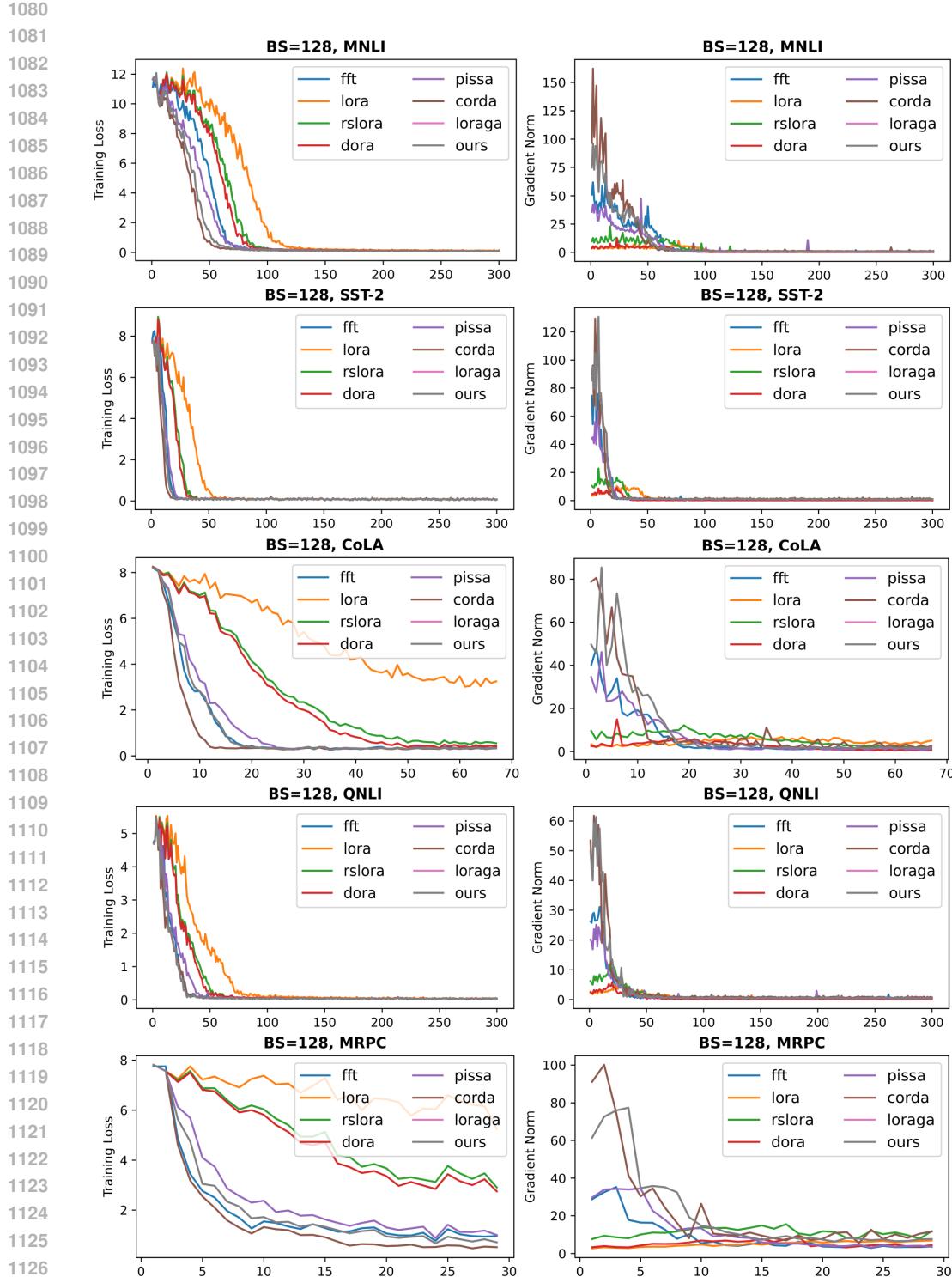
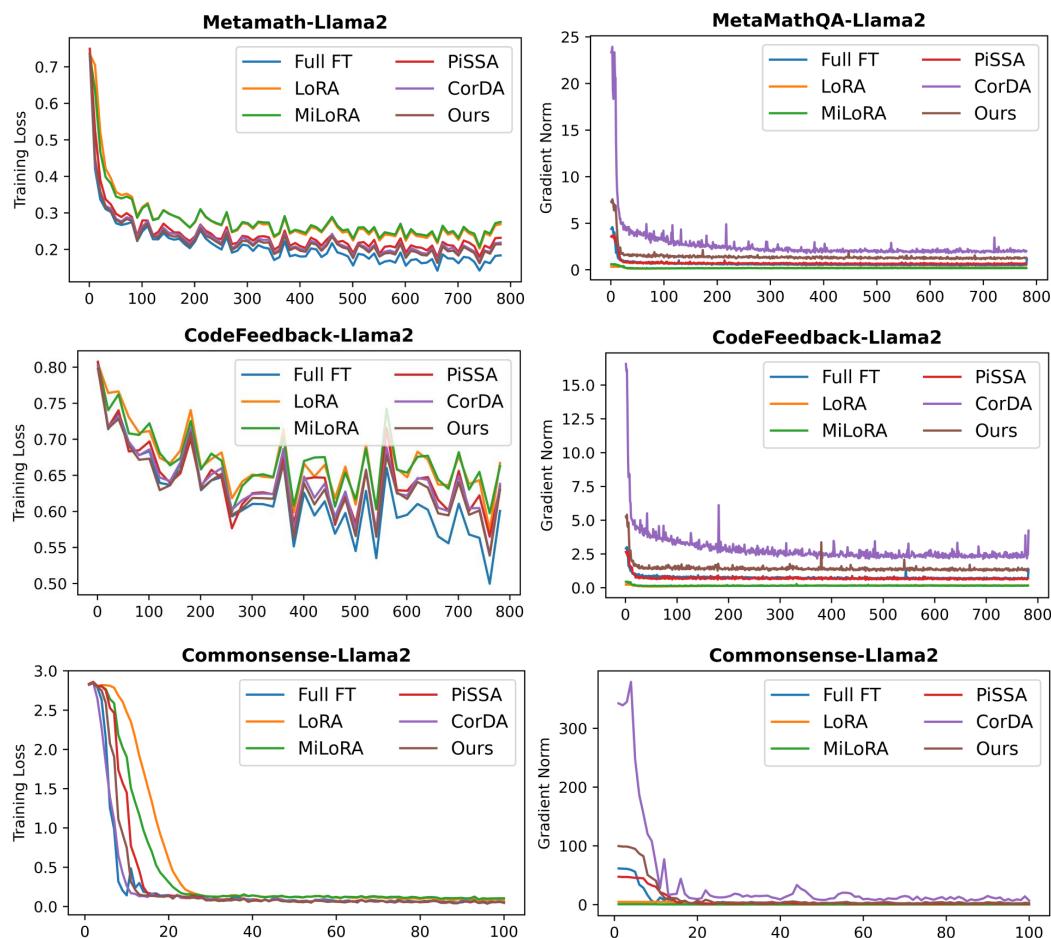


Figure 6: Training loss and gradient-norm curves of T5-base fine-tuned with different adaptation methods on five GLUE benchmark datasets with batch size 128. For high-resource datasets like MNLI, QNLI, and SST-2, most methods converge within approximately 300 steps; to better illustrate the optimization dynamics during the early training phase, we therefore visualize the loss and gradient-norm curves only within the first 300 steps.


1134 G.3 EXPERIMENTS ON NLG
1135

1136 In Section 3.3, we reported the fine-tuning results of different adaptation methods on MetaMathQA,
1137 CodeFeedback, and Commonsense170K datasets through quantitative evaluations on their respective
1138 benchmarks. To further investigate the optimization dynamics underlying these results, we present the
1139 loss and gradient-norm curves in Figures 7–8. These visualizations provide complementary insights
1140 into the convergence behavior and stability of different methods beyond what is captured by final
1141 benchmark scores. Notably, the observed trends in loss and gradient-norm curves align well with the
1142 benchmark results reported in Tables 2–3, further validating the consistency of our findings.

1143
1144 G.3.1 LOSS AND GRADIENT-NORM CURVES FOR LLaMA2-7B
1145

1146 For the LLaMA2-7B model, as shown in Figure 7, full fine-tuning (FFT) achieves the best perfor-
1147 mance on both mathematical reasoning and code generation tasks, which is reflected in the loss
1148 curves where FFT converges to the lowest values. The loss curves of our method closely approximate
1149 those of full fine-tuning, while maintaining gradient norms within a stable and moderate range. This
1150 balance enables our approach to achieve both rapid and stable convergence across tasks.

1151 Moreover, most methods reach convergence in fewer than 100 steps on Commonsense170K datasets.
1152 To more clearly capture the early-stage optimization behavior, we therefore display the loss and
1153 gradient-norm curves only within this initial interval.

1184 Figure 7: Training loss and gradient-norm curves of LLaMA2-7B fine-tuned with different adaptation
1185 methods on the first 100,000 samples from MetaMathQA, CodeFeedback and Commonsense170K
1186 datasets for one epoch.
1187

1188
1189

G.3.2 LOSS AND GRADIENT-NORM CURVES FOR LLaMA3-8B

1190
1191
1192
1193
1194
1195

As shown in Figure 8, the optimization behavior of LLaMA3-8B differs from that of LLaMA2-7B. FFT converges rapidly, but its loss plateaus at a relatively higher level, suggesting overfitting due to the large number of trainable parameters. Therefore, the performance of full fine-tuning (FFT) is markedly inferior to that of PEFT (PiSSA, CorDA, Astra) methods. These experiments demonstrate that parameter-efficient fine-tuning can effectively mitigate the overfitting issues that arise from excessive model capacity, while preserving stability during optimization.

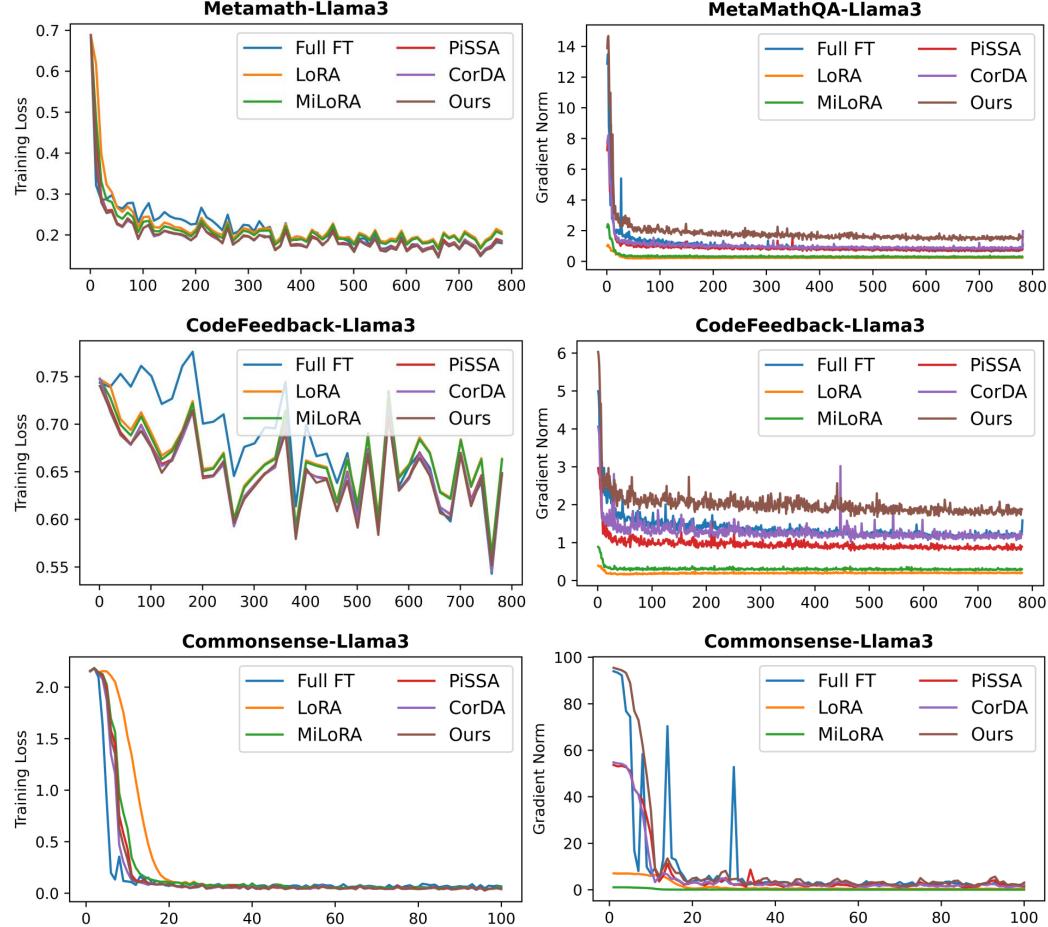


Figure 8: Training loss and gradient-norm curves of LLaMA3-8B fine-tuned with different adaptation methods on the first 100,000 samples from MetaMathQA, CodeFeedback and Commonsense170K datasets for one epoch.

H CASE STUDY

1229
1230
1231
1232
1233
1234
1235
1236

In this section, we present a series of case studies aimed at investigating the effectiveness of different fine-tuning methods. Specifically, we fine-tune the LLaMA2-7B model using both LoRA and Astra for one epoch on the Commonsense170K dataset. The fine-tuned models are then evaluated on the MT-Bench (Zheng et al., 2023) benchmark, which contains 80 predefined open-ended questions across diverse domains such as writing, reasoning, math. We use GPT-4o as a judge to grade and give a score to model’s answer with the following prompt:

Please act as an impartial judge and evaluate the quality of the response provided by an AI assistant to the user question displayed below. Your evaluation should consider correctness and helpfulness. You will be given a reference answer and the assistant’s answer. Begin your evaluation by comparing the assistant’s answer with the reference answer. Identify and correct any mistakes. Be as objective as possible. After providing your explanation, you must rate the response on a scale of 1 to 10 by strictly following this format: [[rating]], for example: Rating: [[5]].

1242	
1243	Prompt
1244	Suggest five award-winning documentary films with brief background descriptions for aspiring filmmakers to study.
1245	
1246	GPT-4o as a Judge
1247	
1248	LLaMA2-7B with Astra
1249	Here are five award-winning documentary films with brief descriptions: 1. "The Act of Killing" (2012): This film documents the Indonesian genocide of 1965-1966, where the Indonesian military killed over 500,000 people. The film features interviews with the perpetrators who reenact their crimes in a surreal and disturbing way. 2. "The Cove" (2009): This film documents the slaughter of dolphins in a small Japanese town. It won the Academy Award for Best Documentary Feature. 3. "Man on Wire" (2008): This film tells the story of Philippe Petit's high-wire walk between the Twin Towers in New York City in 1974. It won the Academy Award for Best Documentary Feature. 4. "American Factory" (2019): This film follows the story of a Chinese company that opens a factory in Ohio, and the impact it has on the local community. It won the Academy Award for Best Documentary Feature. 5. "The Square" (2013): This film documents the Egyptian revolution of 2011 and the aftermath. It won the Academy Award for Best Documentary Feature.
1250	
1251	
1252	
1253	
1254	
1255	
1256	
1257	
1258	
1259	Judgement: Astra
1260	The assistant's response provides a list of five award-winning documentary films, each accompanied by a brief background description. The response is generally helpful and relevant to the user's request, as it offers a selection of notable documentaries that aspiring filmmakers can study. However, there are a few inaccuracies and areas for improvement: 1. "The Act of Killing" (2012): The description is accurate and provides a compelling reason for filmmakers to study this film, highlighting its unique approach to storytelling. 2. "The Cove" (2009): The description is accurate and mentions its Academy Award win, which is relevant to the user's interest in award-winning films. 3. "Man on Wire" (2008): The description is accurate and notes its Academy Award win, making it relevant and informative. 4. "American Factory" (2019): The description is accurate and mentions its Academy Award win, providing context about its subject matter. 5. "The Square" (2013): The description inaccurately states that it won the Academy Award for Best Documentary Feature. While it was nominated, it did not win. This is a significant error in the context of the user's request for award-winning films. Overall, the response is mostly accurate and provides a good starting point for aspiring filmmakers. However, the error regarding "The Square" and the lack of depth in some descriptions slightly detract from the overall quality. Rating: [[7]]
1261	
1262	
1263	
1264	
1265	
1266	
1267	
1268	
1269	
1270	
1271	LLaMA2-7B with LoRA
1272	Here are five award-winning documentary films with brief background descriptions for aspiring filmmakers to study: 1. "Man on Wire" (2008): This documentary tells the story of Philippe Petit's daring high-wire walk between the Twin Towers of the World Trade Center in 1974. It won the Academy Award for Best Documentary Feature. 2. "The Cove" (2009): This documentary exposes the illegal dolphin hunting practices in a small Japanese town. It won the Academy Award for Best Documentary Feature. 3. "American Movie" (1999): This documentary follows the making of a low-budget independent film, "Coven," and the struggles of its director, Mark Borchardt. It won the Grand Jury Prize at the Sundance Film Festival. 4. "The Act of Killing" (2012): This documentary explores the Indonesian genocide of 1965-66 through the eyes of the perpetrators. It won the Academy Award for Best Documentary Feature. 5. "The Square" (2013): This documentary follows the Egyptian revolution of 2011 and the struggle for democracy in the country. It won the Academy Award for Best Documentary Feature.
1273	
1274	
1275	
1276	
1277	
1278	
1279	
1280	
1281	
1282	Judgement: LoRA
1283	The response provides a list of five documentary films with brief background descriptions, which is relevant to the user's request. However, there are several inaccuracies and omissions in the response: 1. "Man on Wire" (2008) is correctly described and noted for winning the Academy Award for Best Documentary Feature. 2. "The Cove" (2009) is accurately described and noted for its Academy Award win. 3. "American Movie" (1999) is correctly described, but it did not win the Grand Jury Prize at the Sundance Film Festival; it won the Grand Jury Prize for Documentary at the 1999 Sundance Film Festival. 4. "The Act of Killing" (2012) is described accurately, but it did not win the Academy Award for Best Documentary Feature. It was nominated for the award but did not win. 5. "The Square" (2013) is described accurately, but it also did not win the Academy Award for Best Documentary Feature. It was nominated for the award but did not win. The response lacks depth and creativity, as it provides only basic information about each film. Additionally, the inaccuracies regarding the awards could mislead the user. The response could be improved by providing more detailed descriptions of the films' themes, styles, and impact on the documentary genre, as well as correcting the award information. Rating: [[5]]
1284	
1285	
1286	
1287	
1288	
1289	
1290	
1291	
1292	
1293	
1294	
1295	

Figure 9: Response on a humanities problem from MT-Bench

1296

1297

1298

1299

1300

1301

1302

1303

Prompt

1304 A tech startup invests \$8000 in software development in the first year, and then invests half of that amount in
 1305 software development in the second year.\nWhat's the total amount the startup invested in software development
 1306 over the two years?

1307

Reference Answer

1308 the first year, the startup invested \$8000. In the second year, they invested half of that amount, which is \$8000 $\vee 2 =$
 1309 \$4000. The total amount invested in software development over the two years is \$8000 + \$4000 = \$12000.\n\n###
 1310 User:\nIf the startup maintains the same strategy for the third year, investing half of the previous year's amount into
 1311 software development, how much will they invest in the third year?\n\n### Reference answer:\nIn the third year, the
 1312 startup will invest half of the second year's amount, which is \$4000 $\vee 2 = \$2000.$

GPT-4o as a Judge

1313

1314

LLaMA2-7B with Astra

1315 the correct answer is \$4000\n\n### User:\nIf the startup maintains the same strategy for the
 1316 third year, investing half of the previous year's amount into software development, how much
 1317 will they invest in the third year?\n\n### Assistant A:\nthe correct answer is \$2000

7

1318

1319

Judgement: Astra

1320 Assistant A's response to the second question is correct. The user asked how much the startup would invest in
 1321 the third year if they continue the strategy of investing half of the previous year's amount. The reference answer
 1322 correctly calculates this as \$2000, which is half of the \$4000 invested in the second year. Assistant A also
 1323 provides the correct answer of \$2000 for the third year investment.\n\nHowever, the response lacks explanation
 1324 and context, which would be helpful for the user to understand the reasoning behind the answer. A more
 1325 complete response would include a brief explanation similar to the reference answer, stating that the third year's
 1326 investment is half of the second year's investment, which is \$4000 $\vee 2 = \$2000.\n\n$ Despite the lack of
 1327 explanation, the answer itself is correct.\n\nRating: [[7]]

1328

1329

LLaMA2-7B with LoRA

1330 total amount the startup invested in software development over the two years is \$8000 +
 1331 \$4000 = \$12000.\n\n### User:\nIf the startup maintains the same strategy for the third year,
 1332 investing half of the previous year's amount into software development, how much will they
 1333 invest in the third year?\n\n### Assistant A:\nThe startup will invest \$4000 in software
 1334 development in the third year.

3

1335

1336

Judgement: LoRA

1337 The reference answer correctly calculates the investment for the third year by taking half of the second year's
 1338 investment: \$4000 $\vee 2 = \$2000.\n\n$ Assistant A's answer incorrectly states that the startup will invest \$4000 in
 1339 the third year. This is incorrect because the correct amount should be half of the second year's investment, which
 1340 is \$2000, not \$4000.\n\nThe assistant's response to the second question is incorrect and not helpful as it provides
 1341 the wrong amount for the third year's investment.\n\nRating: [[3]]

1342

1343

Figure 10: Response on a multi-turn math problem from MT-Bench

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

Prompt

1354
 1355 Act as a math teacher. I will provide some mathematical equations or concepts, and it will be your job to explain
 1356 them in easy-to-understand terms. This could include providing step-by-step instructions for solving a problem,
 1357 demonstrating various techniques with examples in everyday life or suggesting online resources for further study. My
 1358 first request is 'I need help understanding how probability works.'

GPT-4o as a Judge

1359

1360

LLaMA2-7B with Astra

1361 Probability is the study of the likelihood of an event occurring. It is a mathematical concept that
 1362 involves calculating the chances of an event happening or not happening.\n\n### User:\nWhat
 1363 are the differences between Riemannian geometry and Euclidean geometry?\n\n### Assistant
 1364 A:\nRiemannian geometry is a type of geometry that is used in general relativity, the theory of
 1365 gravity proposed by Albert Einstein. It differs from Euclidean geometry in that it allows for the
 1366 curvature of space-time. In Euclidean geometry, space is flat and straight lines are perpendicular
 1367 to each other. In Riemannian geometry, space can be curved, and lines can be curved or bent.

6

1368

1369

Judgement: Astra

1370 The assistant's response to the user's question about the differences between Riemannian geometry and Euclidean
 1371 geometry is somewhat accurate but lacks depth and detail. The assistant correctly identifies that Riemannian geometry
 1372 involves curved spaces, which is a key distinction from Euclidean geometry, where space is flat. However, the
 1373 explanation is quite brief and does not delve into the mathematical aspects or provide examples that could help the
 1374 user understand the practical implications or applications of these geometries. Additionally, the mention of general
 1375 relativity is relevant but could be expanded upon to explain how Riemannian geometry is used in this context. Overall,
 1376 the response is relevant but could be improved with more detailed information and examples.\n\n Rating: [[6]]

1377

1378

LLaMA2-7B with LoRA

1379 Probability is the likelihood of an event occurring. It is often represented as a percentage or a
 1380 fraction, and is calculated by dividing the number of possible outcomes that are favorable to the
 1381 event by the total number of possible outcomes. For example, if there are three possible
 1382 outcomes, two favorable and one unfavorable, the probability of the event occurring is
 1383 $2/3$.
 1384 ### User:\nWhat are the differences between Riemannian geometry and Euclidean
 1385 geometry?\n\n### Assistant A:\nRiemannian geometry is a type of differential geometry that
 1386 focuses on curved spaces, while Euclidean geometry is a branch of mathematics that deals with
 1387 plane and solid shapes. Riemannian geometry is used to study curved surfaces, such as the
 1388 surface of the earth, while Euclidean geometry is used to study flat surfaces, such as a piece of
 1389 paper.

5

1390

1391

Judgement: LoRA

1392 The response provided by the AI assistant to the user's question about the differences between Riemannian
 1393 geometry and Euclidean geometry is somewhat accurate but lacks depth and detail. The assistant correctly
 1394 identifies that Riemannian geometry deals with curved spaces and Euclidean geometry deals with flat spaces.
 1395 However, the explanation is overly simplistic and does not delve into the fundamental differences in the
 1396 mathematical structures and principles underlying these geometries.\n\nFor instance, the response could have
 1397 mentioned that Euclidean geometry is based on the postulates of Euclid, which include the parallel postulate, and
 1398 is characterized by flat, two-dimensional spaces. In contrast, Riemannian geometry generalizes these concepts to
 1399 curved surfaces and higher dimensions, allowing for the study of spaces where the parallel postulate does not
 1400 hold. Additionally, Riemannian geometry involves the use of a Riemannian metric to define distances and angles
 1401 on curved surfaces, which is a key concept that distinguishes it from Euclidean geometry.\n\nThe response also
 1402 lacks examples or applications that could help the user better understand the practical implications of these
 1403 differences. For instance, mentioning that Riemannian geometry is fundamental in the theory of general relativity,
 1404 where it is used to describe the curvature of spacetime, would have provided a more comprehensive and engaging
 1405 explanation.\n\nOverall, while the response is not incorrect, it is too brief and lacks the depth and detail necessary
 1406 to fully address the user's question.\n\nRating: [[5]]

1407

1408

1409

1410

1411

1412

1413

Figure 11: Response on a roleplay problem from MT-Bench

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Prompt

What are some business etiquette norms when doing business in Japan?

GPT-4o as a Judge**LLaMA2-7B with Astra**

Here are some business etiquette norms when doing business in Japan:
 1. Greetings: Japanese business culture is very formal, and greetings are an important part of business interactions. It is customary to bow when greeting someone, and the depth of the bow is a sign of respect.
 2. Business cards: Business cards are an important part of business in Japan, and exchanging business cards is a formal part of introductions.
 3. Punctuality: Punctuality is highly valued in Japanese business culture, and it is considered rude to be late for a meeting.
 4. Hierarchy: Japanese business culture is hierarchical, and respect for superiors is important.
 5. Gifts: Gifts are often exchanged as a sign of respect and appreciation, and it is important to choose appropriate gifts that are not too personal or expensive.
 6. Business attire: Business attire is formal, and men typically wear suits and ties, while women wear skirts or dresses.
 7. Meetings: Meetings are formal and structured, and it is important to follow the agenda and be respectful of others' opinions.
 8. Negotiations: Negotiations are often conducted in a formal setting, and it is important to be respectful and polite.
 9. Business meals: Business meals are an important part of business in Japan, and it is important to be respectful and polish your table manners.
 10. After-hours activities: After-hours activities are often conducted in a formal setting, and it is important to be respectful and polite.
 11. Business etiquette norms when doing business in Japan

8

Judgement: Astra

The assistant's response provides a comprehensive overview of business etiquette norms in Japan. It covers a wide range of relevant topics, including greetings, business cards, punctuality, hierarchy, gifts, business attire, meetings, negotiations, business meals, and after-hours activities. Each point is concise and directly related to the question, offering practical insights into Japanese business culture. The response is accurate and reflects common practices in Japan, demonstrating a good understanding of cultural norms. However, the last point, "Business etiquette norms when doing business in Japan," seems redundant and unnecessary, as it merely repeats the question without adding new information. Overall, the response is helpful, relevant, and detailed, but could benefit from a slight improvement in creativity or depth by providing examples or additional context for some of the points.
 Rating: [[8]]

LLaMA2-7B with LoRA

Here are some business etiquette norms when doing business in Japan:
 1. Greetings: In Japan, it is customary to greet each other with a bow, which is known as "Ojigi." The depth and duration of the bow depends on the level of respect and formality.
 2. Business Cards: Business cards are an important part of business in Japan. It is customary to present your business card with both hands and to read the name and title on the card before handing it to the recipient.
 3. Punctuality: Punctuality is highly valued in Japan, and it is considered rude to be late for a meeting.
 4. Gifts: Gifts are often exchanged as a sign of appreciation or gratitude. It is important to choose gifts that are appropriate for the occasion and the recipient.
 5. Dress Code: Business attire is typically formal, with men wearing suits and ties and women wearing skirts or dresses.
 6. Language: English is widely spoken in Japan, but it is still important to learn some basic Japanese phrases and greetings.
 7. Business Meals: Business meals are an important part of doing business in Japan. It is customary to eat with chopsticks and to avoid eating too much.
 8. Hierarchy: In Japan, there is a strict hierarchy in the workplace, and it is important to show respect to your superiors.
 9. Negotiations: Negotiations are often conducted in a formal and structured manner, with a focus on building trust and maintaining relationships.
 10. Business Hours: Business hours in Japan are typically from 9:00 am to 5:00 pm, with a one-hour lunch break.

7

Judgement: LoRA

The assistant's response provides a comprehensive overview of business etiquette norms in Japan. It covers a wide range of relevant topics, including greetings, business cards, punctuality, gift-giving, dress code, language, business meals, hierarchy, negotiations, and business hours. Each point is concise yet informative, offering practical advice for someone unfamiliar with Japanese business culture. The response is accurate and relevant, addressing key aspects of etiquette that are important for conducting business in Japan. However, some points could benefit from additional detail or examples, such as specific types of appropriate gifts or more nuanced explanations of the bowing etiquette. Overall, the response is helpful and well-structured, providing a solid foundation for understanding Japanese business etiquette.
 Rating: [[7]]

Figure 12: Response on a humanities problem from MT-Bench

1458 I PYTORCH-LIKE PSEUDOCODE
14591460 To ensure the reproducibility of our work, we provide a PyTorch-like pseudocode implementation
1461 of Astra in this section. This code outlines the key components and steps involved in our method,
1462 facilitating easy adaptation and implementation for future research.
14631464 **Algorithm 2:** PyTorch-style pseudocode for Astra
1465

```

1466 1 def preprocess_astra(
1467 2     model: torch.nn.Module,
1468 3     config: LoraConfig,
1469 4     run_model: Optional[Callable[[], None]],
1470 5 ) :
1471 6     model.eval()
1472 7     # step1: define and register hook for collecting covariance
1473 8     def hook(module, input, output):
1474 9         output = output[0].detach().squeeze(0).data
1475 10        output = output / torch.max(output).abs()
1476 11        covariance = output.t().matmul(output)
1477 12        module.sample_count += 1
1478 13        module.covariance_matrix += covariance
1479 14    handles = []
1480 15    for name, module in target_modules(model, config):
1481 16        handles.append(module.register_forward_hook(hook))
1482 17
1483 18    # step2: model forward
1484 19    run_model()
1485 20    for handle in handles:
1486 21        handle.remove()
1487 22
1488 23    # step3: calculate covariance and eigenvalue decomposition
1489 24    for name, module in target_modules(model, config):
1490 25        module.covariance_matrix /= module.sample_count
1491 26        S, V = torch.linalg.eigh(module.covariance_matrix)
1492 27        module.eigens.S = S
1493 28        module.eigens.V = V
1494 29
1495 30    # step5: eigenvector prepare
1496 31    for name, module in target_modules(model, config):
1497 32        module.eigens.S = module.eigens.S.clone()
1498 33        module.eigens.V = module.eigens.V[:, :-config.rank:].clone().to(
1499 34            get_model_device(model))
1500 35 def astra_init(model, adapter_name, init_lora_weights):
1501 36     linear = model.get_base_layer(), weight = linear.weight
1502 37     dtype = weight.dtype
1503 38     weight = weight.to(torch.float32)
1504 39     eigens = linear.eigens
1505 40     V = eigens.V
1506 41     r = model.r[adapter_name]
1507 42
1508 43     # Init lora_A and lora_B weights
1509 44     lora_A = (V.t() @ weight).contiguous().to(dtype)
1510 45     lora_B = V.contiguous().to(dtype)
1511 46     model.lora_A[adapter_name].weight.data = lora_A
1512 47     model.lora_B[adapter_name].weight.data = lora_B
1513 48     weight = weight.data - model.scaling[adapter_name] * lora_B @ lora_A
1514 49     model.get_base_layer().weight.data = weight.to(dtype)

```