
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ASTRA: ACTIVATION-SPACE TAIL-EIGENVECTOR LOW-
RANK ADAPTATION OF LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-Efficient Fine-Tuning (PEFT) methods, especially LoRA, are widely
used for adapting pre-trained models to downstream tasks due to their compu-
tational and storage efficiency. However, LoRA and its successors often focus
on well-optimized principal subspaces of model activations, yielding diminishing
returns and potentially destabilizing pretrained representations, while the sub-
spaces correspond to tail eigenvectors remain largely under-utilized. In this work,
we propose Astra (Activation-Space Tail-Eigenvector Low-Rank Adaptation),
a novel PEFT method that leverages the tail eigenvectors of the model output
activations—estimated from a small task-specific calibration set—to construct task-
adaptive low-rank adapters. By constraining updates to the subspace spanned by
the tail eigenvectors of output activations, Astra avoids interfering with pretrained
task-relevant semantic structure and adapts in directions that minimize energy in
the original task-specific representational space, leading to faster convergence and
improved downstream performance. Extensive experiments across natural language
understanding (NLU) and natural language generation (NLG) tasks demonstrate
that Astra consistently outperforms existing PEFT baselines across 16 benchmarks
and even surpasses full fine-tuning (FFT) in certain scenarios.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable success across a wide range of
tasks (Achiam et al., 2023; Dubey et al., 2024; Guo et al., 2025). A common strategy for adapting
these pretrained models to downstream tasks is full fine-tuning (FFT), in which all model parameters
are updated. However, the substantial computational and memory costs associated with this process
severely limit its practicality in resource-constrained environments (Singh et al., 2024; Liu et al.,
2024a). To overcome these limitations, parameter-efficient fine-tuning (PEFT) methods have emerged
as a promising alternative. By introducing a small number of additional trainable components while
keeping the pretrained parameters frozen (Liu et al., 2021; Li & Liang, 2021; Hu et al., 2023b),
PEFT methods significantly reduce the number of trainable parameters while maintaining competitive
performance on downstream tasks.

Among various PEFT methods, LoRA (Hu et al., 2022) has gained considerable attention for its
simplicity and effectiveness. A theoretical motivation for the effectiveness of LoRA is offered by
the intrinsic dimension hypothesis (Li et al., 2018; Aghajanyan et al., 2021), which posits that the
solution space of fine-tuning lies in a low-dimensional subspace. However, the default initialization
scheme of LoRA often results in very small gradients in the early stages of training, potentially
leading to slow convergence and suboptimal adaptation (Meng et al., 2024; Wang et al., 2024b)

To address these limitations, recent research has proposed alternative initialization strategies for
LoRA, which can be broadly categorized into two types. Weight-driven approaches(Meng et al.,
2024; Wang et al., 2024a) leverage the structure of pretrained weights to guide the initialization of low-
rank adapters, whereas data-driven methods(Yang et al., 2024; Wang et al., 2024b; Paischer et al.,
2024) utilize data distributions and task-specific signals for initialization. However, most existing
works overlook two critical aspects: (1) The output activations of LLM exhibit low-rank structure,
where the major components are captured in a low-dimensional subspace (Yu & Wu, 2023; Liu et al.,
2024a). This principal low-rank subspace is progressively formed and optimized during pretraining
to capture rich semantic information (Wu et al., 2024). However, further updates within this subspace

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

during fine-tuning yield diminishing returns, potentially disturbing the learned representations and
causing unstable convergence (Kumar et al., 2022). (2) Meanwhile, the dimensions corresponding to
tail eigenvalues remain under-utilized (Nayak et al., 2025). These observations suggest that adapting
in such under-explored subspaces may increase the effective rank (Roy & Vetterli, 2007), enhancing
task-specific representational capacity and improving model’s adaptability to downstream tasks.

Building on this insight, we propose Astra (Activation-Space Tail-Eigenvector Low-Rank
Adaptation), a novel PEFT method that exploits the under-explored tail subspaces of output activa-
tions to construct learnable adapters. Specifically, Astra begins by performing eigendecomposition
on the covariance matrix of the output activations using a small task-specific calibration dataset
D, i.e., Cov(Y) = QΛQ⊤, where Q denotes the eigenvectors and Λ is the diagonal matrix of
corresponding eigenvalues. To constrain optimization within the under-explored subspaces, Astra
then projects the weight matrix W onto the subspace spanned by the tail eigenvectors, thereby
deriving task-adaptive low-rank adapters aligned with the under-utilized activation directions, i.e.,
A = Q⊤

[:,−r:]W and B = Q[:,−r:], where r denotes the LoRA rank. This initialization strategy offers
twofold advantages: (1) Orthogonality to task-relevant pretrained semantic structure: By initial-
izing LoRA adapters in directions orthogonal to the principal activation subspace, Astra minimizes
interference with the model’s native task competence, ensuring stability and semantic consistency
during fine-tuning. (2) Energy-minimizing initialization: Among all possible low-rank update
directions, Astra selects those that minimize perturbation energy in the original task-relevant output
space. This enables efficient adaptation by enhancing task-relevant representations along previously
under-utilized dimensions, accelerating convergence and improving downstream performance.

We conduct extensive experiments on a wide range of tasks to evaluate the effectiveness of Astra,
including natural language understanding (NLU) and multiple natural language generation (NLG)
tasks such as Mathematical Reasoning, Code Generation, and Commonsense Reasoning. Experi-
mental results demonstrate that Astra consistently outperforms existing PEFT baselines across 16
benchmarks and even surpasses full fine-tuning (FFT) on certain tasks. Our contributions can be
summarized as follows:

• We propose Astra, a novel initialization method for LoRA that leverages the under-utilized
eigenspace of output activations for low-rank adaptation. Astra provably preserves task-relevant
representations and minimizes perturbation energy in the task-specific output space, enabling
efficient and stable fine-tuning.

• We conduct extensive experiments on a wide range of NLU and NLG tasks, including general
language understanding, mathematical reasoning, code generation, and commonsense reasoning.
Extensive experimental results demonstrate that Astra consistently outperforms existing PEFT
methods, demonstrating its effectiveness and adaptability.

• We present systematic ablations on eigenvectors, LoRA ranks, and calibration data, which
consistently confirm the effectiveness and efficiency of our approach. In addition, effective rank
analysis supports the core hypothesis that Astra enhances task-specific representational capacity
while preserving pretrained semantics.

2 METHOD

2.1 PRELIMINARIES OF LORA’S INITIALIZATION

LoRA (Hu et al., 2022) introduces trainable updates by reparameterizing weight modifications as the
product of two low-rank matrices. Formally, given a pre-trained weight matrix W0 ∈ Rm×n, LoRA
decomposes the weight changes as:

W̃ = W0 +∆W = W0 +
α

r
BA (1)

where ∆W denotes the weight change, which is decomposed into two low-rank matrices B ∈ Rm×r

and A ∈ Rr×n with an intrinsic rank r ≪ min(m,n), α is a scaling constant. This parameterization
reduces the number of trainable parameters from mn to (m+n)r, significantly improving fine-tuning
efficiency. In practice, A is initialized from the Gaussian distribution, while B is initialized as an
all-zero matrix to ensure that the initial model output remains unchanged. However, such random
initialization can lead to slower convergence, as the gradients of the trainable adapters can be very
small or in random directions during the early stages of fines-tuning (Meng et al., 2024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 ACTIVATION-SPACE TAIL-EIGENVECTOR LOW-RANK ADAPTATION

To address these challenges, we propose Astra, a novel initialization method for LoRA designed to
enhance adaptation efficiency and stability. The method consists of two main steps: (1) orthogonal
decomposition of the activation space to preserve original semantic structure, and (2) projection of
the weights onto the tail subspace for LoRA initialization. Below, we describe each step in detail.

Step 1: Orthogonal Decomposition. Astra begins by collecting the covariance matrix of output
activations that are relevant to the downstream task. Specifically, we randomly sample a small set of
data (e.g., 64 samples) from the training set to form the calibration dataset. These samples are then
passed to the LLM for forward propagation. Denoting Y ∈ Rdout×N as the output activation of a
linear layer, where N is the number of calibration samples, we compute the covariance matrix as:

Cov(Y) = E[Y Y ⊤]− E[Y]E[Y]⊤ (2)

where E[·] denotes the expectation operator. Since Cov(Y) is positive semi-definite, it can be de-
composed as Cov(Y) = QΛQ⊤, where Q ∈ Rdout×dout is an orthogonal matrix, and each eigenvector
qi represents an orthogonal direction in the output activation space, defining an independent axis
that captures a distinct mode of variation. We then perform an orthogonal decomposition of output
activations Y based on the eigenvectors, given by:

Y = Q[:,:dout−r]Q
⊤
[:,:dout−r]Y +Q[:,−r:]Q

⊤
[:,−r:]Y (3)

= Q[:,:dout−r]Q
⊤
[:,:dout−r](Wx+ b) +Q[:,−r:]Q

⊤
[:,−r:](Wx+ b) (4)

= Q[:,:dout−r]Q
⊤
[:,:dout−r]Wx+ b︸ ︷︷ ︸
Frozen

+Q[:,−r:]Q
⊤
[:,−r:]Wx︸ ︷︷ ︸

Trainable

(5)

Theorem 2.1 (Tail-Space Ensures Orthogonality to Pretrained Semantics). Suppose output activation
Y exhibits a low-rank structure and its primary information is captured in a low-dimensional principal
subspace. Then, the target fine-tuning space that minimizes the impact on the existing semantic
structure, i.e., Ymain, represented by the principal subspace is the orthogonal space spanned by the
tail eigenvectors, i.e., Ytail, given by Y ⊤

mainYtail = 0.

Proof. Let Σ ∈ Rdout×dout be a symmetric positive semi-definite matrix with eigendecomposition
Σ = QΛQ⊤, where Q = [Qmain |Qtail] partitions the eigenvectors into main-(dout − r) and tail-r
components. For any Y ∈ Rdout×N , define the projections as:

Ymain := QmainQ
⊤
mainY, Ytail := QtailQ

⊤
tailY.

where Ymain captures the primary information. Since Q is orthogonal, the submatrices Qmain and
Qtail form the orthonormal bases for the output activation covariance matrix, i.e. Q⊤

mainQtail = 0. We
expand the inner product between the principal and residual projections:

Y ⊤
mainYtail = (QmainQ

⊤
mainY)⊤(QtailQ

⊤
tailY) = Y ⊤QmainQ

⊤
mainQtailQ

⊤
tailY.

Since Q⊤
mainQtail = 0, we have QmainQ

⊤
mainQtail = 0, which implies:

Y ⊤
mainYtail = 0.

Thus, building on the projection decomposition in Eq.5, Astra is enforced to operate entirely within
the residual activation subspace orthogonal to the dominant directions, thereby avoiding interference
with existing semantic structure.

Step 2: Tail-Subspace Projection. Then based on Eq.5, the initialization scheme of the two
learnable low-rank matrices A and B in LoRA can be formally expressed as:

Ainit = Q⊤
[:,−r:]W ∈ Rr×din . (6)

Binit = Q[:,−r:] ∈ Rdout×r, (7)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where Ainit and Binit serve as the two learnable low-rank matrices in LoRA. Since the additional term
∆W = BA is non-zero at initialization, we adjust the frozen component to ensure that the original
model outputs remain unchanged. Formally, this yields:

W ′ = W (0) +∆W = (W (0) −BinitAinit︸ ︷︷ ︸
Frozen

) + B′A′︸ ︷︷ ︸
Trainable

(8)

where the learnable matrices A′ and B′ parameterize the task-specific update ∆W . By constraining
optimization within the subspace spanned by the tail eigenvectors, Astra utilize the under-explored
subspace and thus effectively improves adaptation efficiency and stability. Below, we present the
detailed Algorithm 1, and a PyTorch-like implementation for Astra in provided in Appendix I.

Algorithm 1: Astra: Activation-Space Tail-Eigenvector Low-Rank Adaptation

Input: Model M , LoRA rank r, calibration data x, weight matrices W ∈ Rdout×din

Output: Initialized parameters Wfrozen, Ainit, Binit

1: Ŷ ←M(x;W) ▷ Forward propagation

2: Cov(Y)← E[Y Y ⊤]− E[Y]E[Y]⊤

3: Cov(Y) = QΛQ⊤ ▷ Eigen-decomposition

4: Initialize trainable low-rank matrices:
Ainit = Q⊤

[:,−r:]W ∈ Rr×din

Binit = Q[:,−r:] ∈ Rdout×r ▷ Astra Initialization

5: Compute frozen and update terms:
Wfrozen = W (0) −BinitAinit
Wtrainable = BinitAinit

return Wfrozen, Ainit, Binit

2.3 THEORETICAL ANALYSIS OF ASTRA INITIALIZATION

Below, we provide further theoretical guarantees demonstrating that the initialization schemes in Eq.6
and Eq.7 minimize perturbation energy with respect to the spectral geometry of the output activations,
thereby preventing the disruption of the existing semantic structure and ensuring stable and efficient
task adaptation.
Theorem 2.2 (Tail-Space Minimizes Output Perturbation Energy). Let W ∈ Rdout×din denote the
pretrained model weights, and let ΣX := E[XX⊤] be the input covariance matrix. The output
activation can be defined covariance as:

ΣY := E[Y Y ⊤] = WΣXW⊤.

For any orthogonal projection P = UU⊤ with U ∈ Rdout×r, U⊤U = I , define the low-rank
initialization path as ∆W := UU⊤W . The expected squared output perturbation is:

E(U) := Ex[∥∆Wx∥2] = Tr(U⊤ΣY U).

Then this energy is minimized when U spans the eigenspace corresponding to the r smallest eigenval-
ues of ΣY . That is:

Tr(U⊤ΣY U) ≥ Tr(Q⊤
tailΣY Qtail) =

d∑
i=d−r+1

λi,

where λ1 ≥ · · · ≥ λd are the eigenvalues of ΣY .

The detailed proof of Theorem 2.2 is provided in Appendix B.

3 EXPERIMENTS

In this section, we provide a comprehensive evaluation of Astra from three perspectives. 1) We first
assess the Natural Language Understanding (NLU) capabilities using the GLUE (Wang et al., 2018)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

benchmark (Section 3.2). 2) Next, we evaluate the performance of our method on Natural Language
Generation (NLG) tasks, covering mathematical reasoning, code generation, and commonsense
reasoning (Section 3.3). 3) Finally, we conduct ablation studies to analyze the effectiveness of our
approach with respect to varying eigenvectors, LoRA ranks and calibration datasets (Section 3.4).
All experiments are conducted on NVIDIA A100-SXM4 (80GB) GPUs.

3.1 BASELINES

To substantiate the effectiveness of our method, we compare Astra against full fine-tuning (FFT),
vanilla LoRA, and 6 representative LoRA variants. These variants can be grouped as follows:
1. Weight-driven initialization variants:

– PiSSA (Meng et al., 2024) initializes adapters with principal components and freezes the residual.
– MiLoRA (Wang et al., 2024a) initializes adapters with the smallest singular components.

2. Data-driven initialization variants:
– CorDA (Yang et al., 2024) builds adapters conditioned on context for task-specific adaptations.
– LoRA-GA (Wang et al., 2024b) constructs low-rank matrices by approximating the gradient from

the first step of full fine-tuning.
3. Other LoRA variants (with modified structure, hyperparameters, etc.):

– rsLoRA (Kalajdzievski, 2023) introduces a square-root scaling factor to LoRA.
– DoRA (Liu et al., 2024b) decomposes pretrained weights into magnitude and direction compo-

nents, tuning the magnitude and direction matrix separately.

3.2 NATURAL LANGUAGE UNDERSTANDING

Models and Datasets. We fine-tune the T5-base model (Raffel et al., 2020) on a subset of tasks from
the GLUE benchmark (Wang et al., 2018), including MNLI, QNLI, SST-2, CoLA and MRPC. The
model is evaluated on the corresponding development sets, and accuracy is reported as the evaluation
metric for all tasks. Additional details regarding the benchmarks are presented in Appendix E.1.

Implementation Details. We follow the experimental setup described in (Wang et al., 2024b) to
ensure a fair comparison. Specifically, we convert the labels into tokens (e.g., "positive" or "negative")
and use the prompt tuning to fine-tune the model for 1 epoch on each dataset. The normalized
probabilities assigned to these tokens are then used for classification. Further experimental setup and
implementation details can be found in Appendix F.1.
Table 1: Performance of T5-base fine-tuned with different adaptation methods on 5 datasets of the
GLUE benchmark. We report accuracy for all tasks, and the results are averaged over three runs with
different random seeds. Bold values indicate the best performance.

#Params MNLI
393k

SST-2
67k

QNLI
105k

CoLA
8.5k

MRPC
3.7K Average

Full FT 223M 86.95±0.04 97.02±0.03 98.78±0.02 84.52±0.01 84.19±0.05 90.29

LoRA 3.2M 86.97±0.01 96.62±0.02 98.75±0.03 49.95±1.33 47.67±0.06 75.99
DoRA 3.4M 87.05±0.02 97.19±0.01 98.79±0.02 84.23±0.03 49.88±0.05 83.43

rsLoRA 3.2M 87.06±0.01 97.13±0.02 98.79±0.02 83.89±0.02 49.63±0.04 83.30

PiSSA 3.2M 87.01±0.01 97.08±0.01 98.82±0.01 84.80±0.01 82.84±0.01 90.11
CorDA 3.2M 87.11±0.03 97.19±0.02 98.81±0.05 84.71±0.22 69.12±0.23 87.39

LoRA-GA 3.2M 87.07±0.01 97.13±0.02 98.83±0.01 84.76±0.11 84.19±0.14 90.40

Ours 3.2M 87.09±0.01 96.45±0.01 98.83±0.01 87.87±0.06 88.36±0.12 91.72

Main Results. Table 1 presents the performance of T5-base fine-tuned with different adaptation
methods on five GLUE datasets. Our proposed approach consistently surpasses existing baselines,
achieving the highest average accuracy across all tasks. The improvement is particularly pronounced
on low-resource datasets such as MRPC and CoLA, where effective utilization of gradient information
plays a critical role. These results suggest that our method can fully exploit the limited training
signals, leading to stable and fast convergence even under data-scarce conditions.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Comparison of full fine-tuning (Full FT) and several LoRA variants on 2 mathematical
reasoning and 4 code generation benchmarks. The best PEFT results are highlighted in bold.

Model Method #Params GSM8K Math HumanEval HumanEval+ MBPP MBPP+ Average

LLaMA2-7B

Full FT 6738M 58.76 12.04 32.9 31.1 43.9 36.8 35.92
LoRA 320M 41.40 5.42 22.0 20.1 34.9 27.2 25.17

MiLoRA 320M 39.12 5.06 20.1 18.9 36.8 29.4 24.90
PiSSA 320M 51.63 7.36 23.2 20.1 36.7 29.5 28.08
CorDA 320M 52.99 8.08 25.0 23.2 36.2 29.6 29.18
Ours 320M 55.19 8.98 25.0 23.2 38.4 31.2 30.33

LLaMA3-8B

Full FT 8366M 75.36 24.04 56.7 53.7 64.0 54.5 54.72
LoRA 336M 73.31 24.24 53.7 48.8 65.6 54.8 53.41

MiLoRA 336M 73.24 23.90 52.4 48.2 68.3 56.1 53.69
PiSSA 336M 76.50 26.92 57.1 52.0 68.0 56.3 56.14
CorDA 336M 77.26 26.52 55.5 50.0 67.7 57.7 55.78
Ours 336M 77.56 27.92 57.7 53.0 68.4 58.2 57.13

Table 3: Zero-shot performance of LLaMA2-7B and LLaMA3-8B fine-tuned with different adaptation
methods on seven commonsense reasoning benchmarks. The best PEFT results are shown in bold.

Model Method #Params BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

LLaMA2-7B

Full FT 6738M 82.81 75.08 55.57 73.64 72.69 41.72 32.00 61.93
LoRA 320M 79.97 78.35 57.30 68.82 78.07 46.16 32.40 63.01
PiSSA 320M 83.03 78.18 57.52 70.72 78.41 47.35 33.40 64.09

MiLoRA 320M 79.66 78.13 57.53 69.22 77.31 45.39 32.40 62.81
CorDA 320M 82.87 78.45 56.24 71.82 75.67 43.09 33.00 63.02
Ours 320M 83.76 78.51 57.28 71.74 79.63 48.72 34.20 64.83

LLaMA3-8B

Full FT 8366M 82.14 68.82 49.30 66.06 65.95 38.05 31.60 57.42
LoRA 336M 85.02 79.76 59.88 74.74 82.53 53.50 34.00 67.06
PiSSA 336M 86.76 80.47 60.63 76.64 81.94 52.82 36.00 67.89

MiLoRA 336M 84.07 79.92 60.31 74.59 81.27 51.62 34.80 66.65
CorDA 336M 85.84 80.74 60.43 76.56 82.70 54.44 35.20 67.99
Ours 336M 86.48 80.41 60.02 78.22 82.87 53.99 36.60 68.37

3.3 NATURAL LANGUAGE GENERATION

Models and Datasets. We conduct experiments using LLaMA2-7B (Touvron et al., 2023) and
LLaMA3-8B (Dubey et al., 2024) across three NLG tasks: Math, Code and Commonsense.

• Math: For mathematical reasoning tasks, the models are fine-tuned on the MetaMathQA dataset (Yu
et al., 2023) and evaluated on two widely used benchmarks, GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021), using PASS@1 accuracy as the evaluation metric.

• Code: To evaluate programming proficiency, we fine-tune the models on the CodeFeedback-
Python105k dataset (Zheng et al., 2024) and assess performance on HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021) benchmarks. Additionally, we employ the EvalPlus framework (Liu
et al., 2023) to test on the extended versions of these datasets, namely MBPP+ and HumanEval+,
which provide a greater number of test cases compared to the original versions. We report the
PASS@1 metric for these evaluations.

• Commonsense: For commonsense reasoning, the models are fine-tuned on the Commonsense170K
dataset (Hu et al., 2023a) and tested on seven established benchmarks—BoolQ (Clark et al., 2019),
PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2020),
ARC-e, ARC-c (Clark et al., 2018), and OpenBookQA (Mihaylov et al., 2018). All tasks are tested
in a zero-shot setting using the LM-Evaluation-Harness framework (Gao et al., 2024).

Implementation Details. To ensure a fair comparison, we adopt the experimental configurations
delineated in (Meng et al., 2024; Wang et al., 2024b; Yang et al., 2024). Specifically, we set the LoRA
rank to 128, with the LoRA alpha consistently equal to the rank, and insert adapters into all linear
layers of the base model. All the experiments were conducted on the first 100,000 samples from
each dataset and trained for one epoch to reduce computational overhead. Additional implementation
details are provided in the Appendix F.2.

Main Results. Table 2 summarizes the results on mathematical reasoning and code generation
tasks, and Table 3 reports the performance on commonsense reasoning benchmarks. Overall, our

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 1: Training loss and gradient norm curves for FFT, LoRA (rank=128), and Astra with
varying ranks on the MetaMathQA dataset. Our method (rank=8) performs even better+ than LoRA
(rank=128), and higher ranks lead to faster loss reduction, approaching the performance of FFT.

approach consistently surpasses existing PEFT baselines, demonstrating robust generalization across
diverse task categories. Below, we provide a breakdown of the results by task type:

• Math: Astra outperforms all other PEFT baselines on both the GSM8K and MATH datasets,
achieving the best results overall, with the exception of a slight gap compared to Full FT on
LLaMA2-7B. Figure 1 illustrates the loss curves and gradient norm trends during fine-tuning of
LLaMA2-7B on the MetaMathQA dataset. Notably, Astra (with rank=8) converges faster than
LoRA (rank=128), highlighting its efficiency in downstream task adaptation with minimal resources.

• Code: For code generation tasks, Astra also achieves outstanding results, even surpassing Full FT
on LLaMA3-8B. Our method shows remarkable programming proficiency, as reflected in the results
across HumanEval and MBPP benchmarks.

• Commonsense: Astra demonstrates consistently strong performance across seven commonsense
reasoning benchmarks. Although it slightly lags on HellaSwag, it achieves the best overall average
performance among all baselines.

3.4 ABLATION STUDIES

Table 4: Performance of LLaMA2-7B fine-
tuned with adapters initialized using eigenvec-
tors from different quantiles of the eigenvalue
spectrum.

Eigenvectors GSM8K MATH
Random 40.49 5.64

Top 40.71 5.48
Upper Quartile (Q3) 40.49 5.64

Medium 38.74 5.60
Lower Quartile (Q1) 42.76 5.70

Tail 55.19 8.98

Eigenvectors. To investigate the impact of eigen-
vectors corresponding to eigenvalues of varying
magnitudes on fine-tuning performance, we ini-
tialize the adapters injected into LLaMA2-7B with
eigenvectors selected from different quantiles of the
eigenvalue spectrum. Specifically, we use eigenvec-
tors corresponding to the top, tail, middle, lower
quartile, and upper quartile eigenvalues, as well as
randomly selected eigenvectors. The models are
then fine-tuned on the MetaMathQA dataset and
evaluated on the GSM8K and MATH benchmarks.
As shown in Table 4, adapters initialized with tail
eigenvectors achieve the best performance on both
benchmarks, underscoring the efficacy of our strat-
egy in leveraging tail eigenvectors from activation-space for fine-tuning.

LoRA Rank. In this experiment, we explore the effects of varying LoRA rank from 8 to 128, aiming
to assess whether our approach consistently outperforms other PEFT baselines across different rank
values. Following the setup described in Section 3.3, we fine-tune LLaMA2-7B on the MetaMathQA
dataset and evaluate it on the GSM8K and MATH benchmarks. Figures 2 (a)-(b) show that Astra
consistently outperforms alternative PEFT methods with the same number of trainable parameters.
Figure 2 (c) illustrates the final training loss across different ranks, demonstrating that our method
achieves a better fit to the training data compared to LoRA, PiSSA, and CorDA. It is noteworthy that
our approach outperforms LoRA at rank = 128 even with rank = 8, underscoring its efficiency in
achieving better performance with fewer trainable parameters.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 2: (a) and (b) report the performance of different LoRA variants on GSM8K and MATH
under various ranks, respectively. (c) shows the final training loss on the MetaMathQA dataset under
various ranks. (d) illustrates the performance using different calibration data.

Calibration Data. To assess the robustness of Astra with respect to the calibration datasets, we
conduct experiments using a general-purpose dataset (i.e. Wikitext-2) for calibration, and compare
it with the default setting, where the downstream training set itself is used for calibration. The
results, presented in Figure 2 (d), demonstrate that Astra achieves stable performance across different
calibration datasets, while leveraging the downstream training set yields marginally better results.

4 DISCUSSION

Enhancing Representation Capacity via Increased Effective Rank. To evaluate the improvement
in representational capacity introduced by our approach, we employ effective rank(Roy & Vetterli,
2007) as a metric to characterize the spectral structure of output activations before and after fine-tuning.
Formally, the effective rank is defined as:

RX,i = exp

− dout∑
j=1

λ̃j ln(λ̃j)

 and λ̃j =
λj∑dout

k=1 λk

(9)

where λj denotes the eigenvalues obtained from the eigendecomposition of the output activation
covariance matrix, X ∈ {Q,K,V,O,Up,Down} represents the projection layer type within the
Transformer architecture, and i indexes the corresponding Transformer layer.

Figure 3: Comparison of effective rank before
and after fine-tuning.

A higher effective rank indicates that the output acti-
vations are distributed across more directions in the
feature space, suggesting a richer and more diverse
representational capacity. Conversely, a lower effec-
tive rank (only a few eigenvalues are large) implies
that the activations are concentrated along a few
dominant directions, reflecting more constrained or
redundant representations (Li et al., 2025).

For each layer type, we aggregate the effective rank
across all layers and compute the total, which is then
compared before and after fine-tuning to quantify
the overall change. As shown in Figure 3, both
LoRA and Astra lead to an increase in effective rank.
However, Astra demonstrates a more pronounced
improvement, suggesting that it more effectively
expands the span of activation features, thereby enhancing the model’s expressive capacity.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Bridging PEFT and ReFT. Representation Fine-Tuning (ReFT; Wu et al., 2024) has recently
been proposed as a paradigm that departs from traditional parameter-efficient fine-tuning (PEFT)
methods. Instead of directly modifying model parameters, ReFT operates in the representation
space by applying lightweight transformations to intermediate activations. This design preserves the
representational information acquired during pretraining and enables stable adaptation even in data-
scarce scenarios. The connection between Astra and ReFT is shown in the following formulations:

Y = Q[:,:dout−r]Q
⊤
[:,:dout−r]Y︸ ︷︷ ︸

Ymain

+Q[:,−r:]Q
⊤
[:,−r:]Y︸ ︷︷ ︸

Ytail

▷ Astra

= Y︸︷︷︸
Frozen

+R⊤(WY + b−RY)︸ ︷︷ ︸
Trainable

▷ ReFT

where Ymain encodes major semantic information, i.e., Ymain ≈ Y and R ∈ Rr×d is a learnable
projection matrix with an orthogonality constraint, ensuring that updates remain separated from
the dominant activation directions and thus avoid interfering with the pretrained semantic structure.
When R = W = Q[:,−r :]⊤ and b = 0, the formulation is identical to Astra’s initialization
form. Astra therefore can be viewed as a method that inherits the representational advantages
of ReFT while simultaneously retaining the flexibility of PEFT. Specifically, Astra enforces low-
rank adaptation entirely within the tail activation subspace, which are orthogonal to the dominant
directions of pretrained representations. This design introduces minimum perturbation energy and
avoids interference with the pretrained semantics. Further discussion is provided in Appendix C.

5 RELATED WORK

PEFT. Parameter-efficient fine-tuning (PEFT) offers a lightweight alternative to full fine-tuning
by updating only a small subset of parameters, effectively reducing computational overhead while
maintaining strong performance in downstream task adaptation. PEFT methods can be broadly
categorized into prompt-based (Lester et al., 2021; Li & Liang, 2021; Liu et al., 2021), adapter-
based (Houlsby et al., 2019; Rücklé et al., 2020; Hu et al., 2023b), and LoRA-based approaches (Hu
et al., 2022; Dettmers et al., 2023). Prompt-based methods introduce trainable tokens or embeddings
that are prepended to the input or intermediate representations, while Adapter-based methods insert
small trainable modules within each transformer layer to adapt the pre-trained model to new tasks.

LoRA and Its Variants. Among these methods, low-rank adaptation (LoRA) has gained particular
attention for enabling effectively fine-tuning without modifying the original architecture or introduc-
ing additional inference latency (Li et al., 2018; Aghajanyan et al., 2021). Building on the success
of LoRA, subsequent research has explored a variety of directions to improve its effectiveness and
flexibility. Several works have investigated dynamic rank allocation (Valipour et al., 2022; Zhang
et al., 2023b; Liu et al., 2024c), aiming to better balance expressivity and parameter efficiency. For
instance, AdaLoRA (Zhang et al., 2023b) adaptively allocates parameter budgets across weight
matrices based on their importance scores. In addition, structural modifications of LoRA (Liu
et al., 2024b; Feng et al., 2024; Li et al., 2024) have been proposed to generalize LoRA beyond
its original design. For example, DoRA (Liu et al., 2024b) decouples the learning process into
magnitude and direction. Some research also focuses on optimizing the hyperparameters within
LoRA to enhance fine-tuning efficiency and stability (Kalajdzievski, 2023; Hayou et al., 2024). For
example, LoRA+ (Hayou et al., 2024) introduces differential learning rates for the low-rank matrices
A and B, with a higher learning rate for B to accelerate convergence. Another line of work focuses on
improving initialization strategies to stabilize training and accelerate convergence (Meng et al., 2024;
Wang et al., 2024a; Yang et al., 2024). For instance, PiSSA (Meng et al., 2024) and LoRA-GA (Wang
et al., 2024b) conduct SVD on pretrained weights and sampled gradients to initialize the low rank
adapters of LoRA. We provide a detailed comparison between these LoRA variants in Appendix D.

6 CONCLUSION

In this paper, we proposed Astra, a novel PEFT method that leverages the under-explored tail
eigenspace of output activations for low-rank adaptation. By focusing on optimizing these under-
utilized directions, Astra improves adaptation efficiency and stability. Extensive experiments across
multiple benchmarks show that Astra consistently outperforms existing PEFT methods in both
accuracy and efficiency, highlighting the superiority of our method.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our research adheres to the Code of Ethics, prioritizing transparency, responsible data usage, and
careful consideration of potential social impacts.

All datasets employed in this work are publicly available and have been properly cited, ensuring
full compliance with data usage agreements and privacy regulations. We acknowledge the critical
importance of ethical AI development and are committed to aligning our work with responsible
practices. The proposed Astra method, by optimizing pretrained LLMs within the under-utilized
activation spaces, enhances the model’s adaptability and representational capacity while preserving
the integrity of the underlying pretrained task-relevant semantic structure. However, we remain
cognizant of the potential for unintended consequences and emphasize the need for continued
reflection on the broader social implications of such advancements in AI.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide all necessary resources to facilitate the replica-
tion of our results. The pseudocode 1 is presented in Section 2, and a PyTorch-like implementation of
the Astra algorithm is provided in Appendix I. Additionally, we provide an anonymous repository of
our code, which can be accessed at https://anonymous.4open.science/r/Anonymous-Astra/.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli (eds.), Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 7319–7328, Online, August 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.acl-long.568.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

10

https://anonymous.4open.science/r/Anonymous-Astra/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Yu Han, and Hao Wang. Mixture-of-loras: An efficient
multitask tuning method for large language models. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING
2024), pp. 11371–11380, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 07 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+: efficient low rank adaptation of large models.
In Proceedings of the 41st International Conference on Machine Learning, ICML’24. JMLR.org,
2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference
on Learning Representations, 2022.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Lee. LLM-adapters: An adapter family for parameter-efficient fine-tuning of large
language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pp. 5254–5276, Singapore,
December 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
319.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023b.

Damjan Kalajdzievski. A rank stabilization scaling factor for fine-tuning with lora. arXiv preprint
arXiv:2312.03732, 2023.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
distort pretrained features and underperform out-of-distribution. arXiv preprint arXiv:2202.10054,
2022.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhengmao Ye, Zhiyuan Cheng, Yinghao Tang, Yan Zhang,
Lei Duan, Jie Zuo, Cal Yang, et al. Mixlora: Enhancing large language models fine-tuning with
lora-based mixture of experts. arXiv preprint arXiv:2404.15159, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ming Li, Yanhong Li, Ziyue Li, and Tianyi Zhou. How instruction and reasoning data shape post-
training: Data quality through the lens of layer-wise gradients. arXiv preprint arXiv:2504.10766,
2025.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Kainan Liu, Yong Zhang, Ning Cheng, Zhitao Li, Shaojun Wang, and Jing Xiao. Grasp: Replace
redundant layers with adaptive singular parameters for efficient model compression. arXiv preprint
arXiv:2501.00339, 2024a.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024b.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang.
P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks.
arXiv preprint arXiv:2110.07602, 2021.

Zequan Liu, Jiawen Lyn, Wei Zhu, Xing Tian, and Yvette Graham. ALoRA: Allocating low-rank
adaptation for fine-tuning large language models. In Kevin Duh, Helena Gomez, and Steven Bethard
(eds.), Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
622–641, Mexico City, Mexico, June 2024c. Association for Computational Linguistics. doi:
10.18653/v1/2024.naacl-long.35.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
adaptation of large language models. Advances in Neural Information Processing Systems, 37:
121038–121072, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Ellen Riloff, David Chiang,
Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 2381–2391, Brussels, Belgium, October-November
2018. Association for Computational Linguistics.

Nikhil Shivakumar Nayak, Krishnateja Killamsetty, Ligong Han, Abhishek Bhandwaldar, Prateek
Chanda, Kai Xu, Hao Wang, Aldo Pareja, Oleg Silkin, Mustafa Eyceoz, et al. Sculpting subspaces:
Constrained full fine-tuning in llms for continual learning. arXiv preprint arXiv:2504.07097, 2025.

Fabian Paischer, Lukas Hauzenberger, Thomas Schmied, Benedikt Alkin, Marc Peter Deisenroth, and
Sepp Hochreiter. One initialization to rule them all: Fine-tuning via explained variance adaptation.
arXiv preprint arXiv:2410.07170, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In 2007
15th European signal processing conference, pp. 606–610. IEEE, 2007.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and
Iryna Gurevych. Adapterdrop: On the efficiency of adapters in transformers. arXiv preprint
arXiv:2010.11918, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(05):8732–8740, Apr. 2020.

Arjun Singh, Nikhil Pandey, Anup Shirgaonkar, Pavan Manoj, and Vijay Aski. A study of optimiza-
tions for fine-tuning large language models. arXiv preprint arXiv:2406.02290, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv
preprint arXiv:2210.07558, 2022.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Hanqing Wang, Yixia Li, Shuo Wang, Guanhua Chen, and Yun Chen. Milora: Harnessing minor
singular components for parameter-efficient llm finetuning. arXiv preprint arXiv:2406.09044,
2024a.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
Advances in Neural Information Processing Systems, 37:54905–54931, 2024b.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D Manning,
and Christopher Potts. ReFT: Representation finetuning for language models. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=fykjplMc0V.

Yibo Yang, Xiaojie Li, Zhongzhu Zhou, Shuaiwen Song, Jianlong Wu, Liqiang Nie, and Bernard
Ghanem. Corda: Context-oriented decomposition adaptation of large language models for task-
aware parameter-efficient fine-tuning. Advances in Neural Information Processing Systems, 37:
71768–71791, 2024.

Hao Yu and Jianxin Wu. Compressing transformers: features are low-rank, but weights are not! In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 11007–11015, 2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluís Màrquez (eds.),
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303,
2023a.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng,
Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for parameter-efficient fine-
tuning. arXiv preprint arXiv:2303.10512, 2023b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement. arXiv
preprint arXiv:2402.14658, 2024.

13

https://openreview.net/forum?id=fykjplMc0V
https://openreview.net/forum?id=fykjplMc0V

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

The Supplementary Material for The Paper
“Astra: Activation-Space Tail-Eigenvector Low-Rank Adaptation

for Large Language Models”
• In Section A, we clarify the role of large language models (LLMs) in this work, explicitly

stating that they were used only for language polishing and grammar refinement.

• In Section B, we provide detailed proof of Theorem 2.2 to better understand the rationale
behind Astra’s initialization strategy.

• In Section C, we provide a detailed discussion of how Astra represents a unique intersection
between parameter-efficient fine-tuning (PEFT) and representation fine-tuning (ReFT)

• In Section D, we provide a systematic comparison of existing LoRA variants to highlight
their relative strengths and differences.

• In Section E, we provide detailed descriptions of the benchmark datasets used in our
evaluation. These descriptions cover the domains, sizes, and task characteristics of the
datasets employed in both NLU and NLG experiments.

• In Section F, we present the implementation details in the main text. This includes the
hyperparameter configurations and training details in our experiments.

• In Section G, we present additional experimental results that complement the findings
reported in the main text. These include loss curves, more detailed evaluation outcomes,
and further analyses of our method’s behavior.

• In Section H, we present a series of case studies to demonstrate the improved performance in
instruction-following of models that have been fine-tuned with Astra, providing qualitative
evidence that complements the quantitative results in the main text.

• In Section I, we present a PyTorch-like implementation sketch to clarify the workflow, which
facilitates reproducibility and bridge the gap between the theoretical formulation introduced
in the main text and its practical implementation.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We disclose the use of large language models (LLMs) in preparing this manuscript. They were
employed solely for language polishing and grammar refinement, while all scientific content, ideas,
and analyses were conceived and performed solely by the authors.

B PROOF OF THEOREMS

Theorem 2.2. Let W ∈ Rdout×din denote the pretrained model weights, and let ΣX := E[XX⊤] be
the input covariance matrix. The output activation can be defined covariance as:

ΣY := E[Y Y ⊤] = WΣXW⊤.

For any orthogonal projection P = UU⊤ with U ∈ Rdout×r, U⊤U = I , define the low-rank
initialization path as ∆W := UU⊤W . The expected squared output perturbation is:

E(U) := Ex[∥∆Wx∥2] = Tr(U⊤ΣY U).

Then this energy is minimized when U spans the eigenspace corresponding to the r smallest eigenval-
ues of ΣY . That is:

Tr(U⊤ΣY U) ≥ Tr(Q⊤
tailΣY Qtail) =

d∑
i=d−r+1

λi,

where λ1 ≥ · · · ≥ λd are the eigenvalues of ΣY , and Qtail := [qd−r+1, . . . , qd] are the corresponding
eigenvectors.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. We begin with the definition of the perturbation energy:

E(U) := Ex[∥∆Wx∥2], with ∆W := UU⊤W.

By the linearity of expectation and standard matrix norm identities, we express the expected energy
as:

E(U) = Ex[∥UU⊤Wx∥2] = Tr(UU⊤WΣXW⊤UU⊤).

We simplify this using the cyclic property of the trace:

E(U) = Tr(U⊤WΣXW⊤U) = Tr(U⊤ΣY U),

where we define the output activation covariance as:

ΣY := WΣXW⊤.

Thus, minimizing the output perturbation energy reduces to the classical trace-form optimization:

min
U⊤U=I

Tr(U⊤ΣY U).

Since ΣY is symmetric and positive semi-definite, this trace-form optimization falls under the
classical Ky Fan minimum trace theorem. It states that for any U ∈ Rd×r with U⊤U = I , the trace
Tr(U⊤ΣY U) is minimized when U spans the eigenspace corresponding to the r smallest eigenvalues
of ΣY .

Formally, if ΣY = QΛQ⊤ is the eigendecomposition with eigenvalues λ1 ≥ · · · ≥ λd, and
Qtail := [qd−r+1, . . . , qd], then:

Tr(U⊤ΣY U) ≥ Tr(Q⊤
tailΣY Qtail) =

d∑
i=d−r+1

λi,

with equality if and only if U = Qtail. This completes the proof.

C BRIDGING REFT AND PEFT

Representation Fine-Tuning (ReFT; Wu et al., 2024) was recently proposed as a departure from
classical PEFT methods by shifting adaptation from the parameter space into the representation space.
Instead of directly modifying model weights, ReFT can be formalized as learning a lightweight
transformation to the pretrained activations:

ΦReFT(Y) = Y +∆(Y ; θ), (10)
where Y denotes hidden activations, and ∆(·; θ) is a lightweight trainable function applied to
intermediate representations while keeping all pretrained parameters frozen. This formulation
highlights the central idea of ReFT: task-specific adaptation is achieved entirely through controlled
interventions on hidden states. Building on this paradigm, LoReFT (Low-rank Linear Subspace ReFT)
introduces additional structure by restricting the intervention to a low-rank subspace. Specifically,
LoReFT defines

ΦLoReFT(Y) = Y +R⊤(WY + b−RY), (11)
where R ∈ Rr×d has orthonormal rows, and W ∈ Rr×d together with b ∈ Rr parameterize the
projected source. The orthogonality constraint ensures that learned updates remain disentangled from
dominant directions in the hidden space, thereby preserving pretrained semantics while still enabling
effective adaptation:

Y = Y +R⊤(WY + b−RY) ▷ LoReFT

= Y −R⊤RY +R⊤(WY + b) ▷ LoReFT

= Q[:,:dout−r]Q
⊤
[:,:dout−r]Y︸ ︷︷ ︸

Ymain

+Q[:,−r:]Q
⊤
[:,−r:]Y︸ ︷︷ ︸

Ytail

▷ Astra

where Ymain encodes major semantic information, i.e., Ymain ≈ Y . It is worth noting that when
R = W = Q[:,−r :]⊤ and b = 0, the formulation of LoReFT is identical to the initialization form of
Astra. This equivalence indicates that Astra inherits the advantages of ReFT, particularly in terms
of modifying activation representations in a controlled manner. At the same time, Astra remains
fundamentally a PEFT method, as it introduces low-rank updates only within the subspace spanned
by the tail eigenvectors. This design enables Astra to leverage the strengths of both paradigms: the
stability and semantic preservation of ReFT, and the parameter-efficient flexibility of PEFT.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D OVERVIEW AND COMPARISON OF LORA VARIANTS

To highlight the effectiveness and robustness of our approach, we compare Astra against a diverse set
of LoRA variants. Below, we classify the baseline methods discussed in this work according to the
types of modifications they introduce to vanilla LoRA, grouping them into four main categories:

1. Initialization:
– PiSSA (Meng et al., 2024) applies singular value decomposition (SVD) to extract the principal

singular values and vectors of the original weights. The adapter low-rank matrices A and B are
initialized using these principal components, while the remaining components are stored in a
frozen residual matrix.

– MiLoRA (Wang et al., 2024a) diverges from PiSSA by applying adaptation exclusively to
the subspace associated with the smallest singular values and maintaining the principal ones
unchanged.

– CorDA (Yang et al., 2024) introduces context-oriented decomposition adaptation, which builds
task-aware adapters by orienting weight decomposition with the covariance of input activations.
CorDA supports two modes: (1) Knowledge-preserved adaptation: freezing the principal
components that encode world knowledge, while adapting the smaller singular components to
learn new tasks, thus mitigating catastrophic forgetting. (2) Instruction-previewed adaptation:
leveraging instruction data to align decomposition with task-specific context, fine-tuning the
dominant components for stronger downstream performance.

– LoRA-GA (Wang et al., 2024b) aligns the gradients of the low-rank matrices with those of full
fine-tuning from the very first step. Concretely, it computes the eigenvectors of the gradient
matrix via SVD and uses them to initialize the adapter matrices A and B, ensuring that the
initial update of BA closely matches the direction of ∆W in full fine-tuning.

2. Structure:
– DoRA (Liu et al., 2024b) decomposes pretrained weights into magnitude and direction compo-

nents, fine-tuning the magnitude vector and applying low-rank adaptation solely to the directional
component to improve capacity.

– MixLoRA (Li et al., 2024 fuses multiple LoRA-based experts with a shared feed-forward (FFN)
layer of the pretrained dense model, making it closer in design to high-performance Mixture-of-
Expert systems.

3. Hyperparameters:
– rsLoRA (Kalajdzievski, 2023) revisits the scaling factor in LoRA and theoretically proves that

the stable choice should instead be γr = α√
r

ensuring that both forward activations and backward
gradients remain rank-stabilized across different r values.

– LoRA-FA (Zhang et al., 2023a)introduces a memory-efficient variation of LoRA by selectively
freezing one of the two low-rank projection matrices. During fine-tuning, the down-projection
matrix A is frozen—initialized randomly and kept constant—while only the up-projection matrix
B is updated.

4. Rank Allocation:
– AdaLoRA (Zhang et al., 2023b) parameterizes updates via a pseudo-SVD PΛQ and adaptively

prunes singular values based on importance scores to allocate the LoRA rank budget across
layers according to task relevance.

– DyLoRA (Valipour et al., 2022) introduces a dynamic, search-free extension of LoRA that
eliminates the need for exhaustive rank tuning. Instead of fixing a rank, DyLoRA trains adapters
across multiple ranks by sampling from a predefined distribution and truncating projection
matrices accordingly.

Since our method also belongs to the initialization category, we present a detailed comparison of
representative LoRA initialization variants in Table 5, highlighting their key design differences.

E DETAILS OF BENCHMARK DATASETS

In this section, we provide an overview of the benchmark datasets employed in our experiments.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: Comparison of our selective LoRA initialization variants in the experimental section.

Method Driven-Type Signal Gradient Free Calibration Data

PiSSA weight weight ✔ No
MiLoRA weight weight ✔ No
CorDA data Input Context ✔ Downstream

LoRA-GA data Gradient ✘ Downstream
Astra data Output Activation ✔ Downstream/General

E.1 BENCHMARKS OF NATURAL LANGUAGE UNDERSTANDING

For NLU tasks, we use a subset of the GLUE benchmark (Wang et al., 2018) in our experiments,
including CoLA, SST-2, MRPC, MNLI and QNLI. We present the statistical information of these
datasets in Table 6 below.

Table 6: Statistical overview of the GLUE benchmark datasets used in our experiments.

Corpus Task #Train #Val #Test #Labels Domain

CoLA Acceptability 8.55k 1.04k 1.06k 2 misc.
SST-2 Sentiment 67.3k 872 1.82k 2 Movie Reviews
MRPC Paraphrase 3.67k 408 1.73k 2 News
MNLI NLI 393k 19.65k 19.65k 3 misc.
QNLI QA/NLI 105k 5.46k 5.46k 2 Wikipedia

E.2 BENCHMARKS OF NATURAL LANGUAGE GENERATION

For NLG tasks, we evaluate models across three key dimensions—Mathematical Reasoning, Code
Generation, and Commonsense Reasoning—using the following benchmark datasets:

1. Mathematical Reasoning:

– MetaMathQA (Yu et al., 2023) is a large-scale dataset (395k) derived via augmentation of
GSM8K and MATH training sets, designed to enhance mathematical reasoning capabilities

– GSM8K (Cobbe et al., 2021) is a rigorously curated dataset of approximately 8.5K (Train: 7473
samples, Test: 1319 samples) linguistically diverse grade-school math word problems.

– MATH (Hendrycks et al., 2021) is a challenging benchmark consisting of approximately 12,500
(Train: 7500 samples, Test: 5000 samples) contest-level mathematics problems, covering topics
ranging from algebra and geometry to number theory and pre-calculus.

2. Code Generation:

– CodeFeedback-Python105k (Zheng et al., 2024) is a high-quality subset extracted from the
CodeFeedback-Filtered-Instruction collection (Zheng et al., 2024) and curated for Python-based
code generation tasks. It comprises approximately 104,848 instruction–response pairs, each
written in Python.

– HumanEval (Chen et al., 2021) is a benchmark of 164 Python programming problems, each
requiring a function as the solution, which is widely adopted for evaluating functional correctness
of code generated by language models.

– MBPP (Austin et al., 2021) contains 974 short Python programming tasks designed for entry-
level coders. Every problem includes a textual description and a corresponding unit test,
facilitating automated evaluation of generation models within a beginner-friendly context.

3. Commonsense Reasoning:

– BoolQ (Clark et al., 2019) is a yes/no question answering dataset containing naturally occurring
queries, designed to assess a model’s ability to handle open-ended binary classification.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

– PIQA (Bisk et al., 2020) evaluates physical commonsense reasoning through multiple-choice
questions, where each query is paired with two candidate answers requiring intuitive physical
knowledge.

– HellaSwag (Zellers et al., 2019) focuses on commonsense inference, providing a context followed
by several possible continuations, with the task being to select the most plausible ending.

– WinoGrande (Sakaguchi et al., 2020) introduces large-scale fill-in-the-blank questions with two
options, targeting pronoun resolution and commonsense disambiguation.

– ARC-e and ARC-c (Clark et al., 2018) are the Easy and Challenge subsets of the ARC dataset,
composed of grade-school science multiple-choice questions. The challenge set is particularly
difficult, containing items unsolved by retrieval or co-occurrence-based methods.

– OpenBookQA (Mihaylov et al., 2018) comprises elementary-level science questions requiring
multi-step reasoning. Solving them demands integration of the provided “open book” science
facts with general commonsense knowledge.

F EXPERIMENTAL SETUP AND IMPLEMENTATION DETAILS

To ensure a fair comparison, all experimental setups are consistent across all methods. In the
following, we describe the experimental setup and hyperparameters configuration in detail.

F.1 EXPERIMENTAL DETAILS OF NLU

For natural language understanding (NLU) tasks, we apply low-rank adaptation to all the linear
modules in T5-base except for the embedding layer and language model head. For FFT, LoRA, and
its variants, we use a learning rate of 1× 10−4, while for DoRA (Liu et al., 2024b), a learning rate of
2× 10−4 is employed to adhere to the settings in the original paper. The LoRA rank is set to 8, and
the LoRA α is set to 16. The detailed configurations are depicted in Table 7.

F.2 EXPERIMENTAL DETAILS OF NLG

For natural language generation (NLG) tasks, we utilize the AdamW (Loshchilov & Hutter, 2017)
optimizer with a batch size of 128 and a learning rate of 2e-5. A cosine annealing schedule with
a warmup ratio of 0.03 is applied without incorporating weight decay. To reduce computational
overhead, model parameters are stored in bfloat16 precision. The LoRA alpha α is set consistently
equal to the LoRA rank r. All the experiments were conducted on the first 100,000 samples from
each dataset. Table 8 summarizes the detailed configurations.

Table 7: Experimental setup and hyperparame-
ters configurations for NLU tasks

hyperparameters setup

batch size 128
epochs 1

learning rate 1e-04
DoRA: 2e-4

max length 128
lr scheduler cosine

warmup ratio 0.03
weight decay 0.00

data type float32
LoRA rank 8
LoRA alpha 16

LoRA dropout 0.00

target modules q, k, v, o,
wi_0, wi_1, wo

Table 8: Experimental setup and hyperparame-
ters configurations for NLG tasks

hyperparameters setup

batch size 128
epochs 1

learning rate 2e-05
max sequence length 512

lr scheduler cosine
warmup ratio 0.03
weight decay 0.00

data type bfloat16
LoRA rank 128
LoRA alpha 128

LoRA dropout 0.00

target modules
q_proj, k_proj, v_proj,

o_proj, gate_proj,
up_proj, down_proj

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 EXPERIMENTS ON VARIOUS EIGENVECTORS

We present the training loss and gradient-norm curves for adapters initialized with different eigen-
vectors in Section 3.4. As shown in Figure 4, adapter initialized with tail eigenvectors achieves the
fastest and lowest loss convergence, demonstrating superior fitting capabilities and yielding the best
performance across all configurations. These results highlight the efficacy of tail eigenvectors in
facilitating stable and efficient adaptation to downstream tasks.

Figure 4: Training loss and gradient-norm curves of LLaMA2-7B fine-tuned with different adapters
initialized using different eigenvectors. The results demonstrate that initializing the adapter with tail
eigenvectors leads to the fastest and lowest loss convergence

G.2 EXPERIMENTS ON NLU

To explore the impact of different batch size settings on performance across a range of NLU tasks,
We follow the experimental setup described in Section F.1, with the only modification being that the
batch size is set to 32 instead of 128. The results (Table 9), along with the corresponding loss curves
(Figures 5 and Figure 6), are presented here to complement the main text.

As shown in Table 9, reducing the batch size from 128 to 32 generally improves the performance of
most adaptation methods. Using a smaller batch size increases parameter updates and provides more
frequent gradient signals, which is especially advantageous in low-resource scenarios such as MRPC
and CoLA. Notably, although several baselines benefit from this setting, our method consistently
achieves the highest average score across all tasks, with particularly strong gains on CoLA and MRPC.
This demonstrates that our approach can better exploit limited training signals, leading to more stable
and efficient convergence under data-scarce conditions.

Table 9: Performance of T5-base fine-tuned with different adaptation methods on five GLUE bench-
mark datasets. The batch size is set to 32. Accuracy is reported for all tasks, with boldface indicating
the best results.

#Params MNLI
393k

SST-2
67k

CoLA
8.5k

QNLI
105k

MRPC
3.7K Average

Full FT 223M 87.03 96.96 87.34 98.80 87.62 91.55

LoRA 3.2M 87.07 97.08 84.66 98.81 83.82 90.29
DoRA 3.4M 87.17 97.19 86.96 98.85 82.97 90.63

rsLoRA 3.2M 87.13 97.19 86.86 98.83 82.72 90.55

PiSSA 3.2M 87.14 96.96 87.15 98.80 87.75 91.56
CorDA 3.2M 87.14 97.13 88.49 98.84 89.83 92.29

LoRA-GA 3.2M 87.14 96.96 88.73 98.90 89.58 92.26

Ours 3.2M 86.94 96.56 90.08 98.66 92.65 92.98

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 5: Training loss and gradient-norm curves of T5-base fine-tuned with different adaptation
methods on five GLUE benchmark datasets with batch size 32. For high-resource datasets like MNLI,
QNLI, and SST-2, most methods converge within approximately 300 steps; to better illustrate the
optimization dynamics during the early training phase, we therefore visualize the loss and gradient-
norm curves only within the first 300 steps.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 6: Training loss and gradient-norm curves of T5-base fine-tuned with different adaptation
methods on five GLUE benchmark datasets with batch size 128. For high-resource datasets like
MNLI, QNLI, and SST-2, most methods converge within approximately 300 steps; to better illustrate
the optimization dynamics during the early training phase, we therefore visualize the loss and gradient-
norm curves only within the first 300 steps.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

G.3 EXPERIMENTS ON NLG

In Section 3.3, we reported the fine-tuning results of different adaptation methods on MetaMathQA,
CodeFeedback, and Commonsense170K datasets through quantitative evaluations on their respective
benchmarks. To further investigate the optimization dynamics underlying these results, we present the
loss and gradient-norm curves in Figures 7–8. These visualizations provide complementary insights
into the convergence behavior and stability of different methods beyond what is captured by final
benchmark scores. Notably, the observed trends in loss and gradient-norm curves align well with the
benchmark results reported in Tables 2–3, further validating the consistency of our findings.

G.3.1 LOSS AND GRADIENT-NORM CURVES FOR LLAMA2-7B

For the LLaMA2-7B model, as shown in Figure 7, full fine-tuning (FFT) achieves the best perfor-
mance on both mathematical reasoning and code generation tasks, which is reflected in the loss
curves where FFT converges to the lowest values. The loss curves of our method closely approximate
those of full fine-tuning, while maintaining gradient norms within a stable and moderate range. This
balance enables our approach to achieve both rapid and stable convergence across tasks.

Moreover, most methods reach convergence in fewer than 100 steps on Commonsense170K datasets.
To more clearly capture the early-stage optimization behavior, we therefore display the loss and
gradient-norm curves only within this initial interval.

Figure 7: Training loss and gradient-norm curves of LLaMA2-7B fine-tuned with different adaptation
methods on the first 100,000 samples from MetaMathQA, CodeFeedback and Commonsense170K
datasets for one epoch.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G.3.2 LOSS AND GRADIENT-NORM CURVES FOR LLAMA3-8B

As shown in Figure 8, the optimization behavior of LLaMA3-8B differs from that of LLaMA2-7B.
FFT converges rapidly, but its loss plateaus at a relatively higher level, suggesting overfitting due to
the large number of trainable parameters. Therefore, the performance of full fine-tuning (FFT) is
markedly inferior to that of PEFT (PiSSA, CorDA, Astra) methods. These experiments demonstrate
that parameter-efficient fine-tuning can effectively mitigate the overfitting issues that arise from
excessive model capacity, while preserving stability during optimization.

Figure 8: Training loss and gradient-norm curves of LLaMA3-8B fine-tuned with different adaptation
methods on the first 100,000 samples from MetaMathQA, CodeFeedback and Commonsense170K
datasets for one epoch.

H CASE STUDY

In this section, we present a series of case studies aimed at investigating the effectiveness of different
fine-tuning methods. Specifically, we fine-tune the LLaMA2-7B model using both LoRA and Astra
for one epoch on the Commonsense170K dataset. The fine-tuned models are then evaluated on the
MT-Bench (Zheng et al., 2023) benchmark, which contains 80 predefined open-ended questions
across diverse domains such as writing, reasoning, math. We use GPT-4o as a judge to grade and give
a score to model’s answer with the following prompt:

Please act as an impartial judge and evaluate the quality of the response provided by an AI assistant
to the user question displayed below. Your evaluation should consider correctness and helpfulness.
You will be given a reference answer and the assistant’s answer. Begin your evaluation by comparing
the assistant’s answer with the reference answer. Identify and correct any mistakes. Be as objective
as possible. After providing your explanation, you must rate the response on a scale of 1 to 10 by
strictly following this format: [[rating]], for example: Rating: [[5]].

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

5
LLaMA2-7B with LoRA

Here are five award-winning documentary films with brief background descriptions for aspiring

filmmakers to study:\n1. \"Man on Wire\" (2008): This documentary tells the story of Philippe

Petit's daring high-wire walk between the Twin Towers of the World Trade Center in 1974. It won

the Academy Award for Best Documentary Feature.\n2. \"The Cove\" (2009): This documentary

exposes the illegal dolphin hunting practices in a small Japanese town. It won the Academy

Award for Best Documentary Feature.\n3. \"American Movie\" (1999): This documentary follows

the making of a low-budget independent film, \"Coven,\" and the struggles of its director, Mark

Borchardt. It won the Grand Jury Prize at the Sundance Film Festival.\n4. \"The Act of Killing\"

(2012): This documentary explores the Indonesian genocide of 1965-66 through the eyes of the

perpetrators. It won the Academy Award for Best Documentary Feature.\n5. \"The Square\" (2013):

This documentary follows the Egyptian revolution of 2011 and the struggle for democracy in the

country. It won the Academy Award for Best Documentary Feature.

7
LLaMA2-7B with Astra

Here are five award-winning documentary films with brief descriptions:\n1. \"The Act of Killing\"

(2012): This film documents the Indonesian genocide of 1965-1966, where the Indonesian military

killed over 500,000 people. The film features interviews with the perpetrators who reenact their

crimes in a surreal and disturbing way.\n2. \"The Cove\" (2009): This film documents the slaughter

of dolphins in a small Japanese town. It won the Academy Award for Best Documentary

Feature.\n3. \"Man on Wire\" (2008): This film tells the story of Philippe Petit's high-wire walk

between the Twin Towers in New York City in 1974. It won the Academy Award for Best

Documentary Feature.\n4. \"American Factory\" (2019): This film follows the story of a Chinese

company that opens a factory in Ohio, and the impact it has on the local community. It won the

Academy Award for Best Documentary Feature.\n5. \"The Square\" (2013): This film documents

the Egyptian revolution of 2011 and the aftermath. It won the Academy Award for Best

Documentary Feature

Prompt
Suggest five award-winning documentary films with brief background descriptions for aspiring filmmakers to study.

GPT-4o as a Judge

The response provides a list of five documentary films with brief background descriptions, which is relevant to the

user's request. However, there are several inaccuracies and omissions in the response:\n\n1. \"Man on Wire\" (2008) is

correctly described and noted for winning the Academy Award for Best Documentary Feature.\n\n2. \"The Cove\"

(2009) is accurately described and noted for its Academy Award win.\n\n3. \"American Movie\" (1999) is correctly

described, but it did not win the Grand Jury Prize at the Sundance Film Festival; it won the Grand Jury Prize for

Documentary at the 1999 Sundance Film Festival.\n\n4. \"The Act of Killing\" (2012) is described accurately, but it did

not win the Academy Award for Best Documentary Feature. It was nominated for the award but did not win.\n\n5.

\"The Square\" (2013) is described accurately, but it also did not win the Academy Award for Best Documentary

Feature. It was nominated for the award but did not win.\n\n The response lacks depth and creativity, as it provides only

basic information about each film. Additionally, the inaccuracies regarding the awards could mislead the user. The

response could be improved by providing more detailed descriptions of the films' themes, styles, and impact on the

documentary genre, as well as correcting the award information.\n\n Rating: [[5]]

Judgement: Astra

The assistant's response provides a list of five award-winning documentary films, each accompanied by a brief

background description. The response is generally helpful and relevant to the user's request, as it offers a selection of

notable documentaries that aspiring filmmakers can study. However, there are a few inaccuracies and areas for

improvement:\n\n1. \"The Act of Killing\" (2012): The description is accurate and provides a compelling reason for

filmmakers to study this film, highlighting its unique approach to storytelling.\n\n2. \"The Cove\" (2009): The

description is accurate and mentions its Academy Award win, which is relevant to the user's interest in award-winning

films.\n\n3. \"Man on Wire\" (2008): The description is accurate and notes its Academy Award win, making it

relevant and informative.\n\n4. \"American Factory\" (2019): The description is accurate and mentions its Academy

Award win, providing context about its subject matter.\n\n5. \"The Square\" (2013): The description inaccurately

states that it won the Academy Award for Best Documentary Feature. While it was nominated, it did not win. This is a

significant error in the context of the user's request for award-winning films.\n\n Overall, the response is mostly

accurate and provides a good starting point for aspiring filmmakers. However, the error regarding \"The Square\" and

the lack of depth in some descriptions slightly detract from the overall quality.\n\n Rating: [[7]]

Judgement: LoRA

Figure 9: Response on a humanities problem from MT-Bench

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

3
LLaMA2-7B with LoRA

total amount the startup invested in software development over the two years is $8000 +

$4000 = $12000.\n\n### User:\nIf the startup maintains the same strategy for the third year,

investing half of the previous year's amount into software development, how much will they

invest in the third year?\n\n### Assistant A:\nThe startup will invest $4000 in software

development in the third year.

7
LLaMA2-7B with Astra

the correct answer is $4000\n\n### User:\nIf the startup maintains the same strategy for the

third year, investing half of the previous year's amount into software development, how much

will they invest in the third year?\n\n### Assistant A:\nthe correct answer is $2000

Reference Answer

the first year, the startup invested $8000. In the second year, they invested half of that amount, which is $8000 \/ 2 =

$4000. The total amount invested in software development over the two years is $8000 + $4000 = $12000.\n\n###

User:\nIf the startup maintains the same strategy for the third year, investing half of the previous year's amount into

software development, how much will they invest in the third year?\n\n### Reference answer:\nIn the third year, the

startup will invest half of the second year's amount, which is $4000 \/ 2 = $2000.

GPT-4o as a Judge

The reference answer correctly calculates the investment for the third year by taking half of the second year's

investment: $4000 \/ 2 = $2000. \n\nAssistant A's answer incorrectly states that the startup will invest $4000 in

the third year. This is incorrect because the correct amount should be half of the second year's investment, which

is $2000, not $4000. \n\nThe assistant's response to the second question is incorrect and not helpful as it provides

the wrong amount for the third year's investment.\n\nRating: [[3]]

Judgement: Astra

Assistant A's response to the second question is correct. The user asked how much the startup would invest in

the third year if they continue the strategy of investing half of the previous year's amount. The reference answer

correctly calculates this as $2000, which is half of the $4000 invested in the second year. Assistant A also

provides the correct answer of $2000 for the third year investment.\n\nHowever, the response lacks explanation

and context, which would be helpful for the user to understand the reasoning behind the answer. A more

complete response would include a brief explanation similar to the reference answer, stating that the third year's

investment is half of the second year's investment, which is $4000 \/ 2 = $2000.\n\nDespite the lack of

explanation, the answer itself is correct.\n\nRating: [[7]]

Judgement: LoRA

Prompt

A tech startup invests $8000 in software development in the first year, and then invests half of that amount in

software development in the second year.\nWhat's the total amount the startup invested in software development

over the two years?

Figure 10: Response on a multi-turn math problem from MT-Bench

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

5
LLaMA2-7B with LoRA

Probability is the likelihood of an event occurring. It is often represented as a percentage or a

fraction, and is calculated by dividing the number of possible outcomes that are favorable to the

event by the total number of possible outcomes. For example, if there are three possible

outcomes, two favorable and one unfavorable, the probability of the event occurring is

2\/3.\n\n### User:\nWhat are the differences between Riemannian geometry and euclidean

geometry?\n\n### Assistant A:\nRiemannian geometry is a type of differential geometry that

focuses on curved spaces, while euclidean geometry is a branch of mathematics that deals with

plane and solid shapes. Riemannian geometry is used to study curved surfaces, such as the

surface of the earth, while euclidean geometry is used to study flat surfaces, such as a piece of

paper.

6
LLaMA2-7B with Astra

Probability is the study of the likelihood of an event occurring. It is a mathematical concept that

involves calculating the chances of an event happening or not happening.\n\n### User:\nWhat

are the differences between Riemannian geometry and euclidean geometry?\n\n### Assistant

A:\nRiemannian geometry is a type of geometry that is used in general relativity, the theory of

gravity proposed by Albert Einstein. It differs from euclidean geometry in that it allows for the

curvature of space-time. In euclidean geometry, space is flat and straight lines are perpendicular

to each other. In Riemannian geometry, space can be curved, and lines can be curved or bent.

Prompt
Act as a math teacher. I will provide some mathematical equations or concepts, and it will be your job to explain
them in easy-to-understand terms. This could include providing step-by-step instructions for solving a problem,
demonstrating various techniques with examples in everyday life or suggesting online resources for further study. My
first request is \"I need help understanding how probability works.

GPT-4o as a Judge

The response provided by the AI assistant to the user's question about the differences between Riemannian

geometry and Euclidean geometry is somewhat accurate but lacks depth and detail. The assistant correctly

identifies that Riemannian geometry deals with curved spaces and Euclidean geometry deals with flat spaces.

However, the explanation is overly simplistic and does not delve into the fundamental differences in the

mathematical structures and principles underlying these geometries.\n\nFor instance, the response could have

mentioned that Euclidean geometry is based on the postulates of Euclid, which include the parallel postulate, and

is characterized by flat, two-dimensional spaces. In contrast, Riemannian geometry generalizes these concepts to

curved surfaces and higher dimensions, allowing for the study of spaces where the parallel postulate does not

hold. Additionally, Riemannian geometry involves the use of a Riemannian metric to define distances and angles

on curved surfaces, which is a key concept that distinguishes it from Euclidean geometry.\n\nThe response also

lacks examples or applications that could help the user better understand the practical implications of these

differences. For instance, mentioning that Riemannian geometry is fundamental in the theory of general relativity,

where it is used to describe the curvature of spacetime, would have provided a more comprehensive and engaging

explanation.\n\nOverall, while the response is not incorrect, it is too brief and lacks the depth and detail necessary

to fully address the user's question.\n\nRating: [[5]]

Judgement: Astra

The assistant's response to the user's question about the differences between Riemannian geometry and Euclidean

geometry is somewhat accurate but lacks depth and detail. The assistant correctly identifies that Riemannian geometry

involves curved spaces, which is a key distinction from Euclidean geometry, where space is flat. However, the

explanation is quite brief and does not delve into the mathematical aspects or provide examples that could help the

user understand the practical implications or applications of these geometries. Additionally, the mention of general

relativity is relevant but could be expanded upon to explain how Riemannian geometry is used in this context. Overall,

the response is relevant but could be improved with more detailed information and examples.\n\n Rating: [[6]]

Judgement: LoRA

Figure 11: Response on a roleplay problem from MT-Bench

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

7
LLaMA2-7B with LoRA

Here are some business etiquette norms when doing business in Japan:\n1. Greetings: In Japan,

it is customary to greet each other with a bow, which is known as \"Ojigi.\" The depth and duration

of the bow depends on the level of respect and formality.\n2. Business Cards: Business cards are

an important part of business in Japan. It is customary to present your business card with both

hands and to read the name and title on the card before handing it to the recipient.\n3. Punctuality:

Punctuality is highly valued in Japan, and it is considered rude to be late for a meeting.\n4. Gifts:

Gifts are often exchanged as a sign of appreciation or gratitude. It is important to choose gifts that

are appropriate for the occasion and the recipient.\n5. Dress Code: Business attire is typically

formal, with men wearing suits and ties and women wearing skirts or dresses.\n6. Language:

English is widely spoken in Japan, but it is still important to learn some basic Japanese phrases

and greetings.\n7. Business Meals: Business meals are an important part of doing business in

Japan. It is customary to eat with chopsticks and to avoid eating too much.\n8. Hierarchy: In

Japan, there is a strict hierarchy in the workplace, and it is important to show respect to your

superiors.\n9. Negotiations: Negotiations are often conducted in a formal and structured manner,

with a focus on building trust and maintaining relationships.\n10. Business Hours: Business hours

in Japan are typically from 9:00 am to 5:00 pm, with a one-hour lunch break.

8
LLaMA2-7B with Astra

Here are some business etiquette norms when doing business in Japan:\n1. Greetings: Japanese

business culture is very formal, and greetings are an important part of business interactions. It is

customary to bow when greeting someone, and the depth of the bow is a sign of respect.\n2.

Business cards: Business cards are an important part of business in Japan, and exchanging

business cards is a formal part of introductions.\n3. Punctuality: Punctuality is highly valued in

Japanese business culture, and it is considered rude to be late for a meeting.\n4. Hierarchy:

Japanese business culture is hierarchical, and respect for superiors is important.\n5. Gifts: Gifts

are often exchanged as a sign of respect and appreciation, and it is important to choose

appropriate gifts that are not too personal or expensive.\n6. Business attire: Business attire is

formal, and men typically wear suits and ties, while women wear skirts or dresses.\n7. Meetings:

Meetings are formal and structured, and it is important to follow the agenda and be respectful of

others' opinions.\n8. Negotiations: Negotiations are often conducted in a formal setting, and it is

important to be respectful and polite.\n9. Business meals: Business meals are an important part

of business in Japan, and it is important to be respectful and polish your table manners.\n10.

After-hours activities: After-hours activities are often conducted in a formal setting, and it is

important to be respectful and polite.\n11. Business etiquette norms when doing business in

Japan

Prompt

What are some business etiquette norms when doing business in Japan?

GPT-4o as a Judge

The assistant's response provides a comprehensive overview of business etiquette norms in Japan. It covers a

wide range of relevant topics, including greetings, business cards, punctuality, gift-giving, dress code, language,

business meals, hierarchy, negotiations, and business hours. Each point is concise yet informative, offering

practical advice for someone unfamiliar with Japanese business culture. The response is accurate and relevant,

addressing key aspects of etiquette that are important for conducting business in Japan. However, some points

could benefit from additional detail or examples, such as specific types of appropriate gifts or more nuanced

explanations of the bowing etiquette. Overall, the response is helpful and well-structured, providing a solid

foundation for understanding Japanese business etiquette.\n\n Rating: [[7]]

Judgement: Astra

The assistant's response provides a comprehensive overview of business etiquette norms in Japan. It covers a wide

range of relevant topics, including greetings, business cards, punctuality, hierarchy, gifts, business attire, meetings,

negotiations, business meals, and after-hours activities. Each point is concise and directly related to the question,

offering practical insights into Japanese business culture. The response is accurate and reflects common practices in

Japan, demonstrating a good understanding of cultural norms. However, the last point, \"Business etiquette norms

when doing business in Japan,\" seems redundant and unnecessary, as it merely repeats the question without adding

new information. Overall, the response is helpful, relevant, and detailed, but could benefit from a slight improvement

in creativity or depth by providing examples or additional context for some of the points.\n\n Rating: [[8]

Judgement: LoRA

Figure 12: Response on a humanities problem from MT-Bench

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

I PYTORCH-LIKE PSEUDOCODE

To ensure the reproducibility of our work, we provide a PyTorch-like pseudocode implementation
of Astra in this section. This code outlines the key components and steps involved in our method,
facilitating easy adaptation and implementation for future research.

Algorithm 2: PyTorch-style pseudocode for Astra

1 def preprocess_astra(
2 model: torch.nn.Module,
3 config: LoraConfig,
4 run_model: Optional[Callable[[], None]],
5):
6 model.eval()
7 # step1: define and register hook for collecting covariance
8 def hook(module, input, output):
9 output = output[0].detach().squeeze(0).data

10 output = output / torch.max(output).abs()
11 covariance = output.t().matmul(output)
12 module.sample_count += 1
13 module.covariance_matrix += covariance
14 handles = []
15 for name, module in target_modules(model, config):
16 handles.append(module.register_forward_hook(hook))
17

18 # step2: model forward
19 run_model()
20 for handle in handles:
21 handle.remove()
22

23 # step3: calculate covariance and eigenvalue decomposition
24 for name, module in target_modules(model, config):
25 module.covariance_matrix /= module.sample_count
26 S, V = torch.linalg.eigh(module.covariance_matrix)
27 module.eigens.S = S
28 module.eigens.V = V
29

30 # step5: eigenvector prepare
31 for name, module in target_modules(model, config):
32 module.eigens.S = module.eigens.S.clone()
33 module.eigens.V = module.eigens.V[:, -config.rank:].clone().to(

get_model_device(model))
34

35 def astra_init(model, adapter_name, init_lora_weights):
36 linear = model.get_base_layer(), weight = linear.weight
37 dtype = weight.dtype
38 weight = weight.to(torch.float32)
39 eigens = linear.eigens
40 V = eigens.V
41 r = model.r[adapter_name]
42

43 # Init lora_A and lora_B weights
44 lora_A = (V.t() @ weight).contiguous().to(dtype)
45 lora_B = V.contiguous().to(dtype)
46 model.lora_A[adapter_name].weight.data = lora_A
47 model.lora_B[adapter_name].weight.data = lora_B
48 weight = weight.data - model.scaling[adapter_name] * lora_B @ lora_A
49 model.get_base_layer().weight.data = weight.to(dtype)

28

	Introduction
	Method
	Preliminaries of LoRA's Initialization
	Activation-Space Tail-Eigenvector Low-Rank Adaptation
	Theoretical Analysis of Astra Initialization

	Experiments
	Baselines
	Natural Language Understanding
	Natural Language Generation
	Ablation Studies

	Discussion
	Related Work
	Conclusion
	The Use of Large Language Models (LLMs)
	Proof of Theorems
	Bridging REFT And PEFT
	Overview and Comparison of LoRA Variants
	Details of Benchmark datasets
	Benchmarks of Natural Language Understanding
	Benchmarks of Natural Language Generation

	Experimental Setup and Implementation Details
	Experimental Details of NLU
	Experimental Details of NLG

	Additional Experimental Results
	Experiments on Various Eigenvectors
	Experiments on NLU
	Experiments on NLG
	Loss and Gradient-norm Curves for LLaMA2-7B
	Loss and Gradient-norm Curves for LLaMA3-8B

	Case Study
	PyTorch-like Pseudocode

