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ABSTRACT

Preference-based Reinforcement Learning (PbRL) with binary preference feed-
backs over trajectory pairs has proved to be quite effective in learning complex
preferences of a human in the loop in domains with high dimensional state spaces
and action spaces. While the human preference is primarily inferred from the feed-
back provided, we propose that the policy being learned (jointly with the reward
model) during training can provide valuable learning signal about the structure of
the state space that can be leveraged by the reward learning process. We introduce
an action distance measure based on the policy and use it as an auxiliary prediction
task for reward learning to influence its embedding space. This measure not only
provides insight into the transition dynamics of the environment but also informs
about the reachability of states and the overall state space structure. We evaluate
the performance and sample efficiency of our approach using a combination of six
tasks in Meta-World domains with simulated oracles. We also conduct human in the
loop evaluation on three tasks to confirm our findings from oracular experiments.
We demonstrate that the proposed simple auxiliary task for constraining reward
model’s embedding space can provide strong empirical improvements to sample
efficiency and accelerate policy learning.

1 INTRODUCTION

Preference-based Reinforcement learning (PbRL) is a promising paradigm for training agents to learn
from human preferences Leike et al. (2018); Akrour et al. (2011); Ibarz et al. (2018b); Bakker et al.
(2022); Köster et al. (2020). While human feedback can be obtained and incorporated in several ways,
the primary objective of PbRL is to distill information from binary preference feedbacks on queried
agent behavior trace pairs into the reward function Wilson et al. (2012); Christiano et al. (2017).
Recent advances in PbRL have led to algorithms that are capable of successfully learning human
preferences on simpler discrete tasks Verma & Metcalf (2022); Soni et al. (2022) to more complex
continuous control tasks Lee et al. (2021a); Park et al. (2022). A key challenge in PbRL is to reduce
human feedback sample-complexity. Typically, prior works have investigated research directions like
improving the query sampling strategy Lee et al. (2021a), performing state or trajectory augmentation
in the queries Park et al. (2022); Guan et al. (2021), unsupervised policy pre-training Lee et al.
(2021a), learning world models as reward priors Verma & Metcalf (2022). However, exploiting the
agent policy being learned along with the reward model has not been explored before specifically in
PbRL.

Our main intuition is that the learned policy function could very well be utilized to improve the
reward learning process since it can inform about distance between states or towards a preferred state
as indicated by the human preference (or more generally the state space organization and reachability
among states). In the existing line of research Park et al. (2022); Lee et al. (2021a); Christiano et al.
(2017), the reward learning process can only distinguish between the states based on the given state
representation as temporal features are not provided to the agent. While the existing state features
maybe enough to eventually (given enough feedback) distinguish between goodness of states we
show that having access to a more suitable feature that informs about distance between states can
lead to significant improvements to feedback efficiency and policy acceleration.

A policy trained on the reward model (which itself is non-stationary and is updated iteratively), would
encapsulate both of our sought-after attributes. For example, a bank of sampled trajectories using
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the said policy contains information about which states could be reached from which other states,
i.e., reachability, which actions would lead the agent to be in a certain part of the Markov Decision
Process (MDP), i.e., environment dynamics. And, finally, since the policy was trained to maximize
returns predicted by the reward model, a good policy starting from any state would sample trajectories
where successor states are also according to human preference i.e., improved quality of states in
query buffer. We intend to extract these key pieces of information available to the agent via policy
learning to improve the reward learning in PbRL as shown in Figure 1.

Figure 1: Overview of the proposed approach. Typical
to PbRL setups, our agent is acting in the world & saving
state, action, and reward data into its buffer. Every few
episodes, the human in the loop (HiL) is queried for their
preference over the agent’s behavior trajectory. The
aim of the agent is to learn a reward model (reward
learning) along with obtaining a good policy (policy
learning). We are proposing a method for preference-
based reinforcement learning (PbRL) that uses an action
distance measure based on the policy being learned as
an auxiliary prediction task for reward learning.

We propose a self-supervised method for learn-
ing the distance (action distance) between states
using a jointly trained policy function, which
captures weak learning signals of the intermedi-
ate policy function trained on the reward model.
To improve PbRL using this action distance mea-
sure, we propose that the reward model being
learned (particularly an embedding space in the
reward model) must be predictive of this action
distance. We operationalize this by treating the
action distance prediction objective as an addi-
tional auxiliary task for the reward model, thus
forcing the embedding space to preserve the ac-
tion distance between any pair of states. Our
experiments on six continuous control robotic
manipulation tasks (Meta-World), commonly
used in recent PbRL works Park et al. (2022);
Lee et al. (2021a), show that the use of action
distance based auxiliary task in the reward learn-
ing process is an effective means of boosting the
agent’s performance when learning weak learn-
ing feedback such as binary evalation in PbRL.

We highlight the main contributions of the work as follows :

1. This is the first work leveraging valuable learning signal from the joint policy being learned
to improve reward learning in the context of Preference Learning from binary feedback.

2. We propose an action distance based auxiliary task for the reward model that can be easily
incorporated into any PbRL algorithm.

3. We benchmark our work against state-of-the-art PbRL algorithms, as well as adapted PbRL
algorithms that share certain characteristics of action distance based auxiliary task.

The paper is structured as follows: we give an overview of the existing literature in Preference-based
Reinforcement Learning and distance measures-based representation learning in Section 2, discuss
the preliminaries to this work in Section 3, followed by our proposed methodology in Section 4. We
show a comprehensive set of empirical evaluation and results in Section 5 and conclude this work in
Section 6. Appendix, Ethics statement and Implemented code can be found in the supplementary.

2 RELATED WORK

Preference-based Reinforcement Learning. There are several works in the RL literature Liu
et al. (2023); Bewley & Lecue (2021); Zhang & Kashima (2023); Liu & Chen (2022); Wirth et al.
(2017) that focus on acquiring ratings or feedback from the human-in-the-loop Knox & Stone (2009);
Christiano et al. (2017); Ibarz et al. (2018a); Stiennon et al. (2020). Knox & Stone (2009) was one of
the foremost works to incorporate human-in-the-loop binary feedback to aid the agent’s learning for
solving the problem of sparse environment reward. However, the framework presented in Knox &
Stone (2009) and further extensions of it were restricted to querying the user over state preferences.
Christiano et al. (2017) proposed a deep RL framework that queried the human user for trajectory
preferences instead, by asking the user to choose the preferred trajectory over the other based on the
Bradley-Terry model Bradley & Terry (1952), which has further been incorporated in several works
that followed Lee et al. (2021a); Park et al. (2022); Guan et al. (2022); Liu et al. (2023); Liang et al.
(2022). While Lee et al. (2021a) proposed to use unsupervised pre-training to query diverse behaviors
to the teacher, Park et al. (2022) utilized data augmentation techniques to learn the reward model
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combined with a semi-supervised learning approach to utilize the unlabeled trajectories. Both of
these works jointly learn the reward and the policy model for the agent. Ibarz et al. (2018a) combined
using trajectory preferences with expert demonstrations. Finally, works in IRL Ho & Ermon (2016);
Ghasemipour et al. (2020); Ni et al. (2021); Wang et al. (2019); Liu et al. (2020) attempts to “match”
the agents state-action distribution with the expert’s, however PbRL does not assume access to expert
policy, just their feedback on queried trajectory pairs. Therefore, in PbRL the human in the loop does
not control the trajectory to provide their evaluation on, nor do they provide action/policy advice.
We extend the PbRL literature two key ways. First we propose cheap-to-compute distance measure
(action distance) obtained through the joint policy that is a useful learning signal for reward learning.
Second, we provide a simple and extendable approach to incorporating this informative feature into
reward learning (auxiliary prediction task from the embedding space).

Representation learning using distance measures. Several works within and outside the field
of reinforcement learning have focused on learning distance-guided representations that allow for
learning structured representations Florensa et al. (2019; 2018); Pong et al. (2019); Nair et al. (2018)
which prove to be useful for the downstream tasks. For example, Li et al. (2020) uses a distance-guided
measure for representation learning for Graph Neural Networks to capture the distance between nodes
for a richer expressive power. Similarly in the field of computer vision tasks, such representation
learning techniques have proven to be useful Shen et al. (2018); Roh et al. (2021). Kemertas &
Aumentado-Armstrong (2021) is another technique that uses bisimulation metrics (dependent on
transition and reward function) improve the policy learning. Using bisimulation metrics with PbRL
can be challenging as : first, the reward learning is the intended objective of PbRL and it is non-trivial
to use a low-confidence predicted reward value to improve the reward function itself. Moreover, in
contrast to improving the embedding space of the policy function through rewards, here the goal
is to improve the embedding space of the reward function. In section 5 we show that an adapted
bisimulation metric based baseline is not effective in PbRL.

It is known that guidance or heuristics informing about the goal, or distance-to-goal can help with
both known Hart et al. (1968); Browne et al. (2012); Zhong et al. (2013); Hoeller et al. (2020); Bejjani
et al. (2018) and unknown MDPs Cheng et al. (2021); Wagener et al. (2021); Guan et al. (2021);
Garcıa & Fernández (2015). While several prior works have utilized the notion of action distances
or commute times, closest to our work would be research in goal-conditioned RL Hartikainen et al.
(2019) and Venkattaramanujam et al. (2019). This first work proposes to use action distances for skill
learning while the second uses it for learning goal conditioned policies. Although Hartikainen et al.
(2019) does discuss ways of incorporating human preferences to obtain the reward model there are
several key distinctions. First, both Hartikainen et al. (2019) and Venkattaramanujam et al. (2019)
require goal proposals, that is they explicitly set states as goals either by using their learned distance
measure or by asking humans to label possible goals. In contrast our method does not require explicit
goals. Second, both works learn an explicit distance function to approximate action distance. Our
proposed solution instead shows that we can utilize the reward model’s embedding space to compute
the action distance. Third, Hartikainen et al. (2019) uses the computed action distance directly as
the reward value which makes it incompatible to use with other PbRL techniques like reward priors
Verma & Metcalf (2022) etc. Finally, while Venkattaramanujam et al. (2019) is interested in learning
goal-conditioned policies, in this work, we explore the use of action distances on trajectory based
binary preferences.

3 PRELIMINARIES

3.1 PREFERENCE-BASED REINFORCEMENT LEARNING

Reinforcement learning allows for agents interacting in an environment E where at each discrete
time-step t, the agent receives an observation ot from the environment and chooses an action at
based on its policy π. As in conventional RL frameworks, we assume that the underlying system is a
Markov Decision Process, i.e. the tuple < S, T ,A, R̃h, γ > describing the state space S, agent’s
action space A, the underlying environment transition dynamics T , the discount factor γ where the
agent’s goal is to maximize the return

∑∞
k=0 γ

kR̃h(st+k, at+k) computed over the reward system
Rh in concern. In the PbRL setup that we are interested in, the goal of the agent is twofold: (1) to
infer the human’s underlying reward model R̃h via binary feedback over trajectory pairs, and (2) to
further use the learned reward model Rh to compute a policy πϕ parameterized by ϕ to maximize
discounted cumulative return over Rh.
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We utilize the formulation presented in Wilson et al. (2012) for the Preference-based Reinforcement
Learning problem where the agent queries the human in the loop (HiL) with a trajectory pair (τ0, τ1),
where, τi = {(sk, ak), (sk+1, ak+1 · · · (sk+H , ak+H))}, for a binary feedback y ∈ {0, 1} indicating
their preferred trajectory. Such feedbacks along with the queried trajectories are stored in a dataset
Dτ as tuples (τ0, τ1, y). Following the Bradley Terry model Bradley & Terry (1952) to compute
the probability of one trajectory being preferred over another, recent line of works like Lee et al.
(2021a); Christiano et al. (2017) approximates the human reward function as Rh, parameterized by,
say, ψ, by solving a supervised learning problem where the returns computed over the learned reward
function are higher for trajectories that were preferred by the HiL than the returns computed on the
non-preferred trajectory. This is done by minimizing the cross-entropy between the predictions and
ground truth human labels as follows:

LCE = − E
(τ0,τ1,y)∼D

[y(0)logPψ[τ0 ≻ τ1] + y(1)logPψ[τ1 ≻ τ0]] (1)

where probabilities Pψ are computed using the approximated reward function Rh as:

Pψ[τ0 ≻ τ1] =
exp(

∑
tRh(s

0
t , a

0
t ))∑

i∈{0,1} exp(
∑
tRh(s

i
t, a

i
t))

(2)

3.2 MULTI-DIMENSIONAL SCALING

Multi-dimensional Scaling (MDS) Borg & Groenen (2005); Young & Hamer (2013) is a form of
non-linear dimensional reduction where dissimilarities between pairs of the data in the original space
are mapped to distances and are preserved in the low-dimension space. While MDS has typically
been used to visualize similarity or dissimilarity between a set of objects in a low-dimensional space,
it has also been used to construct embedding space for a set of objects by finding a set of coordinates
in the low-dimensional space that minimize the difference between the distances between the objects
in the original high-dimensional space and the distances between the objects in the low-dimensional
space.

Classical MDS (or Toegerson-Gower Scaling, or Principal Coordinates Analysis, or cMDS) assumed
that the dissimilarities in the original dimensionality are in the Euclidean space and therefore, algo-
rithms for classical MDS preserve the input dissimilarities when these dissimilarities are Euclidean
distances. Say the dissimilarity for objects i, j is given by δi,j , and the embedding space is given by
E. Then, cMDS would reduce a loss (also called stress), as follows:

σcMDS(E) =
∑
i<j

wij(dij(E)− δij)2 (3)

In this work we use a generalization of classical MDS, called Metric MDS (mMDS) where in the
stress Equation 3, the distance metric and dissimilarity measures are replaced by f(x) to give the
following stress objective:

σmMDS(E) =
∑
i<j

wij(f(dij(E))− f(δij))2 (4)

We note that, as pointed out in Venkattaramanujam et al. (2019) mMDS does not admit an analytical
solution, instead it is solved iteratively and convergence to a global minimum is not guaranteed.

4 METHODOLOGY

In this section, we present our main contribution and discuss the key reasons why action distance
measure is helpful for both reward learning and policy learning. Our main idea is to make the reward
model being learned aware of the state space structure (i.e. reachability and environment dynamics)
and turn improve the query trajectory buffer to contain desirable trajectories. We do so by making
the reward model solve the auxiliary task of predicting action distances between two states. We
will first ground the action distance measure and propose the methodology for incorporating it with
any existing PbRL framework that learns the reward model via function approximation and any
underlying RL algorithm (both online and offline).
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4.1 ACTION DISTANCES

Definition 4.1. Average passage distance mπ(sj , aj |si, ai) is given by the expected number of
actions required to go from si to sj by taking ai as the first action and choosing aj as the final action
upon reaching sj .

mπ(sj , aj |si, ai) = E
τ∼π
|τ[(si,ai)···(sj ,aj)]| (5)

Definition 4.2. Action distance, or commute distance, dπ between two states (si, sj) and an initial
action ai, and final action aj under some policy πϕ(s) and transition dynamics T (s, a, s′) is given by
the expected number of action steps taken to reach a state sj from si with the first executed action as
ai and final chosen action aj .

dπ(si, ai, sj , aj) =
1

2
(mπ(sj , aj |si, ai) +mπ(si, ai|sj , aj)) (6)

For shorthand, in the context of distances between states, we abuse the notations for states si to mean
(si, ai) tuple, since we always compute distances in the embedding space for which the input was
state-action tuple. Action distances (commute distance) have been largely used in developing theory
for time-reversible Markov chains Aldous & Fill (1995). A variant of it was proposed in Fouss et al.
(2005) and more recently Venkattaramanujam et al. (2019) used action distances to generate goals for
learning goal-conditioned policies faster. Action distances have been used in variety of applications,
but Fouss et al. (2005) first showed that an embedding space that preserves commute distance must
exist, however Venkattaramanujam et al. (2019) admits obtaining action distance based ground truth
targets can be challenging.

While incorporating action distance measure directly into the reward learning process by making
the reward model r̂t target to be a scaled linear combination of the existing reward model r̂t−1 and
the action distance measure maybe possible, it becomes extremely non-trivial and challenging for
reasons like the scale of the distance measure and the predicted reward would have to be matched. A
simpler approach would be to incorporate the action distance measure via mMDS by enforcing the
embedding space of the reward model to be predictive of the action distance measure as an auxiliary
task. Not only such a method would not suffer from noise due to explicit goal-proposals Hartikainen
et al. (2019), but it also allows us to use it with other PbRL algorithms.

4.2 ACTION DISTANCES CAN IMPROVE REWARD LEARNING

The reward learning and the policy learning happen in an iterative manner in our PbRL framework.
While the key information regarding the human preference is contained in the binary feedback
preference labels given by the human-in-the-loop, we posit that the policy trained over these learned
rewards could still provide weak learning signal about the human preference. The policy function
(πϕ) being trained takes into account the environment dynamics as well as the reward model (Rh) and
can hint at the set of states which are desirable under the reward model at the time. An adaptation of
Venkattaramanujam et al. (2019) would be to sample these potential future desirable states based on
the action distance measure and try to improve reward model towards these sampled states, however
this requires strong assumptions like a simulator that can be reset and started from any given state.
Moreover, such a strategy may be extremely hard to stabilize the learning as the set of desirable
states becomes a non-stationary target. Another direction could be to perform an Inverse RL or IRL
over Ng et al. (2000); Arora & Doshi (2021); Ab Azar et al. (2020) step the learned policy to get
another possible reward function, say, (rIRL) and combine Rh and rIRL. But such a method could
be very expensive (as PbRL itself is a form of IRL with binary feedbacks over trajectory pairs) and
the obtained rIRL could be extremely noisy and may not offer any generalization to existing Rh.
Another approach could be to learn the full world model Hafner et al. (2019) and use the reward
model to desirable trajectories. However, learning the world model may again be very expensive.
An approximation to this approach could be to learn a forward dynamics model where an additional
objective of the reward model is to predict the next state observation (given the current state and
action). While this approach is more feasible than explicitly learning the world model and that such
an auxiliary task has been used in the context of improving the policy learning Nguyen et al. (2021);
Zhang et al. (2018), our results demonstrate that this auxiliary task is a research challenge in itself
and does not offer any performance improvements.
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4.3 ACCELERATING POLICY LEARNING VIA ACTION DISTANCE

A special case of preference learning can be when the trajectory preference is such that there exists a
goal state (absorbing state). In such a scenario we provide intuitions that explains policy acceleration
as seen in our results (See 5).

Definition 4.3. A Markov Decision Process {S, T ,A,R,γ} is called strong-reversible if for any
action aij that allows the agent to transition from state si to sj in a single step, there exists an action
aji that allows the agent to transition from sj to si in one-step.

Proposition 4.4. For any MDP, {S, T ,A,R,γ}, with ∀s ∼ S, R(s) ≤ −1, γ = 1 and an absorbing
state sg , the average passage distancemπ(sg|si) from any state si to the goal state under a stochastic
policy π is a pessimistic heuristic.

Proposition 4.5. For a strong-reversible MDP, {S, T ,A,R,γ}, γ = 1, ∀s ∼ S, R(s) ≤ −1 and an
absorbing state sg, the action distance dπ(si, sg) between any state si and the goal state under a
stochastic policy π is a pessimistic heuristic.

As defined by Cheng et al. (2021), a pessimistic heuristic is one that overestimates the cost to goal (or
underestimates the reward). Proving Proposition 4.4 is straightforward, since the average passage
distance, by definition, gives an estimate of the number of actions required to reach the goal, which is
an overestimate of minimum cost-to-go from that state to the goal.

Proof for Proposition 4.5: To prove, we must show that the commute distance from any state si to any
state sj is an overestimate of the shortest distance from si to sj . Since it is a strong-reversible MDP, the
shortest distance from si to sj , say d∗, is the same as shortest distance from sj to si. From proposition
4.4, mπ(si|sj) ≥ d∗ and mπ(sj |si) ≥ d∗. Hence, dπ(si, sj) = 1

2 (m
π(si|sj) +mπ(sj |si)) ≥ d∗, is

a pessimistic heuristic.

Further, Cheng et al. (2021) proved that pessimistic heuristics used with reward function are desirable
to accelerate policy learning. This shows that for strong-reversible MDPs with absorbing states
and at-least unit action costs, an action distance based heuristic is desirable for accelerating policy
learning on the reward model. While we do not directly use the action distance for shaping the
rewards from the reward model, the auxiliary task that requires the embedding space to preserve
action distance does accelerate policy learning as confirmed empirically in Section 5.

4.4 UTILIZING ACTION DISTANCES FOR REWARD LEARNING

The central idea is to create an auxiliary objective for the reward learning task where the reward
model Rh is also predictive of the action distance between any two states. Under PbRL, the main
reward learning objective is given by Equation 1. As shown by Fouss et al. (2005), we know that an
embedding space where the distance between the points (i.e. the embedding of state, action pair) is
proportional to the action distance exists. Hence, we resort to performing a metric Multi-dimensional
scaling (see Section 3.2) using our action distance measure, i.e. ensure that the embedding space in
the reward model r̂ also reflects action distances.

Therefore, we ensure that the embedding space of the reward model, Re(s) of the state s, say the
penultimate layer if Rh is a neural network, by ensuring that the Euclidean distance between the
embedding of two states si and sj reflects the action distance dπ(si, sj). This can be achieved by
minimizing the Mean Squared Error (MSE) between the computed distance in the embedding space
and the action distance as follows:

Lad = E
si,ai
sj ,aj

dy∼Dad

(||Re(si, ai)−Re(sj , aj)||2 − dy)2 (7)

where, si, ai, sj , aj are state action pairs in the dataset Dad = ((si, ai), (sj , aj), dy) which consists
of the computed ground truth action distances between them as dy .

4.4.1 COLLECTING DATA FOR ACTION DISTANCE LOSS

Proposition 4.6. For a stochastic policy π that induces a stationary distribution, under a balanced
sampling from the dataset obtained by from Algorithm 2, a perfect function approximator can estimate
the action distance between the states si and sj .
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We leverage the trajectory bank Dτ (agent’s replay buffer) to create the dataset with action distance
targets,Dad (See Appendix 2). The key idea is that since the action distance ground truth that we want
is an expectation over number of actions taken to reach sj from si, we can approximate this action
distance by sampling a state si, sj ∈ τ where j > i, τ ∈ Dτ and use the number of action steps taken
in the trajectory from si to sj as the ground truth distance dy = |j − i| as described in Algorithm 2.
An important note is that the distances dy in the dataset Dad should be from the agent’s current policy
πϕ. For off-policy RL algorithms where the replay buffer, Dτ , would contain trajectories sampled
from a stale policy, we emulate the required behavior of the dataset Dad by ensuring that only the
last k trajectories added to the dataset Dτ are used to compute Dad. Practically, instead of picking n
samples uniformly within a trajectory, we found it better to generate all combinations of (i, j) s.t.
i < j to populate the dataset. Refer to B.1 for the proof of 4.6.

4.4.2 ACTION DISTANCE BASED PBRL OBJECTIVE

We perform a linear combination of the proposed action distance based loss function Lad the cross
entropy loss LCE , as in equation 1, (see Section 3) to get our novel reward learning objective:

Lreward = λCELCE(Dh) + λadLad(Dad) (8)

where LCE is computed overDh containing the queried trajectory pairs with human binary feedbacks
(mean over the samples), and Lad is computed over the dataset of state pairs with action distance
targets Dad created from the k most recent trajectories added to Dτ .

5 EMPIRICAL EVALUATION

Figure 2: Learning curves on robotic manipulation tasks (given as “name / number of feedbacks”) as measured
on the success rate comparing ADLoss with PEBBLE, SURF and SAC.

Figure 3: Learning curves on robotic manipulation tasks (given as ”name / number of feedbacks”) as measured
on the success rate comparing ADLoss with adapted PbRL baselines Rdynamics and L2EmbeddingLoss.

We design our experiments to investigate the following:

1. How do Action Distances improve the feedback sample efficiency compared to state of the
art PbRL baselines? What is it’s impact on policy learning?
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Figure 4: Ablation study on Button-Press (2000 feedbacks). (left) Effect of query segment length on the
ADLoss agent performance for lengths {30, 50, 80}. (center) Effect of varying λad in equation 8 in the set
{3, 10, 20, 40}. (right) Additional experiment on Sweep-Into (10000 feedbacks) to evaluate how does combining
action distances with other SSL approaches may impact PbRL performance.

2. How do Action Distances fare against PbRL baselines adapted to be aware of environment
dynamics, or preserve the Euclidean distance between states?

3. Impact of factors like query length and weight of the ADLoss on agent’s performance?
4. Does combining ADLoss with Semi-Supervised approaches affect the overall performance?
5. Beyond simulated oracles, what is the effectiveness of ADLoss with human in the loop?

To validate our proposed method, we conduct our experiments on six domains of Meta-World, namely,
Hammer, Door-Open, Drawer-Open, Window-Open, Button-Press, Sweep-Into Yu et al. (2020). The
main benefits of using these domains are, (a) several existing PbRL methods have used Meta-World
as a benchmark which allows for more consistent comparison with PbRL baselines (b) engineering
reward functions for robotic manipulation is exceptionally hard and motivates the use of a PbRL
technique, and finally, (c) as mentioned in Section 1, Meta-World. Following B-Pref Lee et al.
(2021b), we consider a scripted human in the loop (HiL) who provides a binary feedback label of their
preference during the agent’s training. Since the oracle uses the underlying task reward (henceforth,
true reward model) to generate binary feedbacks, it allows us to evaluate the learned policy on the
true reward. Finally, since the proposed method can be used with any existing PbRL technique, we
use the state-of-the-art approach PEBBLE Lee et al. (2021a) in our experiments as the backbone
algorithm and call the combination of our reward learning objective in Equation 8 and PEBBLE as
ADLoss (see Appendix C). The result plots show the mean (solid line) and standard deviation (shaded
region) over five random seeds. Refer to Appendix for more details on domains D.6, experimental
setup D and PEBBLE algorithm C.

5.1 PREFERENCE-BASED RL BASELINES

State-of-the-art baselines: Since PEBBLE is the backbone algorithm used in the experiments for
showing the benefits of action distance measure, we use PEBBLE as baseline. We also use the
state-of-the-art PbRL algorithm SURF as our baseline. We use the version of SURF without temporal
data augmentation, which helps in comparing the effects of semi-supervised learning by additional
trajectory samples (SURF) and semi-supervised learning of action distances (ours). Finally, we use
SAC trained on underlying oracle rewards as a loose upper-bound of policy performance. Figure 2
shows the performance of action distance auxiliary task (red) to be substantially and consistently
better than baselines PEBBLE and SURF. Interestingly, for several domains (Hammer, Door-Open,
Button-Press, Drawer-Open, Window-Open), our algorithm reaches performance very close to SAC
Haarnoja et al. (2018). As pointed out in 4.3, we also note that a typical pattern with ADLoss is an
early peak towards higher return (indicative of accelerated policy learning).

Adapted PbRL Baselines: While we have discussed that action distance loss provides the reward
model about valuable information like state space structure, reachability, environment dynamics,
part of these could also be given by other auxiliary tasks like forward dynamics prediction Nguyen
et al. (2021); Zhang et al. (2018) which were proposed in the context of RL for improved policy
learning. We adapt the task of forward dynamics prediction by updating the reward model embedding
to be predictive of the next state (for the given state-action pair). We refer to this as “Rdynamics”.
Bisimulation metrics based representation learning Kemertas & Aumentado-Armstrong (2021) has
also been effective for policy learning. Since bisimulation metrics, by definition, require a reward
function we adapt it to use predicted reward values for PbRL as described in F.3. Rdynamics and
BISIM baselines are essentially dynamics dependent baselines. On the other hand we consider a dy-

8



Under review as a conference paper at ICLR 2024

namics independent baseline - L2EmbeddingLoss. As euclidean distances can also be preserved in the
embedding space by the stress loss in mMDS (Equation 4), we create a baseline “L2EmbeddingLoss”
that uses L2 distance between the original state representations as the target in mMDS. Fig. 3 show
that Rdynamics, BISIM, and L2EmbeddingLoss, although are a slight improvement over PEBBLE,
are clearly weaker approaches than action distance based auxiliary task. Since it is known that
learning world models can be a challenging Ha & Schmidhuber (2018) task in itself, then, even
though Rdynamics captures information about the environment dynamics, incorporating it into PbRL
is nontrivial. While we adapt Bisimulation metrics into PbRL, it essentially uses the predicted reward
function (non-stationary and possibly noisy estimate) to improve its own embedding possibly leading
to marginal improvements over baseline PEBBLE. Finally, we note that L2EmbeddingLoss provides
no additional useful inductive bias (for e.g., state space structure in our case, SSL over trajectories in
SURF, etc.) to provide any basis for improvement, and performs the worst.

5.2 ADDITIONAL EXPERIMENTS

Human Study: In our human study, we tested ADLoss vs PEBBLE baseline on three tasks:
”window-open” and ”door-open” from Meta-World, and ”quadruped” from DMControl. In the
”quadruped” task, the objective was to raise the front-right leg. Appendix (I) provides the study
details, interface information, and complete results. While HiL is able to successfully train both the
PEBBLE and ADLoss agents and express their preferences, we observed that the ADLoss-based
PbRL agent consistently required fewer feedbacks on average (window-open: 336/593, door-open:
2033/2693, lift-front-right-leg: 126/173).

Ablations and other experiments : We conducted additional ablations on Meta-World-Button-Press
and Sweep-Into. Effect of Query length: From Fig. 4 (left), we find that minor change to the length
of the query segment dose not greatly impact the agent’s performance. This is important as although
the given query sizes are inconsequential with respect to compute, these size differences can have a
huge cognitive impact on HiL. Fig. 4 (center) tests ADLoss performance at different λad values in
the ADLoss reward learning objective (Eq. 8). Similar to Park et al. (2022), we find that tuning this
hyperparameter has the most impact on the performance. Next, we test our ADLoss in conjunction
with a SSL technique (proposed in Appendix G) to study how compatible ADLoss is to other PbRL
approaches. As discussed in Section 4.3, we find that the SSL approach (TLoss), when used in
conjunction with ADLoss benefits from accelerated policy learning. Finally, for completeness, we
test the impact of incorrect labels with mistake-oracle Lee et al. (2021b) on ADLoss and find that
it’s robustness to such noise is no worse than baseline PEBBLE.( See Appendix H).

6 DISCUSSION

In this work, we present a Preference-based Reinforcement Learning algorithm that can leverage
learning signals form the joint policy being learned to provide valuable information like reachability
between states and environment dynamics. We extract this learning signal via action distances, which
is the expected number of actions taken under a policy to go from one state to another, and incorporate
it into the reward learning objective by proposing an auxiliary objective for the reward model to
be predictive of these action distances. This auxiliary objective ensures that the Euclidean distance
between the embeddings (in the reward model) between two (state,action) tuples reflects their action
distance. In addition to aiding the reward learning process, we show that action distance heuristics are
pessimistic which provides a well founded intuition to explain accelerated the policy learning. Our
experiments on six Meta-World robotic manipulation tasks shows the effectiveness of our approach
over several PbRL baselines.

While action distances are proposed and utilized in the context of PbRL, interesting future work can
study the use of action distances beyond reward learning. While PbRL suffers from high sample
complexity and extremely weak feedback signal, the benefits of action distances may be pronounced
in this setup and further investigation on the role of action distances beyond PbRL can be fruitful.
While we showcase the benefits of action distance based auxiliary task for reward learning, another
key limitation is on the potential scalability in highly stochastic environments where action distance
estimates may become extremely noisy and hard to learn.
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APPENDIX TO PAPER :
EXPLOITING ACTION DISTANCES FOR REWARD LEARNING FROM HUMAN
PREFERENCES

A ETHICS STATEMENT

This paper focuses on improving Preference-based Reinforcement Learning (PbRL) agents and
identifies valuable learning signals (hinting at goal directed information based on binary human
preference feedback). We introduce an action distance measure derived from the policy and utilize it
as an auxiliary prediction task for reward learning. The evaluation of the proposed approach includes
simulated human oracles and human-in-the-loop experiments across different tasks.

The ethical implications of this research lie in its potential impact on privacy, adherence to the
intended preference, consent, transparency to name a few. While this research attempts to reduce the
amount of feedback required from human in the loop and effectivelly reduces the overall cognitive
load on the human (including the fatigue caused due to being actively present in the training loop),
taking into account other ethical considerations like consent, privacy and transparency are still active
research areas in PbRL community.

In the experimental design with the human in the loop, we ensure that human participants are
fully informed about the study’s objectives and procedures. We obtain an informed consent, and
participants have the right to withdraw from the study at any time. We anonymize the collected data
before analyzing them. However, the PbRL community is still looking for ways to restrict the leak of
private and confidential information from the collected feedbacks. Real world application of PbRL
must take these into account as unknown potential biases may arise.

Transparency and interpretability of the learned policies and models should be promoted to facilitate
understanding and trust. Past work in explainable AI has attempted to mitigate these issues but
preference learning specific solutions should also be proposed. One potential direction for PbRL
systems is project the learned reward function in human understandable visualization / language
which can serve as a means to check whether the learned preferences are in fact what the human
had intended in the first place. While binary preference feedbacks have many flaws, they do restrict
the amount of information conveyed by the human thereby limiting the leak of private / confidential
information.

Finally, interesting future work may include design of specialized oracles that can simulate users that
have specific biases and confidential strategic information baked into their preferences and verify
whether in the process of learning human preferences such information is also captured by the agent.
If so, prior work in the field of ethics and AI can serve as useful tools to mitigate or control the flow
of such information.

B PROOFS

B.1 PROOF FOR PROPOSITION 4.6

Statement: For a stochastic policy π that induces a stationary distribution, under a balanced
sampling from the dataset obtained by from Algorithm 2, a perfect function approximator can
estimate the action distance between the states si and sj .

Proof Sketch: Algorithm 2, in the limit, can generate infinitely many samples for action distance
targets from a state i to j, and j to i. This is easy to realize as the dataset is constructed by uniformly
picking si, sj pairs from trajectories sampled via the policy π. As the action distance estimate is the
average of the distance from i to j and back. It is possible that the number of data points sampled
from i→ j are considerably more than j → i in which case even a perfect approximator under MLE
(Maximum Likelihood Estimation) assumption would predict the mean of the observed samples as
the action distance. The mean of the observed samples is guaranteed to be equal to the commute
distance or the action distance if the observed samples along each direction i → j and j → i are
balanced Venkattaramanujam et al. (2019).
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C PBRL ALGORITHM

We present our PbRL algorithm, as shown in Lee et al. (2021a), which uses the PEBBLE as a
backbone. The integration of action distance loss into the PbRL algorithm requires no change to the
model architectures or the learning paradigm and can be easily done so by updating the lines in red in
Algorithm 1. SURF updates the same parts of the pseudocode as ours where the SSL (semi-supervised
learning) approach in SURF integrates in to the LReward and the SSL step populates the feedback
buffer with pseudo-labels.

Algorithm 1 Integrating ADLoss into PEBBLE

Input: feedback frequency K, # queries per feedback session M
Initialize parameters of Qθ and r̂ψ
Initialize a dataset of preferences Dh ← ∅
// EXPLORATION PHASE
Dτ , πϕ ← EXPLORE() in Lee et al. (2021a)
POLICY LEARNING PHASE
for each iteration do

// REWARD LEARNING PHASE
if iteration % K == 0 then

for m in 1...M do
(σ0, σ1) ∼ SAMPLE() in Lee et al. (2021a)
Query instructor for y

end for
for each gradient step do

Sample mini-batch {(σ0, σ1, y)j}
Dh
j=1 ∼ Dh

Perform Semi-Supervised Learning as in Algorithm 2
Optimize LReward w.r.t. ψ

end for
Relabel entire replay buffer Dτ using r̂ψ

end if
REINFORCEMENT LEARNING PHASE
for each time-step t do

Collect st+1 by taking at ∼ πϕ(at|st)
Store transitions Dτ ← Dτ{(st, at, st+1, r̂ψ(st))}

end for
for each gradient step do

Sample random mini-batch {τj}Dτ
j=1 ∼ Dτ

Optimize LSACcritic and LSACactor w.r.t. θ and ϕ, respectively, as in Lee et al. (2021a)
end for

end for

C.1 PEBBLE ALGORITHM

PEBBLE is a PbRL algorithm that comprises of two key elements: pre-training and relabeling
experience buffer. To gather a wide range of experiences, PEBBLE starts by using intrinsic motivation
Chentanez et al. (2004); Barto (2013); Abel et al. (2021); Schmidhuber (2010) to pre-train the policy,
which optimizes the policy to increase the state entropy in order to explore the environment effectively.
Afterwards, PEBBLE uses the SAC algorithm, a state-of-the-art off-policy RL algorithm, to further
train the policy. To ensure stability in the learning process, PEBBLE relabels all experiences in the
buffer when the reward model is updated.

C.2 DATASET FOR ACTION DISTANCE LOSS UPDATE

Algorithm 2 describes the algorithm used to collect the dataset of state pairs and corresponding action
distance targets.

2
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Algorithm 2 Dataset for Action Distance Loss Update

Input: Dτ , Recent window k, Samples per trajectory n
Dk
τ = Dτ [k · · ·N ] {N is size of Dτ}

Initialize Dad ← ∅
for ix = 0 to N − k do

for iy = 0 to n do
Uniformly choose i, j s.t. i < j ≤ T {T} is length of trajectory τ
x, y = ((sτi , a

τ
i ), (s

τ
j , a

τ
j )), |j − i|

Dad = Dad ∪ (x, y)
end for

end for
return Dad

D EXPERIMENT DETAILS

Unless stated otherwise, we have attempted to keep all the hyperparameters & experiments settings
as close to that proposed in prior works Park et al. (2022); Lee et al. (2021a).

D.1 STATE SPACE AND ACTION SPACE

We use the available Meta-world package Yu et al. (2020) to instantiate our environments. We use the
default state space representation given by the package, that contains information about the Cartesian
position of the end-effector, positions of objects of concern etc. The details about the action space
and the observation space are given in Yu et al. (2020).

D.2 REWARD ARCHITECTURE AND EMBEDDING SPACE

Following the implementation of Lee et al. (2021a); Park et al. (2022) we implement reward model
via a neural network and bound the final output using a tanh activation function : [-1, 1]. For all the
Meta-world experiments the reward model has three hidden layers with 256 neurons each followed
by the prediction layer (with one neuron). The embedding space used for minimizing the metric
Multidimensional Scaling stress or the derived ADLoss Mean squared error is the penultimate layer
of the network. We use the ADAM optimizer for training the SAC actor-critic as well as the reward
model. The hyperparameters used for baseline PEBBLE, SURF and ADLoss (our action distance
based auxiliary task loss) are given in tables 3, 4, and 5.

The input to the reward model is (state, action) tuple. As used previously Park et al. (2022); Lee et al.
(2021b), we stack the state and action vectors and treat them as a single input for the reward model.

D.3 ORACLE

While B-Pref Lee et al. (2021b) explores various types of scripted humans in the loop like myopic,
noisy etc, since our primary objective in this work is to evaluate the effectiveness of Action Distance
measure for PbRL, we assume an oracle scripted human who uses the underlying reward to correctly
provide the binary feedback. The feedback is given as follows :

y(τ0, τ1) =

{
0, if

∑
i R̃h(τ0) >

∑
i R̃h(τ1)

1, if
∑
i R̃h(τ0) <

∑
i R̃h(τ1)

(9)

where, R̃h is the environment reward being used as the human preference reward function and τ0, τ1
are the queried trajectory pairs. Note that we work under the setting that the preference feedback is
binary and therefore if the trajectory returns are equal we uniformly pick a preferred trajectory. This
does not pose any problems with our chosen benchmark domains as the underlying reward is dense
and shaped Devlin & Kudenko (2012); Ng et al. (1999).
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D.4 SAMPLING SCHEMES

We refer the readers to Lee et al. (2021a); Christiano et al. (2017) for the various sampling schemes
that have been proposed in prior work. In this work, for all the experiments we use the disagreement
based sampling for selecting pair of trajectories to query to the HiL.

D.5 IMPLEMENTATION, CODE AND COMPUTE

We use the publicly available implementation of B-Pref Lee et al. (2021b) for the implementation of
PEBBLE and SAC. We implement the remaining baselines, SURF, Rdynamics, L2EmbeddingLoss
(code in supplementary). All the experiments were run on an Intel(R) Xeon(R) Gold 6258R CPU @
2.70GHz, with Quadro RTX 8000 GPU.

D.6 EVALUATION DOMAINS

(a) Hammer (b) Door Open (c) Button Press (d) Sweep Into (e) Drawer Open(f) Window Open

Figure 5: Rendered images of the Meta-world Yu et al. (2020) evaluation domains.

(a) Quadruped

Figure 6: Rendered image of DMControl Suite Tunyasuvunakool et al. (2020) Quadruped for Human in the loop
study

We present here in Table 1, the description of the Meta-World domains that we have used to show
our empirical evaluations, along with the respective environment rewards in Table 2 as have been
specified in Yu et al. (2020).

Table 1: Meta-World domain descriptions, as in Yu et al. (2020).

Task Description
Hammer Hammer a screw on the wall. Randomize the hammer and the screw positions.
Door Open Open a door with a revolving joint. Randomize door positions.
Button Press Press a button. Randomize button positions.
Sweep Into Sweep a puck into a hole. Randomize puck positions.
Drawer Open Open a drawer. Randomize drawer positions.
Window Open Push and open a window. Randomize window positions.
Unlock Door Unlock the door by rotating the lock counter-clockwise. Randomize door positions.
Plate Slide Slide a plate into a cabinet. Randomize the plate and cabinet positions.
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Table 2: Meta-World domain rewards, as in Yu et al. (2020).

Task Description
Hammer − ∥ h− o ∥2 +I∥h−o∥2<0.05 · 100 ·min{oz, ztarget}

+I|oz−ztarget|<0.05 · 1000 · exp{∥ h− g ∥22 /0.01}
Door Open − ∥ h− o ∥2 +I∥h−o∥2<0.05 · 1000 · exp{∥ h− g ∥22 /0.01}
Button Press − ∥ h− o ∥2 +I∥h−o∥2<0.05 · 1000 · exp{∥ h− g ∥22 /0.01}
Sweep Into − ∥ h− o ∥2 +I∥h−o∥2<0.05 · 1000 · exp{∥ h− g ∥22 /0.01}
Drawer Open − ∥ h− o ∥2 +I∥h−o∥2<0.05 · 1000 · exp{∥ h− g ∥22 /0.01}
Window Open − ∥ h− o ∥2 +I∥h−o∥2<0.05 · 1000 · exp{∥ h− g ∥22 /0.01}
Unlock Door − ∥ h− o ∥2 +I∥h−o∥2<0.05 · 1000 · exp{∥ h− g ∥22 /0.01}
Plate Slide − ∥ h− o ∥2 +I∥h−o∥2<0.05 · 1000 · exp{∥ h− g ∥22 /0.01}
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E HYPERPARAMETERS

Table 3: Hyperparameters of backbone PEBBLE in our experiments.

Hyperparameter Value Hyperparameter Value
Initial temperature 0.1 Hidden units per each layer 1024(DMControl), 256(Meta-world)
Length of segment 50 # of layers 2(DMControl), 3(Meta-world)
Learning rate 0.0003 (Meta-world) Batch Size 1024(DMControl), 512(Meta-world)

0.0005 (Walker) Optimizer Adam Kingma & Ba (2014)
0.0001 (Quadruped)

Critic target update freq 2 Critic EMA τ 0.005
β1, β2 (0.9, 0.999) Discount γ 0.99
Frequency of feedback 5000 (Meta-world) Maximum budget / 1000/100, 100/10(DMControl)

20000 (Walker) # of queries per session 10000/50, 4000/20(Meta-world)
30000 (Quadruped) 2000/25, 400/10 (Meta-world)

# of ensemble models Nen 3 # of pre-training steps 10000

Table 4: Hyperparameters of SURF.

Hyperparameter Value
Unlabeled batch ratio µ 4
Threshold τ 0.95
Loss weight λ 1

Table 5: Additional hyperparameters used in our experiments.

Hyperparameter Value
Recent trajectories k 5
ADLoss weight 20

F ADDITIONAL EXPERIMENT DETAILS

F.1 SETUP FOR RDYNAMICS BASELINE

The Rdynamics baseline requires modification to the reward model. While imposing assumptions that
one can easily modify the model architecture should be avoided, predicting forward state dynamics
has been used in past RL literature and has been shown to be useful for policy learning. Just as we
use the penultimate reward model layer as the embedding space, we attach another layer that predicts
the next state and add a forward state prediction loss. Fig. 7 illustrates the reward architecture used
for Rdynamics baseline and below is the additional loss used for forward state prediction, where y
is the predicted next state. A linear combination of Lforwarddynamics and LCE (similar to ours, in
equation 8) gives the reward learning objective for Rdynamics.

Lforwarddynamics =MSE(y, st+1) (10)

F.2 SETUP FOR L2EMBEDDINGLOSS BASELINE

L2EmbeddingLoss uses the same LReward objective as in Equation 8, except that in Equation 7 the
targets dy are set to be, ||sj − si||2, i.e., the L2 norm of the difference between the two states.

F.3 SETUP FOR BISIM BASELINE

We use the following equation for adapting bisimulation metrics into the PbRL loop :

Jbisim(ψ) = (||zi − zj ||1 − |ri − rj | − γ||z
′(zi,ai)
i − z

′(zj ,aj)
j )2, (11)
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Figure 7: Overview of the reward model architecture for Rdynamics.

adapted from Eq. 4 in Kemertas & Aumentado-Armstrong (2021). For a state pair si, sj , we use
the learned reward model to obtain the predicted rewards ri, rj in the equation above. Similar to the
other baselines RDynamics and L2EmbeddingLoss we use the penultimate layer as the embedding
layer to obtain zi, zj . Similar to RDynamics we add a head from the penultimate layer that predicts
the next state embedding to obtain z′i, z

′
j . Finally, we reuse the trajectory buffer (as in ADLoss) to

obtain the states on which we compute the bisimulation-target distance to optimize the above loss.

G TRIPLET LOSS (TLOSS) BASED SEMI-SUPERVISED LEARNING OBJECTIVE

While we have shown the benefits of ADLoss in section 5, we wanted to test how would ADLoss
perform in conjunction with another SSL approach.

In pursuit of proposing a comprehensive, yet complementary solution for PbRL, we present a novel
semi-supervised learning objective (SSL) that utilizes pseudo-labelling for unlabelled trajectories
followed by a triplet loss minimization that can be used in conjunction with the proposed Action
Distance Auxiliary task. The proposed combination explores the compatibility of action distances
based auxiliary task with other add-on PbRL techniques.

In our limited testing we have found that the combination of ADLoss and the following triplet loss
SSL outperforms the PEBBLE / SURF baselines and is complementary across several domains

This SSL objective is operationalized by a triplet loss that requires a specified anchor data point, and
positive and negative samples. It then ensures that there exists at least some margin gap between the
+sample-anchor distance and -ve-sample-anchor distance. We first set the sampled trajectory from
the unlabelled dataset as our anchor. The mini-batch of trajectory pairs sampled from the human
feedback replay buffer will serve as positive or negative samples. To do so, we make an Absolute
Preference over Mini-batch assumption as,
Assumption G.1. In a mini-batch of k samples from human feedback buffer as triplets of
(τ0, τ1, y)

i=k
i=1 , the preference label can be treated as an absolute preference about the trajectory,

i.e. if y = 1 then trajectory is a preferred trajectory (not relative to other trajectories).

Assumption G.1 enables the creation of a bipartite set of trajectories, with set g containing all
preferred trajectories and set b containing all dis-preferred trajectories. If the queries are made from
far enough regions of the state space, the assumption holds well, but if the batch size is too large, it is
possible to encounter situations where the assumption does not hold. Because of this, we limit the
batch size to be in the set {8, 16, 32}.
We perform a pseudo-labelling step where we identify whether the sampled trajectory τ is closer to
the trajectories in set g or b where the label is:

y =

{
g ; d(R(τ), E

g∼g
[R(τg)]) < d(R(τ), E

b∼b
[R(τb)])

b ; otherwise
(12)

where d is the L2 distance function. We use the set y as the positive set of data points and 1-y as the
negative set for our triplet loss,

Lt(τ) = max(0, ||R(τ)− E
y∼y

[R(τy)])||2

−||R(τ)− E
ỹ∼1-y

[R(τỹ)])||2 +m)
(13)
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where m is the margin hyperparameter. We overload the notation for reward to reflect the rewards for
the trajectory states as a vector, i.e.,R(τ) = [R(s0) R(s1) · · · R(sT−1) R(sT ))]

T .

Figure 4 Sweep-Into shows results of using TLoss, ADLoss and Cross Entropy together and ablates
against each component. We find that while the performance of the agent (ADLoss + TLoss) is quite
close to the best performer, the addition of action distance based loss to the triplet loss does accelerate
policy learning - a feature which was theoretically motivated for action distances in Section 4.3.

8
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H MISTAKE ORACLE

Figure 8: Using a simulated mistake oracle on Sweep Into domain, and using SAC once again as the upper
bound on the success rate, we note that the success rate drops for ADLoss (with mistake oracle). However, it in
fact performs equally well as the original PEBBLE algorithm Lee et al. (2021a).

H.1 SETUP

Existing works Lee et al. (2021a;b) often suffer from poor performance when teachers can provide
the wrong labels. It is safe to assume that humans can make mistakes when prompted to give their
feedback, and hence, we test our algorithm for robustness using a simulated mistake oracle. A mistake
oracle is computed by flipping a trajectory preference by probability ϵ, similar to the definition in
Lee et al. (2021b). Furthermore, the mistake oracle can be instantiated as (β →∞, γ → 1, ϵ→ 0.1,
δskip → 0, δequal → 0), where β is the rationality constant, γ is the discount factor, δskip is the skip
threshold, and δequal is the equal threshold, as in Lee et al. (2021b).

H.2 INTUITION

As true for several supervised data-driven approaches, noisy supervision can indeed impact the agent
performance (as confirmed in Lee et al. (2021b)). Semi-Supervised learning is one of the typical
methods to mitigate negative effects of noisy labels by learning a more robust representation of data.
While we do not directly generate labels in semi-supervised learning or specifically make claims
regarding robustness to noisy labels, the action distance computed does indicate distance between
states (in a semi-supervised way) notion and enjoys a much larger dataset for learning the auxiliary
task. The RL backbone used in our work is SAC which learns a stochastic policy. This implies that
the action distance targets being used for learning the auxiliary task already have some variance
(and therefore is already robust to some extent). While noisy labels can further affect the individual
distance targets, we believe that so long the expectation does not change too much, the action distance
based auxiliary task should be helpful as it still is a useful heuristic. This engenders belief that
ADLoss-based solution should be more robust to noise than baselines, if not similar.

H.3 RESULTS

We test the mistake oracle Lee et al. (2021b) with ADLoss and PEBBLE. Figure 8 shows that mistake
oracle can have a severe impact on the agent’s performance. While we do test ADLoss with real
human in the loop (section I), for completeness, we also test it on simulated mistake oracle. As
expected, both ADLoss and PEBBLE are negatively impacted, however the impact on ADLoss is
no worse than PEBBLE. In fact, the performance of ADLoss with the mistake oracle is at par with
baseline PEBBLE with perfect oracle.

9
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I HUMAN STUDY

I.1 USER STUDY SETUP

We conduct a user study with 3 participants, each participant interacting with 3 environments, i.e.,
Quadruped: lift front right leg, Door Open and Window Open, and 2 algorithms, i.e., PEBBLE Lee
et al. (2021a) and ADLoss. Hence, we have a total of 18 experiment runs with human in the loop
where collect the total number of feedbacks required in each of these runs. The results have been
shown in Table 6.

The participants provide their binary preferences using the interface shown in I.3 for a fixed number
of queries per session. At the end of each session they are shown trajectory pairs sampled from a
recent episode to indicate the current performance of the agent. Users are expected to use this last
web page to conclude their participation, should they feel that the training is complete. Participants
are also free to end the training if they are fatigued etc.

I.2 RESULTS

As shown in Table 6, we see that for each (human, environment) experiment run, ADLoss requires
significantly lesser number of feedbacks. On an average, ADLoss takes ≈257 less feedbacks on
Window Open, ≈660 less feedbacks on Door Open, and ≈47 less feedbacks on the Quadruped task.

Table 6: Results from our user study.

Environment PEBBLELee et al. (2021a) ADLoss
Human 1 Human 2 Human 3 Avg. Std. Human 1 Human 2 Human 3 Avg. Std.

Window Open 620 580 580 593.3 23.1 340 360 310 336.6 25.2
Door Open 2640 3000 2440 2693.3 283.8 2020 2120 1960 2033.3 80.8

Lift Front Right Leg 180 180 160 173.3 11.5 120 120 140 126.6 11.5

I.3 USER STUDY INTERFACE

For conducting the human in the loop experiments, we first provide a consent form, as shown in
Figure 9a where we mention about the IRB Approval used for the study, and provide a task description
to each user. We create a user interface, as shown in Figure 9b, to record the interaction of the human
in the loop with our framework during the course of this study. Note, that the information regarding
the IRB Approval and author details have been redacted for ensuring anonymity.

In the user interface shown in Figure 9b, the human in the loop is shown two trajectories that are
sampled for querying, and they can use keyboard shortcuts for choosing either the left or the right
trajectory. The interaction ends when the human closes the browser. In the final query of each session,
the human is also asked if the preferred trajectory matches their expectation. Answers to this question
are not used by the algorithm and are collected for future work.

I.4 HUMAN SUBJECT DETAILS

The users have a median age of 25 and mean age of 25. All the participants are university graduate
students and have previously taken AI related coursework in their study, however only one of the
three participants (Human 3) was familiar with the domains used in the experiments.
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(a) User Study Consent Form

(b) User Interface for task: raised right-front leg.
Figure 9: Screenshots from our user study consent form (author information redacted for anonymity) and user
interface (UI) to conduct the study on the Quadruped domain.
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