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Abstract

Generalization outside the scope of one’s training
data requires leveraging prior knowledge about
the effects that transfer, and the effects that don’t,
between different data sources. Transfer learning
is a framework for specifying and refining this
knowledge about sets of source (training) and tar-
get (prediction) data. A challenging open problem
is addressing the empirical phenomenon of nega-
tive transfer, whereby the transfer learner performs
worse on the target data after taking the source
data into account than before. We first introduce
a Bayesian perspective on negative transfer, and
then a method to address it. The key insight from
our formulation is that negative transfer can stem
from misspecified prior information about non-
transferable causes of the source data. Our pro-
posed method, proxy-informed robust method for
probabilistic transfer learning (PROMPT), does
not require prior knowledge of the source data
(the data sources may be “unknown”). PROMPT
is thus applicable when differences between tasks
are unobserved, such as in the presence of latent
confounders. Moreover, the learner need not have
access to observations in the target task (may not
have the ability to “fine-tune”), and instead makes
use of proxy (indirect) information. Our theoreti-
cal results show that the threat of negative trans-
fer does not depend on the informativeness of the
proxy information, highlighting the usefulness of
PROMPT in cases where only noisy indirect infor-
mation, such as human feedback, is available.

The paradigm of transfer learning takes, often sparse, data
from a set of source tasks and uses them to predict out-
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comes in a different but related target task. Consider the
task of predicting the effectiveness of a treatment for a new
patient on the basis of observational data. Inevitably, the
measured effects of the treatment in the source data are
affected by a myriad of unobserved confounders, such as
the quality of treatment in a given clinical setting or the
patient’s adherence to a treatment regimen. Prediction in
this setting requires learning both shared parameters (the
treatment effect) and task parameters (the quality of treat-
ment in this patient’s local clinic; this patient’s adherence).
Failure to account for the presence of task-specific effects
can result in imprecise or inaccurate predictions in the target
task. Bayesian learning is a natural paradigm to apply in set-
tings where data is sparse and prior information is available.
When this prior information is reliable, the Bayesian transfer
learner can leverage the source data to make accurate and
calibrated predictions when encountering new target tasks.

In practice, however, the Bayesian transfer learner often
experiences negative transfer, performing worse in the target
task after taking the source data into account than before.
Understanding the conditions under which negative transfer
occurs, and how to address it, is a challenging open problem
(Suder et al., 2023).

Our first contribution is to provide a precise and Bayesian
characterization of the phenomenon of negative transfer. Our
formulation treats the Bayesian transfer learner’s objective
as a special case of inference in the presence of nuisance
parameters, and applies results from this more general class
of problems to elucidate the conditions under which neg-
ative transfer occurs. We show that negative transfer can
arise when prior information about source task parameters
is unavailable or mistaken. This result implies that allevi-
ating the threat of negative transfer requires removing the
learner’s reliance on, possibly mistaken, prior information
about source task parameters.

Our second contribution is to propose a method, proxy-
informed robust method for probabilistic transfer learning
(PROMPT), that allows the learner to form a posterior pre-
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dictive distribution in the target task without such prior
information. Our third contribution is to use our formula-
tion of the Bayesian transfer learner’s objective to provide
theoretical guarantees on PROMPT’s ability to alleviate the
threat of negative transfer.

PROMPT operates in a setting that differs from, and is
in some ways more general than, settings in existing lit-
erature on probabilistic approaches to transfer and meta-
learning (Grant et al., 2018; Yoon et al., 2018; Gordon
et al., 2019; Patacchiola et al., 2020). We here discuss
some differences between our setting and probabilistic meta-
learning, Bayesian meta-learning, and proxy methods for
multi-source domain adaptation. We discuss these and other
related works in more detail in Appendix A.

Difference #1: PROMPT can cope with unknown sources.
Probabilistic meta-learning (Gordon et al., 2019), Bayesian
meta-learning (Grant et al., 2018; Yoon et al., 2018; Pat-
acchiola et al., 2020), and multi-domain adaptation (Tsai
et al., 2024) assume the availability of some prior knowl-
edge about the source data, such as the number of distinct
tasks represented in the source data and which data points
correspond to the same task. This assumption would be vio-
lated in our motivating example: Each patient’s outcomes
are influenced by confounders whose values are unknown,
and the learner cannot know which outcomes are influenced
by the same latent confounder values. Probabilistic meta-
learning (Gordon et al., 2019) also requires that the target
task arises from the same distribution as the source tasks.
PROMPT requires neither the availability of prior informa-
tion about the source tasks nor that the target task resembles
the source tasks.

Difference #2: PROMPT relies on proxy information in-
stead of fine-tuning. Bayesian meta-learning requires that
the learner has access to data from the target task in order
to fine-tune their estimates (Grant et al., 2018; Yoon et al.,
2018; Patacchiola et al., 2020). PROMPT relies on proxy
(indirect) information about the target task. Examples of
proxy information are human feedback (e.g., to prompts
such as “What is the quality of treatment in the target hos-
pital?”) and instrumental variables (e.g., hospital funding
as an instrument for quality of care). This leads to con-
nections between our work and the paradigm of proximal
causal learning (Kuroki and Pearl, 2014; Tchetgen et al.,
2024; Alabdulmohsin et al., 2023; Tsai et al., 2024); see Ap-
pendix A for a more detailed discussion. Unlike other proxy
methods for multi-domain adaptation (Tsai et al., 2024), we
distinguish between shared and task parameters and require
additional techniques for estimation of the shared parameter.
PROMPT does assume that the proxy information does not
depend on the shared parameters.

Our theoretical results show that, surprisingly, PROMPT’s
success in eliminating negative transfer does not depend
on the quality of the proxy information, making PROMPT

particularly useful when proxy information is weak or unre-
liable. The extent of negative transfer depends instead on the
quality of a pre-specified relevance function. We describe
approaches to defining the relevance function in a purely
source data-dependent way, and demonstrate application of
these approaches in two synthetic examples and on a dataset
of smoking behavior.

1 PRELIMINARIES

Notation. Vectors and matrices are denoted by bold lower-
case letters: ai,j is the entry in the ith row and jth column of
a. Sets are denoted by calligraphic font (A ), and Ai is the
ith element of A . We use aI , where I is a set, to denote
the subvector formed by selecting the elements of a at the
indices in I . Random variables are denoted by bold capital
letters (A), and the notation for probability distributions
is subscripted by the corresponding random variable (PA).
For instance, A is the random variable with domain A and
probability distribution PA.

Bayesian transfer learning is a general framework for
leveraging data from source tasks to make predictions in
a somewhat unrelated target task (Suder et al., 2023). We
consider a standard setting where tasks are characterized by
both shared and task parameters. The learner has available
to them source data d = [d1, . . . ,dn] composed of stochas-
tic observations di ∈ D .1 We write the random variable
characterizing the source data as D.

Each observation is generated in the context of a partic-
ular, possibly non-unique, task. In the setting of unknown
sources, the learner need not be aware of which observations
are generated in the context of the same, or similar, tasks.
Below, we formalize this as a potential difference between
the dependency structures characterizing the source data-
generating process, on one hand, and the learner’s model of
the source data, on the other.

The probability of each observation di depends both on
shared parameters θ ∈ T , which are the same for each
task, and task parameters ψi ∈ S , which differ between
tasks. Given a (θ,ψi), the learner can evaluate p(di|θ,ψi).
As is typical in such formulations, we assume a single,
data-generating value of each of the shared and source task
parameters, which we denote θ⋆ and ψ⋆, respectively.2

Definition 1.1 (Task). The ith task specifies the distribution
generating the ith data point. It depends on the value of a

1The source data matrix can equivalently be written d(1:n) to
make explicit that it is composed of all n past observations. When
referring to the source data matrix, we omit the subscript (1 : n),
i.e., write d ≡ d(1:n).

2As with the source data d, the source task parameters can
equivalently be written ψ(1:n). When referring to the source task
parameters, we write ψ ≡ ψ(1:n).
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Figure 1: Assumed dependencies between shared parameter
θ, task parameters ψ, source data d ≡ d(1:n), target data
dn+1, and proxy information z.

shared parameter θ⋆ and task parameter ψ⋆
i . The value θ⋆

is assumed to be shared across all tasks, and so the task is
equivalently identified by the value of ψ⋆

i .

At deployment, the learner encounters an (n + 1)th task
which will induce an observation dn+1. Their goal is to
predict dn+1 on the basis of d, which requires identification
of the target data-generating process, i.e., of the shared
parameter θ⋆ and task parameter ψ⋆

n+1.

The setting is visualized in Figure 1. Throughout, we im-
plicitly depend on the following assumption:

Assumption 1.2. All dependencies in Figure 1 are present
in the data-generating process. The following dependencies
are not present in the data-generating process:

(a) If i ̸= j, di does not depend on ψj except possibly
through ψi.

(b) If i ̸= j, di does not depend on dj except through θ
and possibly through ψi.

(c) ψn+1 does not depend on θ.

(d) Proxy information z does not depend on θ (see Sec-
tion 3.1).

In the setting of unknown sources, the learner does not have
knowledge of the potential presence of the dependencies
in grey text. We thus derive all quantities available to the
learner (e.g., the likelihood of the source data given below)
to reflect this absence of knowledge, i.e., omitting these
potential dependencies. This results in a potential difference
between the dependency structures characterizing the data-
generating process and the learner’s model of the data.

The Bayesian transfer learner assigns to values
(
θ,ψn+1

)
a prior distribution, and so treats the parameters as ran-
dom variables Θ and Ψn+1 with distribution PΘ,Ψn+1

.
For a possible value of the target data-generating process(
θ,ψn+1

)
, the likelihood L of the source data d is

L(d,θ,ψn+1) ≡ p(d|θ,ψn+1) = L(d,θ) (1)

because the target task parameter is not known by the learner
to affect any of the source data (Assumption 1.2(a)).

The probability of
(
θ,ψn+1

)
under the posterior

PΘ,Ψn+1|d is

p(θ,ψn+1|d) =
L(d,θ,ψn+1) p(θ,ψn+1)

Eθ′,ψ′
n+1∼PΘ,Ψn+1

[
L(d,θ′,ψ′

n+1)
]

=

(
L(d,θ) p(θ)

Eθ′∼PΘ

[
L(d,θ′)

]) p(ψn+1) (2)

where the second line follows from Assumption 1.2(a,c).

As we show in Section 2, computing the likelihood in a
classic way (described below) can lead to negative transfer.
After describing the classic Bayesian learner’s approach, we
introduce a generic method to “robustify” the likelihood.
PROMPT leverages this robustified method in its estimation
of the predictive posterior.

Classic Bayesian inference additionally requires a prior
over the source task parameters PΨ. The posterior then
marginalizes across this prior as follows:

p(θ,ψn+1|d) =

(
L(d,θ) p(θ)

Eθ′∼PΘ

[
L(d,θ′)

]) p(ψn+1)

=

(
Eψ∼PΨ

[L(d,θ,ψ)] p(θ)

Eθ′,ψ∼PΘ,Ψ

[
L(d,θ′,ψ)

]) p(ψn+1)

= p(θ|d) p(ψn+1) (3)

The prior PΨ encodes the learner’s knowledge about the
joint distribution of source task parameters. In the setting of
unknown sources, the learner does not have knowledge of
the dependencies between source task parameters (such as
which observations arise from the same task, i.e., for which
(i, j) it is the case that ψ⋆

i = ψ⋆
j ) and/or their prior may

misrepresent the probability of encountering data generated
under a given source task parameter value.

Likelihood weighting is a technique whereby the learner
specifies a vector of weights η that determines the contribu-
tion of each observation to the overall weighted likelihood
(Grünwald, 2011). When some ηi > ηj , it can be seen as
increasing the influence of the ith data point relative to the
jth data point.

2 A BAYESIAN PERSPECTIVE ON
NEGATIVE TRANSFER

Negative transfer refers to the phenomenon that learning
from source data can hurt performance in the target task
(Wang et al., 2019). Here, we give a formal statement of the
Bayesian transfer learner’s objective which will allow us
to make a precise and interpretable statement about when
negative transfer will occur.

The Bayesian transfer learner’s goal is to identify the tar-
get data-generating process. Since the effects of the task



parameters will not transfer, the source data can help the
Bayesian learner identify the target data-generating process
only insofar as it identifies the shared parameter. This ob-
jective has a natural information-theoretic interpretation,
given in Definition 2.1: The information gain, or degree to
which a Bayesian learner has “gained information” about
θ, is the expected log ratio of the posterior to prior odds
of θ. Information gain measures are applied in contexts
like experimental design (Rainforth et al., 2024) and model
selection (Oladyshkin and Nowak, 2019).

Because we are interested in the learner’s information gains
under the true data-generating process, we define the infor-
mation gain as an expectation across the true distribution
of source data. To reduce notational clutter, we use D⋆ to
refer to the random variable D|θ⋆,ψ⋆, which follows the
distribution of source data under the true data-generating
parameters (θ⋆,ψ⋆) (which are unavailable to the learner).

Definition 2.1 (Information gained by the classic Bayesian
learner IGc). The information gained by the classic
Bayesian transfer learner about the shared parameter θ⋆ is

IGc (θ⋆) ≡ E
d∼PD⋆

[
log

(
p(θ⋆|d)
p(θ⋆)

)]
.

If IGc (θ⋆) > 0, the learner has successfully trans-
ferred information about θ⋆ from the source to target data
(p(θ⋆|d) > p(θ⋆), i.e., they prefer θ⋆ after viewing data).
Otherwise, they are worse off than before (p(θ⋆|d) ≤ p(θ⋆),
i.e., they preferred θ⋆ before viewing data). We define posi-
tive and negative transfer as:

Definition 2.2 (Positive and negative transfer). The clas-
sic Bayesian learner experiences positive transfer when
IGc (θ⋆) > 0; otherwise, they experience negative transfer.

We now provide a result showing that the threat of nega-
tive transfer is affected by the reliability of the prior over
source task parameters PΨ. The key quantity is a measure
of likelihood misspecification:

Definition 2.3 (Misspecification of the classic likelihood
∆c). The degree to which the classic likelihood is mis-
specified is ∆c ≡ DKL

(
PD⋆ || PD|θ⋆

)
where DKL is the

Kullback-Leibler divergence measure.

In the presence of negative transfer, likelihood misspecifi-
cation increases with the misspecification of the prior over
source task parameters (Sloman et al. 2024 Theorem 4.11).
To see this, recall from Equation (3) that the density for
PD|θ⋆ marginalizes across PΨ.

Theorem 2.4 shows that ∆c is responsible for negative trans-
fer. The proof, adapted from Sloman et al. (2024), is given
in Appendix B.2. It relies on the following assumption:

Assumption B.3 (informal). The likelihood L (d,θ) is

“smooth enough” in a neighborhood of θ⋆. The formal condi-
tion is given in Appendix B.2.

Theorem 2.4 (Negative transfer with a classic likelihood
(modified from Sloman et al. 2024 Theorem 4.5)). Under
Assumption B.3 in Appendix B.2,

IGc (θ⋆) ≤ A (B −∆c) (4)

where A and B are constants that do not depend on ∆c.

Because of its effect on ∆c, the prior over source task pa-
rameters affects the risk of negative transfer. To remove the
Bayesian transfer learner’s dependence on this prior infor-
mation, we introduce proxy-informed robust method for
probabilistic transfer learning (PROMPT).

3 PROMPT

The Bayesian transfer learner faces two challenges: To make
accurate predictions in the target task, they must (1) gain
information about the target task parameter ψ⋆

n+1, which
to their knowledge does not depend on the source data, and
(2) avoid negative transfer, which as discussed in Section 2
arises from a misspecified source task parameter prior PΨ.
Our proposed proxy-informed robust method for probabilis-
tic transfer learning (PROMPT) has three steps: First, to
address challenge (1), proxy information is used to form a
posterior over the target task parameter ψn+1. Then, to ad-
dress challenge (2), a relevance function is used to construct
a weighted likelihood for θ that does not depend on any
prior source task information. Finally, the learner combines
their posterior over ψn+1 and weighted likelihood for θ
to form a robust posterior over the target data-generating
process. The entire procedure is summarized in Algorithm 1.

The computational overhead required by PROMPT is com-
parable to that required by existing implementations of
Bayesian inference. As shown in Algorithm 1 Line 2–Line 9
and discussed in Section 3.2, the reweighting step (step 2)
is performed in at most T iterations, where T is the user-
supplied number of iterations for refinement of the relevance
function. Once this step is performed, computation of the
posterior is similar to other Bayesian inference methods.3

PROMPT thus increases computational overhead by at most
the constant factor T .

3.1 STEP 1: LEARNING TASK PARAMETERS VIA
PROXIES

In step 1, the learner addresses the challenge of learning
the target task parameter ψ⋆

n+1. We refer to information

3As can be seen in the code we provide for the example pre-
dicting smoking behavior discussed in Section 5.1, applying the
relevance function requires minimal modifications to existing pos-
terior update methods.



Algorithm 1 Proxy-informed RObust Method for Proba-
bilistic Transfer learning (PROMPT)

Input: Source data d, proxy information z, prior PΘ,Ψn+1
,

relevance function R, and number of iterations for re-
finement of the relevance function T

Output: R-weighted posterior predictive PR
Dn+1|d,z

1: Compute PΨn+1|z (Equation (5)) ▷ Step 1
2: ifR depends on PΘ then ▷ Refinement ofR
3: P̂R

Θ ← PΘ

4: for t ∈ 1 : T do
5: EvaluateR using P̂R

Θ

6: Compute LR (Equation (6))
7: P̂R

Θ ← PR
Θ|d,z

8: end for
9: end if

10: EvaluateR using P̂R
Θ

11: Compute LR (Equation (6)) ▷ Step 2
12: Compute PR

Dn+1|d,z (Definition 3.3) ▷ Step 3

the learner has about the value of ψ⋆
n+1 and which does

not depend on θ⋆ (Figure 1) as proxy information. We
denote the proxy information z ∈ Z . To leverage the proxy
information to learn ψ⋆

n+1, the learner specifies a model for
the likelihood of proxy information z given ψn+1, i.e., can
compute p(z|ψn+1).

4 Combined with the prior PΨn+1
, this

induces a distribution over z. We denote the corresponding
random variable Z.

The posterior probability of a value ψn+1 is

p
(
ψn+1|z

)
=

p
(
z|ψn+1

)
p
(
ψn+1

)
Eψ′

n+1

[
p
(
z|ψ′

n+1

)] . (5)

3.2 STEP 2: LEARNING SHARED PARAMETERS
VIA LIKELIHOOD WEIGHTING

In step 2, the learner addresses the challenge of avoiding
negative transfer (learning the shared parameter θ⋆ without
depending on a source task parameter prior).

Estimation of the target data-generating process requires es-
timating a joint distribution over both the shared and target
task parameters

(
θ,ψn+1

)
. The challenge arises because

the learner requires a model for p
(
d|θ,ψn+1

)
. As we dis-

cussed in Section 1, using the classic likelihood of a value
θ requires marginalizing over possibly mistaken prior infor-
mation about the source task parameters.

In an ideal world, when computing p
(
d|θ,ψn+1

)
the

learner would intervene on the source data and set ψ⋆
1 =

. . . = ψ⋆
n = ψn+1. While this is infeasible, the learner can

4In the absence of substantial prior knowledge about how
the proxy information is generated, this model may be extremely
expressive or even non-parametric.

Requires Negative transfer
is due to

Classic Source task prior Misspecified PΨPΨ

R-weighted Relevance function Low-fidelityRR

Table 1: Key differences between classic and r-weighted
Bayesian learning.

perform a pseudo-intervention: They can manipulate the
source data to resemble the consequences of such an inter-
vention. Using likelihood weighting techniques, the learner
can reweight the data in order to assign higher weight to
observations that are relevant to the consequences of ψn+1.
The probability of observing di if the ith task parameter had
been “set” to ψn+1 is denoted p

(
di|θ,ψi = ψn+1

)
. The

probability of observing all source data in the task charac-
terized by ψn+1 is denoted p

(
d|θ,ψ = ψn+1

)
.

Formally, the relevance of an observation is:

Definition 3.1 (Relevance Ri(ψn+1)). The relevance
of the ith observation to ψn+1 is computed by a rel-
evance function R which is positively correlated with
p
(
di|θ⋆,ψi = ψn+1

)
in expectation with respect to

PD⋆,Ψn+1
.

Unlike the classic Bayesian transfer learner who uses the
likelihood expression in Equation (1) to construct their poste-
rior, PROMPT uses the relevance- (r-)weighted likelihood
of each observation:

LR(di,θ,ψi = ψn+1) ≡ p(di|θ,ψi = ψn+1)
Ri(ψn+1).

(6)

Table 1 summarizes the differences between r-weighted and
classic Bayesian inference. The key idea of r-weighting is to
substitute the requirement for accurate prior knowledge of
the source task parameters with a requirement for a suitably-
specified relevance function (i.e., the ability to anticipate the
consequences of a pseudo-intervention on the source data).
At first glance, this may appear to substitute a requirement
for one form of prior knowledge with another. However, as
we discuss below, specifying a suitable relevance function
often does not require knowledge beyond that which is
already encoded in the learner’s model.

Defining the relevance function. Definition 3.1
requires that Ri(ψn+1) positively correlate with
p
(
di|θ⋆,ψi = ψn+1

)
. In Section 4, we provide a result

showing that the fidelity of the relevance function —
the strength of this correlation — affects the extent
of the threat of negative transfer. However, computing
p
(
di|θ⋆,ψi = ψn+1

)
exactly would require access to θ⋆,

which the learner does not have.



Given their ignorance of θ⋆, one approach the learner could
take would be to construct the relevance function in a way
that depends only on their prior PΘ, for instance, as

Ri(ψn+1) = E
θ∼PΘ

[
p
(
di|θ,ψi = ψn+1

)]
. (7)

While Equation (7) will likely not exactly recover the con-
sequences of the pseudo-intervention ψi = ψ

⋆
n+1, in many

cases of practical interest it will tend to correlate with
p
(
di|θ⋆,ψi = ψn+1

)
.5

To correct for potential bias in PΘ, we propose a proce-
dure to iteratively refine the relevance function, outlined in
Line 2–Line 9 of Algorithm 1. Notice that the source data,
which the learner does have access to, depend on θ⋆, and
so the learner can leverage these data to, for instance, refine
the distribution across which the expectation in Equation (7)
is taken. We propose the learner first evaluate the relevance
function using PΘ, then substitute PΘ in the definition of
the relevance function with the resulting relevance-weighted
posterior (Definition 3.2 in Section 3.3), reevaluate the rele-
vance function, and repeat this process for a pre-specified
number of iterations. In Section 5, we detail application
of this iterative procedure in the context of two synthetic
examples. While we observe that this procedure is effective
in the context of these examples, an important direction
for future work is establishing the conditions under which
it converges, i.e., the conditions under which a relevance
function satisfying Definition 3.1 is available to the learner.

3.3 STEP 3: COMPUTING THE R-WEIGHTED
POSTERIOR PREDICTIVE DISTRIBUTION

We can now define the relevance- (r-)weighted posterior
and r-weighted posterior predictive distribution.

Definition 3.2 (Relevance- (r-)weighted posterior distribu-
tion PR

Θ,Ψn+1|d,z). The r-weighted posterior distribution

PR
Θ,Ψn+1|d,z is the distribution with density

pR(θ,ψn+1|d, z) =
LR(d,θ,ψ = ψn+1) p

(
z|ψn+1

)
p
(
θ,ψn+1

)
Eθ′,ψ′

n+1∼PΘ,Ψn+1

[
LR(d,θ′,ψ = ψ′

n+1) p
(
z|ψ′

n+1

)] .
Definition 3.3 (Relevance- (r-)weighted posterior predictive
distribution PR

Dn+1|d,z). The r-weighted posterior predic-
tive distribution PR

Dn+1|d,z is the distribution with density

pR(dn+1|d, z) = E
θ,ψn+1∼PR

Θ,Ψn+1|d,z

[
p(dn+1|θ,ψn+1)

]
.

4 THEORETICAL RESULTS

In Section 2, we introduced a formal framework for assess-
ing the threat of negative transfer. In Section 3, we intro-
duced a framework for Bayesian transfer learning that uses

5See Appendix B.4 for discussion of a counterexample.

a pre-specified relevance function to r-weight the likelihood.
Our goal here is to assess whether r-weighting can effec-
tively reduce the threat of negative transfer, and if so, the
conditions under which this is the case.

To assess the threat of negative transfer to the r-weighted
Bayesian transfer learner, we introduce an information gain
measure analogous to Definition 2.1, but that measures the
degree to which the r-weighted posterior favors θ⋆ with
respect to the prior:6

Definition 4.1 (Information gained by the r-weighted
Bayesian learner IGR). The information gained by the r-
weighted Bayesian transfer learner about the shared param-
eter θ⋆ is

IGR (θ⋆) ≡ E
d,z∼PD⋆,Z

[
log

(
pR(θ⋆|d, z)

p(θ⋆)

)]
.

Analogously to Definition 2.2, we say that the r-weighted
Bayesian transfer learner experiences negative transfer when
IGR (θ⋆) ≤ 0.

Below, we provide two results that together show that the
relevance function controls the threat of negative transfer.
Theorem 4.4 shows that the threat of negative transfer to the
r-weighted Bayesian transfer learner depends on misspecifi-
cation of the r-weighted likelihood, where the misspecifica-
tion can be interpreted as the degree to which the relevance
function corrects for a mismatch between the source and pos-
sible target tasks. Proposition 4.5 decomposes this measure
of misspecification, showing that it is a negative function
of the fidelity of the relevance function. The proofs of all
results are deferred to Appendix B.

Misspecification of the r-weighted likelihood is:

Definition 4.2 (Misspecification of the r-weighted
likelihood ∆R). The degree to which the r-
weighted likelihood is misspecified is ∆R ≡
Eψn+1∼PΨn+1

[
DKL

(
PD⋆ || P

DR(ψn+1)|θ⋆,ψ=ψn+1

)]
where P

DR(ψn+1) is the distribution of data resulting from
viewingRi(ψn+1) replicates of each di.

In the r-weighted case, the misspecification stems from the
failure of the pseudo-replication to correct for a mismatch
in the source tasks (the consequences of ψ⋆) and possible
target tasks (the consequences of possible values ψn+1).

Theorem 4.4 gives a result analogous to Theorem 2.4 for the
r-weighted case. It depends on the following assumptions:

Assumption 4.3 (LR is bounded). The r-weighted likeli-
hood LR (d,θ,ψ = ψn+1

)
is bounded from both below

and above: ∃a, b ∈ R+ such that ∀d ∈ D ,θ ∈ T ,ψn+1 ∈
S , a ≤ LR (d,θ,ψ = ψn+1

)
≤ b.

6See discussion in Appendix B.3 for interpretation of PZ.



Assumption B.8 (informal). The proxy is sufficiently in-
formative in the sense that the “variability” of Ψn+1|z is
smaller than the “variability” of Ψn+1 by a “large enough”
margin. The formal condition is given in Appendix B.3.

Assumption B.9 (informal). The r-weighted likelihood
LR (d,θ,ψ = ψn+1

)
is “smooth enough” in a neighbor-

hood of θ⋆ and the estimated relevances are not “too large”.
The formal condition is given in Appendix B.3.

Theorem 4.4 (Negative transfer with an r-weighted likeli-
hood). Under Assumption 4.3 and Assumptions B.8 and B.9
in Appendix B.3,

IGR (θ⋆) ≤ A
(
C −∆R)

where A and C are constants that do not depend on ∆R.

Proposition 4.5 analyzes the effect ofR on ∆R. The role of
R in mitigating negative transfer depends on the fidelity of
the relevance function:

Definition B.11 (informal). ρR is a measure of the fidelity
of the relevance function, i.e., the extent of the correlation
of Ri(ψn+1) with p(di|θ⋆,ψi = ψn+1) in expectation
with respect to PD⋆,Ψn+1

. The formal definition is given in
Appendix B.4.

Proposition 4.5 (Negative transfer is reduced by high-fi-
delity relevance functions). ∆R is a negative function of
ρR. In particular,

∆R = E
[
ESS

(
d,ψn+1

)
DIS

(
d,ψn+1

)]
− nρR +D

where ESS
(
d,ψn+1

)
≡
∑n

i=1Ri(ψn+1) is the effec-
tive sample size induced by the relevance function R
evaluated on the sample d and task parameter ψn+1,
DIS

(
d,ψn+1

)
≡ − log

(
p
(
d|θ⋆,ψ = ψn+1

))
captures

the dissimilarity of the source data to the target task char-
acterized by ψn+1, the expectation is taken with respect to
PD⋆,Ψn+1 , and the constant D does not depend onR.

Remark 4.6 (Weakly informative proxies mitigate negative
transfer). Proposition 4.5 shows that ∆R does not depend
on the accuracy of the learner’s inferences about ψ⋆

n+1,
i.e., on the informativeness of the proxy information. Infor-
mative proxies facilitate targeted inference insofar as they
facilitate estimation of the target task parameter, but do
not improve the r-weighted learner’s ability to recover the
shared parameter from the source data. PROMPT’s prov-
able advantage over classic Bayesian inference does depend
on the availability of some proxy information only to satisfy
Assumption B.8, required in the proof of Theorem 4.4: If the
available proxy information is not somewhat informative,
the magnitude of ∆R does not necessarily imply the degree
of the threat of negative transfer.

5 EXAMPLES

We here demonstrate application of PROMPT in two syn-
thetic settings and on one real-world dataset. Additional
details of all examples are provided in Appendix C.

Taken together, these examples demonstrate that PROMPT
can significantly reduce the threat of negative transfer, and
that its effectiveness in doing so is robust to unreliable and
misleading proxy information. In all examples, we defined
the relevance function in a purely source data-dependent
way, illustrating the availability of effective relevance func-
tions in settings of practical interest.

5.1 TREATMENT EFFECT ESTIMATION

To continue with our motivating example, we first demon-
strate application of PROMPT to treatment effect estimation
using similar modeling paradigms to those used in clinical
prediction tasks (Gunn-Sandell et al., 2023). We first apply
PROMPT in a synthetic setting that allows us to manipu-
late factors like the risk of negative transfer. We then apply
PROMPT to a real-world dataset of smoking behavior.

In both cases, we consider the treatment effect to be trans-
ferable, i.e., the parameter corresponding to the size of the
influence of the treatment on outcomes is shared across
tasks. Here, negative transfer refers to a situation where
learning from the source data causes the learner to believe
that the treatment has an effect opposite to its true effect
(e.g., a negative rather than positive treatment effect).

Linear regression. The synthetic data in this example are
generated according to the model

yi|xi ∼ N (θ⋆xi,1 +ψ
⋆
ixi,2, 1)

where the shared parameter θ⋆ represents the effect of
a synthetic treatment xi,1 and ψ⋆

i represents the ef-
fect of a synthetic confounder (e.g., quality of care)
xi,2. We computed the relevances as Ri(ψn+1) ∝
E
θ∼P̂R

Θ

[
p
(
di|θ,ψi = ψn+1

)]
where P̂R

Θ was formed us-
ing the iterative procedure described in Section 3.2.

Alleviating the risk of negative transfer: Figure 2a shows
how IGR compares with IGc as a function of the risk of
negative transfer and the representativeness of the target task
in the distribution of source tasks. To induce the risk of nega-
tive transfer, we manipulated the degree of multicollinearity
between x(·,1) and x(·,2): More multicollinearity makes θ⋆

and ψ⋆
n+1 harder to separately identify, so we interpret this

as a higher risk of negative transfer. We also varied the dis-
tribution of source tasks. When p% of tasks resemble the
target task, 1 − p% of tasks are set to a value that is well-
represented by PΨ. In this sense, our results are a somewhat
conservative test of PROMPT.
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(b) Robustness to noisy proxy information. In all cases, there is an
extreme degree of multicollinearity (i.e., large threat of negative
transfer).

Figure 2: Advantage of the r-weighted learner in the linear
regression setting. Each box includes results from 50 simula-
tions and shows the interquartile region (boxes) and outliers
(points) of IGR (θ⋆)− IGc (θ⋆). In each simulation, ψ⋆

n+1,
d, and z are randomly regenerated.

When there is no multicollinearity, the classic learner is not
at risk of negative transfer, and performs on par with the
learner with an r-weighted likelihood. When all source tasks
are well-represented in the learner’s prior (blue box), the
classic learner’s prior is well-specified and they perform
on par with the r-weighted learner. When there is a risk of
negative transfer, IGR is generally higher, especially when
many source tasks resemble the target task (and the classic
learner’s prior PΨ is more misspecified).

Robustness to noisy proxy information: The synthetic proxy
information represents feedback from a domain expert.
While domain experts may not be able to articulate pre-
cise knowledge of the target task, they can often provide
intuitive assessments (Kahneman and Klein, 2009) such

as the degree to which an outcome is representative of a
given situation (Tversky and Kahneman, 1974). Our syn-
thetic proxy represents a domain expert who is presented
with a hypothetical outcome and asked the degree to which
it is representative of the target task on a scale of 0–7. To
assess the robustness of PROMPT to noisy proxies, we con-
taminated a percentage of these synthetic judgments. The
percentage of contaminated proxy values is unknown to
the learner, who always models the proxy information as
completely uncontaminated.

In line with our result in Proposition 4.5, Figure 2b shows
that noisy proxy information does not affect the relative
advantage of the r-weighted learner: Regardless of the de-
gree of proxy contamination, the r-weighted learner tends
to outperform the classic learner.

Predicting smoking behavior. We also applied PROMPT
to predict smoking behavior in a dataset from Hasselblad
(1998) provided by the R package netmeta (Balduzzi
et al., 2023), which consists of data from 24 studies on the
number of patients who stopped smoking after receiving one
of four treatments.7 Each study includes data from patients
who received some but not all treatments. We considered
each study a separate task. Each observation is indexed
by study and treatment (so yi is the number of patients
who stopped smoking after receiving a given treatment in
a given study and ψi = ψj if i and j index data from
different treatments administered as part of the same study).
We modeled the data as

yi|xi,θ,ψi ∼ Binomial
(
sigmoid

(
θx⊤

i,(1:4) +ψi

)
, Ni

)
where xi,(1:4) are indicators of the treatment received and
Ni is the number of patients who received the indicated
treatment in the indicated study. We considered 24 different
partitions of the data into source and target data, with each
partition treating data from one study as target data and data
from the remaining 23 studies as source data. We defined
the relevance function as

Ri(ψn+1) = sigmoid

(
n
p
(
di|θ = 0,ψi = ψn+1

)
p
(
d|θ = 0,ψ = ψn+1

) ) .

Figure 3 shows the relative performance of the r-weighted
and classic Bayesian transfer learners as a function of the
informativeness of the proxy information. Unlike in our
synthetic example, here we do not have access to the true
value θ⋆ and so cannot directly compute IGR (θ⋆) and
IGc (θ⋆). Instead, we assess how well the two methods can
predict the outcome in the target task. The classic learner
here has the advantage of prior source information in the

7This example was inspired by the example detailed in
Holzhauer and Bean (2025). The code used the package brms
(Bürkner, 2017) and Stan modeling language (Stan Development
Team, 2024).
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Figure 3: Advantage of the r-weighted learner in the
dataset of smoking behavior. Each plot shows the distri-
bution of values of log

(
pR(dn+1|d,z)
p(dn+1|d,z)

)
across 24 partitions

of source/target data.

form of knowledge of which observations belong to the
same task. We also do not anticipate a substantial threat of
negative transfer here. Nevertheless, the r-weighted learner
outperforms the classic learner in the majority of cases.

Robustness to noisy proxy information: The synthetic proxy
information represents an imprecise estimate of the value of
ψ⋆

n+1. Highly informative proxy information refers to more
precise estimates than weakly informative proxy informa-
tion. To assess the robustness of PROMPT to misleading
proxies, we added a bias to some synthetic estimates. While
the learner is aware of the degree of precision of an estimate,
they are unaware of the potential presence of bias.

Proposition 4.5 showed that the extent of negative transfer
for the r-weighted learner does not depend on the informa-
tiveness of the proxy information. Figure 3 shows that the
r-weighted learner’s advantage appears to actually decrease
with the informativeness of the proxy information. Further
inspection revealed that, in this example, the r-weighted
learner’s performance is not sensitive to the amount of proxy
information, and the difference reflects the classic learner’s
higher performance in the presence of more informative
proxy information.8 Further understanding this insensitivity
to proxy information, as well as the nature of the tasks that
lead the r-weighted learner to perform much worse than the
classic learner, is a direction for future investigation.

5.2 GAUSSIAN PROCESS REGRESSION

We next demonstrate application of PROMPT in a Gaussian
Process (GP) regression setting with a composite kernel.
Additional details and results are given in Appendix C.3.

8This difference between the r-weighted and classic learners’
sensitivity to proxy information is largely accounted for by an effec-
tive difference in model structure; as we describe in Appendix C.2,
the r-weighted learner learns a model with a single intercept rather
than a separate linear effect for each study.

Data were generated according to the model

yi|xi ∼ GP (0,k(xi,x))

where k(xi,x) = RBFθ(xi,x)+RBFψi
(xi,x) and RBFl

is the radial basis function with lengthscale l.9 This setting
poses a risk of negative transfer because the shared and task
parameters act in combination to determine the smoothness
of the sampled functions (Sloman et al., 2024). We used the
same methods to generate proxy information and specify
the relevance function as for the linear regression example,
but varied the number of iterations used for refinement of
the relevance function. Figure 4 in Appendix C.3 shows how
IGR compares with IGc as a function of each of multiple
simulation parameters. In all cases, the r-weighted learner
tends to identify the value of the shared parameter as well
as, and usually more successfully than, the classic learner.

Robustness to noisy proxy information: Figure 4f in Ap-
pendix C.3 shows how IGR compares with IGc as a func-
tion of the amount of proxy contamination. In line with our
result in Proposition 4.5, the r-weighted learner outperforms
the classic Bayesian learner even in the presence of sub-
stantial proxy contamination (although their advantage is
greatest in the absence of proxy contamination).

6 DISCUSSION

We presented a Bayesian perspective on negative transfer,
from which we showed that negative transfer can arise from
misspecified prior source information. Based on this insight,
we developed PROMPT, a novel framework for Bayesian
transfer learning which alleviates the learner’s dependence
on prior source information. The framework of PROMPT
can accommodate a variety of relevance functions and forms
of proxy information. PROMPT’s provable advantage de-
pends on the fidelity of the specified relevance function. In
Section 5, we provided concrete examples of possible rel-
evance functions and demonstrated PROMPT’s robustness
to noisy and misleading proxies in a variety of settings. We
found that in practice we were able to specify relevance func-
tions of sufficiently high fidelity to reduce negative transfer.
Ultimately, however, there may exist situations where such
a relevance function is unavailable (for example, if θ and ψ
interact such that the direction of the gradient of predictions
with respect to ψ depends on θ). As Table 1 shows, in such
cases, the practitioner must make a choice about whether
they can more confidently specify the prior over source task
parameters or the relevance function. The development of a
more systematic framework for defining the relevance func-
tion is a promising avenue for future work. Many transfer
learning applications leverage high-dimensional, non-linear
datasets (Suder et al., 2023) and future work should in par-
ticular look to the development of a scalable framework for
applying and evaluating PROMPT in such contexts.

9The kernel was renormalized to have an amplitude of 1.
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The appendix is organized as follows:

• In Appendix A, we discuss related works in more detail.

• In Appendix B, we provide proofs of all our mathematical results.

• In Appendix C, we provide further details of the examples described in Section 5. Appendix C.3 additionally provides
the results of the GP regression example.

A RELATED WORK

Likelihood weighting has been applied for purposes that include potential model misspecification (Grünwald, 2011;
Miller and Dunson, 2019; Dewaskar et al., 2025), potential conflation of transferable and task-specific effects (Ibrahim and
Chen, 2000; Ibrahim et al., 2011, 2014; Suder et al., 2023), model selection (Ibrahim et al., 2014), and increased efficiency
of MCMC samplers (Schuster and Klebanov, 2021).

Probabilistic meta-learning (Gordon et al., 2019) is a paradigm in which a meta-learner simultaneously learns a
transferable parameter value and a distribution over task parameter values. Unlike PROMPT, this framework assumes the
data sources are known in the sense that each data point can be indexed by its task. This distinction also sets us apart from
other Bayesian meta-learning approaches (Grant et al., 2018; Yoon et al., 2018; Patacchiola et al., 2020). Moreover, the aim
of probabilistic meta-learning is to learn a distribution over task parameters. When the target task will arise from the same
distribution as the source tasks, probabilistic meta-learning facilitates good performance on average across tasks. However,
the goal of PROMPT is to provide a posterior predictive distribution tailored to a target task that may not arise from the
same distribution as the source tasks.

Using domain similarity for domain adaptation. Many existing theoretical bounds for domain adaptation rely on the
similarity between source and target tasks (Redko et al., 2019). Some approaches to domain adaptation use similarity
of covariates (inputs) in the target and source tasks to weight source data during training (Plank and van Noord, 2011;
Ponomareva and Thelwall, 2012; Remus, 2012; Ruder and Plank, 2017) or importance sampling techniques (Quiñonero-
Candela et al., 2009). While this can be effective in cases of pure covariate shift (a change in the distribution of inputs),
our formulation allows for differences in the map between covariates and outcomes that cannot be detected on the basis of
covariate information alone.

Proximal causal learning is a paradigm that uses proxy information to learn causal effects (Kuroki and Pearl, 2014;
Tchetgen et al., 2024; Alabdulmohsin et al., 2023; Tsai et al., 2024). Our setting is similar to the multi-domain adaptation
setting of Tsai et al. (2024). We differ in that (i) we assume data sources are unknown, while they assume data can be
indexed by its task, and (ii) we assume the presence of both shared and task parameters, while they do not distinguish

*Work done while at Inserm Bordeaux Population Health, Vaccine Research Institute, Université de Bordeaux, Inria Bordeaux
Sud-ouest, France.
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between these. While our method for estimating the task parameter also leverages proxy methods, we differ in our usage of
reweighting methods to estimate the shared parameter, which facilitates robust estimation without requiring additional proxy
information.

As shown in Figure 1, our formulation is stated in terms of the dependencies between shared parameters, task parameters,
and observations, and so our work shares conceptual connections with the more general paradigm of causal inference. For
instance, conceptualizing r-weighting as a pseudo-intervention requires conceptualizing the task parameters as a cause of
the observations. We do not however require that either the shared or task parameters parameterize the causal effect of one
observable variable on another; these parameters can represent any unobservable factor influencing the data.

Human-in-the-loop learning. In many applications, domain experts are a viable source of proxy information, and so
our work can be tied to human-in-the-loop machine learning (Wu et al., 2022). Like us, some human-in-the-loop methods
leverage expert feedback in a Bayesian framework. For example, Nahal et al. (2024) use expert feedback for learning in
out-of-distribution settings, while Sundin et al. (2018) query experts about the relevance of a given feature for outcome
prediction.

B MATHEMATICAL DETAILS

B.1 DEFINITIONS

• H(P ) is the entropy of distribution P with density p:

H(P ) = − E
x∼P

[log (p(x))]

• H(P || Q) is the cross-entropy from distribution P to distribution Q with density q:

H(P || Q) = − E
x∼P

[log (q(x))]

• DKL (P || Q) is the Kullback-Leibler divergence from distribution P with density p, to distribution Q with density q:

DKL (P || Q) = E
x∼P

[
log

p(x)

q(x)

]
B.2 PROOF OF THEOREM 2.4

The information gain achieved by the classic Bayesian learner (Definition 2.1) can be written as:

IGc (θ⋆) = E
d∼PD⋆

[
log

(
p(θ⋆|d)
p(θ⋆)

)]

= E
d∼PD⋆

log
 L(d,θ⋆) p(θ⋆)

Eθ∼PΘ
[L(d,θ)]

p (θ⋆)


= E

d∼PD⋆

[
log

(
L (d,θ⋆)

Eθ∼PΘ
[L (d,θ)]

)]
The proof follows the proof of Proposition 4.1 and Theorem 4.5 of Sloman et al. (2024). It depends on the following
definitions:

Definition B.1 (ϵ-neighborhood of θ Nϵ (θ) (Definition 4.2 of Sloman et al. 2024)). Nϵ (θ) ≡ {θ′ ∈ T | d(θ,θ′) < ϵ},
where d is a suitable distance measure, is the ϵ-neighborhood of θ.

Definition B.2 (PA
Θ (modification of Definition 4.3 of Sloman et al. 2024)). PA

Θ refers to the distribution of Θ obtained by
restricting the support of the learner’s prior to the set A , under which

pA (θ) ≡ p(θ)∫
A p(θ) dθ

for any θ ∈ A .



Assumption B.3 (Smoothness in parameter space (Assumption 4.4 of Sloman et al. (2024))). There exists some ϵ > 0 such
that

E
d∼PD⋆

[
log

(
E

θ∼PΘ

[L(d,θ)]

)]
≥ E

d∼PD⋆

[(∫
Nϵ(θ⋆)

p(θ) dθ

)
log (L(d,θ⋆)) +

(∫
T \Nϵ(θ⋆)

p(θ) dθ

)
log

(
E

θ∼P
T \Nϵ(θ⋆)
Θ

[L(d,θ)]

)]

where
(∫

Nϵ(θ⋆)
p(θ) dθ

)
and

(∫
T \Nϵ(θ⋆)

p(θ) dθ
)

are the probability that a value θ is inside and outside the ϵ-

neighborhood of θ⋆, respectively.

Remark B.4. Assumption B.3 holds when Θ is a discrete random variable (in which case the ϵ-neighborhood of θ⋆ can
be defined as {θ⋆} and to exclude all other parameter values). When Θ is a continuous random variable, Assumption B.3
is essentially a smoothness condition: For likelihoods that are sufficiently smooth around θ⋆, we can expect it to hold for
ϵ→ 0. To see this, notice that Jensen’s inequality implies that

E
d∼PD⋆

[
log

(
E

θ∼PΘ

[L(d,θ)]

)]
≥ E

d∼PD⋆

[(∫
Nϵ(θ⋆)

p(θ) dθ

)
log

(
E

θ∼P
Nϵ(θ⋆)
Θ

[L(d,θ)]

)
+

(∫
T \Nϵ(θ⋆)

p(θ) dθ

)
log

(
E

θ∼P
T \Nϵ(θ⋆)
Θ

[L(d,θ)]

)]
.

Assumption B.3 holds when Eθ∼P
Nϵ(θ⋆)
Θ

[p(d|θ)] ≈ p(d|θ⋆) and the approximation is tight enough that it does not close the
Jensen gap.

Taking PD|θ∈T \Nϵ(θ⋆) to be the source data distribution conditioned on the event that the shared parameter is not in the
ϵ-neighborhood of θ⋆, we obtain

IGc (θ⋆) = E
d∼PD⋆

[
log (L (d,θ⋆))− log

(
E

θ∼PΘ

[L (d,θ)]

)]
≤ Ed∼PD⋆

[
log (L(d,θ⋆))−

(∫
Nϵ(θ⋆)

p(θ) dθ

)
log (L(d,θ⋆))−(∫

T \Nϵ(θ⋆)

p(θ) dθ

)
log

(
E

θ∼P
T \Nϵ(θ⋆)
Θ

[L(d,θ)]

)]
(Assumption B.3)

= E
d∼PD⋆

[(∫
T \Nϵ(θ⋆)

p(θ) dθ

)(
log (L(d,θ⋆))− log

(
E

θ∼P
T \Nϵ(θ⋆)
Θ

[L(d,θ)]

))]

=

(∫
T \Nϵ(θ⋆)

p(θ) dθ

)(
H
(
PD⋆ || PD|θ∈T \Nϵ(θ⋆)

)
−H

(
PD⋆ || PD|θ⋆

))
=

(∫
T \Nϵ(θ⋆)

p(θ) dθ

)(
H(PD⋆) + DKL

(
PD⋆ || PD|θ∈T \Nϵ(θ⋆)

)
−H(PD⋆)−DKL

(
PD⋆ || PD|θ⋆

))
=

(∫
T \Nϵ(θ⋆)

p(θ) dθ

)(
DKL

(
PD⋆ || PD|θ∈T \Nϵ(θ⋆)

)
−DKL

(
PD⋆ || PD|θ⋆

))
(8)

as stated in the theorem for A =
(∫

T \Nϵ(θ⋆)
p(θ) dθ

)
and B = DKL

(
PD⋆ || PD|θ∈T \Nϵ(θ⋆)

)
.



B.3 PROOF OF THEOREM 4.4

The r-weighted information gain (Definition 4.1) can be written as:

IGR (θ⋆) = E
d,z∼PD⋆,Z

[
log

(
pR(θ⋆|d, z)

p(θ⋆)

)]

= E
d,z∼PD⋆,Z

log


Eψn+1∼PΨn+1|z [L
R(d,θ⋆,ψ=ψn+1)] p(θ⋆)

Eθ,ψ′
n+1

∼PΘ,Ψn+1
[LR(d,θ,ψ=ψ′

n+1)]

p (θ⋆)




= E
d,z∼PD⋆,Z

[
log

(
Eψn+1∼PΨn+1|z

[
LR (d,θ⋆,ψ = ψn+1

)]
Eθ,ψ′

n+1∼PΘ,Ψn+1

[
LR

(
d,θ,ψ = ψ′

n+1

)])] (9)

Remark B.5. Notice that IGR (θ⋆) is defined as an expectation over PZ as well as PD⋆ . This, and all other quantities
in our analysis which include expectations over Z, can be interpreted as marginalizing across the learner’s subjective
uncertainty about the proxy information they will receive. We could have defined IGR (θ⋆) as an expectation across a “true”
distribution of proxy information, with a corresponding interpretation as the extent to which the learner can expect to gain
information upon encountering a given distribution generating both source data and proxy information. Although such an
extension of the current analysis would in some sense be technically more complete, we opt to simplify our analysis and
define the expectation over proxy information with respect to the learner’s subjective uncertainty. Both the learner using a
classic likelihood and the learner using an r-weighted likelihood use the same prior over Z in estimation of ψ⋆

n+1, and so
the incorrectness of the prior over proxy information is less important than the incorrectness of the prior over source task
parameters in understanding the relative advantage of r-weighting.

The proof of Theorem 4.4 uses the following lemma:

Lemma B.6. Define J
(
log ;PΨn+1|z

)
≡ log

(
Eψn+1∼PΨn+1|z

[
LR (d,θ⋆,ψ = ψn+1

)])
−

Eψn+1∼PΨn+1|z

[
log
(
LR (d,θ⋆,ψ = ψn+1

))]
andJ

(
log ;PΨn+1

)
≡ log

(
Eθ,ψn+1∼PΘ,Ψn+1

[
LR (d,θ,ψ = ψn+1

)])
−

Eψn+1∼PΨn+1

[
log
(
Eθ∼PΘ

[
LR (d,θ,ψ = ψn+1

)])]
. Under Assumption 4.3 and Assumption B.8 (stated formally in the

proof of the lemma), Ed∼PD⋆

[
J
(
log ;PΨn+1

)]
≥ Ed,z∼PD⋆,Z

[
J
(
log ;PΨn+1|z

)]
.

Proof of Lemma B.6. The lemma leverages a result known as Hölder’s defect (Steele, 2004; Becker, 2012):

Theorem B.7 (Hölder’s defect (restated from Steele 20041) ). If f : [a, b]→ R is twice differentiable and if we have the
bounds

0 ≤ m ≤ f ′′(x) ≤M for all x ∈ [a, b] ,

then for a distribution P over [a, b], there exists a real value µ ∈ [m,M ] for which one has the formula

E
x∼P

[f(x)]− f

(
E

x∼P
[x]

)
︸ ︷︷ ︸

J (−f ;P )

=
1

2
µVarx∼P [x]

for Varx∼P [x] ≡ Ex∼P

[
(x− Ex∼P [x])

2
]
.

Our goal is to use Hölder’s defect to relate J
(
log ;PΨn+1|z

)
and J

(
log ;PΨn+1

)
to

Varψn+1∼PΨn+1|z

[
LR (d,θ⋆,ψ = ψn+1

)]
and Varψn+1∼PΨn+1

[
Eθ∼PΘ

[
LR (d,θ,ψ = ψn+1

)]]
, respectively.

We first verify that the conditions required for Hölder’s defect formula to apply are met. For both applications of the result,
f is the negative of the log function. In application to J

(
log ;PΨn+1|z

)
, f takes as input values of LR (d,θ⋆,ψ = ψn+1

)
.

In application to J
(
log ;PΨn+1

)
, f takes as input values of Eθ∼PΘ

[
LR (d,θ,ψ = ψn+1

)]
.

1Steele (2004) states the result in terms of discrete sums; we here modified the statement of the result so it can be interpreted for
continuous random variables.



• f : [a, b]→ R: Assumption 4.3 ensures that inputs in both cases are bounded from both below and above.

• f is twice differentiable: The second derivative of f evaluated at x is f ′′(x) = 1
x2 .

• 0 ≤ m ≤ f ′′(x) ≤M : Assumption 4.3 ensures this for m = 1
b2 and M = 1

a2 .

Hölder’s defect then implies the following:

J
(
log ;PΨn+1|z

)
=

1

2
µ1 (d, z)Varψn+1∼PΨn+1|z

[
LR (d,θ⋆,ψ = ψn+1

)]
(10)

for a scalar µ1 that depends on d and z, and

J
(
log ;PΨn+1

)
=

1

2
µ2 (d)Varψn+1∼PΨn+1

[
E

θ∼PΘ

[
LR (d,θ,ψ = ψn+1

)]]
(11)

for a scalar µ2 that depends on d.

We can now formally state Assumption B.8:

Assumption B.8 (Sufficiently informative proxy). The proxy is sufficiently informative in the sense that the following
condition holds on the relative variances of Ψn+1|z and Ψn+1:

E
d∼PD⋆

[
µ2 (d)Varψn+1∼PΨn+1

[
E

θ∼PΘ

[
LR (d,θ,ψ = ψn+1

)]]]
≥

E
d,z∼PD⋆,Z

[
µ1 (d, z)Varψn+1∼PΨn+1|z

[
LR (d,θ⋆,ψ = ψn+1

)]]
.

Direct substitution of the condition in Assumption B.8 into Equations (10) and (11) completes the proof.

In addition to Lemma B.6, the proof of Theorem 4.4 uses the following assumption, which is a variant of Assumption B.3
for the r-weighted case:

Assumption B.9 (Smoothness in parameter space). There exists some ϵ > 0 such that

E
d,ψn+1∼PD⋆,Ψn+1

[
log

(
E

θ∼PΘ

[
LR(d,θ,ψ = ψn+1)

])]
≥

Ed,ψn+1∼PD⋆,Ψn+1

[(∫
Nϵ(θ⋆)

p(θ) dθ

)
log
(
LR(d,θ⋆,ψ = ψn+1)

)
+

(∫
T \Nϵ(θ⋆)

p(θ) dθ

)
log

(
E

θ∼P
T \Nϵ(θ⋆)
Θ

[
LR(d,θ,ψ = ψn+1)

])]

where
(∫

Nϵ(θ⋆)
p(θ) dθ

)
and

(∫
T \Nϵ(θ⋆)

p(θ) dθ
)

are the probability that a value θ is inside and outside the ϵ-

neighborhood of θ⋆, respectively.

Remark B.10. In addition to the smoothness condition on the likelihood imposed by Assumption B.3, Assumption B.9
additionally imposes what is essentially a ceiling on the outputs of the relevance function. Weights < 1 “flatten”, or smooth
out, the likelihood function; weights > 1 “sharpen” it, and may cause violation of Assumption B.9 even in cases where
Assumption B.3 is met. The relevance functions used in our examples (Section 5) output weights ≤ 1.

We obtain

IGR (θ⋆) = E
d,z∼PD⋆,Z

[
log

(
Eψn+1∼PΨn+1|z

[
LR (d,θ⋆,ψ = ψn+1

)]
Eθ,ψ′

n+1∼PΘ,Ψn+1

[
LR

(
d,θ,ψ′

n+1

)] )]

(Lemma B.6) ≤ E
d,z∼PD⋆,Z

[
E

ψn+1∼PΨn+1|z

[
log
(
LR (d,θ⋆,ψ = ψn+1

))]]



− E
d∼PD⋆

[
E

ψn+1∼PΨn+1

[
log

(
E

θ∼PΘ

[
LR (d,θ,ψ = ψn+1

)])]]

= E
d∼PD⋆

[
E

ψn+1∼PΨn+1

[
log
(
LR (d,θ⋆,ψ = ψn+1

))]]

− E
d∼PD⋆

[
E

ψn+1∼PΨn+1

[
log

(
E

θ∼PΘ

[
LR (d,θ,ψ = ψn+1

)])]]

= E
d,ψn+1∼PD⋆,Ψn+1

[
log
(
LR (d,θ⋆,ψ = ψn+1

))
− log

(
E

θ∼PΘ

[
LR (d,θ,ψ = ψn+1

)])]

(Assumption B.9) ≤Ed,ψn+1∼PD⋆,Ψn+1

[
log
(
LR (d,θ⋆,ψ = ψn+1

))
−

(∫
Nϵ(θ⋆)

p(θ) dθ

)
log
(
LR(d,θ⋆,ψ = ψn+1)

)
−(∫

T \Nϵ(θ⋆)

p(θ) dθ

)
log

(
E

θ∼P
T \Nϵ(θ⋆)
Θ

[
LR(d,θ,ψ = ψn+1)

])]

=Eψn+1∼PΨn+1

[
Ed∼PD⋆

[(∫
T \Nϵ(θ⋆)

p(θ) dθ

)(
log
(
LR (d,θ⋆,ψ = ψn+1

))
− log

(
E

θ∼P
T \Nϵ(θ⋆)
Θ

[
LR(d,θ,ψ = ψn+1)

]))]]

=

(∫
T \Nϵ(θ⋆)

p(θ) dθ

)
Eψn+1∼PΨn+1

[
H
(
PD⋆ || PDR(ψn+1)|θ∈T \Nϵ(θ⋆),ψ=ψn+1

)
− H

(
PD⋆ || P

DR(ψn+1)|θ⋆,ψ=ψn+1

)]
=

(∫
T \Nϵ(θ⋆)

p(θ) dθ

)
Eψn+1∼PΨn+1

[
H(PD⋆) + DKL

(
PD⋆ || P

DR(ψn+1)|θ∈T \Nϵ(θ⋆),ψ=ψn+1

)
−H(PD⋆)−DKL

(
PD⋆ || PDR(ψn+1)|θ⋆,ψ=ψn+1

)]
=

(∫
T \Nϵ(θ⋆)

p(θ) dθ

)
Eψn+1∼PΨn+1

[
DKL

(
PD⋆ || PDR(ψn+1)|θ∈T \Nϵ(θ⋆),ψ=ψn+1

)
−DKL

(
PD⋆ || P

DR(ψn+1)|θ⋆,ψ=ψn+1

)]
(12)

as stated in the theorem for A =
(∫

T \Nϵ(θ⋆)
p(θ) dθ

)
and C = Eψn+1∼PΨn+1

[
DKL

(
PD⋆ || P

DR(ψn+1)|θ∈T \Nϵ(θ⋆),ψ=ψn+1

)]
.

B.4 PROOF OF PROPOSITION 5.5

The proof depends on the following definition:

Definition B.11 (Fidelity of the relevance function ρR). ρR is a measure of the fidelity of the relevance function. More
specifically, it is:

ρR ≡ Ed,ψn+1∼PD⋆,Ψn+1

[
1

n

n∑
i=1

(
Ri(ψn+1)−

1

n

n∑
i=1

Ri(ψn+1)

)
(
log
(
p
(
di|θ⋆,ψi = ψn+1

))
− 1

n

n∑
i=1

log
(
p
(
di|θ⋆,ψi = ψn+1

)))]
,



i.e., is the covariance ofRi(ψn+1) and log
(
p
(
di|θ⋆,ψi = ψn+1

))
with respect to a uniform distribution over the source

data, in expectation over PD⋆,Ψn+1 .

∆R can be rewritten as

∆R = E
ψn+1∼PΨn+1

[
E

d∼PD⋆

[
log

(
L (d,θ⋆,ψ⋆)

LR
(
d,θ⋆,ψ = ψn+1

))]]
= − E

d,ψn+1∼PD⋆,Ψn+1

[
log
(
LR (d,θ⋆,ψ = ψn+1

))]
−H(PD⋆)

= − E
d,ψn+1∼PD⋆,Ψn+1

[
n∑

i=1

Ri(ψn+1) log
(
p
(
di|θ⋆,ψi = ψn+1

))]
−H(PD⋆)

= E
d,ψn+1∼PD⋆,Ψn+1

[(
n∑

i=1

Ri(ψn+1)

)(
−

n∑
i=1

log
(
p
(
di|θ⋆,ψi = ψn+1

)))]
− nρR −H(PD⋆)

= E
d,ψn+1∼PD⋆,Ψn+1

[(
n∑

i=1

Ri(ψn+1)

)(
− log

(
p
(
d|θ⋆,ψ = ψn+1

)))]
− nρR −H(PD⋆) (Assumption 1.2)

as stated in the proposition for D = −H(PD⋆).

Remark B.12. As discussed in Section 3.2, in practice the learner can often specify a sufficiently high-fidelity relevance
function even in the absence of knowledge of θ⋆, i.e., a relevance function for which ρR is sufficiently large. An example
relevance function is given in Equation (7). However, this relevance function is not guaranteed to positively correlate with
p
(
di|θ⋆,ψi = ψn+1

)
. If the learner is particularly unlucky, this relevance function could have a negative corresponding

value of ρR, i.e., increase the relevance of source data points least likely under a particular pseudo-intervention. This may
occur if θ and ψ interact such that the direction of the gradient of predictions with respect to ψ depends on θ. For example,
consider a case in which for all except very few values of θ, outcomes increase as a function of ψ. In the context of our
motivating example of treatment effect estimation, this might correspond to a situation where hospital quality generally
increases the relative effectiveness of a treatment, unless the treatment effect is very extreme (in which case hospital quality
has a larger impact on the effect of a placebo). If the true treatment effect is in fact very extreme, the relevance function
shown in Equation (7) would likely negatively correlate with p

(
di|θ⋆,ψi = ψn+1

)
.

C DETAILS OF EXAMPLES

We here report the details of the examples described in Section 5. Appendix C.1 gives details of the linear regression
example, Appendix C.2 gives details of the example predicting smoking behavior, and Appendix C.3 gives details of the GP
regression example and results showing the relative performance of PROMPT as a function of the values of each of several
simulation parameters.

C.1 LINEAR REGRESSION

All simulations were run using only a CPU. In all simulations, the value of the shared parameter θ⋆ = −1. The prior
PΘ,Ψi = N

(
[0, 0]⊤,diag ([1, 1])

)
for all i ∈ 1 : n+ 1.

To generate source data, we first specified a particular level of multicollinearity ρ. A higher degree of multicollinearity
makes θ⋆ and ψ⋆

n+1 harder to separately identify, so we interpret this as a higher risk of negative transfer. We varied ρ
among 0 (no multicollinearity), 1 (mild multicollinearity), and 2 (extreme multicollinearity).

For a given value ρ we sampled values x′ ∼ N (ρ, .25), and then constructed values x(·,1) ∼ N (x′, .25) and values

x(·,2) ∼ N
(
−ρ2

x′ , .25
)

. We created 100 such data points. Twenty-five of these data points were used to create proxy
information (i.e., used to generate values zi as described below), and 75 were used as outcome information on the basis of
which to estimate the shared parameter.

In the simulations shown in Figure 2a, all proxy values are uncontaminated. In the simulations shown in Figure 2b, ρ = 2
always, i.e., all simulations are run in the presence of extreme multicollinearity.



Relevance function. We first computed the relevances as Ri(ψn+1) ∝ p
(
di|ψi = ψn+1

)
=

Eθ∼PΘ

[
p
(
di|θ,ψi = ψn+1

)]
where the constant of proportionality was the probability a distribution with the

same variance would assign to its mode. Using the calculated relevances, we computed PR
Θ,Ψn+1|d,z. We then

defined P̂R
Θ as a Gaussian approximation to samples from the r-weighted posterior PR

Θ|d,z, recomputed each
Ri(ψn+1) ∝ Eθ∼P̂R

Θ

[
p
(
di|θ,ψi = ψn+1

)]
, and recomputed the r-weighted posterior. In each simulation, we repeated

this three times before ultimately defining the relevance function as an expectation across the distribution P̂R
Θ obtained at

the final iteration.

Proxy information. When q% of proxy values are contaminated, 1 − q% of proxy values are generated as z ∼
Binomial

(
7, p̃(d′|ψ′ = ψ⋆

n+1)
)

where d′ are observations used to prompt the synthetic expert for feedback, ψ′ are
the corresponding task parameters, and p̃ indicates that the probability has been normalized to not exceed 1. The remaining
q% of proxy values are generated as z ∼ Binomial

(
7, 1− p̃(d′|ψ′ = ψ⋆

n+1)
)
.

C.2 PREDICTING SMOKING BEHAVIOR

All computations were run using only a CPU. The prior for all effects in both the classic and r-weighted models wasN (0, 3).

The classic Bayesian learner estimated the fixed effects model

yi|xi,θ,ψ ∼ Binomial
(
sigmoid

(
θx⊤

i,(1:4) +ψx
⊤
i,(5:28)

)
, Ni

)
where xi,(1:4) are indicators of the treatment received, xi,(5:28) are study indicators, and Ni is the number of patients who
received the indicated treatment in the indicated study. The classic learner’s estimate of the study indicator for the target task
conditioned on the proxy information, generated as described in the main text, and their estimate of (θ,ψ) used standard
Bayesian updating to condition on the source data.

The r-weighted Bayesian learner estimated the model

yi|xi,θ,ψn+1 ∼ Binomial
(
sigmoid

(
θx⊤

i,(1:4) +ψn+1

)
, Ni

)
The r-weighted learner’s estimate of

(
θ,ψn+1

)
used the following proxy-informed r-weighted likelihood of the 23 source

data points pR
(
d, z|θ,ψn+1

)
:

pR
(
d, z|θ,ψn+1

)
= LR (d,θ,ψ = ψn+1

)
p
(
z|ψn+1

)
= p

(
z|ψn+1

) n∏
i=1

p
(
yi|xi,θ,ψi = ψn+1

)Ri(ψn+1) .

Proxy information. To simulate proxy information, we sampled z ∼ N
(
ψ⋆

n+1, σ
)
+ 1noisyϵ where 1noisy indicates

whether proxy contamination is present and ϵ ∼ N (0, 3) is the bias added to contaminate the proxy information. Since
we do not know the true value ψ⋆

n+1, we approximated ψ⋆
n+1 by the mean of the corresponding fixed effect distribution

estimated in a model that incorporated data from all 24 studies.

When proxy information is weakly informative, σ = 3 and 1noisy = 0. When proxy information is highly informative,
σ = .1 and 1noisy = 0. When proxy information is misleading, σ = 3 and 1noisy = 1. The value of 1noisy is unknown to
the learner, who always models the proxy information as completely uncontaminated (i.e., as if 1noisy = 0).

C.3 GAUSSIAN PROCESS REGRESSION

Each simulation was run on a single Nvidia A100 GPU.2 The priors were PΘ = Lognormal (1, 1) and PΨi
=

Gamma (3, .8) for all i ∈ 1 : n+ 1.

2The set of simulations run under 36 sets of simulation parameters (.5% of all sets of simulation parameters) did not complete
successfully. For an additional 22 sets of simulation parameters (.3% of the total number of all sets of simulation parameters), all
simulations encountered runtime errors.
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Figure 4: Advantage of learning with an r-weighted likelihood in the GP regression setting as a function of the simulation
parameter indicated in the subfigure caption. Each box in the plot shows the interquartile region (boxes) and outliers (points),
across all values of all other simulation parameters, of the mean of IGR (θ⋆)− IGc (θ⋆) across 50 simulations.

For each simulation, we generated 80 trajectories drawn from a GP of the form given in the main text. From these 80
trajectories, trajectories 1 : mt were generated from the target task, where the amount of target information mt was a
variable simulation parameter (see below). Trajectories (mt + 1) : 80 were generated under a task parameter sampled at
random from the learner’s prior. Since these trajectories comprise most of the source data (see discussion of the effect of mt

below), the learner’s prior is in most cases relatively well-specified. In this sense, the results in Figure 4 are a somewhat
conservative test of PROMPT.

Trajectories 1 : ms were then used to create synthetic proxy information, while trajectories (80−ms) : 80 were used for
estimation of the target parameter (i.e., as source data), where the amount of source data ms was a variable simulation
parameter (see below). Proxy information was generated in the same way as for the linear regression example (see
Appendix C.1).

The relevance function was computed using the same method described in Appendix C.1, with the exception that the number
of iterations T used for refinement of the relevance function was a variable simulation parameter.

After observing that results were affected by the value of some simulation parameters, we varied these parameters across
simulations. We varied the following simulation parameters:

• Amount of source data ms: This parameter, which took values in {8, 16, 24, 32, 40}, controlled the number of
trajectories in the source data. A distinct set of the same number of trajectories was used to create synthetic proxy
information. Notice that the number of trajectories in the source data always equals the number of trajectories used to
create proxy information, i.e., when more source data is available more proxy information is also available.

• Covariate resolution: Trajectories were evaluated on a grid of evenly-spaced values x ranging from 0 to 1. This
parameter, which took values in {5, 10, 20, 30}, controlled the resolution and size of that grid.

• Number of iterations for refinement of the relevance function T : This parameter, which took values in {0, 1, 2, 3},



controlled the number of iterations used for refinement of the relevance function.

• Amount of target information mt: This parameter, which took values in {10, 20, 30, 40, 50, 60, 70}, controlled the
number of trajectories generated by the target task. Notice that observations from the target task are almost exclusively
used to create synthetic proxy information (the exception is when mt > 80 − ms, in which case the source data
contains mt +ms− 80 trajectories from the target task). This reflects that the learner uses proxy information instead of
direct observations from the target task (i.e., instead of fine-tuning in the target task). The amount of target information
mt to a certain extent admits a parallel interpretation as the number of trajectories a learner with both knowledge of the
data sources and the ability to fine-tune (neither of which are available to the learners in our setting) would have to
adapt to the target task, i.e., as the cost of operating in the setting of unknown data sources.

• Value of θ⋆: We set θ⋆ to either 1 (left tail of PΘ), e (mode of PΘ), or 6 (right tail of PΘ).

• Amount of proxy contamination: We generated and contaminated synthetic proxy information in the same way
as described for the linear regression example in Section 5.1. This parameter, which took values in {0, .25, .5, .75},
controlled the fraction of proxy values which were contaminated.

Figure 4 shows how the relative performance of PROMPT depends on the value of each of the simulation parameters listed
above.

Figure 4a shows that PROMPT’s advantage is more pronounced when more source data and proxy information are available.
In other words, when the source data is sparse, the classic learner performs on par with the r-weighted learner. We speculate
that this result reflects that in cases of source data sparsity both methods gain equally little information about θ⋆. Figure 4b
shows a similar effect of the informativeness of the source data: PROMPT’s advantage is more pronounced for higher
covariate resolutions. When the covariate resolution is low, the covariates are relatively far apart and so all observations will
be relatively uncorrelated regardless of the value of the shared and task parameters. In these cases, observations provide
little information about the smoothness of the underlying function. Like in cases of source data sparsity, we speculate that
this result reflects that in cases of disparate observations both methods gain equally little information about θ⋆.

Figure 4e shows that PROMPT’s advantage is more pronounced for smaller values of θ⋆. This may be because of the effect
of the value of θ⋆ on the threat of negative transfer: Values of ψ⋆

i tend to be large (the distribution from which source task
parameters are drawn is right-skewed), and the learner partially attributes the effect of a larger bandwidth in the task-specific
component of the kernel to the shared component of the kernel. When the bandwidth of the shared component of the kernel
is small, the result is negative transfer. In this sense, Figure 4e corroborates the result shown in Figure 2a that r-weighting is
especially effective in the presence of the threat of negative transfer.
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