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Figure 1: (a) Illustration of personalization, demonstrating how text-to-image (T2I) diffu-
sion models can learn and reproduce a visual concept from given references. (b) Illustration of
component-controllable personalization, depicting a newly formulated task that aims to modify
a specific component of a visual concept during the personalization process. (c) Example images
generated by the proposed MagicTailor, showcasing the effectiveness of MagicTailor, a novel
framework that adapts T2I diffusion models for component-controllable personalization, enabling
the generation of text-aligned, visually-coherent, and high-quality images. For clarity, the red and
blue circles are used to highlight the target concept and component, respectively.

ABSTRACT

Recent advancements in text-to-image (T2I) diffusion models have enabled the
creation of high-quality images from text prompts, but they still struggle to gener-
ate images with precise control over specific visual concepts. Existing approaches
can replicate a given concept by learning from reference images, yet they lack
the flexibility for fine-grained customization of the individual component within
the concept. In this paper, we introduce component-controllable personaliza-
tion, a novel task that pushes the boundaries of T2I models by allowing users to
reconfigure and personalize specific components of concepts. This task is par-
ticularly challenging due to two primary obstacles: semantic pollution, where
unwanted visual elements corrupt the personalized concept, and semantic imbal-
ance, which causes disproportionate learning of visual semantics. To overcome
these challenges, we design MagicTailor, an innovative framework that leverages
Dynamic Masked Degradation (DM-Deg) to dynamically perturb undesired visual
semantics and Dual-Stream Balancing (DS-Bal) to establish a balanced learning
paradigm for visual semantics. Extensive comparisons, ablations, and analyses
demonstrate that MagicTailor not only excels in this challenging task but also
holds significant promise for practical applications, paving the way for more nu-
anced and creative image generation. Our code will be released.
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1 INTRODUCTION

Text-to-image (T2I) diffusion models (Rombach et al., 2022; Saharia et al., 2022; Ramesh et al.,
2022; Chen et al., 2023) demonstrate remarkable capabilities in generating high-quality visual con-
tent from textual descriptions. These models are able to create images that closely match the pro-
vided prompts. But when certain visual concepts are difficult to articulate through natural language,
they may face difficulties in accurately incorporating such elements into the generated images. To
address this limitation, some approaches (Gal et al., 2022; Ruiz et al., 2023) enable T2I models
to learn specific concepts from a few reference images, thus allowing for more faithful integration
of these concepts into the generated images. This process, illustrated in Figure 1(a), is referred as
personalization. However, existing personalization methods are limited to replicating predefined
concepts and lack the capability to offer flexible, fine-grained control over these elements. This
constraint significantly limits their practical applicability in real-world scenarios. A concept often
comprises multiple components, such as a house consisting of walls, windows, and doors. There-
fore, a more sophisticated challenge in personalization is determining how to effectively control and
manipulate these individual components during the personalization process.

This paper introduces a new task, component-controllable personalization, which aims to recon-
figure the elements of a personalized concept using additional visual references (see Figure 1(b)).
In this task, a T2I model is fine-tuned with reference images and corresponding category labels,
allowing it to learn and generate the desired concept along with its specified component. Achieving
this capability would not only enable users to refine and customize concepts with precise control but
also foster innovation and creativity, paving the way for novel ideas, inventions, and artworks across
various creative domains.

A straightforward approach to this task is to treat each component as a separate concept and use
existing personalization methods to combine multiple concepts with suitable text prompts. How-
ever, this naive strategy falls short in component-controllable personalization due to the inherent
complexity of handling visual semantics during learning. One of the key challenges in this task
is semantic pollution (see Figure 2(a)), where undesired visual semantics inadvertently appear in
generated images, thereby polluting the personalized concept. This occurs because the T2I model
tends to blend visual semantics from different regions during the learning process. Simply masking
out unwanted visual elements in reference images is not a viable solution, as it disrupts the over-
all visual context and leads to unintended compositions. Another significant challenge is semantic
imbalance (see Figure 2(b)), which causes the T2I model to focus disproportionately on certain as-
pects, resulting in unfaithful personalization. This issue arises from the semantic disparity between
the concept and its components, highlighting the need for an effective learning paradigm to better
manage concept-level (e.g., person) and component-level (e.g., hair) visual semantics.

To address these challenges, we present MagicTailor, a novel framework that enables component-
controllable personalization for T2I models (see Figure 1(c)). As shown in Figure 3, we first employ
a text-guided image segmenter to generate segmentation masks for both the concept and its com-
ponents. Then, we introduce a technique called Dynamic Masked Degradation (DM-Deg), which
transforms the original reference images into randomly degraded versions, dynamically perturbing
undesired visual semantics. This approach helps suppress the model’s sensitivity to irrelevant visual
details while preserving the overall visual context, thereby effectively mitigating semantic pollu-
tion. Next, we initiate a warm-up phase for the T2I model by jointly training it on these degraded
images, using a masked diffusion loss to focus on the desired visual semantics and an attention
loss to strengthen the correlation between these semantics and pseudo-words. To tackle the is-
sue of semantic imbalance, we employ Dual-Stream Balancing (DS-Bal), a dual-stream learning
paradigm designed for balancing the learning of visual semantics, to launch the second phase. In
this paradigm, the online denoising U-Net performs sample-wise min-max optimization, while the
momentum denoising U-Net applies selective preserving regularization. This balanced approach
ensures more faithful and accurate personalization of the target concept and component.

We validate the effectiveness of MagicTailor through comprehensive qualitative and quantitative
experiments, demonstrating that it can achieve state-of-the-art (SOTA) performance in component-
controllable personalization. Detailed ablation studies further confirm the impact of the key tech-
niques integrated into MagicTailor. Additionally, we showcase its potential to enable a variety of
further applications. In summary, the main contributions of this work are as follows:
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Figure 2: Major challenges in component-controllable personalization. (a) Semantic pollu-
tion: (i) Undesired visual elements may inadvertently disturb the personalized concept. (ii) A sim-
ple mask-out strategy is ineffective and causes unintended compositions, whereas (iii) our DM-Deg
effectively suppresses unwanted visual semantics, preventing such pollution. (b) Semantic imbal-
ance: (i) Simultaneously learning the concept and component can lead to imbalance, resulting in
unfaithful personalization or component disappearance (here we present a case for the former). (ii)
Our DS-Bal ensures balanced learning, enhancing personalization performance.

• We introduce a new task called component-controllable personalization for T2I models, enabling
precise control over the individual components of concepts during personalization. Moreover,
semantic pollution and semantic imbalance are identified as key challenges in this task.

• We propose MagicTailor, a novel framework specifically designed for component-controllable
personalization. This framework incorporates Dynamic Masked Degradation (DM-Deg) to dy-
namically perturb undesired visual semantics, and Dual-Stream Balancing (DS-Bal) to ensure
balanced learning of visual semantics.

• Comprehensive comparisons demonstrate that MagicTailor achieves superior performance in this
task. Additionally, ablation studies and further applications highlight the effectiveness and versa-
tility of the proposed method.

2 RELATED WORKS

Text-to-Image Generation. Text-to-image (T2I) generation has made remarkable advancements in
recent years, enabling the synthesis of vivid and diverse imagery based on textual descriptions. Early
methods employed Generative Adversarial Networks (GANs) (Reed et al., 2016; Xu et al., 2018;
Qiao et al., 2019; Zhu et al., 2019), and auto-regressive transformers (Ding et al., 2021; Ramesh
et al., 2021; Ding et al., 2022; Yu et al., 2022) began to show the potential in conditioned image gen-
eration. More recently, the advent of diffusion models has ushered in a new era in T2I generation (Li
et al., 2024; Saharia et al., 2022; Ramesh et al., 2022; Chen et al., 2023; Xue et al., 2024). Leveraging
these models, a range of related applications has rapidly emerged, including image editing (Li et al.,
2024; Mou et al., 2024; Huang et al., 2024), image completion and translation (Xie et al., 2023b;a;
Lin et al., 2024), and controllable generation (Zhang et al., 2023; Wang et al., 2024b; Zheng et al.,
2023). Despite advancements in T2I diffusion models, generating images that accurately capture
specific, user-defined concepts remains challenging. This study explores component-controllable
personalization, enabling precise adjustment of concept’s components through visual references.

Personalization. Personalization seeks to adapt T2I models to generate specific concepts using ref-
erence images. Initial approaches such as textual inversion (Gal et al., 2022) and DreamBooth (Ruiz
et al., 2023) addressed this task by either optimizing a text embedding or fine-tuning the entire T2I
model. Additionally, low-rank adaptation (LoRA) (Hu et al., 2021) has been widely adopted by the
research community for personalization (Ryu, 2022), offering an efficient and lightweight solution.
The scope of personalization has further expanded to accommodate multiple concepts (Kumari et al.,
2023; Avrahami et al., 2023; Liu et al., 2023; Gu et al., 2024; Han et al., 2023; Gu et al., 2024). Be-
sides, a growing body of works has explored tuning-free approaches to personalization (Xiao et al.,
2023; Li et al., 2023; Shi et al., 2023; Wei et al., 2023; Wang et al., 2024a). However, these meth-
ods often rely on training an encoder with extensive domain-specific image datasets. There is also
a category of works studying training-free schemes (Jeong et al., 2024; Zhang et al., 2024), but
they generally suffer from inferior performance and tortuous inference processes. In light of that,
Our MagicTailor goes with a widely-adopted paradigm of test-time optimization to achieve stable
performance and precise control over the concept during personalization.
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Figure 3: Pipeline Overview of MagicTailor. Using reference images as the inputs, MagicTailor
fine-tunes a T2I diffusion model to learn both the target concept and component, enabling the gen-
eration of images that seamlessly integrate the component into the concept. Two key techniques,
Dynamic Masked Degradation (DM-Deg, see Section 3.2) and Dual-Stream Balancing (DS-Bal, see
Section 3.3), address the challenges of semantic pollution and semantic imbalance, respectively. For
clarity, only one image per concept/component is presented and the warm-up stage is not depicted.

3 METHODOLOGY

Let I = {({Ink}Kk=1, cn)}Nn=1 represents a concept-component pair with N samples of concepts
and components, where each sample contains K reference images {Ink}Kk=1 with a category label
cn. In this work, we focus on handling one concept and one component to make the task setting
more practical. Specifically, we set N = 2 and define the first sample as a concept (e.g., dog) while
the second one as a component (e.g., ear). In addition, these samples are associated with the pseudo-
words P = {pn}Nn=1 serving as their text identifiers. The objective of component-controllable
personalization is to fine-tune a text-to-image (T2I) model to accurately learn both the concept and
component from I. Using text prompts with P , the fine-tuned model is expected to generate images
that contain the personalized concept integrated with specified components.

In this section, we begin by providing an overview of the MagicTailor pipeline (refer to Section 3.1).
Following this, we delve into its two core techniques: Dynamic Masked Degradation (DM-Deg, see
Section 3.2) and Dual-Stream Balancing (DS-Bal, see Section 3.3).

3.1 OVERALL PIPELINE

The overall pipeline of MagicTailor is illustrated in Figure 3. The process begins with identifying
the desired concept or component within each reference image Ink, employing an off-the-shelf text-
guided image segmenter to generate a segmentation mask Mnk based on Ink and its associated
category label cn. Conditioned on Mnk, we introduce Dynamic Masked Degradation (DM-Deg) to
perturb undesired visual semantics within Ink, addressing semantic pollution. At each training step,
DM-Deg transforms Ink into a randomly degraded image Înk, with the degradation intensity being
dynamically regulated. Subsequently, these degraded images, along with structured text prompts, are
used to fine-tune a T2I diffusion model to facilitate concept and component learning. The model is
formally expressed as {ϵθ, τθ, E ,D}, where ϵθ represents the denoising U-Net, τθ is the text encoder,
and E and D denote the image encoder and decoder, respectively. To promote the learning of the
desired visual semantics, we employ the masked diffusion loss, which is defined as

Ldiff = En,k,ϵ,t

[∥∥ϵ⊙M ′
nk − ϵθ(z

(t)
nk , t, en)⊙M ′

nk

∥∥2
2

]
, (1)

where ϵ ∼ N (0, 1) is the unscaled noise, z(t)nk is the noisy latent image of Înk with a random time
step t, en is the text embedding of the corresponding text prompt, and M ′

nk is downsampled from
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Mnk to match the shape of ϵ and znk. Additionally, we also incorporate the cross-attention loss to
strengthen the correlation between desired visual semantics and their corresponding pseudo-words,
formulated as

Lattn = En,k,t

[∥∥Aθ(pn, z
(t)
nk)−M ′′

nk

∥∥2
2

]
, (2)

when Aθ(pn, z
(t)
nk) is the cross-attention maps between the pseudo-word pn and the noisy latent

image z
(t)
nk and M ′′

nk is downsampled from Mnk to match the shape of Aθ(pn, z
(t)
nk). Using Ldiff and

Lattn, we first warm up the T2I model by jointly learning all samples, aiming to preliminarily inject
the knowledge of visual semantics into it. The loss of the warm-up stage is defined as

Lwarm-up = Ldiff + λattnLattn, (3)

where λattn = 0.01 is the loss weight for Lattn. For efficient fine-tuning, we only train the denois-
ing U-Net ϵθ in a low-rank adaptation (LoRA) (Hu et al., 2021) manner and the text embedding
of the pseudo-words P , keeping the others frozen. Thereafter, we employ Dual-Stream Balanc-
ing (DS-Bal) to establish a dual-stream learning paradigm to address the challenge called semantic
imbalance. In this paradigm, the online denoising U-Net ϵθ conducts sample-wise min-max opti-
mization for the hardest-to-learn sample, and meanwhile the momentum denoising U-Net ϵ̃θ applies
selective preserving regularization for the other sample.

3.2 DYNAMIC MASKED DEGRADATION

In this task, one of the major challenges is semantic pollution, where undesired visual semantics
could be perceived by the T2I model and thus “pollute” the personalized concept. As shown in
Figure 2(a.i), the target concept (i.e., person) could be severely disturbed by the owner of the target
component (i.e., eye), resulting in a hybrid person. Unfortunately, directly masking out the regions
other than the target concept and component would damage the overall visual context, thus leading to
overfitting and weird compositions in Figure 2(a.ii). In light of that, the undesired visual semantics of
reference images should be processed properly. Hence, we propose Dynamic Masked Degradation
(DM-Deg) to dynamically perturb undesired visual semantics (see Figure 3), aiming at suppressing
the T2I model’s perception for them while maintaining overall visual contexts (see Figure 2(a.iii)).

Degradation Imposition. In each training step, DM-Deg imposes degradation in the regions outside
segmentation masks for each reference image. There are various types of degradation that can be
adopted to perturb the visual semantics of an image, such as noise, blur, and geometric distortions,
but not all of them are easy to use and compatible with mask operations. In DM-Deg, we choose
to employ Gaussian noise due to its simplicity. For a reference image Ink, we randomly sample a
Gaussian noise matrix Gnk ∼ N (0, 1) with the same shape as Ink. Then, with the corresponding
segmentation mask Mnk, the imposition of degradation is conducted as

Înk = αdGnk ⊙ (1−Mnk) + Ink, (4)

where ⊙ indicates element-wise multiplication and αd ∈ [0, 1] is a dynamic weight used to regulate
the degradation intensity for Ink. In this way, we can obtain a randomly degraded image Înk where
the original visual contexts are generally retained. Encountering with Înk, it is more difficult for the
T2I model to fit undesired visual semantics in out-of-mask regions, since these semantics would be
randomly perturbed with Gaussian noise at each training step.

Dynamic Intensity. Unfortunately, the T2I model may gradually memorize the introduced noise
in some cases, especially in the later training, thus leading to noise appearing in generated images.
Thus, we design a descending scheme to dynamically regulate the intensity of the imposed noise
during training. This scheme adopts an exponential curve that maintains a relatively large intensity
in the early and decreases dramatically in the later. Let d denote the current training step and D
denote the total training step. The curve of dynamic intensity is defined as

αd = αinit(1− (
d

D
)γ), (5)

where αinit is the initial value of αd and γ is a factor to regulate the descent rate. We empirically
set αinit = 0.5 and γ = 32 tuned within the powers of 2. Using such a scheme of dynamic inten-
sity, we can effectively prevent semantic pollution and meanwhile alleviate the memorization of the
introduced noise, achieving better generation performance.
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3.3 DUAL-STREAM BALANCING

Another primary challenge in this task is semantic imbalance, which arises from the inherent visual
semantic disparity between the target concept and component. Generally, a concept has richer visual
semantics than a component (e.g. person vs. hair). However, the semantic richness of a component
might be greater than a concept in some cases (e.g., simple tower vs. intricate roof). This imbalance
complicates the joint learning process which could overemphasis on the concept and component,
leading to uncoherent generation of the target concept and even the disappearance of the target
component (see Figure 2(b.i)). To address this challenge, we design Dual-Stream Balancing (DS-
Bal), which uses online and momentum denoising U-Nets (see Figure 3) to balance visual semantic
learning between the concept and component, improving personalization fidelity (see Figure 2(b.ii)).

Sample-wise Min-Max Optimization. From a loss perspective, the visual semantics of the concept
and component are learned by optimizing the masked diffusion loss Ldiff for all the samples. Unfor-
tunately, this indiscriminate optimization does not allocate adequate learning efforts to the sample
that is more challenging to learn, gradually leading to an imbalanced learning process. To over-
come this issue, DS-Bal utilizes the online denoising U-Net to learn only the visual semantics of
the hardest-to-learn sample at each training step. Inheriting the weights of the original denoising U-
Net warmed up by joint learning, here the online denoising U-Net ϵθ only optimizes the maximum
masked diffusion loss among N samples, which is defined as

Ldiff-max = max
n

Ek,ϵ,t

[∥∥ϵ⊙M ′
nk − ϵθ(z

(t)
nk , t, en)⊙M ′

nk

∥∥2
2

]
, (6)

where minimizing Ldiff-max can be considered as a form of min-max optimization (Razaviyayn et al.,
2020). The learning objective of ϵθ may switch across different training steps and is not consistently
dominated by the concept or component. Such an optimization scheme can effectively modulate the
learning dynamics of different samples and avoid the overemphasis on any particular one.

Selective Preserving Regularization. At a training step, the samples neglected in Ldiff-max may suf-
fer from knowledge forgetting. This is because the optimization of Ldiff-max, which aims to enhance
the knowledge of a specific sample, could inadvertently overshadow the knowledge of the others.
In light of this, DS-Bal meanwhile exploits the momentum denoising U-Net to preserve the learned
visual semantics of the other samples in each training step. Specifically, we first select the samples
that are excluded in Ldiff-max, which can be expressed as S = {n|n = 1, ..., N} − {nmax}, where
nmax is the index of the target sample in Ldiff-max and S is the index set of the selected samples. Then,
we use the momentum denoising U-Net ϵ̃θ to apply regularization for those samples represented by
S, with the masked preserving loss as

Lpres = En∈S,k,t

[∥∥ϵ̃θ(z(t)nk , t, en)⊙M ′
nk − ϵθ(z

(t)
nk , t, en)⊙M ′

nk

∥∥2
2

]
, (7)

where ϵ̃θ is updated from ϵθ using EMA (Tarvainen & Valpola, 2017) with the smoothing coefficient
β = 0.99, thereby sustaining the prior accumulated knowledge of ϵθ in each training step. By
encouraging the consistency between the output of ϵθ and ϵ̃θ in Lpres, we can facilitate the knowledge
maintenance of the other samples while learning a specific sample in Ldiff-max. Finally, using a loss
weight λpres = 0.5, the total loss of the DS-Bal stage is formulated as

LDS-Bal = Ldiff-max + λpresLpres + λattnLattn. (8)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset, Implementation, and Evaluation. For a systemic investigation, we collect a dataset from
various domains, including characters, animation, buildings, objects, and animals. We employ Sta-
ble Diffusion 2.1 (Rombach et al., 2022) as the pretrained T2I diffusion model. Reference images
are resized to 512 × 512, and the LoRA rank and alpha are set to 32. For the warm-up and DS-Bal
stage, we set the training steps to 200 and 300 and the learning rate to 1e-4 and 1e-5, using AdamW
(Loshchilov & Hutter, 2017) as the optimizer. To generate evaluation images, we carefully design 20
text prompts covering extensive situations. For each method, we generate 14,720 images to conduct
a comprehensive evaluation. To ensure fairness, all the seeds are fixed during training and inference.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Reference

“<person>�with <beard>,�with�flowers�in�the�background”

<p
er
so
n>

<e
ye
>

“<person>�with <eye>,�in�a close�view”

<l
ig
ht
ho
us
e>

<r
oo
f>

“<lighthouse>�with <roof>,�in�Pixel�Art�style”

<b
ot
tl
e>

<l
id
>

“<bottle>�with <lid>,�in�the�jungle”

<d
og
>

<e
ar
>

“<dog>�with <ear>,�near�the�Eiffel�Tower”

Break-A-SceneCustom DiffusionTextual Inversion MagicTailor (Ours)DreamBooth

<p
er
so
n>

<b
ea
rd
>

CLiC

“<person>�with <hair>,�from�3D�rendering”

<p
er
so
n>

<h
ai
r>

Figure 4: Qualitative comparisons. We present images generated by MagicTailor and the com-
pared methods for various domains. MagicTailor generally achieves promising text alignment,
strong identity fidelity, and high generation quality. More results are provided in Appendix D.

Compared Methods. We compare MagicTailor with SOTA methods of personalization, including
Textual Inversion (TI) (Gal et al., 2022), DreamBooth (DB) (Ruiz et al., 2023), Custom Diffusion
(CD) (Kumari et al., 2023), Break-A-Scene (BAS) (Avrahami et al., 2023), and CLiC (Safaee et al.,
2024). For a fair and meaningful comparison, they are adapted to our task with minimal modifica-
tion, i.e., incorporating the masked diffusion loss (Equation 1) into them. Except for method-specific
configurations, all methods use the same implementation above to ensure fairness. Due to the space
limit, more details of the experimental setup are provided in Appendix A.

4.2 QUALITATIVE COMPARISONS

The qualitative results are presented in Figure 4. It shows that TI, CD, and CLiC mainly suffer from
semantic pollution, where undesired visual semantics severely influence the personalized concept
and even the other parts in generated images. Besides, we can observe that DB and BAS also under-
perform in this tough task. These methods exhibit an overemphasis on the concept or component due
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Table 1: Quantitative comparisons. we compare our MagicTailor with SOTA methods of person-
alization based on automatic metrics and user study. The best results are marked in bold.

Methods
Automatic Metrics User Study

CLIP-T ↑ CLIP-I ↑ DINO ↑ DreamSim ↓ Text Align. ↑ Id. Fidelity ↑ Gen. Quality ↑

Textual Inversion (Gal et al., 2022) 0.236 0.742 0.620 0.558 5.8% 2.5% 5.2%

DreamBooth (Ruiz et al., 2023) 0.266 0.841 0.798 0.323 15.3% 14.7% 12.5%

Custom Diffusion (Kumari et al., 2023) 0.251 0.797 0.750 0.407 7.1% 7.7% 9.8%

Break-A-Scene (Avrahami et al., 2023) 0.259 0.840 0.780 0.338 10.8% 12.1% 22.8%

CLiC (Safaee et al., 2024) 0.263 0.764 0.663 0.499 4.5% 5.1% 6.2%

MagicTailor (Ours) 0.270 0.854 0.813 0.279 56.5% 57.9% 43.4%
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Figure 5: Ablation of loss weights. we report CLIP-T for text alignment, and DreamSim for
identity fidelity as it is most similar to human judgments (Fu et al., 2023). For reference, we also
present the results of the second-best method in Table 1, highlighting our robustness on loss weights.

to semantic imbalance, which even leads to an absence of the target component. Moreover, there is
also an interesting observation that imbalanced learning could aggravate the effect of semantic pol-
lution, making the color and texture of the target concept or component mistakenly transferred into
an unexpected part of generated images. Compared with these methods, MagicTailor can achieve
superior performance in generating text-aligned images that also faithfully reflect the target concept
and component, demonstrating its remarkable performance in this newly formulated task.

4.3 QUANTITATIVE COMPARISONS

Automatic Metrics. We utilize four automatic metrics of the aspects of text alignment (CLIP-T
(Gal et al., 2022)) and identity fidelity (CLIP-I (Radford et al., 2021), DINO (Oquab et al., 2023),
DreamSim (Fu et al., 2023)). To precisely measure identity fidelity, we segment out the concept
and component in each reference and evaluation image, and then eliminate the target component
from the segmented concept (see the detailed setup in Appendix A). As we can see, component-
controllable personalization remains a tough task even for SOTA methods of personalization. By
comparison, MagicTailor can achieve the best identity fidelity and the second-best text alignment. It
should be credited to the utilization of an effective framework tailored to this special task.

User Study. We further evaluate the methods with a user study. Specifically, a detailed question-
naire is designed to display 20 groups of evaluation images with the corresponding text prompt and
reference images. Users are asked to select the best result in each group for three aspects, includ-
ing text alignment, identity fidelity, and generation quality (see the detailed setup in Appendix A).
Finally, we collect a total of 3,180 valid answers and report the selected rates in Table 1. It can be
observed that MagicTailor can achieve outstanding performance in human preferences, showcasing
its effectiveness in component-controllable personalization.

4.4 ABLATION STUDIES

We conduct comprehensive ablation studies of MagicTailor, aiming to verify the capability of the
overall pipeline. For more ablation studies on other aspects, please refer to Appendix C.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Ablation of key techniques. Our DM-
Deg and DS-Bal effectively contribute to a supe-
rior performance trade-off.

DM-Deg DS-Bal CLIP-T ↑ CLIP-I ↑ DINO ↑ DreamSim ↓

0.275 0.837 0.798 0.317

✓ 0.276 0.848 0.809 0.294

✓ 0.270 0.845 0.802 0.304

✓ ✓ 0.270 0.854 0.813 0.279

Table 3: Ablation of DS-Bal. We compare DS-
Bal with its variants, showing its excellence.

U-Net Variants CLIP-T ↑ CLIP-I ↑ DINO ↑ DreamSim ↓

Fixed (β = 0) 0.268 0.850 0.803 0.293

Fixed (β = 1) 0.270 0.851 0.808 0.286

Momentum (β = 0.5) 0.268 0.850 0.805 0.290

Momentum (β = 0.9) 0.269 0.850 0.808 0.288

Momentum (Ours) 0.270 0.854 0.813 0.279

Table 4: Ablation of DM-Deg. We compare
DM-Deg with its variants and the mask-out strat-
egy. Our DM-Deg attains superior overall perfor-
mance on text alignment and identity fidelity.

Intensity Variants CLIP-T ↑ CLIP-I ↑ DINO ↑ DreamSim ↓

Mask-Out Startegy 0.270 0.818 0.760 0.375

Fixed (α = 0.4) 0.270 0.849 0.800 0.297

Fixed (α = 0.6) 0.271 0.845 0.794 0.310

Fixed (α = 0.8) 0.271 0.846 0.796 0.305

Linear (Ascent) 0.270 0.846 0.797 0.307

Linear (Descent) 0.261 0.851 0.802 0.300

Dynamic (γ = 8) 0.266 0.850 0.806 0.289

Dynamic (γ = 16) 0.268 0.854 0.813 0.282

Dynamic (γ = 64) 0.271 0.852 0.812 0.283

Dynamic (Ours) 0.270 0.854 0.813 0.279
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Figure 6: (a) Decoupled Generation. MagicTailor can also separately generate the target concept
and component, enriching prospective combinations. (b) Controlling multiple components. Mag-
icTailor shows the potential to handle more than one component, highlighting its effectiveness.

Effectiveness of Key Techniques. In Table 2, we investigate two key techniques of MagicTailor by
starting from a baseline framework described in Section 3.1. Even without DM-Deg and DS-Bal,
such a baseline framework can still have competitive performance, showing its reliability. On top
of that, we introduce DM-Deg and DS-Bal, where the superior performance trade-off indicates the
significance of these two key techniques.

Dynamic Intensity Matters. In Table 4, we explore DM-Deg by comparing it with 1) the mask-out
strategy; 2) the fixed intensity; 3) the linear intensity (α goes from 1 to 0, or from 0 to 1); and 4) the
dynamic intensity with different γ. First, the terrible performance of the mask-out strategy verifies
that it is not a good solution for semantic pollution. Moreover, the dynamic intensity generally
shows better results, and it can achieve better overall performance with a proper γ.

Momentum Denoising U-Net as a Good Regularizer. In Table 3, we study DS-Bal by modifying
the U-Net for regularization as 1) the fixed U-Net with β = 0 (i.e., the one just after warm-up); 2)
the fixed U-Net with β = 1 (i.e., the one from the last step); and 3) the momentum U-Net with other
β. The results demonstrate that employing the U-Net with a high momentum rate can yield better
regularization to tackle semantic imbalance, thus leading to excellent performance.

Sensitivity Analysis of Loss Weights. In Figure 5, we analyze the sensitivity of loss weights in
Equation 8 (i.e., λpres and λattn), since loss weights are often critical for model training. As we can
see, when λpres and λattn vary within a reasonable range, our MagicTailor can consistently attain
SOTA performance, revealing the robustness of MagicTailor on loss weights.
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Figure 7: Enhancing other generative tools. MagicTailor can conveniently collaborate with a
variety of generative tools that focus on other tasks, equipping them with an additional ability to
control the concept’s component in their pipelines.

4.5 FURTHER APPLICATIONS

Decoupled Generation. After learning from a concept-component pair, MagicTailor can also enable
decoupled generation. As shown in Figure 6(a), MagicTailor can generate the target concept and
component separately in various and even cross-domain contexts. This should be credited to its
remarkable ability to accurately capture different-level visual semantics. Such an ability extends the
flexibility of the possible combination between the concept and component.

Controlling Multiple Components. In this paper, we focus on personalizing one concept and one
component, because such a setting is enough to cover extensive scenarios in the real world, and can
be further extended to reconfigure multiple components with an iterative procedure. However, as
shown in Figure 6(b), our MagicTailor also exhibits the potential to handle one concept and multiple
components simultaneously. These results reflect a prospective direction of exploring better control
over diverse components for a single concept.

Enhancing Other Generative Tools. In Figure 7, we provide some interesting method combina-
tions to show that our MagicTailor can enhance other generative tools. The combined tools include
ContorlNet (Zhang et al., 2023), CSGO (Xing et al., 2024), and InstantMesh (Xu et al., 2024). As
we can see, MagicTailor can be seamlessly integrated into these tools, furnishing them with an ad-
ditional ability to control the concept’s component in their pipelines. For instance, working with
MagicTailor, InstantMesh can conveniently achieve fine-grained design of 3D mesh, demonstrating
the practicability of MagicTailor in collaborative applications.

5 CONCLUSION

In this paper, we introduce the novel task of component-controllable personalization, which al-
lows for precise customization of individual components within a personalized concept. We tackle
two major challenges that make this task particularly difficult: semantic pollution, where unwanted
visual elements disrupt the integrity of the concept, and semantic imbalance, which skews the learn-
ing process of visual semantics. To address these challenges, we present MagicTailor, an innovative
framework featuring Dynamic Masked Degradation (DM-Deg) to mitigate unwanted visual seman-
tics and Dual-Stream Balancing (DS-Bal) to ensure balanced learning of visual components. Our
comprehensive experiments demonstrate that MagicTailor not only sets a new benchmark in this
challenging task but also opens up exciting possibilities for a wide range of creative applications.
Looking ahead, we envision extending our approach to other areas of image and video generation,
exploring how multi-level visual semantics can be recognized, controlled, and manipulated to unlock
even more sophisticated and imaginative generative capabilities.
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A MORE DETAILS OF EXPERIMENTAL SETUP

A.1 DATASET

As there is no existing dataset specifically for component-controllable personalization, we curate a
dataset from the internet to conduct experiments. Unlike previous works (Ruiz et al., 2023; Kumari
et al., 2023) that focus on very few categories of concepts, the dataset contains various domains of
concepts and components, such as characters, animation, buildings, objects, and animals. Overall,
the dataset consists of 23 concept-component pairs totally with 138 reference images, where each
concept/component contains 3 reference images and a corresponding category label. The scale of
this dataset is aligned with the scale of those datasets used in compared methods (Gal et al., 2022;
Ruiz et al., 2023; Kumari et al., 2023; Avrahami et al., 2023; Safaee et al., 2024).

A.2 IMPLEMENTATION

We utilize Stable Diffusion 2.1 (Rombach et al., 2022) as the pretrained T2I diffusion model. As
commonly done, the resolution of reference images is set to 512 × 512. Besides, the rank and
alpha of the LoRA module are set to 32. For the warm-up/DS-Bal stage, we set the learning rate
to 1e-4/1e-5 and the training steps to 200/300. Moreover, the learning rate is further scaled by the
batch size, which is set to completely contain a concept-component pair. MagicTailor is trained
with an AdamW (Loshchilov & Hutter, 2017) optimizer and a DDPM Ho et al. (2020) sampler on
an NVIDIA A100 GPU. For one concept-component pair, it runs for about 5 minutes. All experi-
ments are accomplished with Python 3.10.11 and PyTorch 1.13.1, based on CUDA 11.6. Following
(Avrahami et al., 2023), the tensor precision is set to float16 to accelerate training. For a fair com-
parison, all random seeds are fixed at 0 in each experiment, and all compared methods use the same
implementation above except for method-specific configurations.

A.3 TEXT PROMPTS FOR EVALUATION

To generate images for evaluation, we carefully design 20 text prompts covering extensive situations,
which are listed in Table 5. These text prompts can be divided into four aspects, including recontex-
tualization, restylization, interaction, and property modification, where each aspect is composed of
5 text prompts. In recontextualization, we change the contexts to different locations and periods. In
restylization, we transfer concepts into various artistic styles. In interaction, we explore the spatial
interaction with other concepts. In property modification, we modify the properties of concepts in
rendering, views, and materials. Such a group of diverse text prompts allows us to systemically
evaluate the generalization capability of a method.

A.4 SCHEME OF GENERATING EVALUATION IMAGES

We generate 32 images per text prompt for each pair, using a DDIM (Song et al., 2020) sampler
with 50 steps and a classifier-free guidance scale of 7.5. To ensure fairness, we fix the random seed
within the range of [0, 31] across all methods. This process results in a total of 14,720 images for
each method to be evaluated, ensuring a robust and thorough comparison.

A.5 AUTOMATIC METRICS

We utilize four automatic metrics in the aspects of text alignment (CLIP-T (Gal et al., 2022)) and
identity fidelity (CLIP-I (Radford et al., 2021), DINO (Oquab et al., 2023), DreamSim (Fu et al.,
2023)). To precisely measure identity fidelity, we improve the traditional measurement approach for
personalization. This is because a reference image of the target concept/component could contain an
undesired component/concept that is not expected to appear in evaluation images. Specifically, we
use Grounded-SAM (Ren et al., 2024) to segment out the concept and component in each reference
and evaluation image. Then, we further eliminate the target component from the segmented concept,
e.g., eliminate the hair from the person in a “<person> + <hair>” pair. Such a process is similar to
the one adopted in (Avrahami et al., 2023). As a result, using the segmented version of evaluation
images and reference images, we can accurately calculate the metrics of identity fidelity.
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Table 5: Text prompts used to generate evaluation images. These text prompts can be divided
into four aspects: recontextualization, restylization, interaction, and property modification, cover-
ing extensive situations to systemically evaluate the generalization capability of a method. Note
that “<placeholder>” will be replaced by the combination of pseudo-words (e.g., “<tower> with
<roof>”) when generating evaluation images, and will be replaced by the combination of category
labels (e.g., “tower with roof”) when calculating the metric of text alignment.

Recontextualization Restylization

“<placeholder>, on the beach” “<placeholder>, watercolor painting”

“<placeholder>, in the jungle” “<placeholder>, Ukiyo-e painting”

“<placeholder>, in the snow” “<placeholder>, in Pixel Art style”

“<placeholder>, at night” “<placeholder>, in Von Gogh style”

“<placeholder>, in autumn” “<placeholder>, in a comic book”

Interaction Property Modification

“<placeholder>, with clouds in the background” “<placeholder>, from 3D rendering”

“<placeholder>, with flowers in the background” “<placeholder>, in a far view”

“<placeholder>, near the Eiffel Tower” “<placeholder>, in a close view”

“<placeholder>, on top of water” “<placeholder>, made of clay”

“<placeholder>, in front of the Mount Fuji” “<placeholder>, made of plastic”

A.6 USER STUDY

In addition to using automatic metrics, we further evaluate the methods with a user study. Specifi-
cally, we design a questionnaire to display 20 groups of evaluation images generated by our method
and other methods. Besides, each group also contains the corresponding text prompt and the ref-
erence images of the concept and component, where we adopt the same text prompts that are used
to calculate CLIP-T. The results of our method and all the compared methods are presented on the
same page. Clear rules are established for users to evaluate in three aspects, including text alignment,
identity fidelity, and generation quality. Users are requested to select the best result in each group
by answering the corresponding questions of these three aspects. We hide all the method names and
randomize the order of methods to ensure fairness. Finally, 3,180 valid answers are collected for a
sufficient quantitative evaluation of human preferences.

A.7 COMPARED METHODS

In our experiments, we compare MagicTailor with SOTA methods in the domain of personalization,
including Textual Inversion (TI) (Gal et al., 2022), DreamBooth-LoRA (DB) (Ruiz et al., 2023),
Custom Diffusion (CD) (Kumari et al., 2023), Break-A-Scene (BAS) (Avrahami et al., 2023), and
CLiC (Safaee et al., 2024). We adopt the LoRA version of DreamBooth because it generally shows
better generation performance. For TI, DB, and CD, we use the third-party implementation in Dif-
fusers 1. For BAS, we use the official implementation. For CLiC, we reproduce it following the
resource paper as the official code is not released. Unless otherwise specified, method-specific con-
figurations are set up by following their resource papers or Diffusers. We empirically adjust the
learning rate of CD and CLiC to 1e-4 and 5e-5 respectively, because they perform very poorly with
the original learning rates. For a fair and meaningful comparison, these methods should be adapted
to our task setting with minimal modification. Therefore, we integrate the masked diffusion loss
(Equation 1) into them while using the same segmentation masks from MagicTailor.

1https://huggingface.co/docs/diffusers/index
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“The�individual�has�a�distinct�
appearance,�marked�by�fair�skin,�a�well-
groomed�beard,�and�intense�blue�eyes�…�
His�hair�is�short�and�styled�in�a�colorful�
gradient,�transitioning�from�blue�…�to�
purple�…�The�fringe�is�textured�with�
soft�waves,�and�the�closely�cropped�
sides�emphasize�the�vibrant�color�…”

“The�tower�combines�medieval�and�East�
Asian�architectural�styles.�Its�base�
features�pale�stone�with�Romanesque�
arches�…�The�East�Asian-inspired�roof�
has�multiple�terracotta-tiled�tiers,�
with�upward-curving�eaves�…�This�
blend�of�styles�creates�a�visually�
striking�and�harmonious�structure�…”

Figure 8: Comparing with detailed-text-guided generation. We use GPT-4o to generate and
merge detailed textual descriptions for the target concept and component, which are fed into Stable
Diffusion 2.1 to conduct text-to-image generation. This paradigm cannot perform well and produce
inconsistent images, while MagicTailor can achieve faithful and consistent generation.

B ADDITIONAL COMPARISONS

B.1 COMPARING WITH DETAILED-TEXT-GUIDED GENERATION

One might be curious about whether component-controllable personalization can be accomplished
by providing detailed textual descriptions to the T2I model. To investigate this, we separately feed
the reference images of the concept and component into GPT-4o2 to obtain detailed textual descrip-
tions for them. The text prompt we used is “Please detailedly describe the <concept/component>
of the upload images in a parapraph”, where “<concept/component>” is replaced with the category
label of the concept or component. Then, we ask GPT-4o to merge these textual descriptions using
natural language, and input them into the Stable Diffusion 2.1 (Rombach et al., 2022) to generate the
corresponding images. Some examples for a qualitative comparison are shown in Figure 8. As we
can see, such an approach cannot achieve satisfactory results, because it is hard to guarantee that vi-
sual semantics can be completely expressed by using the combination of text tokens. In contrast, our
MagicTailor is able to accurately learn the desired visual semantics of the concept and component
from reference images, and thus lead to consistent and excellent generation in this tough task.

B.2 COMPARING WITH COMMERCIAL MODELS

It is also worth exploring whether existing commercial models, which can understand and some-
how generate both text and images by themselves or other integrated tools, are capable of handling
component-controllable personalization. We choose two widely recognized commercial models,
GPT-4o and Gemini 1.5 Flash3, for a qualitative comparison. First, we separately feed the ref-
erence images of the concept and component into them, along with the text prompt of “The up-
loaded images contain a special instance of the <concept/component>, please mark it as #<con-
cept/component>”, where “<concept/component>” is replaced with the category label of the con-
cept or component. Then, we instruct them to perform image generation, using the text prompt of
“Please generate images containing #<concept> with #<component>”, where “<concept>” and
“<component>” are replaced with the category label of the concept and component, respectively.
As shown in Figure 9, these models struggle to reproduce the given concept, let alone reconfig-
ure the concept’s component. Whereas, our MagicTailor achieves superior results in component-
controllable personalization, using a dedicated framework designed for this task. It demonstrates
that, even though large commercial models are able to tackle multiple general tasks, there is also
plenty of room for the community to explore specialized tasks for real-world applications.

2https://platform.openai.com/docs/models/gpt-4o
3https://gemini.google.com/

17

https://platform.openai.com/docs/models/gpt-4o
https://gemini.google.com/


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Reference GPT-4o Gemini

<d
og
>

<e
ar
>

<p
er
so
n>

<h
ai
r>

MagicTailor (Ours)

NOT
APPLICABLE

NOT
APPLICABLE

NOT
APPLICABLE

Figure 9: Comparing with commercial models. We input the reference images of the target
concept and component to GPT-4o and Gemini, along with structured text prompts, for conducting
image generation. Even though capable of handling multiple general tasks, these models still fall
short in this task. In contrast, our MagicTailor performs well using a dedicated framework.

Table 6: Ablations of warm-up. We compare MagicTailor with the variant that removes warm-up.
The results exhibit the significance of the warm-up stage for the framework of MagicTailor.

Warm-up Variants CLIP-T ↑ CLIP-I ↑ DINO ↑ DreamSim ↓

w/o Warm-up 0.272 0.844 0.793 0.320

w/ Warm-up (Ours) 0.270 0.854 0.813 0.279

C ADDITIONAL ABLATION STUDIES

C.1 NECESSITY OF WARM-UP TRAINING

In MagicTailor, we start with a warm-up phase for the T2I model to preliminarily inject the knowl-
edge for the subsequent phase of DS-Bal. Here we investigate the necessity of such a warm-up phase
for generation performance. In Table 6, when removing the warm-up phase, even though Magic-
Tailor could obtain slight improvement in text alignment, it severely suffers from the huge drop in
identity fidelity. This is because such a scheme makes it difficult to construct a decent momentum
denoising U-Net for DS-Bal. Whereas integrated with a warm-up phase, MagicTailor can achieve
superior overall performance, which is attributed to the knowledge reserved from warm-up.

C.2 PERFORMANCE ON DIFFERENT NUMBERS OF REFERENCE IMAGES

As described in Appendix A, each concept/component contains 3 reference images in a concept-
component pair of the dataset. Here we change the number of reference images to analyze the
performance variation of MagicTailor. The qualitative results are presented in Figure 10. When the
number of reference images is reduced, MagicTailor can still show satisfactory performance. This
also demonstrates that, while more reference images could lead to better generalization ability, one
reference image per concept/component is enough to obtain a decent result with our MagicTailor.

C.3 ROBUSTNESS ON LINKING WORDS

Generally, we use “with” to link the pseudo-words of the concept and component in a text prompt,
e.g., “<person> with <beard>, in Von Gogh style”. Here we evaluate the robustness of our method
on different linking words. We choose several words, which are commonly used to indicate owner-
ship or association, to construct text prompts and then feed them into the same fine-tuned T2I model.
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Figure 10: Ablation of the number of reference images. We present qualitative results to show
that MagicTailor can still achieve satisfactory performance when provided only 1 or 2 reference
images per concept and component.
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“<person>�… <beard>,�wearing�a�suit”

… and … … including … … containing … … with …

Figure 11: Ablation of the linking word. We present qualitative results generated with different
linking words, showing the robustness of MagicTailor.

As shown in Figure 11, the generation performance of our MagicTailor remains robust regardless of
the linking word used, exhibiting its flexibility to textual descriptions.

D MORE QUALITATIVE RESULTS

In Figure 12, we provide more evaluation images for a substantial qualitative comparison. It can be
clearly observed that semantic pollution remains an intractable problem for these compared methods.
While employing the masked diffusion loss, they still fall short in suppressing the appearance of
undesired visual semantics. This is due to the leak of an effective mechanism to alleviate the T2I
model’s perception for these semantics. To address this, our MagicTailor utilizes Dynamic Masked
Degradation (DM-Deg) to dynamically perturb undesired visual semantics during the learning phase,
and thus achieve better performance. On the other hand, the compared methods are also severely
influenced by semantic imbalance, resulting in overemphasis or even overfitting on the concept or
component. This is because the inherent imbalance of visual semantics complicates the learning
process. In response to this issue, our MagicTailor applies Dual-Stream Balancing (DS-Bal) to
balance the learning of visual semantics, effectively showcasing its prowess in this tough task.
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Figure 12: More qualitative comparisons. We present images generated by our MagicTailor and
SOTA methods of personalization for various domains including characters, animation, buildings,
objects, and animals. MagicTailor generally achieves promising text alignment, strong identity fi-
delity, and high generation quality.
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