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Abstract

Analogical reasoning is a unique ability of
humans to address unfamiliar challenges by
transferring strategies from relevant past expe-
riences. One key finding in psychology is that
compared with irrelevant past experiences, re-
calling relevant ones can help humans better
handle new tasks (Gentner and Smith, 2012).
Coincidentally, the NLP community has also re-
cently found that self-generating relevant exam-
ples in the context can help large language mod-
els (LLMs) better solve a given problem than
hand-crafted prompts (Yasunaga et al., 2024).
However, it is yet not clear whether relevance
is the key factor eliciting such capability, i.e.,
can LLMs benefit more from self-generated
relevant examples than irrelevant ones? In this
work, we systematically explore whether LLMs
can truly perform analogical reasoning on a di-
verse set of reasoning tasks. With extensive
experiments and analysis, we show that self-
generated random examples can surprisingly
achieve comparable or even better performance,
e.g., 4% performance boost on GSM8K with
random biological examples. We find that the
accuracy of self-generated examples is the key
factor and subsequently design two improved
methods with significantly reduced inference
costs. Overall, we aim to advance a deeper un-
derstanding of LLM analogical reasoning and
hope this work stimulates further research in
the design of self-generated contexts.

1 Introduction

A hallmark of human intelligence is that they can
solve novel problems by drawing analogy from
relevant past experiences, a concept known as ana-
logical reasoning in cognitive science (Vosniadou
and Ortony, 1989). As indicated by the name, re-
calling previously acquired relevant experiences
can facilitate humans to better tackle new tasks,
whereas irrelevant ones are rarely beneficial and
can even be distracting (Gentner and Smith, 2012).

Input

Q: The second and ninth terms of an arithmetic sequence
are 2 and 30, respectively. What is the fiftieth term?

# Instruction:
## Recall relevant examples:
## Solve the initial problem:

Output

# Relevant examples:

Q: In an arithmetic sequence, the first term is 3 and the
common difference is 4. What is the tenth term?

A: To find the tenth term, we can use the formula for the
nth term of the sequence ... So the tenth term is 39. ...

# Solve the initial problem:

We can use the formula for the nth term of an arithmetic
sequence a_n = a_1 + (n-1)d. We are given the values of
a_2and a_9 ... So the fiftieth term is 194.

Figure 1: Illustration of LLM analogical reasoning in
Yasunaga et al. (2024). LLMs are prompted to self-
generate relevant examples as context before solving
the new problem.

For instance, when faced with a novel math prob-
lem about determinants (e.g., calculating the value
of a given fourth-order determinant), humans can
resolve this by reflecting upon the methodology
employed to ascertain the value of a third-order
determinant, whereas biological knowledge (e.g.,
how the human body regulates its temperature) can
generally be considered irrelevant.

With the recent advancements in scaling up
model size and data, LLMs have demonstrated
impressive zero-shot and few-shot performance
across various reasoning tasks, especially, through
advanced prompting methods like chain-of-thought
(CoT) (Wei et al., 2022). Compared to common ap-
proaches such as zero or few-shot CoT (Zhou et al.,
2022; Kojima et al., 2022; Wang et al., 2022b),
Yasunaga et al. (2024) introduce LLLM analogical
reasoning, i.e., LLMs self-generate examples rel-
evant to the query as context to better solve new
problems; see Fig. 1 for an example. However, it
remains unclear whether relevance is the key to
eliciting such capability in LLMs. While several



studies explore the influence of the relevance of
demonstrations in in-context learning and CoT (Liu
etal., 2022; Kim et al., 2022; Lyu et al., 2023; Chen
et al., 2023; Yang et al., 2023; Wang et al., 2023;
Yasunaga et al., 2024), none of them investigate
whether self-generated relevant examples consis-
tently outperform irrelevant ones in LLM analogi-
cal reasoning.

In this paper, to systematically assess the capa-
bility of LLMs to perform analogical reasoning,
we conduct a series of ablation experiments on a
variety of reasoning tasks including problems from
GSMSK (Cobbe et al., 2021), MATH (Hendrycks
etal., 2021), and BIG-Bench Hard (BBH) (Suzgun
et al., 2022). With extensive experiments, we aim
to address the following two research questions:

* Q1. Are self-generated relevant examples more
beneficial to LLMs than random ones?

* Q2. If not, what is the pivotal factor for LLMs’
performance in analogical reasoning?

To answer these questions, we empirically ana-
lyze the analogical reasoning abilities of GPT-3.5
(turbo) and Llama series models (Touvron et al.,
2023). Surprisingly, experimental results show that
prompting LLMs to self-generate random exam-
ples can achieve comparable or even better perfor-
mance on certain tasks which is not in line with
the key claim of analogical reasoning in Gentner
and Smith (2012), indicating that LLMs cannot
always perform analogical reasoning. As for Q2,
we point out through controlled experiments that
the key factor is the accuracy of self-generated ex-
amples. Informed by these findings, we design two
approaches that can outperform existing methods
with significantly reduced inference costs. Specif-
ically, we ask LL.Ms to randomly generate a few
problems and manually verify their correctness,
then use this fixed set of problems as in-context
learning demonstrations for all test samples. Con-
sistent observations across different model types
consolidate the conclusions. We summarize the
major contributions of our work below:

* To the best of our knowledge, we, for the first
time, extensively assess the ability of LLMs to
perform analogical reasoning and explore their
counterintuitive behavior on certain tasks.

* With extensive experiments and analysis, we
demonstrate the effectiveness and limitations of
different types of self-generated contexts. Our
code base is available at <redacted>.

2 Related Work

This work mainly explores whether LLMs can truly
perform analogical reasoning. In light of this, we
review two lines of research that form the basis of
this work: chain-of-thought prompting and LLM
analogical reasoning.

2.1 Chain-of-Thought Prompting

Chain-of-thought (CoT) prompting induces LLMs
to generate intermediate reasoning steps before gen-
erating the final answer (Wei et al., 2022), greatly
improving the reasoning capabilities of LLMs. Typ-
ical CoT prompting approaches include few-shot
CoT (Wei et al., 2022; Zhou et al., 2022; Wang
et al., 2022b; Li et al., 2022; Wang et al., 2022a),
taking several labeled demonstrations of the reason-
ing process, and zero-shot CoT, comprising only
instructions like “Let’s think step by step” (Ko-
jima et al., 2022; Zelikman et al., 2022; Zhang
et al., 2023). Other ongoing research on CoT
has also explored (i) optimizing the demonstra-
tion selection (Fu et al., 2022; Lu et al., 2022; Qin
et al., 2023), (ii) optimizing the quality of reason-
ing chains (Khot et al., 2022; Chen et al., 2022;
Zhao et al., 2023; Shinn et al., 2023), and (iii) CoT
in smaller language models (Magister et al., 2022;
Ho et al., 2022; Fu et al., 2023).

2.2 LLM Analogical Reasoning

While few-shot CoT can provide more detailed
reasoning guidance, it requires labeled examples
which can be unavailable for a new task. To tackle
this problem, Yasunaga et al. (2024) propose ana-
logical prompting to guide LLMs to self-generate
relevant exemplars as few-shot demonstrations,
which is similar to analogical reasoning, i.e., hu-
mans can address new problems by drawing anal-
ogy from relevant past experience (Vosniadou and
Ortony, 1989; Holyoak, 2012). In this work, we
step forward to explore the intrinsic principle of
LLM analogical reasoning. Specifically, we aim
to investigate whether LLLMs can authentically ex-
hibit such reasoning capabilities and determine the
extent to which the relevance of self-generated ex-
amples contributes to enhancing this process.

3 Methodology

We mainly follow the analogical prompting ap-
proach outlined in Yasunaga et al. (2024). Specif-
ically, for a given target problem z, analogical
prompting introduces instructions like:


<redacted>

Prompt: self-generate relevant examples

Your task is to tackle mathematical problems. When presented with a math problem, recall relevant problems as examples. Afterward, proceed to

solve the initial problem.
# Initial Problem: [The target problem)

# Instructions:
Make sure that your response follows the instructions below.

## Analogous Problems:

Offer five diverse examples of math problems that are relevant or analogous to the initial problem. For each problem, elaborate on the solution and
conclude with the ultimate answer (enclosed in \boxed{}). For each problem:

- After "Q: ", describe the problem

- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.

A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Prompt: self-generate examples

Your task is to tackle mathematical problems. When presented with a math problem, recall

solve the initial problem.
# Initial Problem: [The target problem]

# Instructions:
Make sure that your response follows the instructions below.

## Problems:

offer five diverse examples of math problems. For each problem, elaborate on the solution and conclude with the ultimate answer

(enclosed in \boxed{}). For each problem:
- After "Q: ", describe the problem

- After "A: ", explain the solution and enclose the ultimate answer in \boxed(}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.

A: Explain the solution and enclose the ultimate answer in \boxed{} here.

problems as examples. Afterward, proceed to

Figure 2: Example prompts for GSM8K (mathematical reasoning). Top: The original prompt used in Yasunaga et al.
(2024) for self-generating relevant math problems. Bottom: The prompt designed for self-generating random math

problems. We mark the differences between these two prompts in blue and

# Problem: [z]

# Relevant problems: Recall five relevant and
diverse problems. For each problem, describe
it and explain the solution.

# Solve the initial problem:

The goal is to induce LLMs to self-generate rel-
evant examples, aiding them to solve the target
problem via in-context learning. To ensure better
performance and efficiency, several key technical
decisions are made in Yasunaga et al. (2024):

* The self-generated examples should be relevant
and diverse, achieved through a specially de-
signed instruction.

* Generate relevant problems and the solution to
the initial problem in one pass.

* 3 to 5 self-generated examples perform the best.
In this work, we make minimal changes to the
original prompt to guide LL.Ms to generate differ-

ent types of irrelevant examples as context; see
Fig. 2 for example prompts:

* N/A: generate problems that are N/A (not appli-
cable) to the initial problem.

* Randomy,,,.: randomly generate examples of the

respectively.

same problem type (e.g., math).
* Randomy: randomly generate examples of dif-
ferent problem types (e.g., any type except math).
* Randomy,,: randomly generate biological prob-
lems.

Yasunaga et al. (2024) demonstrate that self-
generating relevant examples can consistently out-
perform zero-shot CoT and few-shot CoT (hand-
crafted examples or retrieved top-k most similar
training samples) on different tasks. Therefore,
we do not include these two methods in our work.
Interested readers can refer to the corresponding
results and analysis in Yasunaga et al. (2024). In
addition, we show prompts for different methods
on all datasets in Appendix A.1.

4 Experiment

4.1 Experimental Setup

We construct the evaluation suite based on diverse
reasoning-intensive tasks, including mathematical
reasoning and other reasoning (e.g., logical and
temporal reasoning) tasks:

¢ Mathematical reasoning. We work with two
commonly used datasets, GSM8K (Cobbe et al.,



Temporal Logical deduction Reasoning about Formal  Word
Method . . . . Average
sequences five objects colored objects  fallacies sorting
Relevant 60.0 51.2 76.7 51.2 76.9 63.2
N/A 57.5 45.3 75.5 53.3 77.7 61.9
Randomg, e 53.1 48.8 73.5 52.4 74.1 60.4
Randomy;s 443 44.8 72.4 51.2 69.2 56.4
Randomy,, 57.1 49.5 76.1 50.8 74.9 61.7

Table 1: Accuracy (%) of different methods on five reasoning tasks in BBH. Bold indicates the best results. Self-
generated relevant examples achieve the best average performance. Detailed results for different seeds are reported

in Appendix A.2.
Method Task
GSMS8K MATH Average

Relevant 71.5 333 524
N/A 75.5 36.1 55.8
Randomg,,e 75.1 36.3 55.7
Randomdiff 76.3 34.1 55.2
Randomy;, 75.3 34.6 54.9

Table 2: Accuracy (%) of different methods on two
mathematical reasoning tasks. Self-generated irrele-
vant examples are consistently better than relevant ones.
Table 14 in Appendix A.2 reports detailed results for
different seeds.

2021) and MATH (Hendrycks et al., 2021). For
each dataset, we randomly sample 500 examples
from the original test set and run experiments
three times with different random seeds (resulting
in different test samples).

* Other reasoning. Following Yasunaga et al.
(2024), we evaluate five reasoning tasks in BIG-
Bench Hard (BBH) (Suzgun et al., 2022): tem-
poral sequences (temporal reasoning), logical de-
duction five objects and reasoning about colored
objects (logical reasoning), formal fallacies (de-
ductive reasoning) and word sorting (symbolic
reasoning). For each task, we use all test samples
for evaluation and run experiments three times
with different random seeds.

We mainly use GPT-3.5 (gpt-3.5-turbo) as the
LLM and obtain all outputs from it with the temper-
ature set to 0. We ask the LLM to self-generate 5
examples for GSMS8K, 3 examples for MATH and
BBH following Yasunaga et al. (2024).

4.2 Main Results

We now address the research questions asked in §1
with empirical results.

N

'@' Q1. Are self-generated relevant examples more bene-

ficial to LLMs than random ones?

The results averaged over all random seeds are
reported in Table 1 and Table 2; more detailed
results for every seed are shown in Appendix A.2.

o Self-generated relevant examples achieve the
best average performance on BBH. From the
results in Table 1, we can observe that the superi-
ority of self-generated relevant examples is empiri-
cally substantiated on BBH. Specifically, using rel-
evant examples, denoted by ‘relevant’, outperforms
other approaches on temporal and logical reason-
ing tasks. While it performs worse than ‘N/A’ on
deductive and symbolical reasoning, it can still im-
prove the accuracy by 1.3% on average compared
to ‘N/A’.

However, the results on mathematical reasoning
tasks are quite counterintuitive as described below:

e Relevant examples do not guarantee better
performance. Different from BBH, all types of
self-generated irrelevant examples consistently out-
perform relevant ones on both mathematical rea-
soning datasets, showing that LLMs cannot yet per-
form analogical reasoning on these tasks. Interest-
ingly, when we use randomly generated biological
examples (e.g., how the process of photosynthe-
sis occurs in plants), they can yield about 2.5%
better results on average compared to generating
relevant math problems. Besides, ‘N/A’ achieves
the best average result as it is the second-best on
both datasets.

Problems in MATH span various subjects and
difficulty levels. To investigate whether the infe-
rior performance of relevant examples on MATH
is accidentally caused by certain categories, we fur-
ther report the accuracy across different subjects



Intermediate Counting & Number
Method Precalculus Algebra Algebra Prealgebra Probability Geometry Theory
Relevant 10.4 9.8 51.8 56.8 22.1 24.2 37.0
N/A 9.1 15.7 55.5 61.0 28.7 25.8 34.2
Randomgy. 12.3 17.6 544 60.6 254 25.8 34.9
Randomy;g 13.0 14.1 52.7 56.8 26.2 24.2 33.6
Randomy,, 13.0 12.2 53.0 59.2 28.7 25.8 322

Table 3: Accuracy (%) across different subjects in the MATH dataset. Self-generated irrelevant examples outperform

relevant ones on 6 out of 7 subjects.

Level 1

== Relevant
79.8 N/A

=== Random (same)
Random (diff)
s Random (bio)

Level 5 Level 2

Level 4

Level 3

Figure 3: Comparison of all methods at different diffi-
culty levels on the MATH dataset. Level 1 represents
the easiest and level 5 is the hardest. ‘relevant’ clearly
performs worse than other approaches at all difficulty
levels.

and difficulty levels in Table 3 and Fig. 3. The
consistent performance gap between ‘relevant’ and
other methods across different problem categories
demonstrates the inherent flaws of relevant exam-
ples, indicating that mathematical reasoning tasks
exhibit different analogical reasoning paradigms
from other reasoning tasks.

It might present challenges to prompt LLMs to
accurately generate specific types of demonstra-
tions. Therefore, given the unexpected results on
mathematical reasoning tasks, one may wonder:

N

- Q1-1. Are self-generated examples really relevant or

irrelevant to the query?

To quantitatively measure the relevance between
the generated examples and the query, we compute
the average cosine similarity between them. Fol-
lowing Zhang et al. (2023), we use the sentence
transformer (Reimers and Gurevych, 2019) to en-
code all samples. For each method, the reported
result is averaged across three seeds.

As observed from Table 4, relevant examples

Method GSM8K MATH Average
Relevant 0.54 0.41 0.48
N/A 0.19 0.28 0.24
Randomg,,e 0.30 0.20 0.25
Randomdiff 0.15 0.10 0.13
Randomy;, 0.06 0.11 0.09
Oracle 0.65 0.63 0.64

Table 4: Average relevance score (semantic similarity)
between self-generated examples and the query. ‘Oracle’
stands for the average similarity score between the query
and k£ most similar training samples (k is the number of
self-generated examples).

Relevant

62.0

N/A Randomg,.
72.0 86.0

Accuracy

Table 5: Accuracy (%) of self-generated examples on
the MATH dataset. The examples generated by ‘rele-
vant’ are less accurate.

are much more semantically similar to the query
than irrelevant ones and the relevance score of ‘rel-
evant’ is more biased towards ‘oracle’ rather than
‘random’ or ‘N/A’, demonstrating that LLMs in-
deed follow instructions to generate specific types
of demonstrations. Furthermore, we calculate the
average similarity score between self-generated rel-
evant examples and queries for BBH (0.46), which
is slightly lower than the score of mathematical rea-
soning tasks (0.48). This result demonstrates that
the difference in analogical reasoning performance
between BBH (Table 1) and mathematical reason-
ing (Table 2) is not because LLLMs can generate
more relevant examples for BBH.

We provide a case study in Table 6 to delve
deeper into the demonstrations of different meth-
ods. As we can notice, the example generated by
‘relevant’ is more related to the query as they both
involve the mathematical concept ‘number bases’.



Query: For how many ordered pairs (A, B) where A and B are positive integers is AAA; + BBB; = 6667

In a certain base, the sum of two three-digit numbers is 777. If the digits of one of the numbers are

Relevant reversed, the sum becomes 888. What is the base of this number system?

N/A What is the value of z in the equation 2z + 5 = 10?

Random In a bag, there are 5 red marbles, 3 blue r_narbles, and 2 green marbles. If you randomly pick 2 marbles
Same  from the bag without replacement, what is the probability that both marbles are red?

Randomgr  How do you bake chocolate chip cookies?

Randomy;, = How does the process of photosynthesis occur in plants?

Oracle Find the number of ordered pairs (a, b) of complex numbers such that b’ =a'b’ = 1.

Table 6: Demonstration examples of different methods on the MATH dataset. The example generated by ‘relevant’
is more related to the query than other examples generated by ‘N/A’ or ‘random’.

. GSMSK MATH
Variant
Relevant N/A Randomg,,. Relevant N/A Randomg,y,
ICL 71.2 73.8 72.0 37.0 39.8 39.2
GPT4-Calibration 75.2 75.6 75.6 44.4 41.2 40.0
Random 70.0 72.0 68.4 36.0 38.0 37.8

Table 7: Accuracy (%) of different variants on GSM8K and MATH. When using GPT4-generated answers (mostly
accurate), ‘GPT4-Calibration’ consistently outperforms ‘ICL’ for all methods. In contrast, ‘random’ always performs

worse than ‘ICL’.

In contrast, examples such as “What is the value of
x in the equation 2z + 5 = 107" (N/A) or ‘How
do you bake chocolate chip cookies?” (Randomg;sr)
are less relevant to the query. This comparison
highlights once again that relevance may not be the
key factor for analogical reasoning performance on
mathematical reasoning tasks. To understand bet-
ter the underlying reasons for the counterintuitive
results, we then ask the following question:

N

- Q2. If relevance is not the key factor, what is more

important for the accuracy of analogical reasoning?

Looking back at Table 6, an interesting obser-
vation is that the self-generated relevant example
appears to be more difficult to solve than the irrel-
evant ones, regardless of whether they are math
problems or not. Consequently, the accuracy of
relevant examples may be lower. To verify this, we
conduct a pilot experiment on MATH. Specifically,
we randomly select 50 samples for different types
of generated math problems, i.e., Relevant, N/A
and Randomg,,., and manually evaluate their ac-
curacy. We exclude other methods as it is difficult
to define the ‘accuracy’ of the examples they gen-
erate. From the results in Table 5, we can observe
that while the examples generated by ‘relevant’ are
more related to the test query, they are less accu-
rate, raising the question whether the performance

of different approaches on mathematical reasoning
tasks is strongly correlated with the accuracy of
self-generated examples.

Proxy Approaches However, as the accuracy of
the examples located at the output cannot be di-
rectly controlled, we meticulously design a vari-
ant called /CL, which extracts the generated ex-
amples from the model output as in-context learn-
ing (ICL) demonstrations and combines them with
the query as input to LLMs, as a proxy for the
original method. We also consider the following
two variants: (a) GPT4-Calibration which replaces
the answers of demonstrations in /CL with GPT4-
generated answers, and (b) Random changes the
answers of demonstrations in /CL to random num-
bers. Our manual verification confirmed that GPT4-
generated answers were mostly accurate. We con-
duct this experiment on GSM8K and MATH with
GPT-3.5 as the LLM reasoner.

From the results of different variants reported
in Table 7, we can see that increasing the accu-
racy of generated examples can indeed improve
the performance: GPT4-Calibration consistently
outperforms /CL by incorporating more accurate
answers. In contrast, random always performs the
worst among all variants. Therefore, the key factor
influencing the performance on mathematical rea-
soning is the accuracy of self-generated examples



Input

Randomly recall five examples of math problems. Note that your problems should be distinct from each other (e.g., involving

different numbers and names). For each problem:
- After "Q: ", describe the problem

- After "A: ", explain the solution and enclose the ultimate answer in \boxed}.

Output

Q: If John has 5 apples and he buys 8 more, how many apples does he have in total?
A: To find the total number of apples John has, we add the number of apples he initially has to the number of apples he buys.
So, we calculate 5 + 8 = 13. Therefore, John has \boxed{13} apples in total.

Q: Find the derivative of the function f(x) = 3xA2 + 2x - 5.

A: To find the derivative of f(x), we apply the power rule to each term. The derivative of 3x/2 is 6x, the derivative of 2x is 2,
and the derivative of a constant -5 is 0. Therefore, the derivative of f(x) is f'(x) = 6x + 2. So, the derivative is \boxed{6x + 2}.

Figure 4: Example prompts and outputs for randomly generating math problems. We manually verify the answers

to ensure the correctness of the generated examples.

Method Task
GSM8K MATH Average

Relevant 71.5 333 52.4
N/A 75.5 36.1 55.8
Randomg, e 75.1 36.3 55.7
Randomyg;g 76.3 34.1 55.2
Randomy;, 75.3 34.6 54.9
ICL hath 75.7 36.8 56.3
ICL4;0 77.9 349 56.4

Table 8: Comparison of different methods on two math-
ematical reasoning tasks.

rather than their relevance.

It is worthwhile to note that while several pa-
pers explore how the correctness of demonstration
answers influences in-context learning (Min et al.,
2022; Yoo et al., 2022; Wei et al., 2023; Pan et al.,
2023; Kossen et al., 2024), our work differs from
them in the following aspects: (i) The examples in
our work are generated by LLMs rather than real
data from NLP benchmarks, i.e., randomly sampled
from the training set. In addition, there are ratio-
nales (CoT) in self-generated examples, which are
different from the input-label format of in-context
learning investigated in these papers; and (ii) These
studies mainly evaluate in-context learning on dif-
ferent classification or multi-choice datasets, i.e.,
the output space is a finite set. In contrast, we are
evaluating mathematical reasoning tasks, where the
output space is infinite.

Given the above findings, a natural question is:

-©"- Q2-1. Can we ask the LLM to randomly generate a
few math or biological problems and manually verify
their correctness, then use this fixed set of problems

as ICL demonstrations for all test queries?

Method Task

GSM8K MATH Average
ICL hath 75.7 36.8 56.3
ICL nath_repeat 73.8 36.2 55.0

Table 9: Comparison of two ICL variants on the
GSMSK and MATH datasets.

Relevant N/A  Randomgyp,

71.2 74.9 75.3 75.9 74.3

Randomg;r Randomy,;,

Table 10: Accuracy (%) of different methods with a
new prompt.

We refer to these two methods as ICL,,4, and
ICLy;y, and conduct experiments with them on
GSMS8K and MATH (see Fig. 4 for example
prompts and outputs for generating math problems).
Detailed prompts and outputs for different methods
are provided in Appendix A.3. Following the origi-
nal setting, we ask the LLM to randomly generate
5 examples for GSM8K and 3 examples for MATH.
As observed from Table 8, ensuring the accuracy
of self-generated examples does lead to better per-
formance regardless of the problem type. ICL .,
and ICLy;, achieve similar average performance,
once again demonstrating that relevance does not
matter (see Appendix A.4 for more analysis on rel-
evance). Moreover, both ICL variants only need
to generate examples once, which significantly re-
duces the inference cost and further demonstrates
their superiority.

4.3 Further Analysis

Repeating Problems While generating a few ac-
curate problems as ICL demonstrations can achieve
better performance, a bolder idea might be to gener-
ate one problem and repeat it multiple times as few-
shot demonstrations for ICL. To investigate this,



Method Relevant N/A Randomg,,. Randomgy Randomy;, ICL.n ICLyie
Llama-2-70b-Chat 45.1 514 50.9 54.3 47.1 55.5 56.1
Llama-3-8B-Instruct 69.5 72.3 72.6 74.1 73.5 75.8 76.8

Table 11: Accuracy (%) of different methods on GSM8K using Llama-2-70b-Chat and Llama-3-8B-Instruct models.
Self-generated relevant examples always perform worse than irrelevant ones and both ICL variants outperform other

approaches.
Variant Method
Relevant N/A Randomgyye
ICL 56.2 58.2 58.6
GPT4-Calibration 60.8 61.0 60.8
Random 53.2 54.0 59.6

Table 12: Accuracy (%) of different variants on GSM8K
using Llama-2-70b-Chat. ‘GPT4-Calibration’ consis-
tently performs better than ‘ICL’ and ‘random’ for dif-
ferent methods.

we randomly select a generated math problem and
repeat it to perform ICL, denoted by ICL a0 _repeat-
From the results shown in Table 9, we can see
that ICLyath_repeatr CONsistently performs worse than
ICL,,,.m on both datasets, indicating that the diver-
sity of generated problems also matters.

Robustness to Prompt Formats To verify the
robustness of different methods to prompt formats,
we experiment with a new prompt paraphrased
from the original one by GPT-4 and present the
results on GSMS8K in Table 10. We also observe
better performance with irrelevant examples than
relevant ones, showing the robustness.

Generalization to Open-source LLMs Our ex-
periments and analysis so far used GPT-3.5 as the
LLM, which is closed-source and gets updated over
time. To verify whether the observations and con-
clusions are consistent across different models and
additionally for reproducibility, we extend the ex-
periments to Llama-2-Chat (Touvron et al., 2023).
Specifically, we use vLLM (Kwon et al., 2023) to
serve a Llama-2-70b-Chat model for experiments
and report the results of different methods/variants
on GSMSK in Table 11 and Table 12. We can draw
similar observations: (7) self-generated relevant ex-
amples underperform all types of irrelevant ones,
(i) ‘GPT4-Calibration’ consistently outperforms
the other two variants, and (iif) ICL,,, and ICLy;,
perform better than other approaches, demonstrat-
ing that the conclusions can be generalized to dif-
ferent models.

We further conduct experiments with the latest

Number Relevant N/A Randomg,. Randomgjy Randomp;,

3 73.1 77.3 75.0 753 75.5
5 715 75.5 75.1 76.3 75.3

Table 13: Accuracy (%) of all methods with different
numbers of demonstrations.

Llama-3-8B-Instruct model. The results reported
in Table 11 demonstrate the generalizability of the
conclusions across different model scales. In addi-
tion, since investigating analogical reasoning re-
quires LLMs to self-generate different types of
problems, we only experiment with instruction-
tuned LLMs to ensure that they can follow the
given instructions.

Different Numbers of Demonstrations While
we mainly follow the setting in Yasunaga et al.
(2024) to ask the LLM to generate k = 5 examples
for GSMS8K, we further investigate the effect of the
number of demonstrations. Specifically, we con-
duct controlled experiments with £ = 3 and report
the results in Table 13. We can observe that irrel-
evant examples consistently outperform relevant
ones across different numbers of demonstrations,
emphasizing their effectiveness.

In addition, we show the generalization to differ-
ent tasks in Appendix A.5.

5 Conclusion

In this work, we have systematically assessed the
capability of LLLMs to perform analogical reason-
ing. We have identified key research questions and
empirically analyzed a representative set of LLMs
on a diverse collection of reasoning tasks. Exten-
sive experimental results and analysis show that
LLMs cannot always perform analogical reason-
ing and the key influencing factor is the accuracy
of self-generated examples rather than their rele-
vance. Given these findings, we have designed two
ICL-based approaches with better performance and
significantly reduced inference costs. In the future,
we would like to investigate additional analogical
prompting methods to generate more accurate ex-
amples.



Limitations

This work has several limitations. First, due to the
inference cost of ChatGPTl, we conduct experi-
ments on subsets of the test data for mathematical
reasoning tasks. Besides, we include 3 datasets re-
quiring different reasoning capabilities in this work.
A further improvement could be to explore more
diverse types of tasks.
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A Appendix
A.1 Prompts for Different Methods

The prompts for different methods on all datasets
are shown in Fig. 5 ~ Fig. 7.

A.2 Detailed Results for Different Random
Seeds

We report detailed results for different random
seeds in Table 14 ~ Table 15.

A.3 Prompts and Outputs for Example
Generation

We show detailed prompts and outputs for ran-
domly generating math and biological problems
in Fig. 8 and Fig. 9, respectively.

A.4 Guided Problem Generation

In addition to random problem generation in §4.2-
Q2-1, we further investigate guided problem gener-
ation. Specifically, we randomly select 5 training
samples to guide LLMs to self-generate relevant
math problems. We then manually verify their cor-
rectness and use this fixed set of problems as ICL
demonstrations for experiments. The performance
of this approach (56.1) is slightly lower than that of
ICL, . (56.3), verifying that relevance is not the
key influencing factor.

A.5 Generalization to Different Tasks

To test the generalizability of our findings beyond
the math domain, we further conduct experiments
on CommonsenseQA (commonsense reasoning)
(Talmor et al., 2019). The comparison between
different methods is shown in Table 16, which
demonstrates that our findings can be generalized
to different types of tasks.
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GSMSK MATH

Seed Relevant N/A Randomg,,. Randomgyy Randomy, ‘ Relevant N/A Randomg,,. Randomgyy Randomy,
42 71.8 76.6 732 74.0 74.0 ‘ 374 42.2 41.6 39.0 39.2
100 71.2 75.2 75.2 75.8 74.8 ‘ 29.0 30.6 32.6 29.4 31.2
1000 71.4 74.8 77.0 79.2 77.0 ‘ 33.6 35.6 34.6 34.0 334
Average 71.5 75.5 75.1 76.3 75.3 ‘ 333 36.1 36.3 34.1 34.6

Table 14: Accuracy (%) of all methods with different random seeds on two mathematical reasoning tasks.

Temporal Logical deduction Reasoning about Formal  Word

Seed sequences five objects colored objects  fallacies sorting Average
Relevant 58.0 52.8 76.0 50.4 77.2 62.9
N/A 56.4 44.8 77.6 54.0 76.8 61.9
42 Randomg,.e 524 48.8 74.8 51.6 72.8 60.1
Randomyg;g 43.2 46.8 74.0 524 67.6 56.8
Randomy;, 56.8 52.0 74.0 52.0 76.4 62.2
Relevant 58.4 50.8 78.4 51.2 76.8 63.1
N/A 55.2 46.0 74.8 52.8 79.2 61.6
100  Randomgyp, 50.8 48.4 73.6 53.2 75.2 60.2
Randomyg;g 46.4 46.8 72.8 50.0 70.4 57.3
Randomy;, 58.0 48.4 78.4 51.2 73.6 61.9
Relevant 63.6 50.0 75.6 52.0 76.8 63.6
N/A 60.8 45.2 74.0 53.2 77.2 62.1
1000 Randomgyp, 56.0 49.2 72.0 52.4 74.4 60.8
Randomyg;g 43.2 40.8 70.4 51.2 69.6 55.0
Randomy;, 56.4 48.0 76.0 49.2 74.8 60.9

Table 15: Accuracy (%) of all methods with different random seeds on BBH.

Relevant N/A Randomg,,. Randomgg Randomy;, ICL. ICLy;,
70.8 73.4 71.2 72.9 72.6 746  74.1

Table 16: Accuracy (%) of different methods on Com-
monsenseQA. ‘cs’ in ICL stands for ‘commonsense’.
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—— Prompt: self-generate relevant examples

Your task is to tackle mathematical problems. When presented with a math problem, recall relevant problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure that your response follows the instructions below.

## Analogous Problems:

Offer five diverse examples of math problems that are relevant or analogous to the initial problem. For each problem, elaborate on the solution and conclude with the
ultimate answer (enclosed in \boxed{}). For each problem:

- After "Q: ", describe the problem

- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

— Prompt: self-generate N/A examples

Your task is to tackle mathematical problems. When presented with a math problem, recall n/a problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure that your response follows the instructions below.

## N/A Problems:

Offer five diverse examples of math problems that are n/a to the initial problem. For each problem, elaborate on the solution and conclude with the ultimate answer
(enclosed in \boxed{}). For each problem:

", describe the problem

- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

— Prompt: self-generate random math examples

Your task is to tackle mathematical problems. When presented with a math problem, recall random problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure that your response follows the instructions below.

## Random Problems:

Randomly offer five diverse examples of math problems. For each problem, elaborate on the solution and conclude with the ultimate answer (enclosed in \boxed({}). For
each problem:

- After "Q: ", describe the problem

- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

—— Prompt: self-generate examples

Your task is to tackle mathematical problems. When presented with a math problem, recall as examples.
Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem)

# Instructions:
Make sure that your response follows the instructions below.

#i Problems:
offer five diverse examples of problems. For each problem, elaborate on the solution and conclude with the ultimate answer (enclosed in
\boxed{}). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed({}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed{} here.

—— Prompt: self-generate examples

Your task is to tackle mathematical problems. When presented with a math problem, recall as
examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure that your response follows the instructions below.

# Problems:
offer five diverse examples of . For each problem, elaborate on the solution and conclude with
the ultimate answer (enclosed in \boxed{}). For each problem:
- After describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed({}.

## Solve the Initial Problem:
Q: Copy and paste the initial problem here.
A: Explain the solution and enclose the ultimate answer in \boxed({} here.

Figure 5: Prompts for different methods on GSMS8K.
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—— Prompt: self-generate relevant examples

Your task is to tackle mathematical problems. When presented with a math problem, recall relevant problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Relevant Problems:

Recall three examples of math problems that are relevant to the initial problem. Note that your problems should be distinct from each other and from the initial problem
(e.g., involving different numbers and names). For each problem:

- After " describe the problem

- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

Al

## Solve the Initial Problem:

Say "Let's solve the following math problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.

A: Explain the solution and enclose the ultimate answer in \boxed{} here.

— Prompt: self-generate N/A examples

Your task is to tackle mathematical problems. When presented with a math problem, recall n/a problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## N/A Problems:

Recall three examples of math problems that are n/a to the initial problem. Note that your problems should be distinct from each other and from the initial problem (e.g.,
involving different numbers and names). For each problem:

- After "Q: ", describe the problem

- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:

Say "Let's solve the following math problem."” Then formulate your response in the following format:
Q: Copy and paste the initial problem here.

A: Explain the solution and enclose the ultimate answer in \boxed{} here.

—— Prompt: self-generate random math examples

Your task is to tackle mathematical problems. When presented with a math problem, recall random problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Random Problems:

Randomly recall three examples of math problems. Note that your problems should be distinct from each other and from the initial problem (e.g., involving different
numbers and names). For each problem:

- After "Q: ", describe the problem

- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:

Say "Let's solve the following math problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.

A: Explain the solution and enclose the ultimate answer in \boxed{} here.

—— Prompt: self-generate examples

Your task is to tackle mathematical problems. When presented with a math problem, recall as examples.
Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

# Problems:
recall three examples of problems. Note that your problems should be distinct from each other and from the initial problem. For each
problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:

Say "Let's solve the following math problem."” Then formulate your response in the following format:
Q: Copy and paste the initial problem here.

A: Explain the solution and enclose the ultimate answer in \boxed{} here.

— Prompt: self-generate examples

Your task is to tackle mathematical problems. When presented with a math problem, recall as
examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

# Problems:
recall three examples of . Note that your problems should be distinct from each other and
from the initial problem. For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:

Say "Let's solve the following math problem."” Then formulate your response in the following format:
Q: Copy and paste the initial problem here.

A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Figure 6: Prompts for different methods on MATH.
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—— Prompt: self-generate relevant examples

Your task is to tackle reasoning problems. When presented with a problem, recall relevant problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem)

# Instructions:
Make sure to include all of the following points:

## Relevant Problems:
problem:

- After "
- After "

", describe the problem
: ", explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:

Say "Let's solve the following reasoning problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.

A: Explain the solution and enclose the ultimate answer in \boxed{} here.

Recall three examples of problems that are relevant to the initial problem. Note that your problems must be distinct from each other and from the initial problem. For each

— Prompt: self-generate N/A examples

Your task is to tackle reasoning problems. When presented with a problem, recall n/a problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## N/A Problems:

Recall three examples of problems that are n/a to the initial problem. Note that your problems must be distinct from each other and from the initial problem. For each
problem:

- After "
- After "

describe the problem
, explain the solution and enclose the ultimate answer in \boxed{}.

## Solve the Initial Problem:

Say "Let's solve the following reasoning problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.

A: Explain the solution and enclose the ultimate answer in \boxed{} here.

—— Prompt: self-generate random reasoning examples

Your task is to tackle reasoning problems. When presented with a problem, recall random problems as examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem)

# Instructions:
Make sure to include all of the following points:

## Random Problems:

Randomly recall three examples of reasoning problems. Note that your problems must be distinct from each other and from the initial problem. For each problem:
describe the problem

explain the solution and enclose the ultimate answer in \boxed({}.

## Solve the Initial Problem:

Say "Let's solve the following reasoning problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.

A: Explain the solution and enclose the ultimate answer in \boxed{} here.

—— Prompt: self-generate examples

Your task is to tackle reasoning problems. When presented with a problem, recall as examples.
Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem]

# Instructions:
Make sure to include all of the following points:

## Problems:
recall three examples of problems. Note that your problems must be distinct from each other and from the initial problem. For
each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed({}.

## Solve the Initial Problem:

Say "Let's solve the following reasoning problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.

A: Explain the solution and enclose the ultimate answer in \boxed{} here.

— Prompt: self-generate examples

Your task is to tackle reasoning problems. When presented with a problem, recall as
examples. Afterward, proceed to solve the initial problem.

# Initial Problem:
[The target problem)

# Instructions:
Make sure to include all of the following points:

# Problems:
from the initial problem. For each problem:

- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed({}.

## Solve the Initial Problem:

Say "Let's solve the following reasoning problem." Then formulate your response in the following format:
Q: Copy and paste the initial problem here.

A: Explain the solution and enclose the ultimate answer in \boxed{} here.

recall three examples of . Note that your problems must be distinct from each other and

Figure 7: Prompts for different methods on BBH.
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Input

Randomly recall five examples of math problems. Note that your problems should be distinct from each other (e.g., involving different numbers and names).
For each problem:

- After "Q: ", describe the problem

- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

Output

Q: If John has 5 apples and he buys 8 more, how many apples does he have in total?
A: To find the total number of apples John has, we add the number of apples he initially has to the number of apples he buys. So, we calculate 5 + 8 = 13.
Therefore, John has \boxed{13} apples in total.

Q: Solve for x in the equation 2x - 4 = 10.
A: To solve for x, we first add 4 to both sides of the equation to get 2x = 14. Then, we divide both sides by 2 to isolate x, resulting in x = 7. Thus, the
solution is \boxed{x = 7}.

Q: A rectangle has a length of 10 cm and a width of 4 cm. What is its area?
A: The area of a rectangle is found by multiplying its length by its width. Therefore, the area of this rectangle is 10 * 4 = 40 square centimeters. So, the area
is \boxed{40}.

Q: A fair six-sided die is rolled. What is the probability of rolling a number greater than 4?
A: A six-sided die has numbers 1 through 6. The numbers greater than 4 are 5 and 6, which are 2 out of the 6 possible outcomes. Therefore, the probability
of rolling a number greater than 4 is \frac{2}6} = \frac{1X83}. Thus, the probability is \boxed{\frac{1X3}}.

Q: Find the derivative of the function f(x) = 3x"2 + 2x - 5.

A: To find the derivative of f(x), we apply the power rule to each term. The derivative of 3xA2 is 6x, the derivative of 2x is 2, and the derivative of a constant
-5 is 0. Therefore, the derivative of f(x) is f'(x) = 6x + 2. So, the derivative is \boxed{6x + 2}.

Figure 8: Prompts and outputs for generating math problems.

Input

Randomly recall five diverse examples of biological problems (remember not to output math problems). For each problem:
- After "Q: ", describe the problem
- After "A: ", explain the solution and enclose the ultimate answer in \boxed{}.

Output

Q: In a certain species of plant, the allele for red flowers (R) is dominant over the allele for white flowers (r). If two heterozygous plants are crossed, what is
the probability that an offspring will have white flowers?

A: To solve this problem, we use a Punnett square to determine the genotypes of the offspring. The cross of two heterozygous plants Rr x Rr produces the
following genotypes: RR, Rr, Rr, and rr. The probability of an offspring having white flowers rr is 1 out of 4, since only one genotype out of the four possible
genotypes results in white flowers. Therefore, the probability is \boxed{\frac{1}4}}.

Q: A small pond is introduced with 10 fish, and the fish population doubles every month. How many fish will there be in the pond after 6 months?

A: To find the fish population after 6 months, we use the formula for exponential growth: P = P_0 * 24n, where P is the final population, P_0 is the initial
population, and n is the number of time periods (months, in this case). Plugging in the values, we get P = 10 * 276. Calculating this gives P = 10 * 64 = 640.
Therefore, there will be \boxed{640} fish in the pond after 6 months.

Q: What is the primary mechanism by which the human kidney concentrates urine?

A: The primary mechanism by which the human kidney concentrates urine is through the counter-current multiplier system in the loop of Henle. This
system allows for the reabsorption of water and solutes from the filtrate back into the bloodstream, which concentrates the urine. The key to this process is
the creation of a high osmolarity in the medullary interstitial fluid, which draws water out of the filtrate in the collecting ducts, concentrating the urine. The
ultimate answer is the \boxed{counter-current multiplier system}.

Q: What is the principle behind the theory of natural selection as proposed by Charles Darwin?

A: The principle behind the theory of natural selection is that individuals within a species show variation in physical characteristics and behaviors. These
variations can affect the individuals' ability to survive and reproduce in their environment. Individuals with traits that are better suited to their environment
are more likely to survive and reproduce, passing on those advantageous traits to their offspring. Over time, this can lead to changes in the species as a
whole. The ultimate answer is the \boxed{survival and reproduction of the fittest}.

Q: How do antibiotics kill bacteria?
A: Antibiotics can kill bacteria through several mechanisms, including inhibiting cell wall synthesis, disrupting protein synthesis, impairing nucleic acid

synthesis, and interfering with metabolic pathways. The specific mechanism depends on the class of antibiotic. For example, penicillin disrupts the
synthesis of the bacterial cell wall, leading to cell lysis and death. Therefore, the ultimate answer is by \boxed{inhibiting vital processes} specific to bacteria.

Figure 9: Prompts and outputs for generating biological problems.
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