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ABSTRACT

We introduce Cautious Weight Decay (CWD), an one-line, optimizer-agnostic
modification that applies weight decay only to parameter coordinates whose signs
align with the optimizer update. Unlike standard decoupled decay, which im-
plicitly optimizes a regularized or constrained objective, CWD preserves optima
of the original loss and admits a bilevel interpretation: it induces sliding-mode
behavior upon reaching the stationary manifold, allowing it to search for locally
Pareto-optimal stationary points of the unmodified objective. In practice, CWD is
a drop-in change for optimizers such as ADAMW, LION, and MUON, requiring
no new hyperparameters or additional tuning. For language model pre-training
and ImageNet classification, CWD consistently improves final loss and accuracy at
million- to billion-parameter scales.

1 INTRODUCTION

Algorithm 1 Cautious Weight Decay (CWD)

given parameters x;, optimizer update u., learning rates n: > 0, weight decay coefficient A > 0
X1 6 X¢ — My (ut + Al(uex: > 0)x¢ ) > entrywise multiplication

Optimization algorithms lie at the core of modern deep learning, shaping not only convergence
speed but also training stability and generalization ability across domains such as natural language
processing and computer vision (Wen et al.l 2025). As models and datasets scale, traditional meth-
ods such as stochastic gradient descent (SGD) and SGD with momentum (Sutskever et al., [2013))
encounter limitations, including slow convergence in non-convex landscapes, sensitivity to learning
rate schedules, and poor robustness to sparse or noisy gradients (Scaman & Malherbel 2020; Zhao
et al., |2025). In response, a wide range of alternatives have emerged, including adaptive gradient
methods (Duchi et al., 2011 |Kingma & Bal, [2015)), approximate second-order approaches (Martens
& Grosse,, 20155 |Gupta et al., 20185 [Yao et al., 2021} Liu et al.| [2024), and specialized algorithms for
extreme training regimes (Luo et al., [2024; | Xie et al., 2024} |[Huang et al., 2025} [Zhang et al.| [2025)).

Among these advances, decoupled weight decay (Loshchilov & Hutter,|2019) has proven especially
influential. In its general form, decoupled weight decay augments any optimizer update u; with a
decay term applied directly to the parameters, i.e.
Xep1 < X¢ — (e + Axy), u; = OptimizerUpdate(x;).

This technique improves training stability and generalization by preventing the adaptive learning
rates from interfering with regularization, as exemplified by the success of ADAMW in large model
training (Brown et al.l [2020; |Dosovitskiy et al., 2021; [Touvron et al., [2023)) and the subsequent
development of state-of-the-art optimizers such as LION (Chen et al.} [2023)), L1ON-X (Chen et al.,
2024)), and MUON (Jordan et al., 2024; [Liu et al., 2025).

However, decoupled weight decay remains agnostic to the directional alignment between the opti-
mizer update and the parameters, which may hurt performance when they conflict. Intuitively, when
the update u; and parameters x; point in the same direction for a given dimension, weight decay
acts as a regularizer that improves stability; however, when their directions differ, applying decay
actively resists beneficial movement toward the optimum. Furthermore, decoupled weight decay has
been shown to implicitly impose regularization terms on the objective function (Chen et al.| |2024;
Xie & Li,2024), which corresponds to parameter norm constraints for ADAMW, LION, and MUON.
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Figure 1: Final validation loss vs. weight decay coefficient A for 338M models trained on C4 under
Chinchilla scaling. Our approach (red) achieves lower final loss than standard weight decay (blue)
while preserving the optimizer-specific optimum in A. For each optimizer (ADAMW, LION, MUON)),
both methods use the same hyperparameters.

In light of these limitations, we propose a simple re-
finement: cautious weight decay (CWD), in which de- , )

. . . . . “ Feasible Region
cay is applied only in dimensions where the update

| —_— =
and parameter signs align (Algorithm [T). Our main ‘\ | \ ﬁjamv(vwd o
contributions are as follows. ‘ am

\ —— Ours
e We introduce cautious weight decay, a sign-selective |
extension of decoupled decay that applies weight de-
cay only when the parameters and update align. Our
technique can be implemented as a one-line modifica-
tion without introducing additional hyperparameters
compared to standard decoupled decay.

e We use Lyapunov analysis to show that standard
optimizers (SGD(M), LION-K, ADAM) with cautious
weight decay are asymptotically stable and unbi-
ased, in the sense that they optimize the original loss
rather than a regularized surrogate. The regulariza-
tion effect of cautious weight decay instead becomes
a bilevel objective of finding locally Pareto-optimal
points within the stationary manifold (Figure [2). Fur-
thermore, we show that discrete-time ADAM with cau-
tious weight decay attains a standard convergence rate
in the smooth nonconvex setting.

Figure 2: Trajectories of ADAM, ADAMW,
and ADAM + CWD on a toy example. ADAM
halts at a minimizer, while ADAMW mini-
mizes the objective within a constrained re-
gion (green). In contrast, ADAM + CWD
exhibits sliding mode dynamics within the
minimizer manifold.

e In language modeling (OLMo et al.l 2025} [Kamath

et al., |2025)) and ImageNet classification (Deng et al., [2009), we observe that cautious weight de-
cay generally accelerates convergence and lowers final validation loss for ADAMW, LION, and
MUON (e.g., Figure [I). These improvements translate into higher zero-shot accuracy on standard
benchmarks from 338M to 2B parameters and across architectures without retuning baseline settings
(=~20,000 NVIDIA H100 HBM3-80GB GPU hours for all experiments).

2 BACKGROUND AND MOTIVATION

2.1 DECOUPLED WEIGHT DECAY

Gradient-based optimizers with decoupled weight decay can be characterized by the update rule

i1 = (1 = A)xs — neug, (D

where u; := U(xy,81,-..,8t,t) is an adaptive, often sign-normalized update vector constructed
from first and second-moment estimates (e.g., momentum buffers, diagonal preconditioners), n; > 0
is the learning rate, and A > 0 is the decoupled weight decay coefficient. This framework encapsu-
lates a wide range of standard optimizers for machine learning, including ADAMW and LION-/C.

ADAMW. The update vector is given by u; = D, 1m,, where Dy is a diagonal preconditioner
and my; is bias-corrected first-moment estimate. Explicitly,
~ fmy i+ (1-B)g . Poviii + (1 — Ba)gf
m; = t ) Vi = + )
1-pt 1-p3%

D, = diag (\/vt + 61) :
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where 31 and 5, are momentum coefficients and € is a numerical stability constant.

LION-XC. Given a convex function /C, the update vector u; is a momentum-filtered step that is
preconditioned using a subgradient, i.e.

m; = fomy_1 — (1 — B2)gy, my=pimy_1 —(1—p51)g, uw=-VK(my),

where 3; and B, are momentum coefficients and VK is a subgradient of /C. Examples include LION
when IC = ||-||; and MUON when KC = ||-||,,, where |- ||, denotes the trace norm when the parameters
are treated as a matrix.

2.2 IMPLICIT REGULARIZATION EFFECTS OF WEIGHT DECAY

In general, the application of decoupled weight decay imposes a certain regularization or constraint
effect on the objective function, where the specific effect depends on the choice of u;. For example,
SGD with decoupled weight decay is exactly SGD on an ¢5-regularized objective. To see the equiva-
lence, let f : R? — R be differentiable and consider the regularized variant f(x) = f(x) +3 1|3

A single SGD step on ]?With learning rate n; > 0 yields the update
Xep1 = X¢ — (V[ (xe) + Axe) = (L= neA)xe — 0V f(x0),
which is precisely the decoupled weight decay update given by ().

Given a convex function K with subgradient VX and convex conjugate K*, suppose the iterates of
LI1ON-K converge to a fixed point (x*, m*, m*). Then the moment estimators stabilize so that m* =
m* = —V f(x*), and the fixed-point condition yields —VK(—V f(x*)) + Ax* = 0. Rearranging
and using the identity (V)™ = VK*, we obtain V f(x*) + VK*(Ax*) = 0, where the left-hand
side is the gradient of the function

o~

f(x):=f(x)+ %]C*(/\X).

This suggests that LION-/C optimizes the regularized objective f, an observation made by |Chen et al.
(2024). In the special cases of LION and MUON, K* is the 0-co indicator function of a dual norm
ball, corresponding to the constrained optimization problems

1

min f(x) st x| op = v

x€ER?

and min  f(X) st ||X]

oSy
by XcRnXm

respectively, where [|-[| ,, is the spectral norm when the parameters are treated as a matrix.

A similar analysis for ADAMW suggests that it solves the box-constrained problem of minimizing
f(x) such that ||x||., < %, but convergence cannot be established due to the lack of a Lyapunov
function. For more discussion, see Appendix@]and Xie & Li| (2024).

While ADAMW and LION-/C are practically strong, they implicitly optimize a regularized surrogate
that is dependent on the weight decay coefficient A\. This motivates the development of a mecha-
nism that maintains the beneficial effects of decoupled weight decay (e.g. regularization, training
acceleration) while optimizing the original objective.

3 CAUTIOUS WEIGHT DECAY

Cautious weight decay (CWD) modifies the update rule (T)) as
X1 = X¢ — e(ug + Al(uy © x¢ > 0) © x¢),

where © denotes entrywise multiplicationﬂ As a one-line modification, cautious weight decay
is implementation-trivial and universally compatible with gradient-based optimization algorithms.
Theoretically, cautious weight decay also exhibits the following behavior.

e Unbiased optimization, in the sense that every accumulation point x* of the trajectory satisfies
V f(x*) = 0 under the same convergence conditions required of the base optimizer without weight

!"Throughout the paper, when it is clear from context, we also drop @ and write v ® x = vx for simplicity.
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Table 1: Comparison of the continuous-time dynamics of different optimizers. SGDM represents
SGD with momentum. LION-K includes LION and MUON as special cases. f : R? — R is assumed
to be differentiable and lower bounded by f*.

Optimizer Continuous-time dynamics Lyapunov function

SGD + CWD X; = —Vf(xt) — /\]I(Vf(xt)xt > O)Xf H(X) = f(X)

SGDM + CWD %y = —my; — Al(myx; > 0)x; H(x,m) = Bf(x)+3 [ml|Z+ ) || (mx)* Hl
my = B(Vf(xe) —my)
LION-K +CWD %y = —=VK(m¢) — M[(mx; < 0)x, H(x,m) = af (x)+K(m)+ A H(fmx)JrH1
(Liox: K=-l;) 1y = aV f(x:) — ymy
(Muon: K=[l-]l,)
ADAM + CWD X; = —ailrtnt — A[(mx; > 0)x; He(x,m,h) = af (x)+ at;:f H +A H(mx)JrH1
1

l'i’lt = oz(Vf(xt) — l’l’lt)
Vi = y(Vf(x:)? = vi)
Notation. We drop ® for simplicity. oy := (1 — exp(—at)) ™", v := (1 —exp(—7t)) "', hy == /yivy + €l.

decay. In over-parameterized deep models, the set of stationary points a union of connected sub-
manifolds rather than isolated points. Consequently, the w-limit set of the trajectory is contained in
some stationary manifold, and the iterates eventually remain arbitrarily close to it.

¢ Sliding mode dynamics within the stationary manifold, where cautious weight decay allows the
trajectory to traverse along the manifold until it cannot decrease the parameter magnitudes in every
coordinate. In other words, cautious weight decay steers the trajectory towards a local Pareto front
of the stationary manifold under the ordering that prioritizes smaller parameter magnitudes.

3.1 CONVERGENCE TO THE STATIONARY MANIFOLD

We construct Lyapunov functions for the continuous-time limits of several standard optimizers
equipped with cautious weight decay. A Lyapunov function is a lower bounded function with non-
positive derivative that is used to certify the stability of systems of differential equations.

Consider the continuous-time dynamics of SGD with cautious weight decay
).(f/ = —Vf(Xf) - )\]I(Vf(xt)xt Z O)Xt.
This ODE has the Lyapunov function #(x) = f(x), since A is lower bounded and

dH

a = VFGxe), =VF(xe) = AUV f(xe)xe 2 0)x) = — IV £ Go)ls = AV Gee)xe) ]|, <0,
where ()1 := max(0, -). LaSalle’s invariance principle (LaSalle,|{1960) states that the accumulation
points of any trajectory lie within the union of trajectories z, that satisfy %H(zt) =0forallt > 0.
Consequently, we conclude that SGD with cautious weight decay produces trajectories that approach
the stationary set {x | V f(x) = 0} of the original loss. This holds because cautious weight decay
is applied only in a secondary fashion and is automatically deactivated whenever it conflicts with
the main objective, thereby ensuring that the loss landscape remains unbiased.

Beyond the simple case of SGD, the same Lyapunov-type argument can be extended to more sophis-
ticated algorithms such as SGDM, LION-/C, and ADAM. In each case, cautious weight decay still
minimizes the original objective without introducing explicit bias, but a key difficulty lies in con-
structing appropriate Lyapunov functions. Table [I] summarizes the Lyapunov functions of several
major optimizers with cautious weight decay, and detailed derivations are provided in Appendix [D]
By applying LaSalle’s invariance principle, we can show that the momentum-based algorithms in
Table [T| converge to the stationary set of the original objective, together with vanishing momentum:

{(x,m) | Vf(x) =0, m = 0}.
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3.2 SLIDING MODE DYNAMICS

Although both standard optimization (with no weight decay) and cautious weight decay are unbiased
with respect to the original objective, their behaviors diverge within the stationary manifold. In the
former, the dynamics halt as the momentum m decays to zero, while, in contrast, the cautious weight
decay dynamics induce a sliding mode, continuing to move along the manifold while reducing the
parameter magnitudes as much as possible. Consequently, the algorithm converges to a subset of
the stationary manifold where further simultaneous reduction of all coordinates of x is no longer
possible. Equivalently, it converges to a locally Pareto-optimal stationary point under a preference
for smaller parameter magnitudes.

To provide mathematical background, consider a possibly time-varying discontinuous ODE
it = ft(zt)7 Z: € Rd.

Due to the discontinuity of f;, the solution may not be well defined in the classical or Carathéodory
sense, especially across switching surfaces. We therefore interpret solutions in the Filippov sense
(Filippov, [1988)), where a discontinuous ODE is formally a differential inclusion that specifies that
z; belongs to the closed convex envelope of the discontinuous vector field, i.e.

7 € Flfe](ze) := m ﬂ co(fi(B(z¢,0) \ 9)),

5>0 u(S)=0

where 1 denotes the Lebesgue measure, B(z, ¢) is the d-ball centered at z, and o denotes the closed
convex envelope. This construction captures all possible limiting directions of the vector field near
discontinuities, ensuring well-defined dynamics even when f; is not continuous. The key idea is that
the values of z; must be determined by the behavior of f; in a neighborhood around z,, rather than
at the point itself. The inclusion, therefore, defines a range of admissible velocities consistent with
the nearby values of the vector field.

In particular, whenever f; contains coordinatewise indicators such as I(g(z;) > 0), the Filippov set
replaces them by selectors s; € [0, 1] on the switching set {[g(z;)]; = 0}:

{1} lg(ze)]i >0,
[se)i € § {0} [g(z)]i <O,
[0,1] [g(zt)]: = 0.

Recalling the Lyapunov analysis in Section [3.1] the continuous-time dynamics of standard opti-
mizers with cautious weight decay converge to the stationary manifold M := {x | Vf(x) = 0},
with the momentum m; also decaying to O for momentum-based methods. Consequently, once the
trajectory enters the stationary manifold, the residual dynamics reduce to

Xt = —>\St @Xt7 St € [0, l]d (2)

Moreover, since the Lyapunov function confines the dynamics to the stationary set, the selectors s;
must be chosen such that the trajectory remains within the manifold. Differentiating the stationarity
condition yields

%Vf(xt) = —AVQf(Xt)(St @Xt) = O, St (S [O, 1]d

This relation allows us to solve for admissible choices of s, that guarantee invariance of the manifold.
In general, the solution for s; need not be unique, and the actual value realized in practice may be
implicitly determined by the discretization scheme employed.

Effectively, cautious weight decay decreases parameter magnitudes along each coordinate while
staying within the stationary manifold, pushing x toward the local Pareto front of the manifold

P:={xeM|30>0Vy e (B(x,d) " M)\ {x}, |y £ x|},
where the tangent space no longer allows a nonzero s; in (Z). In other words, a stationary point

is locally Pareto-optimal if it has a neighborhood in the stationary manifold that contains no other
point with a smaller or equal magnitude in every coordinate.

This argument shows that cautious weight decay dynamics converge to P. Since P may not be
a singleton, the exact limit point depends intricately on initialization and the discretization of the
continuous-time dynamics. Figure [3]illustrates this behavior on two toy problems.
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Figure 3: Toy objectives and trajectories. Left: f(z,y) = ((y — 3)? — (z — 3)? — 1)2. Right:
f(z,y) = (y — 3 — (x — 3)?)%. We compare ADAM, ADAMW, and ADAM + CWD; ADAMW and
CWD use the same weight decay A, and all other hyperparameters (7, 81, 52, €) are identical. For
both objectives, ADAM converges to a generic point on the minimizer manifold, whereas ADAMW
converges to a solution of the box-constrained problem min, , f(x,y) subject to max{z,y} < %
In contrast, ADAM + CWD converges to the Pareto front of the minimizer manifold.

4 DISCRETE-TIME ANALYSIS Algorithm 2 ADAM with cautious weight decay

Leveraging the Lyapunov functions in Sec-  1: given learning rates {n; };en C R0, momentum coef-
tion EL it is possible to extend our analysis ficients 0 < 1 < 2 < 1, numerical stability constant

to the discrete-time dynamics of various op- € > 0, weight decay coefficient A > 0
timizers with cautious weight decay. In this  2: initialize time step ¢ « 1, parameters x; € R?, first
section, we use ADAM with cautious weight moment mg <— 0, second moment v < 0
decay (Algorithm[2) as an example, showing ~ 3: repeat
that in the smooth nonconvex setting, Algo- 4= 8t < StochasticGradient(x)
rithmJachieves a standard convergence rate  >° ™t = Sime1 + (1 — fi)g
1 5 6: vy fovior + (1 — B2)g;
of O(T 2.).0n the squared gradient norm 7. & (1— B "'m,
and an additional stationarity measure. 8 Ve (1—B4 v

We make the following assumptions, which 9. x, ., « x, —
are mild and often used in the analysis
of stochastic gradient algorithms (Ghadimi
& Lan, 2013 Barakat & Bianchi, 2021}
Défossez et al., 2022 [Arjevani et al., 2023)).

Assumption 1. f is coercive and L-smooth. This implies that f attains a minimum value, which we
denote as f*, and that the iterates of Algorithm 2] are bounded.

\/—+ 1 +)\]I(mtxt > 0) )
10 t<+t+1

11: until stopping criterion is met
12: return optimized parameters x;

Assumption 2 (Bounded variance). The stochastic gradient g, satisfies

0.2

Elg:] = Vf(x¢) and Var(g;) =E [Hgt - Vf(Xt)Hg] <

TMbatch ’

where o is a constant and Ny, denotes the batch size.

Theorem 1. Under Assumptions[lland[2] let 0 < 51 < 2 <1, A >0, ¢ > 0, andn, =n > 0, and
suppose X, is updated using Algorithm |2} Then for all T € N,

K5 Kyo
— V A V — 4+ —= + K3n+ —,
E[Ti (19 £Ge0l3 + A (V £ (xe)x0) H} L Ky

where K1, Ko, K3, and K4 are constants.

Proof sketch. We follow the standard approach of first proving a descent lemma. The full proof is
deferred to Appendix [E] O

Remark 1. The first term on the left-hand side, (x¢) 3 reflects how much f is optimized,
while the second term, ||(V f(x)x;)"||,, reflects the degree of conflict between the objective f
and the parameter magnitudes. If V f(x¢)x; > 0, then there is room to jointly decrease both
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[ and the magnitudes. Thus, a small value of ||(V f(x;)x;)" ||, indicates that the optimizer has
reached a state where it is difficult to further decrease f and shrink the magnitudes simultaneously.
This corresponds to convergence toward a Pareto front, where trade-offs between the two objectives
become unavoidable.

Remark 2. In the setting ofTheorem letT eN,n=0 ( L

ﬁ)’ and nyaten = O(T). Then

5 EXPERIMENTS
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Figure 4: Evaluation loss across scales. 3x3 grid for 338M, 986M, and 2B Transformer models
trained with ADAMW, LION, and MUON on C4 dataset. All panels show a zoom into the final ~40%
of training steps to highlight late-stage behavior. Baseline curves (dashed blue) use standard weight
decay with tuned hyperparameters (learning rate schedule, 5’s, weight decay, etc.; see Appendix [F).
Our method (solid red) follows Algorithm [I]and reuses the baseline hyperparameters without addi-
tional tuning. Full (non-zoomed) curves are in Figures[8] [0]and[T0]in Appendix |G}

Overview. We evaluate CWD against three standard optimizers—ADAMW, LION, and MUON—on
autoregressive language modeling and ImageNet classification. For Transformer models with simi-
lar architecture to Gemma (Kamath et al.,[2025) with 338M, 986M, and 2B parameters in the Sim-
ply (Liang et al.; 2025) codebase, we follow the Chinchilla compute-optimal scaling rule—20 tokens
per parameter (TPP) Hoffmann et al.|(2022) and train on C4 (Raffel et al.,|2020). For each size, we
grid-search batch size, learning rate, weight decay, warmup ratio, and optimizer-specific hyperpa-
rameters for the baselines (ADAMW, LION, MUON); we then reuse the selected baseline settings for
CWD without retuning (details in Appendix [F). Under matched settings, CWD lowers final validation
loss and improves zero-shot accuracy. On the OLMo codebase (OLMo et al.,[2025)), we further study
an over-training regime—QOLMo-1B trained on 100B tokens (100 TPP) from Dolma (Soldaini et al.,
2024). Under matched settings, CWD lowers final validation loss and improves zero-shot accuracy
(Table ). We also observe similar gains on ImageNet (Deng et al., 2009) across ViT (Dosovitskiy
et al.,|2021)) and ResNet (He et al.,[2016).
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Ablations of weight decay. Figure[l|sweeps the weight—decay coefficient A for a 338M model on
C4: X €0, 0.4] for MUON and ADAMW, and )\ € [0, 3.0] for LION. Two patterns are consistent
across runs: (i) at a fixed A\, CWD attains a lower final loss than the corresponding baseline with
decoupled weight decay; (ii) the minimizing value A* is essentially unchanged when replacing the
baseline with CWD. In practice, one can swap in CWD at an already tuned A and obtain improvements
without additional sweeps.

Table 2: Ablation study of selective weight decay strategies on OLMo-1B (100B tokens). We com-
pare our momentum-based selection against alternative masking approaches. Baseline: standard
weight decay (A tuned). Ours: update-based mask I(ux > 0) using baseline’s A without retuning.
Random: time-varying Bernoulli mask matching our method’s sparsity ratio (see Figure [6]in Ap-
pendix . Gradient: uses [(gx > 0) instead. No WD: A = 0. Lower validation loss is better.

Weight Decay Active Ablated Masks Disabled
Optimizer Baseline Ours Random Gradient No WD
ADAMW 2.65 2.56 2.82 2.75 2.70
MUON 2.51 242 2.73 2.74 2.62

Table 3: ImageNet validation accuracy (%) across architectures and optimizers. All models train
for 300 epochs with standard augmentation. Base: optimizer with tuned weight decay. Ours:
momentum-based selective weight decay using the same coefficient as baseline (no retuning).

ADAMW LIoN MuoN
Model Params Base Ours Base Ours Base Ours
ViT-S/16 22.05M 78.84 79.45 79.29 79.82 79.35 79.91
ResNet-50 25.56M 76.30 76.68 76.41 76.75 76.47 76.83
ViT-B/16 86.57TM 80.15 80.71 80.76 80.92 80.83 81.04
10- —— AdamW (wd=0.0) —— Muon (wd=0.0)
Q- — AdamW (wd=0.1) 2 10- —— Muon (wd=0.1)
g —— Ours (wd=0.1) 8 —— Ours (wd=0.1)
2 «w ]
g i
g o WA WE
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Figure 5: Training loss of OLMo 1B on 100B tokens. Left: ADAMW. Right: MUON.

Ablations on masking. Table[]tests whether the benefits arise from the amount of decay applied or
from CWD’s structure. Replacing our mask with a time-matched Bernoulli “random mask” substan-
tially degrades performance (e.g., 2.56 — 2.82 for ADAMW, 2.42 — 2.73 for MUON), showing that
simply reducing the frequency of decay is insufficient. Substituting the indicator with the gradient-
based I(gx > 0) also underperforms. Finally, A = 0 remains worse than tuned decay, illustrating
that explicit regularization is helpful and CWD leverages it more effectively.

Training dynamics. On 1B models trained for 100B tokens, we observe that CWD tends to improve
the loss trajectory relative to tuned ADAMW and MUON, rather than only the final value (Figure [3).
A similar pattern appears at 986M: Figure[7)in Appendix [G]shows evaluation/training loss and RMS
parameter norm over time. CWD generally achieves lower loss while ending with an intermediate
norm. In contrast, removing decay entirely (A = 0) descends faster mid-training but plateaus earlier,
finishing at higher loss and the largest norm; tuned ADAMW with A > 0 yields the smallest norm.
Overall, these results suggest that the gains come from a more selective application of regularization
rather than from disabling it.

CWD outperforms standard decay across optimizers and scales. Under the common setup across
338M, 986M, and 2B parameters, CWD consistently lowers eval loss for ADAMW, LION, and MUON
(see Figure ] and Figures [8HI0]in Appendix[G)) and increases downstream accuracy (Table @).
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Optimizer Hellaswag T ARC-Easy T ARC-C1 PIQA 1 MMLU 1 ComQA 1

acc_norm acc_norm  acc_norm acc_norm acc acc
ADAMW 0.38 0.50 0.25 0.67 0.23 0.29
ADAMW+CWD 0.40 0.53 0.27 0.69 0.25 0.31
MUON 0.39 0.51 0.26 0.68 0.24 0.30
MUON+CWD 0.41 0.51 0.28 0.71 0.26 0.33

Table 4: Downstream accuracy across diverse reasoning benchmarks. All runs use the OLMo code-
base with 1B-parameter models trained for 100B tokens under an over-training regime. Here ARC-
C=ARC-Challenge and ComQA=CommonsenseQA. FigureE] shows the corresponding loss curves.

CWD yields lower gradient norms than standard decay. Across model sizes, CWD produces lower
RMS-normalized gradient norms than the corresponding baselines (see Figure [IT]in Appendix [G).
This coincides with the lower end-of-training loss in Figure[5]and the accuracy gains in Table ]

6 RELATED WORK

Weight decay. Weight decay originated as an /5 penalty for ill-posed problems and ridge regression
(Tikhonov, |1963; [Hoerl & Kennard, |1970) and was introduced to neural networks as a generaliza-
tion tool to mitigate overfitting (Hanson & Pratt, 1988} [Weigend et al.,|1990; Krogh & Hertz,[1991).
(Loshchilov & Hutter}, 2019) showed that, for adaptive methods, weight decay and /5 are not equiv-
alent, motivating the decoupled formulation in ADAMW; subsequent work established decoupled
decay as a standard feature of modern optimizers (Chen et al.| 202352024} Liu et al., [2025). Recent
analyses suggest that in contemporary networks, weight decay functions more as a training accel-
erator and stabilizer than as explicit regularization (Krizhevsky et al., |2017; Hoffmann et al.| 2022}
Pan & Caol 2023} D’ Angelo et al., 2024)). Interactions with normalization layers and learning rate
schedules have also been clarified (Defaziol 2025), and architectural designs can obviate explicit
decay (Loshchilov et al.| [2025).

Weight decay variants. Various efforts have been made to develop different adaptive variants of
weight decay. For example, Xie et al.| (2023) found that weight decay can lead to large gradient
norms at the final phase of training and proposed Scheduled Weight Decay (SWD) to dynamically
adjust weight decay strength based on gradient norms. [Kosson et al.|(2024) investigates how weight
decay affects individual neuron updates, revealing rotational equilibrium states that balance learning
across layers and neurons. |Ghiasi et al.| (2023) introduces adaptive weight decay that automatically
tunes the hyperparameter during training based on classification and regularization loss gradients,
achieving significant improvements in adversarial robustness.

Constrained optimization. Decoupled weight decay can be interpreted through the lens of
Frank—Wolfe algorithms for constrained optimization (Frank & Wolfe,|1956;Jaggi, 2013 |Sfyraki &
‘Wang, 2025} Pethick et al., [2025)). This connection suggests that optimizers with decoupled weight
decay implicitly solve constrained optimization problems, which was shown to be the case for LION
(Chen et al.} |2024} [Sfyraki & Wang, 2025; [Pethick et al.,2025), ADAMW (Xie & Li,2024;|Bernstein
& Newhouse, [2024)), and MUON (Chen et al., [2025; [Sfyraki & Wang, 2025} Lau et al., 2025).

7 CONCLUSION

We introduce cautious weight decay and formalize it as a simple, optimizer-agnostic modification
of decoupled weight decay that preserves the optimization objective while retaining the practi-
cal benefits of weight decay. For standard optimizers (SGD, ADAM, and LION-K), we show the
bilevel optimization structure of cautious weight decay and establish convergence guarantees in
both continuous- and discrete-time regimes. Across diverse tasks and benchmarks, cautious weight
decay consistently improves training dynamics compared to no decay and traditional decoupled de-
cay, yielding faster loss reduction and more stable trajectories without changes to hyperparameters
or model architectures. Our results indicate that cautious weight decay is a theoretically principled
and empirically effective technique that retains the benefits of weight decay while addressing its
fundamental limitations.
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A NOTATION AND DEFINITIONS

N := {1,2,3,...} denotes the natural numbers. For n € N, [n] denotes the set {1,2,...,n}.
Vectors are denoted in lowercase boldface, and matrices are denoted in capital boldface. 0 and 1 de-
note the all-zeros and all-ones tensors of appropriate dimension, respectively. Scalar operations and
functions, e.g. multiplication, division, and square roots, are understood to be performed entrywise
when applied to vectors. We also use ® to explicitly denote the entrywise product. =+ denotes the
positive part of z, i.e.
4 z ifz>0
7 =max(0,x) = ..

(0,) {O otherwise

(|||, denotes the £, norm for p € [1, o0]. (-, ) denotes the standard inner product on R?. [x]; denotes

the i" entry of a vector x. diag (x) denotes the diagonal matrix with diagonal entries given by x.
I(x > 0) denotes the indicator tensor that is 1 in a coordinate if x is positive in that coordinate and
0 otherwise. If K : R? — R is convex, we let 9K (x) denote the set of subgradients of K at x and
overload VK (x) to denote an element of OKC(x).

Definition 1 (L-smoothness). A function f : R* — R is L-smooth if it is differentiable and

IVf(y) = Vi)l < Llly x|, forallx,y € R
If f is L-smooth, then

F7) < 169 +(VH00)y = %) + 5 ly — X3 forallx,y € R,

Definition 2 (Coerciveness). A function f : R? — R is coercive if f(x) — oo as ||x|| — oo.

B PSEUDOCODE OF OPTIMIZERS WITH CWD

B.1 SGD wWITH MOMENTUM

Algorithm 3 SGD with momentum and cautious weight decay

. given learning rates {7 }+en C Rs0, momentum coefficient 8 € [0,1), weight decay coefficient A > 0

: initialize time step ¢ < 1, parameters x; € R?, first moment mg «+ 0

. repeat

g: + StochasticGradient(x:)

my < fmy_1 + (1 - B)g:

X1 — X¢ — Mt (mt +AL(mx: > 0)x¢ ) > entrywise multiplication
tt+1

. until stopping criterion is met

: return optimized parameters x;

I R

B.2 LION-K

Algorithm 4 L1ON-K with cautious weight decay

1: given learning rates {7; }sen C Rs0, momentum coefficients £1, 82 € [0,1), convex K : R* — R with
subgradient VIC, weight decay coefficient A > 0

: until stopping criterion is met
: return optimized parameters x:

2: initialize time step t < 1, parameters x; € R<, first moment m; + 0

3: repeat

4: g, + StochasticGradient(x;)

5: myyg Bomy — (1 — B2)g

6: mgi < ﬂlmt — (1 — Bl)gt

T X1 & Xe + 0t (VK(ﬁlt+1) — AV (mey1)xe < 0)x ) > entrywise multiplication
8 t+t+1

9

0

—
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B.3 LION

Algorithm 5 LION with cautious weight decay

1: given learning rates {n: }+env C R>0, momentum coefficients 31, 32 € [0, 1),
weight decay coefficient A > 0

: initialize time step ¢ < 1, parameters x; € R, first moment mg «+ 0

: repeat

g+ < StochasticGradient(x:)

me < Simy—1 + (1 — B1)g:

Xi41 6 Xt — My (sgn(fflt) +AI(mex: > 0)x¢ ) > entrywise sgn and multiplication
m; < fomy_1 + (1 — B2)8:

t—t+1

: until stopping criterion is met

: return optimized parameters x;

YR D DR

—

B.4 MUON

Algorithm 6 MUON with cautious weight decay

: until stopping criterion is met
: return optimized parameters X

1: given learning rates {n: }+en C R>0, momentum coefficient 5 € [0, 1), weight decay coefficient A > 0
2: initialize time step ¢ < 1, parameters X1 € R™*™, first moment Mg < 0

3: repeat

4: G  StochasticGradient(Xy)

50 M+ BMi_1 + Gy

6:  O¢ < NewtonSchulz(M;) > approximation of matrix sign
70 Xppr X —me (Ot +A[(0:X; > 0)X, ) > entrywise matrix multiplication
8: t+—t+1

9

0

Ju—

C FIXED-POINT ANALYSIS

Revisiting the fixed-point analysis in Section 2.2] for ADAMW, suppose the trajectory of ADAMW
converges to a fixed point (x*, m*, v*), so that m* = V f(x*) and v* = V f(x*)?. Passing to the
limit € N\, 0, the fixed-point condition gives
Vf(x¥)
V) + el
Taking inner products with V f(x*) yields ||V f(x*)[|, + (Ax*, V f(x*)) = 0, which shows that x*
is a Karush—Kuhn-Tucker (KKT) point of the constrained optimization problem

+ Ax* = sgn(Vf(x")) + \x* = 0.

) 1
min f(x) st [lxf, <5 3)
by Lemma 3.8 of [ Xie & Li| (2024). Intuitively, ADAMW normalizes the gradient to its coordinate-
wise sign at stationarity and then balances it against the linear pull of the decoupled weight decay,
which enforces a box constraint on the parameters. [Xie & Li (2024) formalize this intuition and
show that whenever the iterates of ADAMW converge, the limit point is a KKT point of the box-
constrained problem (3). However, this guarantee holds only under the assumption of convergence,
and ADAMW is not known to converge in general.

We remark that we can adapt this argument for another, more heuristic insight into why optimizers
with cautious weight decay perform unbiased optimization. Suppose ADAM with cautious weight
decay reaches a fixed point, so that

) x*)x* x*
V) +el AI(V f(x*)x* > 0)x*.

16



Under review as a conference paper at ICLR 2026

For a fixed point of LION-K with cautious weight decay, we have
—VK(=Vf(x") = \(VK(-Vf(x"))x* < 0)x*.

In either situation, casework on the signs of the update and x* shows that both sides must be 0. It
follows that V f(x*) = 0 for ADAM and VI (—V f(x*)) = 0 for LION-K, and if K is a convex
function that achieves a unique minimum at 0 (e.g. a norm), then this condition becomes V f (x*) =
0 as well. Hence, the fixed-point analysis suggests that ADAM and LION-KC with cautious weight
decay find a stationary point of the original objective f.

D LYAPUNOV FUNCTIONS

Throughout this section, vector variables are implicitly dependent on ¢ when clear from context, and
we drop the subscript for notational simplicity.

D.1 SGD

SGD with cautious weight decay admits the continuous-time dynamics
x = -Vf(x) - A(Vf(x)x > 0)x,
which has a Lyapunov function H(x) = f(x), since
dH

S = (V). =60 = (T (0x 2 0)x) = = [V R) 3 = A (VS x)0)*], < 0.

D.2 SGD WITH MOMENTUM

When SGD is equipped with momentum (Sutskever et al., [2013) and cautious weight decay, the
continuous-time dynamics becomes

%X = -—m — AM[(mx > 0)x

m = IB(Vf(X) - m)v

which has a Lyapunov function

1

Hoxm) = 57(0) + 5 3+ A (mo) |

since

% = (Vf(x) + Al(mx > 0)m, —m — M[(mx > 0)x) + (m + A[(mx > 0)x, 8(V f(x) — m))
=_ <)\]I(mx >0)+ Bl,m2> - B+ N H(mx)"’H1 <0.

D.3 LioN-K

We assume that K is convex and satisfies sgn(V/C(m)) = sgn(m) for all m € R?. This assumption
is mild and that holds for every example of X given by |Chen et al.| (2024)).

The continuous-time dynamics of LION-K without gradient enhancement is given by
%X =VK(m) — Ax @
m= —aVf(x)—ym.
Chen et al.| (2024) showed that this system has a Lyapunov function
Hlx, m) = af (x) + K" () + K* () + K(m) — (m, Ax),
thereby elucidating the origin of the X*(Ax) regularization term. However, when equipped with
cautious weight decay, (@) becomes
% = VK(m) — M[(mx < 0)x

m=—aVf(x)—ym ®)

17
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and admits a Lyapunov function
H(x,m) = af(x) + K(m) + A || (~mx) ©)
which corresponds to optimizing the original objective f. To see that (6)) is a Lyapunov function for

(@), note that
I (09 (x) ~ Ni(mx < 0)m, VK (m) — Ni(mx < 0)x)
+ (VK(m) — M[(mx < 0)x, —aV f(x) — ym)
—(VK(m) — M[(mx < 0)x, (AI(mx < 0) +~v1)m)
— (Al(mx < 0) + 1, VK(m)m) — A(A +7) || (-mx)* ||, <0.
D.4 ADAM

The continuous-time limit of ADAM with cautious weight decay yields the system of ordinary dif-
ferential equations (cf. [Barakat & Bianchi| (2021))

1— —at))~!
X =- (U-exp(at)) m Al(mx > 0)x
V(1 —exp(—7t))~1v + el
= a(Vf(x) —m)
=(Vf(x)* = ).
We assume that 0 < v < 4a, which is satisfied by standard implementations of ADAM in practice.
This system admits the Lyapunov function

(7

Qi

H(x,m,v,t) = af(x) + H (\/%—viel)

H [ m ), ®

where
o= (L —exp(—at))™" and = (1 —exp(—yt))~"

To see that (8] is a Lyapunov function for (7)), note that  is lower bounded by «f* and

d
ﬁ=<v7¢x> + (VM ) + <VHV>+%7:
[e7311]
= > _ — >
<a )+ AMl(mx > 0)m, — — el Al(mx > 0)x>

%mQ
(v ez oot =)= (el
_ <m2 2aexp(—at) (V7Y + 1) — ag 'y exp(=71) /T 1>
2 2(&;1(m+61))2 ’

AV f(x)? v>>

oym? ay/7m?V f(x)?
- <(a1 + Al(mx > O))m + Aa + A)(mx)t + v (o 61)2 , 1>
+< aym? /v 1> - <m2 20 exp(—at)(yFV + €l) — a7 'y exp(—1t)u TV 1>
4 (7 +e1)? 2 2 (a; (v + €1)) ’
TV M am® \ [ a(2aaexp(—at) — iy exp(—yt))m?
<< )1 Al(mx = 0), m+61> < 4(\/7ev + €1) ’1>
= - —a-— a i — M(mx _qam
- <(4 Nexplat) 1) Lexp(r) = 1>) b Al 2 0), 55 e1>
<0

where the first inequality drops some nonpositive terms and uses /7 v < /7:V + €1 and the second
inequality uses

(RPN SN Sy

4 2(exp(at) — 1) 4(exp(yt) — 1) —
for0 < v <4aandt > 0.
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Remark 3. Cautious weight decay can be seen as an attempt to fix the asymptotic instability of
ADAMW via a Lyapunov function. Consider the simplified continuous-time ADAMW dynamics

m

m=Vf(x)—m ©))
v=Vfx)-v
and the function
H(x, m, V) H + (m, \x) .
By straightforward computation,
(117: <Vf( )+ Am, — \/» >\X> <\r/nv—|—/\x,Vf(x)—m>+<—;123,Vf(x)2—v>
B 3\ m? m?V f(x)?
= —<<)\+ 4> T—F/\()\—Fl)mX—F 4vg,1>
_ 1 ||m*Vf(x)?
- ()[Rl e o3[

Note that ‘H is not guaranteed to be lower bounded and _E is not guaranteed to be nonnegative,
since (m, x) has unknown sign. This motivates the introduction of a mask I(mx > 0) to the weight

decay term and a slight adjustment to H so that the result is a Lyapunov function for ().

Remark 4. For expositional clarity, we treat the ODEs and Lyapunov candidates in this section as
smooth, even though the dynamics include the discontinuous indicator function I(ux > 0). A fully
rigorous analysis can be developed by interpreting the systems in the sense of differential inclusions,
specifically, using Filippov’s framework (Filippov, |1988)), and by applying specialized tools from
nonsmooth Lyapunov stability theory to obtain convergence guarantees (Shevitz & Paden| (1994,
Bacciotti & Ceragioli,|1999).

E DEFERRED PROOFS

We assume the setting of Theorem [I]
Lemma 1. Forallt € N,

Epo
+el 1—f
Proof. Tt suffices to work in an arbitrary coordinate 7. Let m := [m¢];, v := [V¢];, and g; := [g¢]:-
By expanding the update rule for m and v, we obtain
1- 5 ok 1-
m = 1775{ Z /81 Jk and v = 1_
ke(t) ke[t]

Now by Cauchy—Schwarz,

m? _ (1-B)? 1-8f (ﬁ)th (1=B)* 1-8 < qix
v T (1-81)2 1-p Z] B2 = (1-p51)2 1-5 Zﬁl
( )

ke(t]
1—p)?
C(I=B2 1=6y 1-B1 1—=fy 1517 1-0

The conclusion follows from

1= 1-8 1-B 1-8 _1-5

m_ 1-51

mo<
\/64’6 f ].—ﬂg
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Lemma 2. Forallt € N, ||x¢||,, < R, M|l < G, and |[V¢| . < G? for some constants R and
G. We can choose G > 1 without loss of generality.

Proof. Since the iterates are bounded and f is L-smooth by Assumption [I} there exist constants R
and G such that ||x;|| ., < Rand [|[Vf(x)| ., < G forallt € N. It follows that |m,| . < G and
Vel < G2 O

Fact 1 (Lemma F.1, Bernstein et al.| (2018)). Forallt € N, i € [d], and a1, ..., € R,

2

E (Z ar([gr)i — [Vf(xk)]i)) < g Z ol

n
kelt) bateh ¢ 1

Lemma 3. Forallt € N,

E[||V f(x;) — my|,] < BiGd + SinLd(C + AR) od

1_ﬁ1 nbatch(l‘i’ﬂl).

Proof. Note that
m;—Vf(x) = =BiVIx)+ Y BTV =V (xer1)+(1=B1) Y B (@r—Vf(xx))-

kelt—1] ke(t]
(10)
By smoothness, Lemma[l] and Lemma[2] we have

IV £Ger) = VI rr) s € VAV F(xi) = VI (x1)llg < LVA %041 = X1 ]l < nLd(CH+AR).

(11
By Jensen’s inequality and Fact[I]
2
E[> 8 — [V f(x1))) ] < (Z i — [V ()i >)
kelt] kelt] (12)
o2 o
< Db <
o Npatch I{;](ﬂl) N nbatch(]- - ﬂ%)

Taking E[||-||,] of (I0) and applying (TI) and (12),

E[|Vf(xe) — myll,] < By [V (x)ll + > B ek — V()

|

1=5 kelt]
< BGd+ B1inLd(C 4+ AR) od ’
1 _61 nbatcll(1+61)
as desired. O
Lemmad4. Forallt € N,
2
. { <vf(x) m, >} . E [IIVf(xt)llg} +B§G2d+51nGLd(C+AR)+ oGd
R+ el G+e € (1= pBr)e ev/Mbaten (1 + B1)

Proof. We have
(00 Sy = (IO ) - me - V1)

Vi +el f+61
Vf(xt) >
v o (= V() —
< G+ 19 )l + (S )~
Vf Xt
<~ Il + | S| 190 -,
The result follows by Hjij:)l' < % and Lemma. O
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Lemma 5. Forallm,g,x € R,

[(I(ma > 0) = I(gz > 0))x| < L(mg < 0)|z].
Proof. If x = 0, then the inequality is trivially valid, so suppose x # 0. We proceed by casework
on the sign of mg.

If mg > 0, then m and g have the same sign, and the conditions mz > 0 and gz > 0 are equivalent.
Thus I(ma > 0) — I(gxz > 0) = 0, and the inequality holds.

If mg < 0, then I(mg < 0) = 1. It remains to show |(I(mz > 0) — I(gx > 0))z| < |z|, which
follows upon realizing I(maz > 0) — I(gz > 0) € {-1,0,1}. O

Lemma 6. Forallt € N,
BinLRd(C 4+ A\R) oRd
1_61 nbatch(1+ﬂl).

E[— (Vf(x), I(myx; > 0)x,)] < — ||(Vf(xe)x:) ||, +B] GRd+

Proof. We have

—(Vf(xe), l(mexy > 0)x4) = — (Vf(x2), [(x:V f(x¢) > 0)x; + (I(myx; > 0) — [(x,V f(x¢) > 0))%y)
= (Vf(xe), L(x:V f(x¢) > 0) — I(myx; > 0))xe) — || (Vf (xe)xe) T[]

(IVF ()], [(I(xeV f(x4) > 0) = T(myx, > 0))x) — |[(Vf (xe)x) T[]

| >
(IVf(x0)], T(my V f (x¢) < 0)[xe]) — [|(V f (xe)%0) T

<
<

(13)
where the fourth line uses Lemmal5] Taking the expectation of conditioned on x; and expanding
the inner product,

E[(IVf(x)], I(m; V £ () < 0)[xe]) | x4] = ([Vf(x )I [ (m;V f(x1) < 0) [ x][xt])

= > IVFG)lilxelil - EI(meli[V £ (xe)]i < 0) | xe]
1€[d]
= > IIVFG)libxeil - Pr(mdi[V £ ()]s < 0 )
1€[d)
< D IVFilxil - Pr(I[Vf(x)li = melil = [V f(x)lil | x0)
1€[d)
< D Axeil - BNV f(xo)li = il | xi]
i€[d]
S R-E[[Vf(xe) —mylly | x4, "
where the fifth line uses Markov’s inequality. Taking the expectation of (I4) and applying Lemma|[3]
" BinLRd(C + AR) oRd
E[— (Vf(x:), [(msx: > 0)x4)] < — [[(Vf(x¢)xs) GRd ,
= (Vo) Mmaxe 2 O)xi)) < = [[(VS Geo)xo) |y +A1GRa+ =5 Mo (Lt B1)
as desired. O

Theorem 1. Under Assumptions[Ijand[2] let 0 < /1 < 2 <1, A >0, ¢ > 0, and ny = 1 > 0, and
suppose x; is updated using Algorithm[2| Then for all T € N,

K1 K Kyo
tez[;]m[wf(xt I+ AT fGepe) L] < o7+ + Kan + N

where K1, K5, K3, and K, are constants.
Proof. Let

At = f(Xt+1) — f(Xt) and 6t + /\]I(mtxt > 0)

f+e
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By smoothness,
L 2
Ay < (Vf(xe),Xe41 — Xt> + = ||Xt+1 — x5

= —n(Vf(x )5t>+ ||6t||2

’\ 2L (15)
— (Vi) \/‘;“+1> M (V). Kmexe = 0)x) + L 3 2

n my
=——(Vf(x y———
1—5{< fx) Vi +el
Taking the expectation of (I5) and applying Lemmas|T] 2] @ and|[6]

2
L
) = (77 x> 0 + T 1645

E[IVic)l3]  pie2d gL
0 [ : mGLA(C + AR) oGd
E[A¢] < -3 G+e Tt (1—pr)e €y/Mbaten (1 + B1)
LRdA(C' + AR Rd
+ 1’])\ (— H(Vf(xt)xt>+H1 + 6{GRd + 6177 1 ,( 51+ ) N Uh(l + 61))
atc

2L
’77(0261 +A2R24d).

(16)
Rearranging (16}, using 1 — ﬁf < 1land G > 1, summing over 7T iterations, and dividing both sides
by T gives

1 G+e N G—l—e ﬁtG2 5 GLA(C + AR)(G + ¢
E ST St < C () - g+ CEC 37 ACH PuiGLUCEARNG + 0
=0 " (el (1= Br)e
0Gd(G +¢) G+6 Z BLGRA + M
nba‘nch(1 + ﬁl) te[T) nbatch(l + 61)
BinALRA(C + AR)(G +¢) n nL(G + €) (C2d+ A2Rd)
13 2
Kl Kg K g
— 4+ 22 L K+
A \/m
where the fourth line uses >, A < and
S(xt) = IV f(xe)[l3 + A H x) "

K= (G+6)(f(x f

_ BGAG+e) (G
Kz = e (6 )
e ﬂ1Ld(Cl+ A;t) (G+e) ( HR) +%Ld(02+)\2R2)(G+e)
- M1
d(G +¢) (G )
Ky = —= + AR
YTVITA

F MODEL & EXPERIMENT CONFIGURATIONS

We evaluate cautious weight decay (CWD) across two experimental setups: (1) transformer models
ranging from 111M to 2.3B parameters, and (2) the OLMo-1B architecture. All models employ
SwiGLU activations and rotary position embeddings (RoPE). To ensure fair comparison, we con-
duct extensive grid searches to optimize hyperparameters for each baseline optimizer (ADAMW,
LION, and MUON) before applying CWD with identical settings. Table [5] details the scaled model
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Table 5: Hyperparameter configurations for the different model sizes. All models use an expansion
factor of 8 and a vocabulary size of 100,864.

Hyperparameter 2.3B Model 986M Model 338M Model 111M Model
Model Architecture

Total Parameters 2,321.38M 985.89M 338.44M 110.55M
Model Dimension 2048 1536 1024 512
Number of Layers 18 12 8 8
Number of Heads 8 8 8 8

Per Head Dimension 256 256 128 64
Sequence Length 2048 2048 2048 2048
Validation Setup

Evaluation Batch Size 1024 512 128 256
Number of Eval Steps 2 4 4 8
Evaluation Interval 1000 steps 1000 steps 500 steps 500 steps

configurations, Table [6| presents the OLMo-1B architecture, and the following subsection describes
our hyperparameter search methodology.

We conducted an extensive grid search to determine optimal hyperparameters for ADAMW, LION,
and MUON optimizers. Our learning rate search employed a quasi-logarithmic grid spanning four
orders of magnitude from 1 x 107° to 1 x 10~, with denser sampling in the critical 10~% to 10~2
range where transformer models typically achieve optimal performance. The grid included standard
decade values (e.g., 0.001, 0.01) as well as intermediate points within each logarithmic interval
(e.g.,0.2,0.3, 0.5, 0.8 scaled to each decade) to capture potential performance peaks between order-
of-magnitude boundaries, totaling 24 distinct learning rate values. For the learning rate schedule,
we systematically evaluated warmup ratios of {0, 0.05,0.1,0.2,0.3,0.4, 0.5}, corresponding to 0%
to 50% of total training steps dedicated to linear warmup, followed by cosine annealing decay.
For ADAMW, we additionally performed a grid search over the momentum parameters 3; and s,
evaluating combinations of 8; € {0.85,0.9,0.95} and 5> € {0.95,0.98,0.99,0.995,0.999}. Our
experiments identified 81 = 0.9 and B2 = 0.95 as the optimal configuration. For LION, we swept
B1 € {0.85,0.9,0.95} and 35 € {0.95,0.98,0.99}, finding 31 = 0.9 and 35 = 0.95 to be optimal.
For MUON, we similarly swept momentum coefficients and confirmed 0.95 as optimal.

G ADDITIONAL EXPERIMENT RESULTS

This section provides supplementary experimental analyses that further characterize the behavior of
cautious weight decay (CWD) across different optimizers and training dynamics. We present detailed
visualizations of the mask activation patterns (Figure [0, showing how the fraction of parameters
receiving weight decay evolves during training for both ADAMW and MUON optimizers. Addi-
tionally, we include comprehensive loss and accuracy curves for all three optimizers (ADAMW,
LION, and MUON) across model scales from 111M to 2.3B parameters (Figures BHI0), demon-
strating consistent improvements with CWD. Finally, Figure |12] tracks the evolution of parameter
norms throughout training, revealing that CWD maintains stable regularization comparable to stan-
dard weight decay while achieving superior performance. These results collectively illustrate that
CWD’s selective application of weight decay leads to more effective optimization without compro-
mising training stability.
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Table 6: Model Architecture Configuration for OLMo-1B

Hyperparameter Value

Architecture
Hidden dimension (dyoqe1) 2048
Number of attention heads 16

Number of layers 16

MLP ratio 8
Vocabulary size 50,280
Embedding size 50,304
Max sequence length 2048
Attention Mechanism

Positional encoding RoPE
Flash attention v
Multi-query attention X
ALiBi X
Attention dropout 0.0
Attention layer norm X
Model Components

Activation function SwiGLU
Block type Sequential
Weight tying v
Include bias X

Layer norm type Default
Layer norm with affine X
Residual dropout 0.0
Embedding dropout 0.0
Initialization

Initialization method Mitchell
Initialization device CUDA

Table 7: Final evaluation accuracy (higher is better) and loss (lower is better) comparisons across
different model sizes, expanded to the full text width. Our proposed method is benchmarked against
three baseline optimizers: ADAMW, LION, and MUON. The best result in each pair is bolded.

Accuracy (higher is better)

GPT ADAMW LION MUON
Model Size Ours Base Ours Base Ours Base
338M 0.4232 0.4221 0.4230 0.4211 0.4256 0.4252
986M 0.4566 0.4556 0.4552 0.4545 0.4589 0.4575
2B 0.4847 0.4831 0.4839 0.4830 0.4873 0.4858
Loss (lower is better)

GPT ADAMW LION MUON

Model Size Ours Base Ours Base Ours Base
338M 3.0059 3.0136 3.0012 3.0121 2.9851 2.9896
986M 2.7053 2.7142 2.7171 2.7231 2.6873 2.6968
2B 2.4881 2.4973 2.4961 2.5012 2.4703 2.4803
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Figure 6: Masked weight-decay activation ratio r; := iy >0,
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, i.e., the fraction of parameters

for which the sign-selective mask is active at step ¢ (d = number of parameters). Left: ADAMW;
right: MUON. Insets zoom into the first 2.5k steps to highlight early-training behavior. Model:

Qwen-0.6B (Yang et al., 2025) trained on The Pile (Gao et al., 2021).
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Figure 7: Training dynamics for the 986M-parameter Gemma model.
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Figure 8: Training dynamics across model scales with MUON optimizer. Baseline MUON
(dashed) vs. MUON with CWD (solid).

25



Under review as a conference paper at ICLR 2026

. Eval Loss Comparison is Eval Loss Comparison 1 Eval Loss Comparison
3.5 3.2 3.01
3.4 3.1 2.9
1) ) )]
& 331 & 3.0 & 281
- - -
3.2 2.9 2.7
3.1 28 2.6
3.0 r : : : 2.7+ " , r 251, r : : —
0 5000 10000 15000 20000 0 5000 10000 15000 0 5000 10000 15000 20000
Step Step Step
(a) 338M parameters (b) 986M parameters (c) 2B parameters

Figure 9: Training dynamics across model scales with ADAMW optimizer. We compare baseline
ADAMW (dashed) against ADAMW with CWD (solid) on models ranging from 338M to 2B param-
eters.
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Figure 10: Training dynamics across model scales with LION optimizer. Baseline LION (dashed)
vs. LION with CWD (solid).
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Figure 11: Comparison of gradient norms using RMS normalization across four model sizes: 111M,
338M, 986M, and 2B. All models are trained under Chinchilla settings. CWD achieves lower gradient
norms across all configurations.
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Figure 12: Evolution of parameter norm (RMS) during training for a 986M parameter model. We
compare three optimization strategies: ADAMW with weight decay 0.1 (orange), our proposed
method (blue), and ADAM without weight decay (green). Our method maintains stable parame-
ter norms comparable to ADAMW while achieving improved performance.
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