
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CAUTIOUS WEIGHT DECAY

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Cautious Weight Decay (CWD), an one-line, optimizer-agnostic
modification that applies weight decay only to parameter coordinates whose signs
align with the optimizer update. Unlike standard decoupled decay, which im-
plicitly optimizes a regularized or constrained objective, CWD preserves optima
of the original loss and admits a bilevel interpretation: it induces sliding-mode
behavior upon reaching the stationary manifold, allowing it to search for locally
Pareto-optimal stationary points of the unmodified objective. In practice, CWD is
a drop-in change for optimizers such as ADAMW, LION, and MUON, requiring
no new hyperparameters or additional tuning. For language model pre-training
and ImageNet classification, CWD consistently improves final loss and accuracy at
million- to billion-parameter scales.

1 INTRODUCTION

Algorithm 1 Cautious Weight Decay (CWD)

given parameters xt, optimizer update ut, learning rates ηt > 0, weight decay coefficient λ ≥ 0

xt+1 ← xt − ηt
(
ut + λI(utxt ≥ 0)xt

)
▷ entrywise multiplication

Optimization algorithms lie at the core of modern deep learning, shaping not only convergence
speed but also training stability and generalization ability across domains such as natural language
processing and computer vision (Wen et al., 2025). As models and datasets scale, traditional meth-
ods such as stochastic gradient descent (SGD) and SGD with momentum (Sutskever et al., 2013)
encounter limitations, including slow convergence in non-convex landscapes, sensitivity to learning
rate schedules, and poor robustness to sparse or noisy gradients (Scaman & Malherbe, 2020; Zhao
et al., 2025). In response, a wide range of alternatives have emerged, including adaptive gradient
methods (Duchi et al., 2011; Kingma & Ba, 2015), approximate second-order approaches (Martens
& Grosse, 2015; Gupta et al., 2018; Yao et al., 2021; Liu et al., 2024), and specialized algorithms for
extreme training regimes (Luo et al., 2024; Xie et al., 2024; Huang et al., 2025; Zhang et al., 2025).

Among these advances, decoupled weight decay (Loshchilov & Hutter, 2019) has proven especially
influential. In its general form, decoupled weight decay augments any optimizer update ut with a
decay term applied directly to the parameters, i.e.

xt+1 ← xt − ηt(ut + λxt), ut = OptimizerUpdate(xt).

This technique improves training stability and generalization by preventing the adaptive learning
rates from interfering with regularization, as exemplified by the success of ADAMW in large model
training (Brown et al., 2020; Dosovitskiy et al., 2021; Touvron et al., 2023) and the subsequent
development of state-of-the-art optimizers such as LION (Chen et al., 2023), LION-K (Chen et al.,
2024), and MUON (Jordan et al., 2024; Liu et al., 2025).

However, decoupled weight decay remains agnostic to the directional alignment between the opti-
mizer update and the parameters, which may hurt performance when they conflict. Intuitively, when
the update ut and parameters xt point in the same direction for a given dimension, weight decay
acts as a regularizer that improves stability; however, when their directions differ, applying decay
actively resists beneficial movement toward the optimum. Furthermore, decoupled weight decay has
been shown to implicitly impose regularization terms on the objective function (Chen et al., 2024;
Xie & Li, 2024), which corresponds to parameter norm constraints for ADAMW, LION, and MUON.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0.00 0.10 0.20 0.30 0.40
Weight Decay

3.000

3.100

3.200

Va
lid

at
io

n
Lo

ss AdamW
Ours

Figure 1: Final validation loss vs. weight decay coefficient λ for 338M models trained on C4 under
Chinchilla scaling. Our approach (red) achieves lower final loss than standard weight decay (blue)
while preserving the optimizer-specific optimum in λ. For each optimizer (ADAMW, LION, MUON),
both methods use the same hyperparameters.

Figure 2: Trajectories of ADAM, ADAMW,
and ADAM + CWD on a toy example. ADAM
halts at a minimizer, while ADAMW mini-
mizes the objective within a constrained re-
gion (green). In contrast, ADAM + CWD
exhibits sliding mode dynamics within the
minimizer manifold.

In light of these limitations, we propose a simple re-
finement: cautious weight decay (CWD), in which de-
cay is applied only in dimensions where the update
and parameter signs align (Algorithm 1). Our main
contributions are as follows.

•We introduce cautious weight decay, a sign-selective
extension of decoupled decay that applies weight de-
cay only when the parameters and update align. Our
technique can be implemented as a one-line modifica-
tion without introducing additional hyperparameters
compared to standard decoupled decay.

• We use Lyapunov analysis to show that standard
optimizers (SGD(M), LION-K, ADAM) with cautious
weight decay are asymptotically stable and unbi-
ased, in the sense that they optimize the original loss
rather than a regularized surrogate. The regulariza-
tion effect of cautious weight decay instead becomes
a bilevel objective of finding locally Pareto-optimal
points within the stationary manifold (Figure 2). Fur-
thermore, we show that discrete-time ADAM with cau-
tious weight decay attains a standard convergence rate
in the smooth nonconvex setting.

• In language modeling (OLMo et al., 2025; Kamath
et al., 2025) and ImageNet classification (Deng et al., 2009), we observe that cautious weight de-
cay generally accelerates convergence and lowers final validation loss for ADAMW, LION, and
MUON (e.g., Figure 1). These improvements translate into higher zero-shot accuracy on standard
benchmarks from 338M to 2B parameters and across architectures without retuning baseline settings
(≈20,000 NVIDIA H100 HBM3-80GB GPU hours for all experiments).

2 BACKGROUND AND MOTIVATION

2.1 DECOUPLED WEIGHT DECAY

Gradient-based optimizers with decoupled weight decay can be characterized by the update rule

xt+1 = (1− ηtλ)xt − ηtut, (1)

where ut := U(xt,g1, . . . ,gt, t) is an adaptive, often sign-normalized update vector constructed
from first and second-moment estimates (e.g., momentum buffers, diagonal preconditioners), ηt > 0
is the learning rate, and λ ≥ 0 is the decoupled weight decay coefficient. This framework encapsu-
lates a wide range of standard optimizers for machine learning, including ADAMW and LION-K.

ADAMW. The update vector is given by ut = D−1
t m̂t, where Dt is a diagonal preconditioner

and m̂t is bias-corrected first-moment estimate. Explicitly,

m̂t =
β1mt−1 + (1− β1)gt

1− βt
1

, v̂t =
β2vt−1 + (1− β2)g

2
t

1− βt
2

, Dt = diag
(√

v̂t + ϵ1
)
,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where β1 and β2 are momentum coefficients and ϵ is a numerical stability constant.

LION-K. Given a convex function K, the update vector ut is a momentum-filtered step that is
preconditioned using a subgradient, i.e.

mt = β2mt−1 − (1− β2)gt, m̃t = β1mt−1 − (1− β1)gt, ut = −∇K(m̃t),

where β1 and β2 are momentum coefficients and∇K is a subgradient ofK. Examples include LION
whenK = ∥·∥1 and MUON whenK = ∥·∥tr, where ∥·∥tr denotes the trace norm when the parameters
are treated as a matrix.

2.2 IMPLICIT REGULARIZATION EFFECTS OF WEIGHT DECAY

In general, the application of decoupled weight decay imposes a certain regularization or constraint
effect on the objective function, where the specific effect depends on the choice of ut. For example,
SGD with decoupled weight decay is exactly SGD on an ℓ2-regularized objective. To see the equiva-
lence, let f : Rd → R be differentiable and consider the regularized variant f̂(x) := f(x)+ λ

2 ∥x∥
2
2 .

A single SGD step on f̂ with learning rate ηt > 0 yields the update

xt+1 = xt − ηt(∇f(xt) + λxt) = (1− ηtλ)xt − ηt∇f(xt),

which is precisely the decoupled weight decay update given by (1).

Given a convex function K with subgradient ∇K and convex conjugate K∗, suppose the iterates of
LION-K converge to a fixed point (x⋆,m⋆, m̃⋆). Then the moment estimators stabilize so that m⋆ =
m̃⋆ = −∇f(x⋆), and the fixed-point condition yields −∇K(−∇f(x⋆)) + λx⋆ = 0. Rearranging
and using the identity (∇K)−1 = ∇K∗, we obtain ∇f(x⋆) +∇K∗(λx⋆) = 0, where the left-hand
side is the gradient of the function

f̂(x) := f(x) +
1

λ
K∗(λx).

This suggests that LION-K optimizes the regularized objective f̂ , an observation made by Chen et al.
(2024). In the special cases of LION and MUON, K∗ is the 0-∞ indicator function of a dual norm
ball, corresponding to the constrained optimization problems

min
x∈Rd

f(x) s.t. ∥x∥∞ ≤
1

λ
and min

X∈Rn×m
f(X) s.t. ∥X∥op ≤

1

λ
,

respectively, where ∥·∥op is the spectral norm when the parameters are treated as a matrix.

A similar analysis for ADAMW suggests that it solves the box-constrained problem of minimizing
f(x) such that ∥x∥∞ ≤

1
λ , but convergence cannot be established due to the lack of a Lyapunov

function. For more discussion, see Appendix C and Xie & Li (2024).

While ADAMW and LION-K are practically strong, they implicitly optimize a regularized surrogate
that is dependent on the weight decay coefficient λ. This motivates the development of a mecha-
nism that maintains the beneficial effects of decoupled weight decay (e.g. regularization, training
acceleration) while optimizing the original objective.

3 CAUTIOUS WEIGHT DECAY

Cautious weight decay (CWD) modifies the update rule (1) as

xt+1 = xt − ηt(ut + λI(ut ⊙ xt ≥ 0)⊙ xt),

where ⊙ denotes entrywise multiplication.1 As a one-line modification, cautious weight decay
is implementation-trivial and universally compatible with gradient-based optimization algorithms.
Theoretically, cautious weight decay also exhibits the following behavior.

• Unbiased optimization, in the sense that every accumulation point x⋆ of the trajectory satisfies
∇f(x⋆) = 0 under the same convergence conditions required of the base optimizer without weight

1Throughout the paper, when it is clear from context, we also drop ⊙ and write v⊙ x = vx for simplicity.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Comparison of the continuous-time dynamics of different optimizers. SGDM represents
SGD with momentum. LION-K includes LION and MUON as special cases. f : Rd → R is assumed
to be differentiable and lower bounded by f⋆.

Optimizer Continuous-time dynamics Lyapunov function

SGD + CWD ẋt = −∇f(xt)− λI(∇f(xt)xt ≥ 0)xt H(x) = f(x)

SGDM + CWD ẋt = −mt − λI(mtxt ≥ 0)xt

ṁt = β(∇f(xt)−mt)

H(x,m) = βf(x)+ 1
2
∥m∥22+λ

∥∥(mx)+
∥∥
1

LION-K + CWD

(LION: K=∥·∥1)

(MUON: K=∥·∥tr)

ẋt = −∇K(mt)− λI(mtxt ≤ 0)xt

ṁt = α∇f(xt)− γmt

H(x,m) = αf(x)+K(m)+λ
∥∥(−mx)+

∥∥
1

ADAM + CWD ẋt = −
αtmt

ht
− λI(mtxt ≥ 0)xt

ṁt = α(∇f(xt)−mt)

v̇t = γ(∇f(xt)
2 − vt)

Ht(x,m,h) = αf(x)+

∥∥∥∥αtm
2

2h

∥∥∥∥
1

+λ
∥∥(mx)+

∥∥
1

Notation. We drop⊙ for simplicity. αt := (1− exp(−αt))−1, γt := (1− exp(−γt))−1, ht :=
√
γtvt + ϵ1.

decay. In over-parameterized deep models, the set of stationary points a union of connected sub-
manifolds rather than isolated points. Consequently, the ω-limit set of the trajectory is contained in
some stationary manifold, and the iterates eventually remain arbitrarily close to it.

• Sliding mode dynamics within the stationary manifold, where cautious weight decay allows the
trajectory to traverse along the manifold until it cannot decrease the parameter magnitudes in every
coordinate. In other words, cautious weight decay steers the trajectory towards a local Pareto front
of the stationary manifold under the ordering that prioritizes smaller parameter magnitudes.

3.1 CONVERGENCE TO THE STATIONARY MANIFOLD

We construct Lyapunov functions for the continuous-time limits of several standard optimizers
equipped with cautious weight decay. A Lyapunov function is a lower bounded function with non-
positive derivative that is used to certify the stability of systems of differential equations.

Consider the continuous-time dynamics of SGD with cautious weight decay

ẋt = −∇f(xt)− λI(∇f(xt)xt ≥ 0)xt.

This ODE has the Lyapunov functionH(x) = f(x), sinceH is lower bounded and

dH
dt

= ⟨∇f(xt),−∇f(xt)− λI(∇f(xt)xt ≥ 0)xt⟩ = −∥∇f(xt)∥22 − λ
∥∥(∇f(xt)xt)

+
∥∥
1
≤ 0,

where (·)+ := max(0, ·). LaSalle’s invariance principle (LaSalle, 1960) states that the accumulation
points of any trajectory lie within the union of trajectories zt that satisfy d

dtH(zt) = 0 for all t ≥ 0.
Consequently, we conclude that SGD with cautious weight decay produces trajectories that approach
the stationary set {x | ∇f(x) = 0} of the original loss. This holds because cautious weight decay
is applied only in a secondary fashion and is automatically deactivated whenever it conflicts with
the main objective, thereby ensuring that the loss landscape remains unbiased.

Beyond the simple case of SGD, the same Lyapunov-type argument can be extended to more sophis-
ticated algorithms such as SGDM, LION-K, and ADAM. In each case, cautious weight decay still
minimizes the original objective without introducing explicit bias, but a key difficulty lies in con-
structing appropriate Lyapunov functions. Table 1 summarizes the Lyapunov functions of several
major optimizers with cautious weight decay, and detailed derivations are provided in Appendix D.
By applying LaSalle’s invariance principle, we can show that the momentum-based algorithms in
Table 1 converge to the stationary set of the original objective, together with vanishing momentum:

{(x,m) | ∇f(x) = 0, m = 0}.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 SLIDING MODE DYNAMICS

Although both standard optimization (with no weight decay) and cautious weight decay are unbiased
with respect to the original objective, their behaviors diverge within the stationary manifold. In the
former, the dynamics halt as the momentum m decays to zero, while, in contrast, the cautious weight
decay dynamics induce a sliding mode, continuing to move along the manifold while reducing the
parameter magnitudes as much as possible. Consequently, the algorithm converges to a subset of
the stationary manifold where further simultaneous reduction of all coordinates of x is no longer
possible. Equivalently, it converges to a locally Pareto-optimal stationary point under a preference
for smaller parameter magnitudes.

To provide mathematical background, consider a possibly time-varying discontinuous ODE

żt = ft(zt), zt ∈ Rd.

Due to the discontinuity of ft, the solution may not be well defined in the classical or Carathéodory
sense, especially across switching surfaces. We therefore interpret solutions in the Filippov sense
(Filippov, 1988), where a discontinuous ODE is formally a differential inclusion that specifies that
żt belongs to the closed convex envelope of the discontinuous vector field, i.e.

żt ∈ F [ft](zt) :=
⋂
δ>0

⋂
µ(S)=0

co(ft(B(zt, δ) \ S)),

where µ denotes the Lebesgue measure, B(z, δ) is the δ-ball centered at z, and co denotes the closed
convex envelope. This construction captures all possible limiting directions of the vector field near
discontinuities, ensuring well-defined dynamics even when ft is not continuous. The key idea is that
the values of żt must be determined by the behavior of ft in a neighborhood around zt, rather than
at the point itself. The inclusion, therefore, defines a range of admissible velocities consistent with
the nearby values of the vector field.

In particular, whenever ft contains coordinatewise indicators such as I(g(zt) ≥ 0), the Filippov set
replaces them by selectors st ∈ [0, 1]d on the switching set {[g(zt)]i = 0}:

[st]i ∈


{1} [g(zt)]i > 0,

{0} [g(zt)]i < 0,

[0, 1] [g(zt)]i = 0.

Recalling the Lyapunov analysis in Section 3.1, the continuous-time dynamics of standard opti-
mizers with cautious weight decay converge to the stationary manifold M := {x | ∇f(x) = 0},
with the momentum mt also decaying to 0 for momentum-based methods. Consequently, once the
trajectory enters the stationary manifold, the residual dynamics reduce to

ẋt = −λst ⊙ xt, st ∈ [0, 1]d. (2)

Moreover, since the Lyapunov function confines the dynamics to the stationary set, the selectors st
must be chosen such that the trajectory remains within the manifold. Differentiating the stationarity
condition yields

d
dt
∇f(xt) = −λ∇2f(xt)(st ⊙ xt) = 0, st ∈ [0, 1]d.

This relation allows us to solve for admissible choices of st that guarantee invariance of the manifold.
In general, the solution for st need not be unique, and the actual value realized in practice may be
implicitly determined by the discretization scheme employed.

Effectively, cautious weight decay decreases parameter magnitudes along each coordinate while
staying within the stationary manifold, pushing x toward the local Pareto front of the manifold

P := {x ∈M | ∃δ > 0 ∀y ∈ (B(x, δ) ∩M) \ {x}, |y| ̸≤ |x|} ,
where the tangent space no longer allows a nonzero st in (2). In other words, a stationary point
is locally Pareto-optimal if it has a neighborhood in the stationary manifold that contains no other
point with a smaller or equal magnitude in every coordinate.

This argument shows that cautious weight decay dynamics converge to P. Since P may not be
a singleton, the exact limit point depends intricately on initialization and the discretization of the
continuous-time dynamics. Figure 3 illustrates this behavior on two toy problems.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 3: Toy objectives and trajectories. Left: f(x, y) = ((y − 3)2 − (x − 3)2 − 1)2. Right:
f(x, y) = (y − 3 − (x − 3)2)2. We compare ADAM, ADAMW, and ADAM + CWD; ADAMW and
CWD use the same weight decay λ, and all other hyperparameters (η, β1, β2, ϵ) are identical. For
both objectives, ADAM converges to a generic point on the minimizer manifold, whereas ADAMW
converges to a solution of the box-constrained problem minx,y f(x, y) subject to max{x, y} ≤ 1

λ .
In contrast, ADAM + CWD converges to the Pareto front of the minimizer manifold.

4 DISCRETE-TIME ANALYSIS Algorithm 2 ADAM with cautious weight decay

1: given learning rates {ηt}t∈N ⊂ R>0, momentum coef-
ficients 0 ≤ β1 ≤ β2 < 1, numerical stability constant
ϵ ≥ 0, weight decay coefficient λ > 0

2: initialize time step t ← 1, parameters x1 ∈ Rd, first
moment m0 ← 0, second moment v0 ← 0

3: repeat
4: gt ← StochasticGradient(xt)
5: mt ← β1mt−1 + (1− β1)gt

6: vt ← β2vt−1 + (1− β2)g
2
t

7: m̂t ← (1− βt
1)

−1mt

8: v̂t ← (1− βt
2)

−1vt

9: xt+1 ← xt − ηt

(
m̂t√
v̂t+ϵ1

+λI(mtxt ≥ 0)xt

)
10: t← t+ 1
11: until stopping criterion is met
12: return optimized parameters xt

Leveraging the Lyapunov functions in Sec-
tion 3, it is possible to extend our analysis
to the discrete-time dynamics of various op-
timizers with cautious weight decay. In this
section, we use ADAM with cautious weight
decay (Algorithm 2) as an example, showing
that in the smooth nonconvex setting, Algo-
rithm 2 achieves a standard convergence rate
of O(T− 1

2) on the squared gradient norm
and an additional stationarity measure.

We make the following assumptions, which
are mild and often used in the analysis
of stochastic gradient algorithms (Ghadimi
& Lan, 2013; Barakat & Bianchi, 2021;
Défossez et al., 2022; Arjevani et al., 2023).
Assumption 1. f is coercive and L-smooth. This implies that f attains a minimum value, which we
denote as f⋆, and that the iterates of Algorithm 2 are bounded.
Assumption 2 (Bounded variance). The stochastic gradient gt satisfies

E[gt] = ∇f(xt) and Var(gt) = E
[
∥gt −∇f(xt)∥22

]
≤ σ2

nbatch
,

where σ is a constant and nbatch denotes the batch size.

Theorem 1. Under Assumptions 1 and 2, let 0 ≤ β1 ≤ β2 < 1, λ ≥ 0, ϵ > 0, and ηt = η > 0, and
suppose xt is updated using Algorithm 2. Then for all T ∈ N,

1

T

∑
t∈[T]

E
[
∥∇f(xt)∥22 + λ

∥∥(∇f(xt)xt)
+
∥∥
1

]
≤ K1

ηT
+

K2

T
+K3η +

K4σ√
nbatch

,

where K1, K2, K3, and K4 are constants.

Proof sketch. We follow the standard approach of first proving a descent lemma. The full proof is
deferred to Appendix E.

Remark 1. The first term on the left-hand side, ∥∇f(xt)∥22, reflects how much f is optimized,
while the second term, ∥(∇f(xt)xt)

+∥1, reflects the degree of conflict between the objective f
and the parameter magnitudes. If ∇f(xt)xt ≫ 0, then there is room to jointly decrease both

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

f and the magnitudes. Thus, a small value of ∥(∇f(xt)xt)
+∥1 indicates that the optimizer has

reached a state where it is difficult to further decrease f and shrink the magnitudes simultaneously.
This corresponds to convergence toward a Pareto front, where trade-offs between the two objectives
become unavoidable.

Remark 2. In the setting of Theorem 1, let T ∈ N, η = Θ
(

1√
T

)
, and nbatch = Θ(T). Then

1

T

∑
t∈[T]

E
[
∥∇f(xt)∥22 + λ

∥∥(∇f(xt)xt)
+
∥∥
1

]
= O

(
1√
T

)
.

5 EXPERIMENTS

Figure 4: Evaluation loss across scales. 3×3 grid for 338M, 986M, and 2B Transformer models
trained with ADAMW, LION, and MUON on C4 dataset. All panels show a zoom into the final∼40%
of training steps to highlight late-stage behavior. Baseline curves (dashed blue) use standard weight
decay with tuned hyperparameters (learning rate schedule, β’s, weight decay, etc.; see Appendix F).
Our method (solid red) follows Algorithm 1 and reuses the baseline hyperparameters without addi-
tional tuning. Full (non-zoomed) curves are in Figures 8, 9 and 10 in Appendix G.

Overview. We evaluate CWD against three standard optimizers—ADAMW, LION, and MUON—on
autoregressive language modeling and ImageNet classification. For Transformer models with simi-
lar architecture to Gemma (Kamath et al., 2025) with 338M, 986M, and 2B parameters in the Sim-
ply (Liang et al., 2025) codebase, we follow the Chinchilla compute-optimal scaling rule—20 tokens
per parameter (TPP) Hoffmann et al. (2022) and train on C4 (Raffel et al., 2020). For each size, we
grid-search batch size, learning rate, weight decay, warmup ratio, and optimizer-specific hyperpa-
rameters for the baselines (ADAMW, LION, MUON); we then reuse the selected baseline settings for
CWD without retuning (details in Appendix F). Under matched settings, CWD lowers final validation
loss and improves zero-shot accuracy. On the OLMo codebase (OLMo et al., 2025), we further study
an over-training regime—OLMo-1B trained on 100B tokens (100 TPP) from Dolma (Soldaini et al.,
2024). Under matched settings, CWD lowers final validation loss and improves zero-shot accuracy
(Table 4). We also observe similar gains on ImageNet (Deng et al., 2009) across ViT (Dosovitskiy
et al., 2021) and ResNet (He et al., 2016).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Ablations of weight decay. Figure 1 sweeps the weight–decay coefficient λ for a 338M model on
C4: λ ∈ [0, 0.4] for MUON and ADAMW, and λ ∈ [0, 3.0] for LION. Two patterns are consistent
across runs: (i) at a fixed λ, CWD attains a lower final loss than the corresponding baseline with
decoupled weight decay; (ii) the minimizing value λ⋆ is essentially unchanged when replacing the
baseline with CWD. In practice, one can swap in CWD at an already tuned λ and obtain improvements
without additional sweeps.

Table 2: Ablation study of selective weight decay strategies on OLMo-1B (100B tokens). We com-
pare our momentum-based selection against alternative masking approaches. Baseline: standard
weight decay (λ tuned). Ours: update-based mask I(ux ≥ 0) using baseline’s λ without retuning.
Random: time-varying Bernoulli mask matching our method’s sparsity ratio (see Figure 6 in Ap-
pendix G). Gradient: uses I(gx ≥ 0) instead. No WD: λ = 0. Lower validation loss is better.

Weight Decay Active Ablated Masks Disabled

Optimizer Baseline Ours Random Gradient No WD

ADAMW 2.65 2.56 2.82 2.75 2.70
MUON 2.51 2.42 2.73 2.74 2.62

Table 3: ImageNet validation accuracy (%) across architectures and optimizers. All models train
for 300 epochs with standard augmentation. Base: optimizer with tuned weight decay. Ours:
momentum-based selective weight decay using the same coefficient as baseline (no retuning).

ADAMW LION MUON

Model Params Base Ours Base Ours Base Ours

ViT-S/16 22.05M 78.84 79.45 79.29 79.82 79.35 79.91
ResNet-50 25.56M 76.30 76.68 76.41 76.75 76.47 76.83
ViT-B/16 86.57M 80.15 80.71 80.76 80.92 80.83 81.04

0K 50K 100K 150K 200K 250K 300K
Training Steps

4

6

8

10

Pe
rp

le
xi

ty
 (

lo
g

sc
al

e)

AdamW (wd=0.0)
AdamW (wd=0.1)
Ours (wd=0.1)

0K 50K 100K 150K 200K 250K 300K
Training Steps

2

4

6

8

10

Pe
rp

le
xi

ty
 (

lo
g

sc
al

e)

Muon (wd=0.0)
Muon (wd=0.1)
Ours (wd=0.1)

Figure 5: Training loss of OLMo 1B on 100B tokens. Left: ADAMW. Right: MUON.
Ablations on masking. Table 2 tests whether the benefits arise from the amount of decay applied or
from CWD’s structure. Replacing our mask with a time-matched Bernoulli “random mask” substan-
tially degrades performance (e.g., 2.56→2.82 for ADAMW, 2.42→2.73 for MUON), showing that
simply reducing the frequency of decay is insufficient. Substituting the indicator with the gradient-
based I(gx ≥ 0) also underperforms. Finally, λ = 0 remains worse than tuned decay, illustrating
that explicit regularization is helpful and CWD leverages it more effectively.

Training dynamics. On 1B models trained for 100B tokens, we observe that CWD tends to improve
the loss trajectory relative to tuned ADAMW and MUON, rather than only the final value (Figure 5).
A similar pattern appears at 986M: Figure 7 in Appendix G shows evaluation/training loss and RMS
parameter norm over time. CWD generally achieves lower loss while ending with an intermediate
norm. In contrast, removing decay entirely (λ = 0) descends faster mid-training but plateaus earlier,
finishing at higher loss and the largest norm; tuned ADAMW with λ > 0 yields the smallest norm.
Overall, these results suggest that the gains come from a more selective application of regularization
rather than from disabling it.

CWD outperforms standard decay across optimizers and scales. Under the common setup across
338M, 986M, and 2B parameters, CWD consistently lowers eval loss for ADAMW, LION, and MUON
(see Figure 4 and Figures 8–10 in Appendix G) and increases downstream accuracy (Table 4).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Optimizer Hellaswag ↑ ARC-Easy ↑ ARC-C ↑ PIQA ↑ MMLU ↑ ComQA ↑
acc norm acc norm acc norm acc norm acc acc

ADAMW 0.38 0.50 0.25 0.67 0.23 0.29
ADAMW+CWD 0.40 0.53 0.27 0.69 0.25 0.31

MUON 0.39 0.51 0.26 0.68 0.24 0.30
MUON+CWD 0.41 0.51 0.28 0.71 0.26 0.33

Table 4: Downstream accuracy across diverse reasoning benchmarks. All runs use the OLMo code-
base with 1B-parameter models trained for 100B tokens under an over-training regime. Here ARC-
C=ARC-Challenge and ComQA=CommonsenseQA. Figure 5 shows the corresponding loss curves.

CWD yields lower gradient norms than standard decay. Across model sizes, CWD produces lower
RMS-normalized gradient norms than the corresponding baselines (see Figure 11 in Appendix G).
This coincides with the lower end-of-training loss in Figure 5 and the accuracy gains in Table 4.

6 RELATED WORK

Weight decay. Weight decay originated as an ℓ2 penalty for ill-posed problems and ridge regression
(Tikhonov, 1963; Hoerl & Kennard, 1970) and was introduced to neural networks as a generaliza-
tion tool to mitigate overfitting (Hanson & Pratt, 1988; Weigend et al., 1990; Krogh & Hertz, 1991).
(Loshchilov & Hutter, 2019) showed that, for adaptive methods, weight decay and ℓ2 are not equiv-
alent, motivating the decoupled formulation in ADAMW; subsequent work established decoupled
decay as a standard feature of modern optimizers (Chen et al., 2023; 2024; Liu et al., 2025). Recent
analyses suggest that in contemporary networks, weight decay functions more as a training accel-
erator and stabilizer than as explicit regularization (Krizhevsky et al., 2017; Hoffmann et al., 2022;
Pan & Cao, 2023; D’Angelo et al., 2024). Interactions with normalization layers and learning rate
schedules have also been clarified (Defazio, 2025), and architectural designs can obviate explicit
decay (Loshchilov et al., 2025).

Weight decay variants. Various efforts have been made to develop different adaptive variants of
weight decay. For example, Xie et al. (2023) found that weight decay can lead to large gradient
norms at the final phase of training and proposed Scheduled Weight Decay (SWD) to dynamically
adjust weight decay strength based on gradient norms. Kosson et al. (2024) investigates how weight
decay affects individual neuron updates, revealing rotational equilibrium states that balance learning
across layers and neurons. Ghiasi et al. (2023) introduces adaptive weight decay that automatically
tunes the hyperparameter during training based on classification and regularization loss gradients,
achieving significant improvements in adversarial robustness.

Constrained optimization. Decoupled weight decay can be interpreted through the lens of
Frank–Wolfe algorithms for constrained optimization (Frank & Wolfe, 1956; Jaggi, 2013; Sfyraki &
Wang, 2025; Pethick et al., 2025). This connection suggests that optimizers with decoupled weight
decay implicitly solve constrained optimization problems, which was shown to be the case for LION
(Chen et al., 2024; Sfyraki & Wang, 2025; Pethick et al., 2025), ADAMW (Xie & Li, 2024; Bernstein
& Newhouse, 2024), and MUON (Chen et al., 2025; Sfyraki & Wang, 2025; Lau et al., 2025).

7 CONCLUSION

We introduce cautious weight decay and formalize it as a simple, optimizer-agnostic modification
of decoupled weight decay that preserves the optimization objective while retaining the practi-
cal benefits of weight decay. For standard optimizers (SGD, ADAM, and LION-K), we show the
bilevel optimization structure of cautious weight decay and establish convergence guarantees in
both continuous- and discrete-time regimes. Across diverse tasks and benchmarks, cautious weight
decay consistently improves training dynamics compared to no decay and traditional decoupled de-
cay, yielding faster loss reduction and more stable trajectories without changes to hyperparameters
or model architectures. Our results indicate that cautious weight decay is a theoretically principled
and empirically effective technique that retains the benefits of weight decay while addressing its
fundamental limitations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Nathan Srebro, and Blake E. Wood-
worth. Lower bounds for non-convex stochastic optimization. Math. Program., 199(1):165–214,
2023.

Andrea Bacciotti and Francesca Ceragioli. Stability and stabilization of discontinuous systems and
nonsmooth lyapunov functions. ESAIM: Control, Optimisation and Calculus of Variations, 4:
361–376, 1999.

Anas Barakat and Pascal Bianchi. Convergence and dynamical behavior of the ADAM algorithm
for nonconvex stochastic optimization. SIAM J. Optim., 31(1):244–274, 2021.

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. CoRR,
abs/2409.20325, 2024.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
SIGNSGD: compressed optimisation for non-convex problems. In Proceedings of the 35th In-
ternational Conference on Machine Learning, ICML 2018, volume 80 of Proceedings of Machine
Learning Research, pp. 559–568, 2018.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in Neu-
ral Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, 2020.

Lizhang Chen, Bo Liu, Kaizhao Liang, and Qiang Liu. Lion secretly solves a constrained optimiza-
tion: As lyapunov predicts. In The Twelfth International Conference on Learning Representations,
ICLR 2024, 2024.

Lizhang Chen, Jonathan Li, and Qiang Liu. Muon optimizes under spectral norm constraints. CoRR,
abs/2506.15054, 2025.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V. Le. Symbolic discovery of optimization
algorithms. In Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023, 2023.

Francesco D’Angelo, Maksym Andriushchenko, Aditya Vardhan Varre, and Nicolas Flammarion.
Why do we need weight decay in modern deep learning? In Advances in Neural Information
Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024,
NeurIPS 2024, 2024.

Aaron Defazio. Why gradients rapidly increase near the end of training. CoRR, abs/2506.02285,
2025.

Alexandre Défossez, Léon Bottou, Francis R. Bach, and Nicolas Usunier. A simple convergence
proof of adam and adagrad. Trans. Mach. Learn. Res., 2022, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2009), pp. 248–255, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In 9th International Conference on Learning Representations, ICLR 2021, 2021.

John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, 2011.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aleksej F. Filippov. Differential Equations with Discontinuous Righthand Sides, volume 18 of Math-
ematics and Its Applications. Springer, 1988.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Nav. Res. Logist. Q.,
3(1–2):95–110, 1956.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile:
An 800gb dataset of diverse text for language modeling. CoRR, abs/2101.00027, 2021.

Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for nonconvex
stochastic programming. SIAM J. Optim., 23(4):2341–2368, 2013.

Amin Ghiasi, Ali Shafahi, and Reza Ardekani. Improving robustness with adaptive weight decay.
In Advances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, 2023.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
volume 80 of Proceedings of Machine Learning Research, pp. 1837–1845, 2018.

Stephen Jose Hanson and Lorien Y. Pratt. Comparing biases for minimal network construction with
back-propagation. In Advances in Neural Information Processing Systems 1, NIPS Conference,
pp. 177–185, 1988.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, pp.
770–778, 2016.

Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack W. Rae, and Laurent Sifre.
An empirical analysis of compute-optimal large language model training. In Advances in Neu-
ral Information Processing Systems 35: Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, 2022.

Tianjin Huang, Ziquan Zhu, Gaojie Jin, Lu Liu, Zhangyang Wang, and Shiwei Liu. SPAM: spike-
aware adam with momentum reset for stable LLM training. In The Thirteenth International Con-
ference on Learning Representations, ICLR 2025, 2025.

Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Proceedings
of the 30th International Conference on Machine Learning, ICML 2013, volume 28 of JMLR
Workshop and Conference Proceedings, pp. 427–435, 2013.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024.

Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, Ta-
tiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas Mesnard, Geof-
frey Cideron, Jean-Bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon, Etienne Pot,
Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai Zhai, Anton
Tsitsulin, Róbert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman, Yi Gao, Basil
Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-Thorsten Peter,
Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan Malkin, Ravin
Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe Friesen, Abhanshu
Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa Saade, Alexan-
der Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András György, André Susano
Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia Paterson, Ashish Shenoy,
Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie Chen, Charline Le

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel Deutsch, Danielle Eisen-
bud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar Sreepathihalli, Doug
Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene Kharitonov, Frederick
Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-Plucinska, Harman
Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne, Idan Szpektor, Ivan
Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wieting, Jonathan Lai, Jordi Orbay,
Joseph Fernandez, Josh Newlan, Ju-yeong Ji, Jyotinder Singh, Kat Black, Kathy Yu, Kevin Hui,
Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine, Marina Coelho, Marvin Ritter,
Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael Moynihan, Min Ma, Nabila Babar,
Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Nilay Chauhan, Oskar Bunyan, Pankil
Botarda, Paul Caron, Paul Kishan Rubenstein, Phil Culliton, Philipp Schmid, Pier Giuseppe
Sessa, Pingmei Xu, Piotr Stanczyk, Pouya Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza
Rokni, Rob Willoughby, Rohith Vallu, Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin,
Shariq Iqbal, Shashir Reddy, Shruti Sheth, Siim Põder, Sijal Bhatnagar, Sindhu Raghuram Pa-
nyam, Sivan Eiger, Susan Zhang, Tianqi Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku
Evci, Vedant Misra, Vincent Roseberry, Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk
Kwon, Xi Chen, Yinlam Chow, Yuvein Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh
Giang, Phoebe Kirk, Anand Rao, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanse-
viero, Lucas Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins,
Joelle K. Barral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah
Fiedel, Noam Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clément
Farabet, Elena Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry (Dima) Lepikhin, Sebas-
tian Borgeaud, Olivier Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi,
and Léonard Hussenot. Gemma 3 technical report. CoRR, abs/2503.19786, 2025.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, 2015.

Atli Kosson, Bettina Messmer, and Martin Jaggi. Rotational equilibrium: How weight decay bal-
ances learning across neural networks. In Forty-first International Conference on Machine Learn-
ing, ICML 2024, 2024.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convo-
lutional neural networks. Commun. ACM, 60(6):84–90, 2017.

Anders Krogh and John A. Hertz. A simple weight decay can improve generalization. In Advances
in Neural Information Processing Systems 4, NIPS Conference, pp. 950–957, 1991.

Joseph P. LaSalle. Some extensions of liapunov’s second method. IRE Transactions on Circuit
Theory, 7(4):520–527, 1960.

Tim Tsz-Kit Lau, Qi Long, and Weijie Su. Polargrad: A class of matrix-gradient optimizers from a
unifying preconditioning perspective. CoRR, abs/2505.21799, 2025.

Chen Liang, Da Huang, Chengrun Yang, Xiaomeng Yang, Andrew Li, Xinchen Yan, and Simply
Contributors. Simply: an experiment to accelerate and automate AI research. GitHub repository,
2025. URL https://github.com/google-deepmind/simply.

Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable
stochastic second-order optimizer for language model pre-training. In The Twelfth International
Conference on Learning Representations, ICLR 2024, 2024.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
Xu, Enzhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng, Yibo Liu, Shaowei Liu, Bohong Yin,
Weiran He, Han Zhu, Yuzhi Wang, Jianzhou Wang, Mengnan Dong, Zheng Zhang, Yongsheng
Kang, Hao Zhang, Xinran Xu, Yutao Zhang, Yuxin Wu, Xinyu Zhou, and Zhilin Yang. Muon is
scalable for LLM training. CoRR, abs/2502.16982, 2025.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, 2019.

12

https://github.com/google-deepmind/simply

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ilya Loshchilov, Cheng-Ping Hsieh, Simeng Sun, and Boris Ginsburg. ngpt: Normalized transformer
with representation learning on the hypersphere. In The Thirteenth International Conference on
Learning Representations, ICLR 2025, 2025.

Qijun Luo, Hengxu Yu, and Xiao Li. Badam: A memory efficient full parameter optimization
method for large language models. In Advances in Neural Information Processing Systems 38:
Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, 2024.

James Martens and Roger B. Grosse. Optimizing neural networks with kronecker-factored approx-
imate curvature. In Proceedings of the 32nd International Conference on Machine Learning,
ICML 2015, volume 37 of JMLR Workshop and Conference Proceedings, pp. 2408–2417, 2015.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bha-
gia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord,
Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha
Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William
Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Py-
atkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm,
Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2
olmo 2 furious. CoRR, abs/2501.00656, 2025.

Leyan Pan and Xinyuan Cao. Towards understanding neural collapse: The effects of batch normal-
ization and weight decay. CoRR, abs/2309.04644, 2023.

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained lmos. In Forty-second
International Conference on Machine Learning, ICML 2025, 2025.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(140):1–67, 2020.

Kevin Scaman and Cédric Malherbe. Robustness analysis of non-convex stochastic gradient descent
using biased expectations. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 2020.

Maria-Eleni Sfyraki and Jun-Kun Wang. Lions and muons: Optimization via stochastic frank-wolfe.
CoRR, abs/2506.04192, 2025.

Daniel W. Shevitz and Brad Paden. Lyapunov stability theory of nonsmooth systems. IEEE Trans.
Autom. Control., 39(9):1910–1914, 1994.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Au-
thur, Ben Bogin, Khyathi Raghavi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann,
Ananya Harsh Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Ja-
cob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhi-
lasha Ravichander, Kyle Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind
Tafjord, Pete Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk
Groeneveld, Jesse Dodge, and Kyle Lo. Dolma: an open corpus of three trillion tokens for lan-
guage model pretraining research. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2024, pp. 15725–15788, 2024.

Ilya Sutskever, James Martens, George E. Dahl, and Geoffrey E. Hinton. On the importance of ini-
tialization and momentum in deep learning. In Proceedings of the 30th International Conference
on Machine Learning, ICML 2013, volume 28 of JMLR Workshop and Conference Proceedings,
pp. 1139–1147, 2013.

Andrey Tikhonov. On the solution of ill-posed problems and the method of regularization. Dokl.
Akad. Nauk SSSR, 151(3):501–504, 1963.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
CoRR, abs/2307.09288, 2023.

Andreas S. Weigend, David E. Rumelhart, and Bernardo A. Huberman. Generalization by weight-
elimination with application to forecasting. In Advances in Neural Information Processing Sys-
tems 3, NIPS Conference, pp. 875–882, 1990.

Kaiyue Wen, David Hall, Tengyu Ma, and Percy Liang. Fantastic pretraining optimizers and where
to find them. CoRR, abs/2509.02046, 2025.

Shuo Xie and Zhiyuan Li. Implicit bias of adamw: ℓ∞-norm constrained optimization. In Forty-first
International Conference on Machine Learning, ICML 2024, 2024.

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models. IEEE Trans. Pattern Anal. Mach. Intell.,
46(12):9508–9520, 2024.

Zeke Xie, Zhiqiang Xu, Jingzhao Zhang, Issei Sato, and Masashi Sugiyama. On the overlooked
pitfalls of weight decay and how to mitigate them: A gradient-norm perspective. In Advances in
Neural Information Processing Systems 36: Annual Conference on Neural Information Process-
ing Systems 2023, NeurIPS 2023, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng
Hu, Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jian Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang, Le Yu,
Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui Men,
Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang Ren,
Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger Zhang,
Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan Qiu.
Qwen3 technical report. CoRR, abs/2505.09388, 2025.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael W. Mahoney.
ADAHESSIAN: an adaptive second order optimizer for machine learning. In Thirty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Appli-
cations of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances
in Artificial Intelligence, EAAI 2021, pp. 10665–10673, 2021.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P. Kingma, Yinyu
Ye, Zhi-Quan Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. In The
Thirteenth International Conference on Learning Representations, ICLR 2025, 2025.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham M. Kakade. Decon-
structing what makes a good optimizer for autoregressive language models. In The Thirteenth
International Conference on Learning Representations, ICLR 2025, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A NOTATION AND DEFINITIONS

N := {1, 2, 3, . . . } denotes the natural numbers. For n ∈ N, [n] denotes the set {1, 2, . . . , n}.
Vectors are denoted in lowercase boldface, and matrices are denoted in capital boldface. 0 and 1 de-
note the all-zeros and all-ones tensors of appropriate dimension, respectively. Scalar operations and
functions, e.g. multiplication, division, and square roots, are understood to be performed entrywise
when applied to vectors. We also use ⊙ to explicitly denote the entrywise product. x+ denotes the
positive part of x, i.e.

x+ := max(0, x) =

{
x if x > 0

0 otherwise
.

∥·∥p denotes the ℓp norm for p ∈ [1,∞]. ⟨·, ·⟩ denotes the standard inner product on Rd. [x]i denotes
the ith entry of a vector x. diag (x) denotes the diagonal matrix with diagonal entries given by x.
I(x > 0) denotes the indicator tensor that is 1 in a coordinate if x is positive in that coordinate and
0 otherwise. If K : Rd → R is convex, we let ∂K(x) denote the set of subgradients of K at x and
overload ∇K(x) to denote an element of ∂K(x).
Definition 1 (L-smoothness). A function f : Rd → R is L-smooth if it is differentiable and

∥∇f(y)−∇f(x)∥2 ≤ L ∥y − x∥2 for all x,y ∈ Rd.

If f is L-smooth, then

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥22 for all x,y ∈ Rd.

Definition 2 (Coerciveness). A function f : Rd → R is coercive if f(x)→∞ as ∥x∥ → ∞.

B PSEUDOCODE OF OPTIMIZERS WITH CWD

B.1 SGD WITH MOMENTUM

Algorithm 3 SGD with momentum and cautious weight decay

1: given learning rates {ηt}t∈N ⊂ R>0, momentum coefficient β ∈ [0, 1), weight decay coefficient λ > 0

2: initialize time step t← 1, parameters x1 ∈ Rd, first moment m0 ← 0
3: repeat
4: gt ← StochasticGradient(xt)
5: mt ← βmt−1 + (1− β)gt

6: xt+1 ← xt − ηt
(
mt +λI(mtxt ≥ 0)xt

)
▷ entrywise multiplication

7: t← t+ 1
8: until stopping criterion is met
9: return optimized parameters xt

B.2 LION-K

Algorithm 4 LION-K with cautious weight decay

1: given learning rates {ηt}t∈N ⊂ R>0, momentum coefficients β1, β2 ∈ [0, 1), convex K : Rd → R with
subgradient∇K, weight decay coefficient λ > 0

2: initialize time step t← 1, parameters x1 ∈ Rd, first moment m1 ← 0
3: repeat
4: gt ← StochasticGradient(xt)
5: mt+1 ← β2mt − (1− β2)gt

6: m̃t+1 ← β1mt − (1− β1)gt

7: xt+1 ← xt + ηt
(
∇K(m̃t+1) −λI(∇K(m̃t+1)xt ≤ 0)xt

)
▷ entrywise multiplication

8: t← t+ 1
9: until stopping criterion is met

10: return optimized parameters xt

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.3 LION

Algorithm 5 LION with cautious weight decay

1: given learning rates {ηt}t∈N ⊂ R>0, momentum coefficients β1, β2 ∈ [0, 1),
weight decay coefficient λ > 0

2: initialize time step t← 1, parameters x1 ∈ Rd, first moment m0 ← 0
3: repeat
4: gt ← StochasticGradient(xt)
5: m̃t ← β1mt−1 + (1− β1)gt

6: xt+1 ← xt − ηt
(
sgn(m̃t) +λI(m̃txt ≥ 0)xt

)
▷ entrywise sgn and multiplication

7: mt ← β2mt−1 + (1− β2)gt

8: t← t+ 1
9: until stopping criterion is met

10: return optimized parameters xt

B.4 MUON

Algorithm 6 MUON with cautious weight decay

1: given learning rates {ηt}t∈N ⊂ R>0, momentum coefficient β ∈ [0, 1), weight decay coefficient λ > 0

2: initialize time step t← 1, parameters X1 ∈ Rn×m, first moment M0 ← 0
3: repeat
4: Gt ← StochasticGradient(Xt)
5: Mt ← βMt−1 +Gt

6: Ot ← NewtonSchulz(Mt) ▷ approximation of matrix sign

7: Xt+1 ← Xt − ηt
(
Ot +λI(OtXt ≥ 0)Xt

)
▷ entrywise matrix multiplication

8: t← t+ 1
9: until stopping criterion is met

10: return optimized parameters Xt

C FIXED-POINT ANALYSIS

Revisiting the fixed-point analysis in Section 2.2 for ADAMW, suppose the trajectory of ADAMW
converges to a fixed point (x⋆, m̂⋆, v̂⋆), so that m̂⋆ = ∇f(x⋆) and v̂⋆ = ∇f(x⋆)2. Passing to the
limit ϵ↘ 0, the fixed-point condition gives

∇f(x⋆)

|∇f(x)⋆|+ ϵ1
+ λx⋆ → sgn(∇f(x⋆)) + λx⋆ = 0.

Taking inner products with∇f(x⋆) yields ∥∇f(x⋆)∥1 + ⟨λx⋆,∇f(x⋆)⟩ = 0, which shows that x⋆

is a Karush–Kuhn–Tucker (KKT) point of the constrained optimization problem

min
x∈Rd

f(x) s.t. ∥x∥∞ ≤
1

λ
(3)

by Lemma 3.8 of Xie & Li (2024). Intuitively, ADAMW normalizes the gradient to its coordinate-
wise sign at stationarity and then balances it against the linear pull of the decoupled weight decay,
which enforces a box constraint on the parameters. Xie & Li (2024) formalize this intuition and
show that whenever the iterates of ADAMW converge, the limit point is a KKT point of the box-
constrained problem (3). However, this guarantee holds only under the assumption of convergence,
and ADAMW is not known to converge in general.

We remark that we can adapt this argument for another, more heuristic insight into why optimizers
with cautious weight decay perform unbiased optimization. Suppose ADAM with cautious weight
decay reaches a fixed point, so that

∇f(x⋆)

|∇f(x⋆)|+ ϵ1
= −λI(∇f(x⋆)x⋆ ≥ 0)x⋆.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

For a fixed point of LION-K with cautious weight decay, we have

−∇K(−∇f(x⋆)) = λI(∇K(−∇f(x⋆))x⋆ ≤ 0)x⋆.

In either situation, casework on the signs of the update and x⋆ shows that both sides must be 0. It
follows that ∇f(x⋆) = 0 for ADAM and ∇K(−∇f(x⋆)) = 0 for LION-K, and if K is a convex
function that achieves a unique minimum at 0 (e.g. a norm), then this condition becomes∇f(x⋆) =
0 as well. Hence, the fixed-point analysis suggests that ADAM and LION-K with cautious weight
decay find a stationary point of the original objective f .

D LYAPUNOV FUNCTIONS

Throughout this section, vector variables are implicitly dependent on t when clear from context, and
we drop the subscript for notational simplicity.

D.1 SGD

SGD with cautious weight decay admits the continuous-time dynamics

ẋ = −∇f(x)− λI(∇f(x)x ≥ 0)x,

which has a Lyapunov functionH(x) = f(x), since

dH
dt

= ⟨∇f(x),−∇f(x)− λI(∇f(x)x ≥ 0)x⟩ = −∥∇f(x)∥22 − λ
∥∥(∇f(x)x)+∥∥

1
≤ 0.

D.2 SGD WITH MOMENTUM

When SGD is equipped with momentum (Sutskever et al., 2013) and cautious weight decay, the
continuous-time dynamics becomes

ẋ = −m− λI(mx ≥ 0)x

ṁ = β(∇f(x)−m),

which has a Lyapunov function

H(x,m) = βf(x) +
1

2
∥m∥22 + λ

∥∥(mx)+
∥∥
1
,

since
dH
dt

= ⟨β∇f(x) + λI(mx ≥ 0)m,−m− λI(mx ≥ 0)x⟩+ ⟨m+ λI(mx ≥ 0)x, β(∇f(x)−m)⟩

= −
〈
λI(mx ≥ 0) + β1,m2

〉
− λ(β + λ)

∥∥(mx)+
∥∥
1
≤ 0.

D.3 LION-K

We assume thatK is convex and satisfies sgn(∇K(m)) = sgn(m) for all m ∈ Rd. This assumption
is mild and that holds for every example of K given by Chen et al. (2024).

The continuous-time dynamics of LION-K without gradient enhancement is given by

ẋ = ∇K(m)− λx

ṁ = −α∇f(x)− γm.
(4)

Chen et al. (2024) showed that this system has a Lyapunov function

H(x,m) = αf(x) +
γ

λ
K∗(λx) +K∗(λx) +K(m)− ⟨m, λx⟩ ,

thereby elucidating the origin of the K∗(λx) regularization term. However, when equipped with
cautious weight decay, (4) becomes

ẋ = ∇K(m)− λI(mx ≤ 0)x

ṁ = −α∇f(x)− γm
(5)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

and admits a Lyapunov function
H(x,m) = αf(x) +K(m) + λ

∥∥(−mx)+
∥∥
1
, (6)

which corresponds to optimizing the original objective f . To see that (6) is a Lyapunov function for
(5), note that

dH
dt

= ⟨α∇f(x)− λI(mx ≤ 0)m,∇K(m)− λI(mx ≤ 0)x⟩

+ ⟨∇K(m)− λI(mx ≤ 0)x,−α∇f(x)− γm⟩
= −⟨∇K(m)− λI(mx ≤ 0)x, (λI(mx ≤ 0) + γ1)m⟩
= −⟨λI(mx ≤ 0) + γ1,∇K(m)m⟩ − λ(λ+ γ)

∥∥(−mx)+
∥∥
1
≤ 0.

D.4 ADAM

The continuous-time limit of ADAM with cautious weight decay yields the system of ordinary dif-
ferential equations (cf. Barakat & Bianchi (2021))

ẋ = − (1− exp(−αt))−1m√
(1− exp(−γt))−1v + ϵ1

− λI(mx ≥ 0)x

ṁ = α(∇f(x)−m)

v̇ = γ(∇f(x)2 − v).

(7)

We assume that 0 < γ ≤ 4α, which is satisfied by standard implementations of ADAM in practice.
This system admits the Lyapunov function

H(x,m,v, t) = αf(x) +

∥∥∥∥ αtm
2

2(
√
γtv + ϵ1)

∥∥∥∥
1

+ λ
∥∥(mx)+

∥∥
1
, (8)

where
αt := (1− exp(−αt))−1 and γt := (1− exp(−γt))−1.

To see that (8) is a Lyapunov function for (7), note thatH is lower bounded by αf⋆ and
dH
dt

= ⟨∇xH, ẋ⟩+ ⟨∇mH, ṁ⟩+ ⟨∇vH, v̇⟩+
∂H
∂t

=

〈
α∇f(x) + λI(mx ≥ 0)m,− αtm√

γtv + ϵ1
− λI(mx ≥ 0)x

〉
+

〈
αtm√
γtv + ϵ1

+ λI(mx ≥ 0)x, α(∇f(x)−m)

〉
−

〈
αt
√
γtm

2

4
√
v
(√

γtv + ϵ1
)2 , γ(∇f(x)2 − v)

〉

−

〈
m2

2
·
2α exp(−αt)(√γtv + ϵ1)− α−1

t γ exp(−γt)γt
√
γtv

2
(
α−1
t (
√
γtv + ϵ1)

)2 ,1

〉

= −

〈
(α1+ λI(mx ≥ 0))

αtm
2

√
γtv + ϵ1

+ λ(α+ λ)(mx)+ +
αtγ
√
γtm

2∇f(x)2

4
√
v
(√

γtv + ϵ1
)2 ,1

〉

+

〈
αtγm

2√γtv
4
(√

γtv + ϵ1
)2 ,1

〉
−

〈
m2

2
·
2α exp(−αt)(√γtv + ϵ1)− α−1

t γ exp(−γt)γt
√
γtv

2
(
α−1
t (
√
γtv + ϵ1)

)2 ,1

〉

≤
〈(γ

4
− α

)
1− λI(mx ≥ 0),

αtm
2

√
γtv + ϵ1

〉
−
〈
αt(2αtα exp(−αt)− γtγ exp(−γt))m2

4(
√
γtv + ϵ1)

,1

〉
=

〈(
γ

4
− α− α

2(exp(αt)− 1)
+

γ

4(exp(γt)− 1)

)
1− λI(mx ≥ 0),

αtm
2

√
γtv + ϵ1

〉
≤ 0,

where the first inequality drops some nonpositive terms and uses
√
γtv ≤

√
γtv+ϵ1 and the second

inequality uses
γ

4
− α− α

2(exp(αt)− 1)
+

γ

4(exp(γt)− 1)
≤ 0

for 0 < γ ≤ 4α and t > 0.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Remark 3. Cautious weight decay can be seen as an attempt to fix the asymptotic instability of
ADAMW via a Lyapunov function. Consider the simplified continuous-time ADAMW dynamics

ẋ = − m√
v
− λx

ṁ = ∇f(x)−m

v̇ = ∇f(x)2 − v

(9)

and the function

H(x,m,v) = f(x) +

∥∥∥∥ m2

2
√
v

∥∥∥∥
1

+ ⟨m, λx⟩ .

By straightforward computation,

dH
dt

=

〈
∇f(x) + λm,− m√

v
− λx

〉
+

〈
m√
v
+ λx,∇f(x)−m

〉
+

〈
− m2

4v
3
2

,∇f(x)2 − v

〉
= −

〈(
λ+

3

4

)
m2

√
v
+ λ(λ+ 1)mx+

m2∇f(x)2

4v
3
2

,1

〉
= −

(
λ+

3

4

)∥∥∥∥m2

√
v

∥∥∥∥
1

− λ(λ+ 1) ⟨m,x⟩ − 1

4

∥∥∥∥m2∇f(x)2

v
3
2

∥∥∥∥
1

.

Note that H is not guaranteed to be lower bounded and − dH
dt is not guaranteed to be nonnegative,

since ⟨m,x⟩ has unknown sign. This motivates the introduction of a mask I(mx ≥ 0) to the weight
decay term and a slight adjustment toH so that the result is a Lyapunov function for (9).
Remark 4. For expositional clarity, we treat the ODEs and Lyapunov candidates in this section as
smooth, even though the dynamics include the discontinuous indicator function I(ux ≥ 0). A fully
rigorous analysis can be developed by interpreting the systems in the sense of differential inclusions,
specifically, using Filippov’s framework (Filippov, 1988), and by applying specialized tools from
nonsmooth Lyapunov stability theory to obtain convergence guarantees (Shevitz & Paden, 1994;
Bacciotti & Ceragioli, 1999).

E DEFERRED PROOFS

We assume the setting of Theorem 1.
Lemma 1. For all t ∈ N, ∥∥∥∥ m̂t√

v̂t + ϵ1

∥∥∥∥
∞
≤

√
1− β1

1− β2
=: C.

Proof. It suffices to work in an arbitrary coordinate i. Let m := [m̂t]i, v := [v̂t]i, and gt := [gt]i.
By expanding the update rule for m and v, we obtain

m =
1− β1

1− βt
1

∑
k∈[t]

βt−k
1 gk and v =

1− β2

1− βt
2

∑
k∈[t]

βt−k
2 g2k.

Now by Cauchy–Schwarz,

m2

v
≤ (1− β1)

2

(1− βt
1)

2
· 1− βt

2

1− β2
·
∑
k∈[t]

(
β2
1

β2

)t−k

≤ (1− β1)
2

(1− βt
1)

2
· 1− βt

2

1− β2
·
∑
k∈[t]

βt−k
1

=
(1− β1)

2

(1− βt
1)

2
· 1− βt

2

1− β2
· 1− βt

1

1− β1
=

1− β1

1− β2
· 1− βt

2

1− βt
1

≤ 1− β1

1− β2
.

The conclusion follows from
m√
v + ϵ

≤ m√
v
≤

√
1− β1

1− β2
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Lemma 2. For all t ∈ N, ∥xt∥∞ ≤ R, ∥m̂t∥∞ ≤ G, and ∥v̂t∥∞ ≤ G2 for some constants R and
G. We can choose G ≥ 1 without loss of generality.

Proof. Since the iterates are bounded and f is L-smooth by Assumption 1, there exist constants R
and G such that ∥xt∥∞ ≤ R and ∥∇f(xt)∥∞ ≤ G for all t ∈ N. It follows that ∥m̂t∥∞ ≤ G and
∥v̂t∥∞ ≤ G2.

Fact 1 (Lemma F.1, Bernstein et al. (2018)). For all t ∈ N, i ∈ [d], and α1, α2, . . . , αt ∈ R,

E


∑

k∈[t]

αk([gk]i − [∇f(xk)]i)

2
 ≤ σ2

nbatch

∑
k∈[t]

α2
k.

Lemma 3. For all t ∈ N,

E[∥∇f(xt)−mt∥1] ≤ βt
1Gd+

β1ηLd(C + λR)

1− β1
+

σd√
nbatch(1 + β1)

.

Proof. Note that

mt−∇f(xt) = −βt
1∇f(x1)+

∑
k∈[t−1]

βt−k
1 (∇f(xk)−∇f(xk+1))+(1−β1)

∑
k∈[t]

βt−k
1 (gk−∇f(xk)).

(10)
By smoothness, Lemma 1, and Lemma 2, we have

∥∇f(xk)−∇f(xk+1)∥1 ≤
√
d ∥∇f(xk)−∇f(xk+1)∥2 ≤ L

√
d ∥xk+1 − xk∥2 ≤ ηLd(C+λR).

(11)
By Jensen’s inequality and Fact 1,

E

∣∣∣∣∣∣
∑
k∈[t]

βt−k
1 ([gk]i − [∇f(xk)]i)

∣∣∣∣∣∣
 ≤

√√√√√√E


∑

k∈[t]

βt−k
1 ([gk]i − [∇f(xk)]i)

2


≤

√√√√ σ2

nbatch

∑
k∈[t]

(β2
1)

t−k ≤ σ√
nbatch(1− β2

1)
.

(12)

Taking E[∥·∥1] of (10) and applying (11) and (12),

E[∥∇f(xt)−mt∥1] ≤ βt
1 ∥∇f(x1)∥1 +

β1ηLd(C + λR)

1− β1
+ (1− β1)E

∥∥∥∥∥∥
∑
k∈[t]

βt−k
1 (gk −∇f(xk))

∥∥∥∥∥∥
1


≤ βt

1Gd+
β1ηLd(C + λR)

1− β1
+

σd√
nbatch(1 + β1)

,

as desired.

Lemma 4. For all t ∈ N,

E
[
−
〈
∇f(xt),

mt√
v̂t + ϵ1

〉]
≤ −

E
[
∥∇f(xt)∥22

]
G+ ϵ

+
βt
1G

2d

ϵ
+
β1ηGLd(C + λR)

(1− β1)ϵ
+

σGd

ϵ
√
nbatch(1 + β1)

.

Proof. We have

−
〈
∇f(xt),

mt√
v̂t + ϵ1

〉
=

〈
∇f(xt)√
v̂t + ϵ1

,∇f(xt)−mt −∇f(xt)

〉
≤ − 1

G+ ϵ
∥∇f(xt)∥22 +

〈
∇f(xt)√
v̂t + ϵ1

,∇f(xt)−mt

〉
≤ − 1

G+ ϵ
∥∇f(xt)∥22 +

∥∥∥∥ ∇f(xt)√
v̂t + ϵ1

∥∥∥∥
∞
∥∇f(xt)−mt∥1

The result follows by
∥∥∥ ∇f(xt)√

v̂t+ϵ1

∥∥∥
∞
≤ G

ϵ and Lemma 3 .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Lemma 5. For all m, g, x ∈ R,

|(I(mx ≥ 0)− I(gx ≥ 0))x| ≤ I(mg ≤ 0)|x|.

Proof. If x = 0, then the inequality is trivially valid, so suppose x ̸= 0. We proceed by casework
on the sign of mg.

If mg > 0, then m and g have the same sign, and the conditions mx ≥ 0 and gx ≥ 0 are equivalent.
Thus I(mx ≥ 0)− I(gx ≥ 0) = 0, and the inequality holds.

If mg ≤ 0, then I(mg ≤ 0) = 1. It remains to show |(I(mx ≥ 0) − I(gx ≥ 0))x| ≤ |x|, which
follows upon realizing I(mx ≥ 0)− I(gx ≥ 0) ∈ {−1, 0, 1}.

Lemma 6. For all t ∈ N,

E[−⟨∇f(xt), I(mtxt ≥ 0)xt⟩] ≤ −
∥∥(∇f(xt)xt)

+
∥∥
1
+βt

1GRd+
β1ηLRd(C + λR)

1− β1
+

σRd√
nbatch(1 + β1)

.

Proof. We have

−⟨∇f(xt), I(mtxt ≥ 0)xt⟩ = −⟨∇f(xt), I(xt∇f(xt) ≥ 0)xt + (I(mtxt ≥ 0)− I(xt∇f(xt) ≥ 0))xt⟩
= ⟨∇f(xt), (I(xt∇f(xt) ≥ 0)− I(mtxt ≥ 0))xt⟩ −

∥∥(∇f(xt)xt)
+
∥∥
1

≤ ⟨|∇f(xt)|, |(I(xt∇f(xt) ≥ 0)− I(mtxt ≥ 0))xt|⟩ −
∥∥(∇f(xt)xt)

+
∥∥
1

≤ ⟨|∇f(xt)|, I(mt∇f(xt) ≤ 0)|xt|⟩ −
∥∥(∇f(xt)xt)

+
∥∥
1
,

(13)
where the fourth line uses Lemma 5. Taking the expectation of (13) conditioned on xt and expanding
the inner product,

E[⟨|∇f(xt)|, I(mt∇f(xt) ≤ 0)|xt|⟩ | xt] = ⟨|∇f(xt)|,E[I(mt∇f(xt) ≤ 0) | xt]|xt|⟩

=
∑
i∈[d]

|[∇f(xt)]i[xt]i| · E[I([mt]i[∇f(xt)]i ≤ 0) | xt]

=
∑
i∈[d]

|[∇f(xt)]i[xt]i| · Pr([mt]i[∇f(xt)]i ≤ 0 | xt)

≤
∑
i∈[d]

|[∇f(xt)]i[xt]i| · Pr(|[∇f(xt)]i − [mt]i| ≥ |[∇f(xt)]i| | xt)

≤
∑
i∈[d]

|[xt]i| · E[|[∇f(xt)]i − [mt]i| | xt]

≤ R · E[∥∇f(xt)−mt∥1 | xt],
(14)

where the fifth line uses Markov’s inequality. Taking the expectation of (14) and applying Lemma 3,

E[−⟨∇f(xt), I(mtxt ≥ 0)xt⟩] ≤ −
∥∥(∇f(xt)xt)

+
∥∥
1
+βt

1GRd+
β1ηLRd(C + λR)

1− β1
+

σRd√
nbatch(1 + β1)

,

as desired.

Theorem 1. Under Assumptions 1 and 2, let 0 ≤ β1 ≤ β2 < 1, λ ≥ 0, ϵ > 0, and ηt = η > 0, and
suppose xt is updated using Algorithm 2. Then for all T ∈ N,

1

T

∑
t∈[T]

E
[
∥∇f(xt)∥22 + λ

∥∥(∇f(xt)xt)
+
∥∥
1

]
≤ K1

ηT
+

K2

T
+K3η +

K4σ√
nbatch

,

where K1, K2, K3, and K4 are constants.

Proof. Let

∆t := f(xt+1)− f(xt) and δt :=
m̂t√

v̂t + ϵ1
+ λI(mtxt ≥ 0)xt.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

By smoothness,

∆t ≤ ⟨∇f(xt),xt+1 − xt⟩+
L

2
∥xt+1 − xt∥22

= −η ⟨∇f(xt), δt⟩+
η2L

2
∥δt∥22

= −η
〈
∇f(xt),

m̂t√
v̂t + ϵ1

〉
− ηλ ⟨∇f(xt), I(mtxt ≥ 0)xt⟩+

η2L

2
∥δt∥22

= − η

1− βt
1

〈
∇f(xt),

mt√
v̂t + ϵ1

〉
− ηλ ⟨∇f(xt), I(mtxt ≥ 0)xt⟩+

η2L

2
∥δt∥22 .

(15)

Taking the expectation of (15) and applying Lemmas 1, 2, 4, and 6,

E[∆t] ≤
η

1− βt
1

−E
[
∥∇f(xt)∥22

]
G+ ϵ

+
βt
1G

2d

ϵ
+

β1ηGLd(C + λR)

(1− β1)ϵ
+

σGd

ϵ
√
nbatch(1 + β1)


+ ηλ

(
−
∥∥(∇f(xt)xt)

+
∥∥
1
+ βt

1GRd+
β1ηLRd(C + λR)

1− β1
+

σRd√
nbatch(1 + β1)

)

+
η2L

2
(C2d+ λ2R2d).

(16)
Rearranging (16), using 1− βt

1 ≤ 1 and G ≥ 1, summing over T iterations, and dividing both sides
by T gives

1

T

∑
t∈[T]

E[S(xt)] ≤
G+ ϵ

ηT
(f(x1)− f⋆) +

G+ ϵ

T

∑
t∈[T]

βt
1G

2d

ϵ
+

β1ηGLd(C + λR)(G+ ϵ)

(1− β1)ϵ

+
σGd(G+ ϵ)

ϵ
√
nbatch(1 + β1)

+
λ(G+ ϵ)

T

∑
t∈[T]

βt
1GRd+

λσRd(G+ ϵ)√
nbatch(1 + β1)

+
β1ηλLRd(C + λR)(G+ ϵ)

1− β1
+

ηL(G+ ϵ)

2
(C2d+ λ2R2d)

≤ K1

ηT
+

K2

T
+K3η +

K4σ√
nbatch

,

where the fourth line uses
∑

t∈[T] β
t
1 ≤

β1

1−β1
and

S(xt) := ∥∇f(xt)∥22 + λ
∥∥(∇f(xt)xt)

+
∥∥
1

K1 := (G+ ϵ)(f(x1)− f⋆)

K2 :=
β1Gd(G+ ϵ)

1− β1

(
G

ϵ
+ λR

)
K3 :=

β1Ld(C + λR)(G+ ϵ)

1− β1

(
G

ϵ
+ λR

)
+

1

2
Ld(C2 + λ2R2)(G+ ϵ)

K4 :=
d(G+ ϵ)√
1 + β1

(
G

ϵ
+ λR

)
.

F MODEL & EXPERIMENT CONFIGURATIONS

We evaluate cautious weight decay (CWD) across two experimental setups: (1) transformer models
ranging from 111M to 2.3B parameters, and (2) the OLMo-1B architecture. All models employ
SwiGLU activations and rotary position embeddings (RoPE). To ensure fair comparison, we con-
duct extensive grid searches to optimize hyperparameters for each baseline optimizer (ADAMW,
LION, and MUON) before applying CWD with identical settings. Table 5 details the scaled model

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 5: Hyperparameter configurations for the different model sizes. All models use an expansion
factor of 8 and a vocabulary size of 100,864.

Hyperparameter 2.3B Model 986M Model 338M Model 111M Model
Model Architecture
Total Parameters 2,321.38M 985.89M 338.44M 110.55M
Model Dimension 2048 1536 1024 512
Number of Layers 18 12 8 8
Number of Heads 8 8 8 8
Per Head Dimension 256 256 128 64
Sequence Length 2048 2048 2048 2048

Validation Setup
Evaluation Batch Size 1024 512 128 256
Number of Eval Steps 2 4 4 8
Evaluation Interval 1000 steps 1000 steps 500 steps 500 steps

configurations, Table 6 presents the OLMo-1B architecture, and the following subsection describes
our hyperparameter search methodology.

We conducted an extensive grid search to determine optimal hyperparameters for ADAMW, LION,
and MUON optimizers. Our learning rate search employed a quasi-logarithmic grid spanning four
orders of magnitude from 1× 10−5 to 1× 10−1, with denser sampling in the critical 10−4 to 10−2

range where transformer models typically achieve optimal performance. The grid included standard
decade values (e.g., 0.001, 0.01) as well as intermediate points within each logarithmic interval
(e.g., 0.2, 0.3, 0.5, 0.8 scaled to each decade) to capture potential performance peaks between order-
of-magnitude boundaries, totaling 24 distinct learning rate values. For the learning rate schedule,
we systematically evaluated warmup ratios of {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}, corresponding to 0%
to 50% of total training steps dedicated to linear warmup, followed by cosine annealing decay.
For ADAMW, we additionally performed a grid search over the momentum parameters β1 and β2,
evaluating combinations of β1 ∈ {0.85, 0.9, 0.95} and β2 ∈ {0.95, 0.98, 0.99, 0.995, 0.999}. Our
experiments identified β1 = 0.9 and β2 = 0.95 as the optimal configuration. For LION, we swept
β1 ∈ {0.85, 0.9, 0.95} and β2 ∈ {0.95, 0.98, 0.99}, finding β1 = 0.9 and β2 = 0.95 to be optimal.
For MUON, we similarly swept momentum coefficients and confirmed 0.95 as optimal.

G ADDITIONAL EXPERIMENT RESULTS

This section provides supplementary experimental analyses that further characterize the behavior of
cautious weight decay (CWD) across different optimizers and training dynamics. We present detailed
visualizations of the mask activation patterns (Figure 6), showing how the fraction of parameters
receiving weight decay evolves during training for both ADAMW and MUON optimizers. Addi-
tionally, we include comprehensive loss and accuracy curves for all three optimizers (ADAMW,
LION, and MUON) across model scales from 111M to 2.3B parameters (Figures 8–10), demon-
strating consistent improvements with CWD. Finally, Figure 12 tracks the evolution of parameter
norms throughout training, revealing that CWD maintains stable regularization comparable to stan-
dard weight decay while achieving superior performance. These results collectively illustrate that
CWD’s selective application of weight decay leads to more effective optimization without compro-
mising training stability.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 6: Model Architecture Configuration for OLMo-1B

Hyperparameter Value
Architecture
Hidden dimension (dmodel) 2048
Number of attention heads 16
Number of layers 16
MLP ratio 8
Vocabulary size 50,280
Embedding size 50,304
Max sequence length 2048

Attention Mechanism
Positional encoding RoPE
Flash attention ✓
Multi-query attention ✗
ALiBi ✗
Attention dropout 0.0
Attention layer norm ✗

Model Components
Activation function SwiGLU
Block type Sequential
Weight tying ✓
Include bias ✗
Layer norm type Default
Layer norm with affine ✗
Residual dropout 0.0
Embedding dropout 0.0

Initialization
Initialization method Mitchell
Initialization device CUDA

Table 7: Final evaluation accuracy (higher is better) and loss (lower is better) comparisons across
different model sizes, expanded to the full text width. Our proposed method is benchmarked against
three baseline optimizers: ADAMW, LION, and MUON. The best result in each pair is bolded.

Accuracy (higher is better)
GPT ADAMW LION MUON

Model Size Ours Base Ours Base Ours Base

338M 0.4232 0.4221 0.4230 0.4211 0.4256 0.4252
986M 0.4566 0.4556 0.4552 0.4545 0.4589 0.4575
2B 0.4847 0.4831 0.4839 0.4830 0.4873 0.4858

Loss (lower is better)
GPT ADAMW LION MUON

Model Size Ours Base Ours Base Ours Base

338M 3.0059 3.0136 3.0012 3.0121 2.9851 2.9896
986M 2.7053 2.7142 2.7171 2.7231 2.6873 2.6968
2B 2.4881 2.4973 2.4961 2.5012 2.4703 2.4803

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 10k 20k
Training Steps

0.3

0.4

0.5

Ra
tio

zoom(b)

(a) Full Training Trajectory

Ratio (AdamW)

0 500 1000 1500 2000 2500
Training Steps

0.25

0.30

0.35

0.40

0.45

0.50

Ra
tio

(b) Initial Phase (0 2500 Steps)

Ratio (AdamW)

0 10k 20k
Training Steps

0.3

0.4

0.5

Ra
tio

zoom(b)

(a) Full Training Trajectory

Ratio (Muon)

0 500 1000 1500 2000 2500
Training Steps

0.25

0.30

0.35

0.40

0.45

0.50

Ra
tio

(b) Initial Phase (0 2500 Steps)

Ratio (Muon)

Figure 6: Masked weight-decay activation ratio rt :=
∥I(utxt>0)∥1

d , i.e., the fraction of parameters
for which the sign-selective mask is active at step t (d = number of parameters). Left: ADAMW;
right: MUON. Insets zoom into the first 2.5k steps to highlight early-training behavior. Model:
Qwen-0.6B (Yang et al., 2025) trained on The Pile (Gao et al., 2021).

0 5000 10000 15000
Step

2.7

2.8

2.9

3.0

3.1

3.2

3.3

Lo
ss

Eval Loss
Ours
AdamW
Adam

0 5000 10000 15000
Step

2.7

2.8

2.9

3.0

3.1

3.2

3.3

Lo
ss

Training Loss

0 5000 10000 15000
Step

0.02

0.04

0.06

RM
S

No
rm

 o
f P

ar
am

s

RMS Norm of Params

Figure 7: Training dynamics for the 986M-parameter Gemma model.

0 5000 10000 15000 20000
Step

3.0

3.1

3.2

3.3

3.4

3.5

Lo
ss

Eval Loss Comparison
Ours
Muon

(a) 338M parameters

0 5000 10000 15000
Step

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

Lo
ss

Eval Loss Comparison
Ours
Muon

(b) 986M parameters

0 5000 10000 15000 20000
Step

2.5

2.6

2.7

2.8

2.9

3.0

Lo
ss

Eval Loss Comparison
Ours
Muon

(c) 2B parameters

Figure 8: Training dynamics across model scales with MUON optimizer. Baseline MUON
(dashed) vs. MUON with CWD (solid).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 5000 10000 15000 20000
Step

3.0

3.1

3.2

3.3

3.4

3.5

3.6

Lo
ss

Eval Loss Comparison
Ours
AdamW

(a) 338M parameters

0 5000 10000 15000
Step

2.7

2.8

2.9

3.0

3.1

3.2

3.3

Lo
ss

Eval Loss Comparison
Ours
AdamW

(b) 986M parameters

0 5000 10000 15000 20000
Step

2.5

2.6

2.7

2.8

2.9

3.0

3.1

Lo
ss

Eval Loss Comparison
Ours
AdamW

(c) 2B parameters

Figure 9: Training dynamics across model scales with ADAMW optimizer. We compare baseline
ADAMW (dashed) against ADAMW with CWD (solid) on models ranging from 338M to 2B param-
eters.

0 5000 10000 15000 20000
Step

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Lo
ss

Eval Loss Comparison
Ours
Lion

(a) 338M parameters

0 5000 10000 15000
Step

2.8

2.9

3.0

3.1

3.2

Lo
ss

Eval Loss Comparison
Ours
Lion

(b) 986M parameters

0 5000 10000 15000 20000
Step

2.5

2.6

2.7

2.8

2.9

3.0

Lo
ss

Eval Loss Comparison
Ours
Lion

(c) 2B parameters

Figure 10: Training dynamics across model scales with LION optimizer. Baseline LION (dashed)
vs. LION with CWD (solid).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

AdamW

Lion

Muon

338M111M 986M 2B

Figure 11: Comparison of gradient norms using RMS normalization across four model sizes: 111M,
338M, 986M, and 2B. All models are trained under Chinchilla settings. CWD achieves lower gradient
norms across all configurations.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 2500 5000 7500 10000 12500 15000 17500

step
0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

va
lu

e

block_0/attn/o_proj
ours
adamw
adam

0 2500 5000 7500 10000 12500 15000 17500

step

0.0

0.1

0.2

0.3

0.4

va
lu

e
block_0/attn/per_dim_scale/scale

ours
adamw
adam

0 2500 5000 7500 10000 12500 15000 17500

step
0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

va
lu

e

block_0/attn/qkv_proj

ours
adamw
adam

0 2500 5000 7500 10000 12500 15000 17500

step

0.01

0.02

0.03

0.04

0.05

0.06

va
lu

e

block_0/ffn_0/w
ours
adamw
adam

0 2500 5000 7500 10000 12500 15000 17500

step

0.01

0.02

0.03

0.04

0.05

0.06

0.07

va
lu

e

block_0/ffn_0_gate/w
ours
adamw
adam

0 2500 5000 7500 10000 12500 15000 17500

step

0.01

0.02

0.03

0.04

0.05

0.06

va
lu

e

block_0/ffn_1/w
ours
adamw
adam

0 2500 5000 7500 10000 12500 15000 17500

step

0.2

0.4

0.6

0.8

1.0

va
lu

e

block_0/post_ln_0/scale

ours
adamw
adam

0 2500 5000 7500 10000 12500 15000 17500

step

0.4

0.5

0.6

0.7

0.8

0.9

1.0

va
lu

e

block_0/post_ln_1/scale

ours
adamw
adam

0 2500 5000 7500 10000 12500 15000 17500

step

0.2

0.4

0.6

0.8

1.0

va
lu

e

block_0/pre_ln_0/scale

ours
adamw
adam

0 2500 5000 7500 10000 12500 15000 17500

step

0.2

0.4

0.6

0.8

1.0

va
lu

e

block_0/pre_ln_1/scale

ours
adamw
adam

0 2500 5000 7500 10000 12500 15000 17500

step

0.02

0.03

0.04

0.05

0.06

va
lu

e

block_1/attn/o_proj
ours
adamw
adam

0 2500 5000 7500 10000 12500 15000 17500

step

0.0

0.2

0.4

0.6

0.8

1.0

va
lu

e

block_1/attn/per_dim_scale/scale
ours
adamw
adam

0 2500 5000 7500 10000 12500 15000 17500

step
0.02

0.03

0.04

0.05

0.06

0.07

va
lu

e

block_1/attn/qkv_proj
ours
adamw
adam

0 2500 5000 7500 10000 12500 15000 17500

step

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

va
lu

e

block_1/ffn_0/w
ours
adamw
adam

0 2500 5000 7500 10000 12500 15000 17500

step

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

va
lu

e

block_1/ffn_0_gate/w
ours
adamw
adam

0 2500 5000 7500 10000 12500 15000 17500

step

0.01

0.02

0.03

0.04

0.05

0.06

0.07

va
lu

e

block_1/ffn_1/w
ours
adamw
adam

Figure 12: Evolution of parameter norm (RMS) during training for a 986M parameter model. We
compare three optimization strategies: ADAMW with weight decay 0.1 (orange), our proposed
method (blue), and ADAM without weight decay (green). Our method maintains stable parame-
ter norms comparable to ADAMW while achieving improved performance.

28

	Introduction
	Background and Motivation
	Decoupled weight decay
	Implicit regularization effects of weight decay

	Cautious Weight Decay
	Convergence to the stationary manifold
	Sliding mode dynamics

	Discrete-Time Analysis
	Experiments
	Related Work
	Conclusion
	Notation and Definitions
	Pseudocode of Optimizers with CWD
	SGD with momentum
	Lion-K
	Lion
	Muon

	Fixed-Point Analysis
	Lyapunov Functions
	SGD
	SGD with momentum
	Lion-K
	Adam

	Deferred Proofs
	Model & Experiment Configurations
	Additional Experiment Results

