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Abstract

Reinforcement learning research obtained signifi-
cant success and attention with the utilization of
deep neural networks to solve problems in high
dimensional state or action spaces. While deep re-
inforcement learning policies are currently being
deployed in many different fields from medical
applications to self driving vehicles, there are still
ongoing questions the field is trying to answer
on the generalization capabilities of deep rein-
forcement learning policies. In this paper, we will
outline the fundamental reasons why deep rein-
forcement learning policies encounter overfitting
problems that limit their robustness and general-
ization capabilities. Furthermore, we will formal-
ize and unify the diverse solution approaches to
increase generalization, and overcome overfitting
in state-action value functions. We believe our
study can provide a compact systematic unified
analysis for the current advancements in deep re-
inforcement learning, and help to construct robust
deep neural policies with improved generalization
abilities.

1. Introduction
The performance of reinforcement learning algorithms has
been boosted with the utilization of deep neural networks as
function approximators (Mnih et al., 2015). Currently, it is
possible to learn deep reinforcement learning policies that
can operate in large state and/or action space MDPs (Silver
et al., 2017; Vinyals et al., 2019). This progress conse-
quently resulted in building reasonable deep reinforcement
learning policies that can play computer games with high
dimensional state representations (e.g. Atari, StarCraft),
solve complex robotics control tasks, design algorithms
(Mankowitz et al., 2023; Fawzi et al., 2022), guide large lan-
guage models (OpenAI, 2023; Google Gemini, 2023), and
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play some of the most complicated board games (e.g. Chess,
Go) (Schrittwieser et al., 2020). However, deep reinforce-
ment learning algorithms also experience several problems
caused by their overall limited generalization capabilities.
Some studies demonstrated these problems via adversarial
perturbations introduced to the state observations of the pol-
icy (Huang et al., 2017; Kos & Song, 2017; Korkmaz, 2022),
several focused on exploring the fundamental issues with
function approximation, estimation biases in the state-action
value function (Thrun & Schwartz, 1993; van Hasselt, 2010),
or with new architectural design ideas (Wang et al., 2016).
The fact that we are not able to completely explore the entire
MDP for high dimensional state representation MDPs, even
with deep neural networks as function approximators, is one
of the root problems that limits generalization. On top of
this, some portion of the problems are directly caused by the
utilization of deep neural networks and thereby the intrinsic
problems inherited from their utilization (Goodfellow et al.,
2015; Szegedy et al., 2014).

In order to address open questions on generalization in deep
reinforcement learning, there needs to be some commonly
agreed standard of what is meant by generalization. Cur-
rently, different aspects of generalization are considered in
various subfields either working on the fundamental ques-
tions regarding or the applications of deep reinforcement
learning. We take the point of view in this paper that these
various aspects can, and should, be described and studied
in a unified way. In particular, we argue that the various ap-
proaches to generalization can be succinctly classified based
on which part of the Markov Decision Process is expected
to vary. We make this classification formal and unify how
much current work on generalization in deep reinforcement
learning fits clearly into the classification we introduce. In
this paper we will focus on generalization in deep reinforce-
ment learning and the underlying causes of the limitations
deep reinforcement learning research currently faces. In
particular, we will try to answer the following questions:

• What is the role of exploration in overfitting for deep
reinforcement learning?

• What are the causes of overestimation bias observed in
state-action value functions?

• What has been done to overcome the overfitting prob-
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A Formal Unification of Generalization in Deep Reinforcement Learning

lems that deep reinforcement learning algorithms have
encountered so far?

• What future directions are there for reinforcement
learning research to obtain higher level generaliza-
tion abilities for deep neural policies?

To answer these questions we will go through research con-
necting several subfields in reinforcement learning on the
problems and corresponding proposed solutions regarding
generalization. In this paper we introduce a categoriza-
tion of the different methods used to both achieve and test
generalization, and use it to systematically summarize and
consolidate the current body of research. We further de-
scribe the issue of value function overestimation, and the
role of exploration in overfitting in reinforcement learning.
Furthermore, we explain new emerging research areas that
can potentially target these questions in the long run includ-
ing meta-reinforcement learning and lifelong learning. We
hope that our paper can provide a compact overview and
unification of the current advancements and limitations in
the field.

2. Preliminaries on Deep Reinforcement
Learning

The aim in deep reinforcement learning is to learn a pol-
icy via interacting with an environment in a Markov Deci-
sion Process (MDP) that maximize expected cumulative dis-
counted rewards. An MDP is represented by a tuple M =
(S,A, P, r, ρ0, γ), where S represents the state space, A rep-
resents the action space, r : S×A → R is a reward function,
P : S × A → ∆(S) is a transition probability kernel, ρ0
represents the initial state distribution, and γ represents the
discount factor. The objective in reinforcement learning
is to learn a policy π : S → ∆(A) which maps states to
probability distributions on actions in order to maximize
the expected cumulative reward R = E

∑T−1
t=0 γtr(st, at)

where at ∼ π(st), st+1 ∼ P(st, at). In Q-learning the goal
is to learn the optimal state-action value function (Watkins,
1989)

Q∗(s, a) = R(s, a) +
∑
s′∈S

P (s′|s, a)max
a′∈A

Q∗(s′, a′). (1)

This is achieved via iterative Bellman update which updates
Q(st, at) by Q(st, at) + α[Rt+1 + γmaxa Q(st+1, a) −
Q(st, at)]. Thus, the optimal policy is determined by choos-
ing the action a∗(s) = argmaxa Q(s, a) in state s. In high
dimensional state space or action space MDPs the optimal
policy is decided via a function-approximated state-action
value function represented by a deep neural network. In
a parallel line of algorithm families the policy itself is di-
rectly parametrized by πθ, and the gradient estimator used

in learning is

g = Et

[
∇θ log πθ(st, at)(Q(st, at)−max

a
Q(st, a))

]
where Q(st, at) refers to the state-action value function at
timestep t.

3. How to Achieve Generalization?
To be able to categorize different paths to achieve general-
ization first we will provide a definition meant to capture
the behavior of a generic reinforcement learning algorithm.
Definition 3.1. A reinforcement learning training algorithm
A learns a policy π by interacting with an MDP M. We
divide up the execution of A into discrete time steps as
follows. At each time t, the algorithm chooses a state st,
takes an action at, observes a transition to state s′t with
corresponding reward rt = r(st, at, s

′
t). We define the

history of algorithm A in MDP M to be the sequence
Ht = (s0, a0, s

′
0, r0), . . . (st, at, s

′
t, rt) of all the transitions

observed by the algorithm so far. We require that state and
action (st, at) chosen at time t are a function only of Ht−1,
i.e the transitions observed so far by A. At time t = T , the
algorithm stops and outputs a policy π.

Intuitively, a reinforcement learning algorithm performs a
sequence of queries (st, at) to the MDP, and observes the
resulting state transitions and rewards. In order to be as
generic as possible, the definition makes no assumptions
about how the algorithm chooses the sequence of queries.
Notably, if taking action at in state st leads to a transition to
state s′t, there is no requirement that st+1 = s′t. Indeed, the
only assumption is that (st+1, at+1) depends only on Ht,
the history of transitions observed so far. This allows the
definition to capture deep reinforcement learning algorithms,
which may choose to query states and actions in a complex
way based on previously observed state transitions. Based
on this definition of generic reinforcement learning algo-
rithm, we will now further define the different techniques
proposed to achieve generalization.
Definition 3.2 (Rewards transforming generalization). Let
A be a training algorithm that takes as input an MDP and
outputs a policy. Given an MDP M = (S,A, P, r, ρ0, γ),
a rewards transforming generalization method GR is given
by a sequence of functions Ft : (S × A × S × R)t → R.
The method attempts to achieve generalization by running
A on MDP M, but modifying the rewards at each time t to
be r̃t(st, at, s

′
t) = Ft−1(Ht−1), where Ht−1 is the history

of algorithm A when running with the perturbed rewards.

In summary, a rewards transforming generalization meth-
ods simply runs the original algorithm, but modifies the
observed rewards. Similarly, we define two additional gen-
eralization methods which run the original algorithm while
modifying states and transition probabilities respectively.
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A Formal Unification of Generalization in Deep Reinforcement Learning

Definition 3.3 (State transforming generalization). Let A
be a training algorithm that takes as input an MDP and
outputs a policy. Given an MDP M = (S,A, P, r, ρ0, γ), a
state transforming generalization method GS is given by a
sequence of functions Ft : (S × A × S × R)t × S → S.
The method attempts to achieve generalization by running
A on MDP M, but modifying the state chosen at time t
to be s̃t = Ft−1(Ht−1, st), where Ht−1 is the history of
algorithm A when running with the perturbed states.

Definition 3.4 (Transition probability transforming gen-
eralization). Let A be a training algorithm that takes as
input an MDP and outputs a policy. Given an MDP
M = (S,A, P, r, ρ0, γ), a transition probability transform-
ing generalization method GP is given by a sequence of
functions Ft : (S × A × S × R)t × (S × A × S) → R.
The method attempts to achieve generalization by running
A on MDP M, but modifying the transition probabilities at
time t to be P̃ (st, at, s

′
t) = Ft−1(Ht−1, st, at, s

′
t), where

Ht−1 is the history of algorithm A when running with the
perturbed transition probabilities.

The last type of generalization method we define is based
on directly modifying the way in which the training algo-
rithm chooses the state and action pair for the next time
step. While this definition is broad enough to capture very
complex changes to the training algorithm, in practice the
choice of modification generally has a simple description.

Definition 3.5 (Policy transforming generalization). Let
A be a training algorithm that takes as input an MDP and
outputs a policy. Given an MDP M = (S,A, P, r, ρ0, γ), a
policy transforming generalization method Gπ is given by a
sequence of functions Ft : (S×A×S×R)t → S×A. The
method attempts to achieve generalization by running A on
MDP M, but modifying the policy by which A chooses the
next state and action to be (s̃t, ãt) = Ft−1(Ht−1), where
Ht−1 is the history of algorithm A when running with the
perturbed policy.

All the definitions so far categorize methods to modify train-
ing algorithms in order to achieve generalization. However,
many such methods for modifying training algorithms have
a corresponding method which can be used to test the gener-
alization capabilities of a trained policy. Our final definition
captures this correspondence.

Definition 3.6 (Generalization testing). Let π̂ be a trained
policy for an MDP M. Let Ft be a sequence of functions
corresponding to a generalization method from one of the
previous definitions. The generalization testing method of
Ft is given by executing the policy π̂ in M, but in each
time step applying the modification Ft where the history
Ht is given by the transitions executed by π̂ so far. When
both a generalization method and a generalization testing
method are used concurrently, we will use subscripts to
denote the generalization method and superscripts to denote

Table 1. Environment and algorithm details for different explo-
ration strategies for generalization.

Citation Method Environment Algorithm

(Mnih et al., 2015) ϵ-greedy ALE DQN
(Bellemare et al., 2016) Count-based ALE A3C and DQN
(Osband et al., 2016b) RLSVI Tetris Tabular Q
(Osband et al., 2016a) Bootstrapped DQN ALE DQN
(Houthooft et al., 2017) VIME DCS TRPO
(Fortunato et al., 2018) NoisyNet ALE A3C and DQN
(Lee et al., 2021) SUNRISE DCS1& ALE SAC & RDQN

the testing method. For instance, Gπ
S corresponds to training

with a state transforming method, and testing with a policy
transforming method.

4. Roots of Overestimation in Deep
Reinforcement Learning

Many reinforcement learning algorithms compute estimates
for the state-action values in an MDP. Because these esti-
mates are usually based on a stochastic interaction with the
MDP, computing accurate estimates that correctly general-
ize to further interactions is one of the most fundamental
tasks in reinforcement learning. A major challenge in this
area has been the tendency of many classes of reinforcement
learning algorithms to consistently overestimate state-action
values. Initially the overestimation bias for Q-learning is
discussed and theoretically justified by (Thrun & Schwartz,
1993) as a biproduct of using function approximators for
state-action value estimates. Following this initial discus-
sion it has been shown that several parts of the deep rein-
forcement learning process can cause overestimation bias.
Learning overestimated state-action values can be caused
by statistical bias of utilizing a single max operator (van
Hasselt, 2010), coupling between value function and the op-
timal policy (Raileanu & Fergus, 2021; Cobbe et al., 2021),
or caused by the accumulated function approximation error
(Boyan & Moore, 1994).

Several methods have been proposed to target overestima-
tion bias for value iteration algorithms. In particular, to
solve this overestimation bias introduced by the max opera-
tor (van Hasselt, 2010) proposed to utilize a double estimator
for the state-action value estimates. Later, the authors also
created a version of this algorithm that can solve high di-
mensional state space problems (Hasselt et al., 2016). Some
of the work on this line of research targeting overestima-
tion bias for value iteration algorithms is based on simply
averaging the state-action values with previously learned
state-action value estimates during training time (Anschel
et al., 2017). While overestimation bias was demonstrated
to be a problem and discussed over a long period of time
(Thrun & Schwartz, 1993; van Hasselt, 2010), recent studies
also further demonstrated that actor critic algorithms also
suffer from this issue (Fujimoto et al., 2018).

1DeepMind Control Suite
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5. The Role of Exploration in Overfitting
The fundamental trade-off of exploration vs exploitation is
the dilemma that the agent can try to take actions to move
towards more unexplored states by sacrificing the current
immediate rewards. While there is a significant body of
studies on provably efficient exploration strategies the re-
sults from these studies do not necessarily directly transfer
to the high dimensional state or action MDPs. The most
prominent indication of this is that, even though it is possi-
ble to use deep neural networks as function approximators
for large state spaces, the agent will simply not be able to
explore the full state space. The fact that the agent is able
to only explore a portion of the state space simply creates a
bias in the learnt value function (Baird, 1995).

In this section, we will go through several exploration strate-
gies in deep reinforcement learning and how they affect
policy overfitting. A quite simple version of this is based
on adding noise in action selection during training e.g. ϵ-
greedy exploration. Note that this is an example of a policy
transforming generalization method Gπ in Definition 3.5
in Section 3. While ϵ-greedy exploration is widely used
in deep reinforcement learning (Wang et al., 2016; Ham-
rick et al., 2020; Kapturowski et al., 2023), it has also been
proven that to explore the state space these algorithms may
take exponentially long (Kakade, 2003). Several others fo-
cused on randomizing different components of the reinforce-
ment learning training algorithms. In particular, (Osband
et al., 2016b) proposes the randomized least squared value
iteration algorithm to explore more efficiently in order to
increase generalization in reinforcement learning for lin-
early parametrized value functions. This is achieved by
simply adding Gaussian noise as a function of state visita-
tion frequencies to the training dataset. Later, the authors
also propose the bootstrapped DQN algorithm (i.e. adding
temporally correlated noise) to increase generalization with
non-linear function approximation (Osband et al., 2016a).

Houthooft et al. (2017) proposed an exploration technique
centered around maximizing the information gain on the
agent’s belief of the environment dynamics. In practice,
the authors use Bayesian neural networks for effectively
exploring high dimensional action space MDPs. Following
this line of work on increasing efficiency during exploration
(Fortunato et al., 2018) proposes to add parametric noise
to the deep reinforcement learning policy weights in high
dimensional state MDPs. While several methods focused
on ensemble state-action value function learning (Osband
et al., 2016a), (Lee et al., 2021) proposed reweighting tar-
get Q-values from an ensemble of policies (i.e. weighted
Bellman backups) combined with highest upper-confidence
bound action selection. Another line of research in explo-
ration strategies focused on count-based methods that use
the direct count of state visitations. In this line of work,

Bellemare et al. (2016) tried to lay out the relationship be-
tween count based methods and intrinsic motivation, and
used count-based methods for high dimensional state MDPs
(i.e. Arcade Learning Environment). Yet it is worthwhile to
note that most of the current deep reinforcement learning
algorithms use very simple exploration techniques such as
ϵ-greedy which is based on taking the action maximizing
the state-action value function with probability 1 − ϵ and
taking a random action with probability ϵ (Mnih et al., 2015;
Hasselt et al., 2016; Wang et al., 2016; Hamrick et al., 2020;
Kapturowski et al., 2023).

It is possible to argue that the fact that the deep reinforce-
ment learning policy obtained a higher score with the same
number of samples by a particular type of training method
A compared to method B is by itself evidence that the tech-
nique A leads to more generalized policies. Even though
the agent is trained and tested in the same environment,
the explored states during training time are not exactly the
same states visited during test time. The fact that the policy
trained with technique A obtains a higher score at the end
of an episode is sole evidence that the agent trained with
A was able to visit further states in the MDP and thus suc-
ceed in them. Yet, throughout the paper we will discuss
different notions of generalization investigated in different
subfields of reinforcement learning research. While explo-
ration vs exploitation stands out as one of the main prob-
lems in reinforcement learning policy performance most
of the work conducted in this section focuses on achieving
higher score in hard-exploration games (i.e. Montezuma’s
Revenge) rather than aiming for a generally higher score
for each game overall across a given benchmark. Thus, it is
possible that the majority of work focusing on exploration
so far might not be able to obtain policies that perform as
well as those in the studies described in Section 6 across a
given benchmark.

6. Regularization
In this section we will focus on different regularization
techniques employed to increase generalization in deep re-
inforcement learning policies. We will go through these
works by categorizing each of them under data augmenta-
tion, adversarial training, and direct function regularization.
Under each category we will connect these different lines of
approach to increase generalization in deep reinforcement
learning to the settings we defined in Section 3.

6.1. Data Augmentation

Several studies focus on diversifying the observations of the
deep reinforcement learning policy to increase generaliza-
tion capabilities. A line of research in this regard focused
on simply employing versions of data augmentation tech-
niques (Laskin et al., 2020a;b; Yarats et al., 2021) for high
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Table 2. Environment and algorithm details for data augmentation
techniques for state observation generalization. All of the studies
in this section focus on state transformation methods GS defined
in Section 3.

Citation Method Environment Algorithm

(Yarats et al., 2021) DrQ DCS, ALE DQN
(Laskin et al., 2020b) CuRL DCS, ALE SAC and DQN
(Laskin et al., 2020a) RAD DCS, ProcGen SAC and PPO
(Wang et al., 2020) Mixreg ProcGen DQN and PPO

dimensional state representation environments. In particular,
these studies involve simple techniques such as cropping,
rotating or shifting the state observations during training
time. While this line of work got considerable attention,
a quite recent study (Agarwal et al., 2021b) demonstrated
that when the number of random seeds is increased to one
hundred the relative performance achieved and reported in
the original papers of (Laskin et al., 2020b; Yarats et al.,
2021) on data augmentation training in deep reinforcement
learning decreases to a level that might be significant to
mention.

While some of the work on this line of research simply fo-
cuses on using a set of data augmentation methods (Laskin
et al., 2020a;b; Yarats et al., 2021), other work focuses on
proposing new environments to train in (Cobbe et al., 2020).
The studies on designing new environments to train deep re-
inforcement learning policies basically aim to provide high
variation in the observed environment such as changing
background colors and changing object shapes in ways that
are meaningful in the game, in order to increase test time
generalization. In the line of robustness and test time perfor-
mance, a more recent work that is also mentioned in Section
6.3 demonstrated that imperceptible data augmentations can
cause significant damage on the policy performance and cer-
tified robust deep reinforcement learning policies are more
vulnerable to these imperceptible augmentations (Korkmaz,
2023).

Within this category some work focuses on producing more
observations by simply blending in (e.g. creating a mixture
state from multiple different observations) several observa-
tions to increase generalization (Wang et al., 2020). While
most of the studies trying to increase generalization by data
augmentation techniques are primarily conducted in the
DeepMind Control Suite or the Arcade Learning Environ-
ment (ALE) (Bellemare et al., 2013), some small fraction
of these studies Wang et al. (2020) are conducted in rela-
tively recently designed training environments like ProcGen
(Cobbe et al., 2020). Cobbe et al. (2019) focuses on decou-
pling the training and testing set for reinforcement learning
via simply proposing a new game environment CoinRun.

2Low dimensional setting of Mujoco is used for this study.
3Rectangle game is a simple video game with only two actions,

”Right” and ”Jump”. The game has black background and two

6.2. Direct Function Regularization

While some of the work we have discussed so far focuses
on regularizing the data (i.e. state observations) as in Sec-
tion 6.1, some focuses on directly regularizing the function
learned with the intention of simulating techniques from
deep neural network regularization like batch normalization
and dropout (Igl et al., 2019). While some studies have
attempted to simulate these known techniques in reinforce-
ment learning, some focus on directly applying them to
overcome overfitting. In this line of research, (Liu et al.,
2021) proposes to use known techniques from deep neu-
ral network regularization to apply in continous control
deep reinforcement learning training. In particular, these
techniques are batch normalization (BN) (Ioffe & Szegedy,
2015), weight clipping, dropout, entropy and L2/L1 weight
regularization.

Lee et al. (2020) proposes to utilize a random network to
randomize the input observations to increase generalization
skills of deep reinforcement learning policies, and tests the
proposal in the 2D CoinRun game proposed by (Cobbe et al.,
2019) and 3D DeepMind Lab. In particular, the authors
essentially introduce a random convolutional layer to perturb
the state observations. Hence, this study is also a clear
example of a state transformation generalization method GS

described in Definition 3.3. While this is another example of
random state perturbation methods we will further explain
in Section 6.3 the worst-case perturbation methods to target
generalization in reinforcement learning policies.

Some work employs contrastive representation learning to
learn deep reinforcement learning policies from state obser-
vations that are close to each other (Agarwal et al., 2021a).
This study leverage the temporal aspect of reinforcement
learning and propose a policy similarity metric. The main
goal of the paper is to lay out the sequential structure and
utilize representation learning to learn generalizable abstrac-
tions from state representations. One drawback of this study
is that most of the experimental study is conducted in a
non-baseline environment (Rectangle game). Even though
the authors show surprising results for this particular game,
it is not directly indicated that the proposed method would
work for high dimensional state representation MDPs such
as the Arcade Learning Environment. Malik et al. (2021)
studies query complexity of reinforcement learning policies
that can generalize to multiple environments. The authors of
this study focus on an example of the transition probability
transformation setting GP in Definition 3.4, and the reward
function transformation setting GR in Definition 3.2.

Another line of study in direct function generalization in-

rectangles where the goal of the game is to avoid white obstacles
and reach to the right side of the screen. (Agarwal et al., 2021a) is
the only paper we encountered experimenting with this particular
game.
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Table 3. Environment and algorithm details for different direct function regularization strategies for trying to overcome overfitting
problems in reinforcement learning. Note that most of the methods based on direct function regularization are a form of policy perturbation
method Gπ to overcome overfitting as described in Section 3.

Citation Proposed Method Environment Reinforcement Learning Algorithm

(Igl et al., 2019) SNI and IBAC GridWorld and CoinRun Proximal Policy Optimization
(Vieillard et al., 2020b) Munchausen RL Atari DQN and IQN
(Lee et al., 2020) Network Randomization 2D CoinRun and 3D DeepMind Lab Proximal Policy Optimization
(Amit et al., 2020) Discount Regularization GridWorld and Mujoco2 Twin Delayed DDPG (TD3)
(Agarwal et al., 2021a) PSM DDMC and Rectangle Game3 DrQ
(Liu et al., 2021) BN and dropout and L2/L1 Mujoco PPO, TRPO, SAC, A2C

vestigates the relationship between reduced discount factor
and adding an ℓ2-regularization term to the loss function
(i.e. weight decay) (Amit et al., 2020). The authors in this
work demonstrate the explicit connection between reduc-
ing the discount factor and adding an ℓ2-regularizer to the
value function for temporal difference learning. In particu-
lar, this study demonstrates that adding an ℓ2-regularization
term to the loss function is equal to training with a lower
discount term, which the authors refer to as discount regu-
larization. The results of this study however are based on
experiments from tabular reinforcement learning, and the
low dimensional setting of the Mujoco environment.

On the reward transformation for generalization setting GR

defined in Definition 3.2, Vieillard et al. (2020b) adds the
scaled log policy to the current rewards. To overcome over-
fitting some work tries to learn explicit or implicit similarity
between the states to obtain a reasonable policy (Lan et al.,
2021). In particular, the authors in this work try to unify
the state space representations by providing a taxonomy of
metrics in reinforcement learning. Several studies proposed
different ways to include Kullback-Leibler divergence be-
tween the current policy and the pre-updated policy to add as
a regularization term in the reinforcement learning objective
(Schulman et al., 2015). Recently, some studies argued that
utilizing Kullback-Leibler regularization implicitly averages
the state-action value estimates (Vieillard et al., 2020a).

6.3. The Adversarial Perspective for Deep Neural Policy
Generalization

One of the ways to regularize the state observations is based
on considering worst-case perturbations added to state ob-
servations (i.e. adversarial perturbations). This line of work
starts with introducing perturbations produced by the fast
gradient sign method proposed by (Goodfellow et al., 2015)
into deep reinforcement learning observations at test time
(Huang et al., 2017) (Kos & Song, 2017), and compares the
generalization capabilities of the trained deep reinforcement
learning policies in the presence worst-case perturbations
and Gaussian noise. These gradient based adversarial meth-
ods are based on taking the gradient of the cost function used
to train the policy with respect to the state observation. Sev-
eral other techniques have been proposed on the optimiza-

tion line of the adversarial alteration of state observations.
(Korkmaz, 2022) further showed that deep reinforcement
learning policies learn shared adversarial features across
MDPs. In this work the authors investigate the root causes
of this problem, and demonstrate that policy high-sensitivity
directions and the perceptual similarity of the state observa-
tions are uncorrelated. Furthermore, the study demonstrates
that the current state-of-the-art adversarial training tech-
niques also learn similar high-sensitivity directions as the
vanilla trained deep reinforcement learning policies.4

While several studies focused on improving optimization
techniques to compute optimal perturbations, a line of re-
search focused on making deep neural policies resilient to
these perturbations. Pinto et al. (2017) proposed to model
the dynamics between the adversary and the deep neural pol-
icy as a zero-sum game where the goal of the adversary is to
minimize expected cumulative rewards of the deep reinforce-
ment learning policy. This study is a clear example of transi-
tion probability perturbation to achieve generalization GP in
Definition 3.4 of Section 3. Gleave et al. (2020) approached
this problem with an adversary model which is restricted to
take natural actions in the MDP instead of modifying the
observations with ℓp-norm bounded perturbations. The au-
thors model this dynamic as a zero-sum Markov game and
solve it via self play Proximal Policy Optimization (PPO).
Some recent studies, proposed to model the interaction be-
tween the adversary and the deep reinforcement learning
policy as a state-adversarial MDP, and claimed that their pro-
posed algorithm State Adversarial Double Deep Q-Network
(SA-DDQN) learns theoretically certified robust policies
against natural noise and perturbations. In particular, these
certified adversarial training techniques aim to add a regular-
izer term to the temporal difference loss in deep Q-learning
H(ri+γmaxa Q̂θ̂(si, a; θ)−Qθ(si, ai; θ))+κR(θ) where
H is the Huber loss, Q̂ refers to the target network and κ is
to adjust the level of regularization for convergence. The

4From the security point of view, this adversarial framework
is under the category of black-box adversarial attacks for which
this is the first study that demonstrated that deep reinforcement
learning policies are vulnerable to black-box adversarial attacks
(Korkmaz, 2022). Furthermore, note that black-box adversarial
perturbations are more generalizable global perturbations that can
effect many different policies.
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Table 4. Environment and algorithm details for adversarial policy
regularization and attack techniques in deep reinforcement learn-
ing. Note that most of the methods based on adversarial policy
regularization are a form of state observation perturbation method
GS
S as described in Definition 3.6.
Citation Method Environment Algorithm

(Huang et al., 2017) FGSM ALE DQN, TRPO, A3C
(Kos & Song, 2017) FGSM ALE DQN & IQN
(Lin et al., 2017) Timing ALE A3C & DQN
(Gleave et al., 2020) Adversarial Policies Mujoco PPO
(Huan et al., 2020) SA-DQN ALE and LM

5 DDQN & PPO
(Korkmaz, 2022) Framework ALE DDQN & A3C
(Korkmaz, 2023) Natural Attacks ALE DDQN & A3C

regularizer term can vary for different certified adversarial
training techniques yet the baseline technique uses R(θ)

max max
ŝ∈B(s)

max
a̸=argmaxa′ Q(s,a′)

Qθ(ŝ, a)

−Qθ(ŝ, argmax
a′

Q(s, a′)),−c.

where B(s) is an ℓp-norm ball of radius ϵ. While these
certified adversarial training techniques drew some atten-
tion from the community, more recently manifold concerns
have been raised on the robustness of theoretically certified
adversarially trained deep reinforcement learning policies
(Korkmaz, 2021; 2022). In these studies, the authors ar-
gue that adversarially trained (i.e. certified robust) deep
reinforcement learning policies learn inaccurate state-action
value functions and non-robust features from the environ-
ment. More importantly, recently it has been shown that
certified robust deep reinforcement learning policies have
worse generalization capabilities compared to vanilla trained
reinforcement learning policies in high dimensional state
space MDPs (Korkmaz, 2023). While this study provides a
contradistinction between adversarial and natural directions
that are intrinsic to the MDP, it further demonstrates that
the certified adversarial training techniques block general-
ization capabilities of standard deep reinforcement learning
policies. Furthermore note that this study is also a clear
example of a state observation perturbation generalization
testing method GS

S in Definition 3.6 in Section 3.

7. Meta-Reinforcement Learning and Meta
Gradients

A quite recent line of research directs its research efforts
to discovering reinforcement learning algorithms automati-
cally, without explicitly designing them, via meta-gradients
(Oh et al., 2020; Xu et al., 2020). This line of study targets
learning the "learning algorithm" by only interacting with
a set of environments as a meta-learning problem. In par-
ticular, η∗ = argmaxη Eε∼ρ(ε)Eθ0∼ρ(θ0)[EθN [

∑∞
t=0 γ

trt]]

4Low dimensional state Mujoco refers to the setting of Mu-
joco where the state dimensions are not represented by pixels and
dimensions of the state observations range from 11 to 117.

here the optimal update rule is parametrized by η, for a
distribution on environments ρ(ε) and initial policy parame-
ters ρ(θ0) where EθN [

∑∞
t=0 γ

trt] is the expected return for
the end of the lifetime of the agent. The objective of meta-
reinforcement learning is to be able to build agents that can
learn how to learn over time, thus allowing these policies to
adapt to a changing environment or even any other changing
conditions of the MDP. Quite recently, a significant line of
research has been conducted to achieve this objective, partic-
ularly (Oh et al., 2020) proposes to discover update rules for
reinforcement learning. This line of work also falls under
the policy transformation generalization Gπ in Definition
3.5 defined in Section 3. Following this work (Xu et al.,
2020) proposed a joint meta-learning framework to learn
what the policy should predict and how these predictions
should be used in updating the policy. Recently, (Kirsch
et al., 2022) proposes to use symmetry information in dis-
covering reinforcement learning algorithms and discusses
meta-generalization. There is also some work on enabling
reinforcement learning algorithms to discover temporal ab-
stractions (Veeriah et al., 2021). In particular, temporal
abstraction refers to the ability of the policy to abstract a
sequence of actions to achieve certain sub-tasks. As it is
promised within this subfield, meta-reinforcement learning
is considered to be a research direction that could enable us
to build deep reinforcement learning policies that can gener-
alize to different environments, to changing environments
over time, or even to different tasks.

8. Transfer in Reinforcement Learning
Transfer in reinforcement learning is a subfield heavily dis-
cussed in certain applications of reinforcement learning
algorithms e.g. robotics. In current robotics research there
is not a safe way of training a reinforcement learning agent
by letting the robot explore in real life. Hence, the way
to overcome this is to train policies in a simulated environ-
ment, and install the trained policies in the actual application
setting. The fact that the simulation environment and the
installation environment are not identical is one of the main
problems for reinforcement learning application research.
This is referred to as the sim-to-real gap.

Another subfield in reinforcement learning research focus-
ing on obtaining generalizable policies investigates this con-
cept through transfer in reinforcement learning. The con-
sideration in this line of research is to build policies that
are trained for a particular task with limited data and to try
to make these policies perform well on slightly different
tasks. An initial discussion on this starts with Taylor &
Stone (2007) to obtain policies initially trained in a source
task and transferred to a target task in a more sample effi-
cient way. Later, Tirinzoni et al. (2018) proposes to transfer
value functions that are based on learning a prior distribution

7
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over optimal value functions from a source task. However,
this study is conducted in simple environments with low
dimensional state spaces. Barreto et al. (2017) considers
the reward transformation setting GR in Definition 3.2 from
Section 3. In particular, the authors consider a policy trans-
fer between a specific task with a reward function r(s, a)
and a different task with reward function r′(s, a). The goal
of the study is to decouple the state representations from
the task. In the setting of state transformation for general-
ization GS in Definition 3.3 Gamrian & Goldberg (2019)
focuses on state-wise differences between source and target
task. In particular, the authors use unaligned generative
adversarial networks to create target task states from source
task states. In the setting of policy transformation for gen-
eralization Gπ in Definition 3.5 Jain et al. (2020) focuses
on zero-shot generalization to a newly introduced action
set to increase adaptability. While transfer learning is a
promising research direction for reinforcement learning, the
studies in this subfield still remain oriented only towards
reinforcement learning applications, and it is possible to
consider the research centered on this subfield as not at the
same level of maturity as the previously discussed line of
research in Section 6 in terms of being able to test the claims
or propositions in complex established baselines.

9. Lifelong Reinforcement Learning
Lifelong learning is a subfield closely related to transfer
learning that has recently drawn attention from the reinforce-
ment learning community. Lifelong learning aims to build
policies that can sequentially solve different tasks by being
able to transfer knowledge between tasks. On this line of
research, Lecarpentier et al. (2021) provide an algorithm for
value-based transfer in the Lipschitz continuous task space
with theoretical contributions for lifelong learning goals. In
the setting of action transformation for generalization Gπ in
Definition 3.5 Chandak et al. (2020) focuses on temporally
varying (e.g. variations between source task and target task)
the action set in lifelong learning. In lifelong reinforcement
learning some studies focus on different exploration strate-
gies. In particular, Garcia & Thomas (2019) models the
exploration strategy problem for lifelong learning as another
MDP, and the study uses a separate reinforcement learning
agent to find an optimal exploration method for the initial
lifelong learning agent. The lack of benchmarks limits the
progress of lifelong reinforcement learning research by re-
stricting the direct comparison between proposed algorithms
or methods. However, quite recent work proposed a new
training environment benchmark based on robotics applica-
tions for lifelong learning to overcome this issue (Wolczyk
et al., 2021)6.

6The state dimension for this benchmark is 12. Hence, the state
space is low dimensional.

10. Inverse Reinforcement Learning
Inverse reinforcement learning focuses on learning a func-
tioning policy in the absence of a reward function. Since the
real reward function is inaccessible in this setting and the
reward function needs to be learnt from observing an expert
completing the given task, the inverse reinforcement learn-
ing setting falls under the reward transformation for general-
ization setting GR defined in Definition 3.2 in Section 3. The
initial work that introduced inverse reinforcement learning
was proposed by Ng & Russell (2000) demonstrating that
multiple different reward functions can be constructed for
an observed optimal policy. The authors of this initial study
achieve this objective via linear programming,

max
∑
s∈Sρ

min
a∈A

{p(Es′∼P(s,a1|·)V
π(s′)− Es′∼P(s,a|·)Vπ(s′))}

s.t. |αi| ≤ 1 , i = 1, 2, . . . , d

where p(x) = x if x ≥ 0, p(x) = 2x otherwise and Vπ =
α1Vπ

1 + α2Vπ
2 + · · · + αdVπ

d . In this line of work, there
has been recent progress that achieved learning functioning
policies in high-dimensional state observation MDPs (Garg
et al., 2021). The study achieves this by learning a soft
Q-function from observing expert demonstrations, and the
study further argues that it is possible to recover rewards
from the learnt soft state-action value function.

11. Conclusion
In this paper we tried to answer the following questions:
(i) What are the explicit problems limiting reinforcement
learning algorithms from obtaining high-performing poli-
cies that can generalize? (ii) How can we categorize the
different techniques proposed so far to achieve generaliza-
tion in reinforcement learning? (iii) What are the similari-
ties and differences of these different techniques proposed
by different subfields of reinforcement learning research to
build reinforcement learning policies that generalize? To
answer these questions first we explain the importance of
exploration strategies in overfitting, and explain the mani-
fold causes of overestimation bias in reinforcement learning.
In the second part of the paper we propose a framework
to unify and categorize the various techniques to achieve
generalization in reinforcement learning. Starting from ex-
plaining all the different regularization techniques in either
state representations or in learnt value functions from worst-
case to average-case, we provide a current layout of the wide
range of reinforcement learning subfields that are essentially
working towards the same objective, i.e. generalizable deep
reinforcement learning policies. Finally, we provided a dis-
cussion for each category on the drawbacks and advantages
of these algorithms. We believe our study can provide a
compact unifying formalization on recent reinforcement
learning generalization research.
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