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ABSTRACT

Representing scenes at the granularity of objects is a prerequisite for scene under-
standing and decision making. We propose a novel approach for learning multi-
object 3D scene representations from images. A recurrent encoder regresses a
latent representation of 3D shapes, poses and texture of each object from an in-
put RGB image. The 3D shapes are represented continuously in function-space
as signed distance functions (SDF) which we efficiently pre-train from example
shapes in a supervised way. By differentiable rendering we then train our model
to decompose scenes self-supervised from RGB-D images. Our approach learns
to decompose images into the constituent objects of the scene and to infer their
shape, pose and texture from a single view. We evaluate the accuracy of our model
in inferring the 3D scene layout and demonstrate its generative capabilities.

1 INTRODUCTION

Humans have the remarkable capability to decompose scenes into its constituent objects and to infer
object properties such as 3D shape and texture from just a single view. Providing intelligent systems
with similar capabilities is a long-standing goal in artificial intelligence. Such representations would
facilitate object-level description, abstract reasoning and high-level decision making. Moreover,
object-level scene representations could improve generalization for learning in downstream tasks
such as robust object recognition or action planning.

Previous work on learning-based scene representations focused on single-object scenes (Sitzmann
et al., 2019) or neglected to model the 3D geometry of the scene and the objects explicitly (Burgess
et al., 2019; Greff et al., 2019; Eslami et al., 2016). In our work, we propose a multi-object scene
representation network which learns to decompose scenes into objects and represents the 3D shape
and texture of the objects explicitly. Shape, pose and texture are embedded in a latent representation
which our model decodes into textured 3D geometry using differentiable rendering. This allows for
training our scene representation network in a semi-supervised way. Our approach jointly learns the
tasks of object detection, instance segmentation, object pose estimation and inference of 3D shape
and texture in single RGB images. Inspired by (Park et al., 2019; Oechsle et al., 2019; Sitzmann
et al., 2019), we represent 3D object shape and texture continuously in function-space as signed
distance and color values at continuous 3D locations. The scene representation network infers the
object poses and its shape and texture encodings from the input RGB image. We propose a novel
differentiable renderer which efficiently generates color and depth images as well as instance masks
from the object-wise scene representation. By this, our model facilitates to generate new scenes by
altering an interpretable latent representation (see Fig. 1). Our network is trained in two stages: In a
first stage, we train an auto-decoder subnetwork of our full pipeline to embed a collection of meshes
in continuous SDF shape embeddings as in DeepSDF (Park et al., 2019). With this pre-trained shape
space, we train the remaining parts of our full multi-object network to decompose and describe the
scene by multiple objects in a self-supervised way from RGB-D images. No ground truth of object
pose, shape, texture, or instance segmentation is required for the training on multi-object scenes.
We denote our learning approach semi-supervised due to the supervised pre-training of the shape
embedding and the self-supervised learning of the scene decomposition.

We evaluate our approach on synthetic scene datasets with images composed of multiple objects
to show its capabilities with shapes such as geometric primitives and vehicles and demonstrate the
properties of our geometric and semi-supervised learning approach for scene representation. In sum-
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Figure 1: Example scenes with object manipulation. For each example, we input the left images
and compute the middle one as standard reconstruction. After the manipulation in the latent space,
we obtain the respective right image. Plausible new scene configurations are shown on the Clevr
dataset (Johnson et al., 2017) (top) and on composed ShapeNet models (Chang et al., 2015) (bottom).

mary, we make the following contributions: (1) We propose a novel model to learn representations
of scenes composed of multiple objects. Our model describes the scene by explicitly encoding ob-
ject poses, 3D shapes and texture. To the best of our knowledge, our approach is the first to jointly
learn the tasks of object instance detection, instance segmentation, object localization, and inference
of 3D shape and texture in a single RGB image through self-supervised scene decomposition. (2)
Our model is trained by using differentiable rendering for decoding the latent representation into
images. For this, we propose a novel differentiable renderer using sampling-based raycasting for
deep SDF shape embeddings which renders color and depth images as well as instance segmenta-
tion masks. (3) By representing 3D geometry explicitly, our approach naturally respects occlusions
and collisions between objects and facilitates manipulation of the scene within the latent space. We
demonstrate properties of our geometric model for scene representation and augmentation, and dis-
cuss advantages over multi-object scene representation methods which model geometry implicitly.
We plan to make source code and datasets of our approach publicly available upon paper acceptance.

2 RELATED WORK

Deep learning of single object geometry. Several recent 3D learning approaches represent single
object geometry by implicit surfaces of occupancy or signed distance functions which are discretized
in 3D voxel grids (Kar et al., 2017; Tulsiani et al., 2017; Wu et al., 2016; Gadelha et al., 2017; Qi
et al., 2016; Jimenez Rezende et al., 2016; Choy et al., 2016; Shin et al., 2018; Xie et al., 2019).
Voxel grid representations typically waste significant memory and computation resources in scene
parts which are far away from the surface. This limits their resolution and capabilities to represent
fine details. Other methods represent shapes with point clouds (Qi et al., 2017; Achlioptas et al.,
2018), meshes (Groueix et al., 2018), deformations of shape primitives (Henderson & Ferrari, 2019)
or multiple views (Tatarchenko et al., 2016). In continuous function-space representations, deep
neural networks are trained to directly predict signed distance (Park et al., 2019; Xu et al., 2019;
Sitzmann et al., 2019), occupancy (Mescheder et al., 2019; Chen & Zhang, 2019), or texture (Oech-
sle et al., 2019) at continuous query points. We use such representations for individual objects.

Deep learning of multi-object scene representations. Self-supervised learning of multi-object
scene representations from images recently gained significant attention in the machine learning com-
munity. MONet (Burgess et al., 2019) presents a multi-object network which decomposes the scene
using a recurrent attention network and an object-wise autoencoder. It embeds images into object-
wise latent representations and overlays them into images with a neural decoder. Yang et al. (2020)
improve upon this work. Greff et al. (2019) use iterative variational inference to optimize object-
wise latent representations using a recurrent neural network. SPAIR (Crawford & Pineau, 2019)
and SPACE (Lin et al., 2020) extend the attend-infer-repeat approach (Eslami et al., 2016) by lay-
ing a grid over the image and estimating the presence, relative position, and latent representation
of objects in each cell. In GENESIS (Engelcke et al., 2020), the image is recurrently encoded into
latent codes per object in a variational framework. In contrast to our method, the above methods do
not represent the 3D geometry of the scene explicitly. Recently, Liao et al. (2020) introduced 3D
controllable image synthesis to generate novel scenes instead of explaining input views like we do.

Supervised learning for object instance segmentation, pose and shape estimation. Loosely
related to our approach are supervised deep learning methods that segment object instances (Hou
et al., 2019; Prabhudesai et al., 2020), estimate their poses (Xiang et al., 2017) or recover their 3D
shape (Gkioxari et al., 2019; Kniaz et al., 2020). In Mesh R-CNN (Gkioxari et al., 2019), objects
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Figure 2: Multi-object 3D scene representation network. The image is sequentially encoded into
object representations using an encoder network g0. The object encoders additionally receive image
and mask compositions (∆I,M ) generated from the previous object encodings. A differentiable
renderer based decoder F composes images and masks from the encodings of previous steps. The
background is encoded from the image in parallel and used in the final scene reconstruction.
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Figure 3: Object-wise encoding and rendering. We feed the input image and scene composi-
tion images and masks from the previously found objects to an object encoder network go which
regresses the encoding of the next object zi. The object encoding decomposes into shape zi,sh , ex-
trinsics zi,ext and texture latents zi,tex . The shape latent parametrizes an SDF function network Φ
which we use in combination with the pose and scale of the object encoded in zi,ext for raycasting
the object depth and mask using our differentiable renderer f . Finally, the color of the pixels is
found with a texture function network Ψ parametrized by the texture latent.

are detected in bounding boxes and a 3D mesh is predicted for each object. The method is trained
supervised on images with annotated object shape ground truth.

Neural and differentiable rendering. Eslami et al. (2018) encode images into latent representa-
tions which can be aggregated from multiple view points. Scene rendering is deferred to a neural
network which needs to be trained to decode the latents into images from examples. Several dif-
ferentiable rendering approaches have been proposed using voxel occupancy grids (Tulsiani et al.,
2017; Gadelha et al., 2017; Jimenez Rezende et al., 2016; Yan et al., 2016; Gwak et al., 2017; Zhu
et al., 2018; Wu et al., 2017; Nguyen-Phuoc et al., 2018), meshes (Kato et al., 2018; Loper & Black,
2014; Chen et al., 2019; Delaunoy & Prados, 2011; Ramamoorthi & Hanrahan, 2001; Meka et al.,
2018; Athalye et al., 2018; Richardson et al., 2016; Liu et al., 2019; Henderson & Ferrari, 2019),
signed distance functions (Sitzmann et al., 2019), or point clouds (Lin et al., 2018; Yifan et al.,
2019). Recent literature overviews can be found in (Tewari et al., 2020; Kato et al., 2020). In our
approach, we find depth and mask values through equidistant sampling along the ray.

3 METHOD

We propose an autoencoder architecture which embeds images into object-wise scene representa-
tions (see Fig. 2 for an overview). Each object is explicitly described by its 3D pose and latent
embeddings for both its shape and textural appearance. Given the object-wise scene description, a
decoder composes the images back from the latent representation through differentiable rendering.
We train our autoencoder-like network in a self-supervised way from RGB-D images.
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Scene Encoding. The network infers a latent z = (z1, . . . , zN , zbg) which decomposes the scene
into object latents zi ∈ Rd, i ∈ {1, . . . , N} and a background component zbg ∈ Rdbg where d, dbg
are the dimensionality of the object and background encodings and N is the number of objects.

Object are sequentially encoded by a deep neural network zi = go(I,∆I1:i−1, M̂1:i−1) (see
Fig. 2). We share the same object encoder network and weights between all objects. To
guide the encoder to regress the latent representation of one object after the other, we for-
ward additional information about already reconstructed objects. Specifically, we decode the
previous object latents into object composition images, depth images and occlusion masks
(Î1:i−1, D̂1:i−1, M̂1:i−1) := F (zbg, z1, . . . , zi−1). They are generated by F using differentiable
rendering which we detail in the subsequent paragraph. We concatenate the input image I with the
difference image ∆I1:i−1 := I − Î1:i−1 and occlusion masks M̂1:i−1, and input this to the encoder
for inferring the representation of object i.

The object encoding zi = (z>i,sh , z
>
i,tex , z

>
i,ext)

> decomposes into encodings for shape zi,sh , tex-
tural appearance zi,tex , and 3D extrinsics zi,ext (see Fig. 3). The shape encoding zi,sh ∈ RDsh

parametrizes the 3D shape represented by a DeepSDF autodecoder (Park et al., 2019). Similarly,
the texture is encoded in a latent vector zi,tex ∈ RDtex which is used by the decoder to obtain color
values for each pixel that observes the object. Object position pi = (xi, yi, zi)

>, orientation θi
and scale si are regressed with the extrinsics encoding zi,ext = (p>i , zcos,i, zsin,i, si)

>. The object

pose To
w(zi,ext) =

(
siR

>
i −R>i pi

0 1

)
is parametrized in a world coordinate frame with known

transformation Tw
c from the camera frame.

We assume the objects are placed upright and model rotations around the vertical axis with an-
gle θi = arctan(zsin,i, zcos,i) and corresponding rotation matrix Ri. We use a two parameter repre-
sentation for the angle as suggested in (Zhou et al., 2019). We scale the object shape by the factor
si ∈ [smin, smax] which we limit in an appropriate range using a sigmoid squashing function. The
background encoder gbg := zbg ∈ Rdbg regresses the uniform color of the background plane, i.e.
dbg = 3. We assume the plane extrinsics and hence its depth image is known in our experiments.

Scene Decoding. Given our object-wise scene representation, we use differentiable rendering
to generate individual images of objects based on their geometry and appearance and compose
them into scene images. An object-wise renderer (Îi, D̂i, M̂i) := f(zi) determines color im-
age Îi, depth image D̂i and occlusion mask M̂i from each object encoding independently (see
Fig. 3). The renderer determines the depth at each pixel u ∈ R2 (in normalized image coordi-
nates) through raycasting in the SDF shape representation. Inspired by (Wang et al., 2020), we
trace the SDF zero-crossing along the ray by sampling points xj := (dju, dj)

> in equal inter-
vals dj := d0 + j∆d, j ∈ {0, . . . , N − 1} with start depth d0. The points are transformed to
the object coordinate system by To

c(zi,ext) := To
w(zi,ext)T

w
c . Subsequently, the signed distance

φj to the shape at these transformed points is obtained by evaluating the SDF function network
Φ (zi,sh ,T

o
c(zi,ext)xj). Note that the SDF network is also parametrized by the inferred shape latent

of the object. The algorithm finds the zero-crossing at the first pair of samples with a sign change
of the SDF Φ. The sub-discretization accurate location x(u) of the surface is found through linear
interpolation of the depth regarding the corresponding SDF values of these points. The depth at a
pixel Di(u) is given by the z coordinate of the raycasted point x(u) on the object surface in camera
coordinates. If no zero crossing is found, the depth is set to a large constant. The binary occlusion
mask Mi(u) is set to 1 if a zero-crossing is found at the pixel and 0 otherwise. The pixel color Ii(u)
is determined using a decoder network Ψ which receives the texture latent zi,tex of the object and the
raycasted 3D point x(u) in object coordinates as inputs, i.e. Ii(u) = Ψ (zi,tex ,T

o
c(zi,ext)x(u)).

We speed up the raycasting process by only considering pixels that lie within the projected 3D
bounding box of the object shape representation. This bounding box is known since the SDF func-
tion network is trained with meshes that are normalized to fit into a unit cube with a constant padding.
Note that this rendering procedure can be implemented using differentiable operations which makes
it fully differentiable for the shape, color and extrinsics encodings of the object.
The scene images, depth images and occlusion masks

(
Î1:n, D̂1:n, M̂1:n

)
= F (zbg , z1, . . . , zn) are

composed from the individual objects 1, . . . , n with n ≤ N and the decoded background through z-
buffering. We initialize them with the background color, depth image of the empty plane and empty
mask. Recall that the background color is regressed by the encoder network. For each pixel u, we
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search the occluding object i with the smallest depth at the pixel. If such an object exists, we set the
pixel’s values in Î1:N , D̂1:N , M̂1:N to the corresponding values in the object images and masks.

Training. We train our network architecture in two stages. In a first stage, we learn the SDF
function network from a collection of meshes. The second stage uses the pre-trained SDF models
to learn the remaining components for the object-wise scene decomposition and rendering network.
We train the SDF networks according to (Park et al., 2019) from a collection of meshes and sample
points in a volume around the object and on the object surface. We normalize the size of the input
meshes to fit into the unit cube with constant padding ε = 0.1.

Our multi-object network architecture is trained self-supervised from RGB-D images containing
example scenes composed of multiple objects. To this end, we minimize the loss function

Ltotal = λILI + λDLD + λgrLgr + λshLsh , (1)

which is a weighted sum of multiple sub-loss functions defined by

LI =
1

|Ω|
∑
u∈Ω

∥∥∥G(Î1:N

)
(u)−G(Igt)(u)

∥∥∥2

LD =
1

|Ω|
∑
u∈Ω

∥∥∥G(D̂1:N

)
(u)−G(Dgt)(u)

∥∥∥
Lgr =

∑
i

max(0,−zi) + max(0,−φi(z′i)) Lsh =
∑
i

‖zi,sh‖2 (2)

In particular, LI is the mean squared error on the image reconstruction with Ω being the set of
image pixels and Igt the ground-truth color image. The depth reconstruction loss LD penalizes
deviations from the ground-truth depth Dgt . We apply Gaussian smoothing G(·) for which we
decrease the standard deviation over time. Lsh regularizes the shape encoding to stay within the
training regime of the SDF network. Lastly, Lgr favors objects to reside above the ground plane
with zi being the coordinate of the object in the world frame, z′i the corresponding projection onto
the ground plane, and φi(xk) := Φ (zi,sh ,T

o
c(zi,ext)xk). The shape regularization loss is scheduled

with time-dependent weighting. This prevents the network from learning to generate unreasonable
extrapolated shapes in the initial phases of the training, but lets the network refine them over time.

We use a CNN for both the object and the background encoder. Both consist of a number of convo-
lutional layers with kernel size (3, 3) and strides (1, 1) each followed by ReLU activation and (2, 2)
max-pooling. The subsequent fully connected layers yield the encodings for objects and back-
ground. Similar to (Park et al., 2019), we use multi-layer fully-connected neural networks for the
shape decoder Φ and texture decoder Ψ. Further details are provided in the supplementary material.

4 EXPERIMENTS

We evaluate our approach on synthetic scenes based on the Clevr dataset (Johnson et al., 2017)
and scenes generated with ShapeNet models (Chang et al., 2015). The Clevr-based scenes contain
images with a varying number of colored shape primitives (spheres, cylinders, cubes) on a planar
single-colored background. We modify the data generation of Clevr in a number of aspects: (1) We
remove shadows and additional light sources and only use the Lambertian rubber material for the
objects’ surfaces. (2) To further increase shape variety, we apply random scaling along the principal
axes of the primitives. (3) An object might be completely hidden behind another one. Hence, the
network needs to learn to hide single objects. We generate several multi-object datasets. Each dataset
contains scenes with a specific number of objects which we choose from two to five. Each dataset
consists of 12.5K images with a size of 64×64 pixels. Objects are randomly rotated and placed in
a range of [−1.5, 1.5]2 on the ground plane while ensuring that any two objects do not intersect.
Additionally to the RGB images, we also generate depth maps for training as well as instance masks
for evaluation. The images are split into 9K training, 1K validation, and 2.5K testing examples. For
the pre-training of the DeepSDF (Park et al., 2019) network, we generate a small set of nine shapes
per category with different scaling along the axes for which we generate ground truth SDF samples.
Different to (Park et al., 2019), we sample a higher ratio of points randomly in the unit cube instead
of close to the surface. We also evaluate on scenes depicting either cars or armchairs as well as a
mixed set consisting of mugs, bottles and cans (tabletop) from the ShapeNet model set. Specifically,
we select 25 models per setting which we use both for pre-training the DeepSDF as well as for the
generation of the multi-object datasets. We increase the size of the dataset to (18K/2K/5K). The
evaluation is performed on two different test sets: (1) with known shapes and (2) with new objects.
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Figure 4: Qualitative results on the Clevr dataset (Johnson et al., 2017) with three and five
objects. Our object-wise scene representation decouples all objects from the background.

Network Parameters. For the Clevr / ShapeNet datasets, the object encoding dimension is set to
Dsh = 8/16, and Dtex = 7/15. The shape decoder is pre-trained for 10K epochs. We decrease
the loss weight λsh from 0.025/0.1 to 0.0025/0.01 during the first 500K iterations. The remaining
weights are fixed to λI = 1.0, λdepth = 0.1/0.05, λgr = 0.01. We add Gaussian noise to the input
RGB images. Depth images are clipped at a distance of 12. The renderer evaluates at 12 steps along
each ray. Gaussian smoothing is applied with kernel size 16 and decreasing sigma from 16

3 to 1
2 in

250K steps. We use the ADAM optimizer (Kingma & Ba, 2014) with learning rate 0.0001 and batch
size 8 to train for a dataset-specific number of epochs (see supplementary material for more details).

Evaluations Metrics. We evaluate the task of learning object-level 3D scene representations
using measures for instance segmentation, image reconstruction, and pose estimation. To evaluate
the capability of our model to recognize objects that best explain the input image, we consider
established instance segmentation metrics. An object is considered to be correctly segmented if the
intersection-over-union (IoU) score between ground truth and predicted mask is higher than some
threshold τ . To account for occlusions, only objects that occupy at least 25 pixels are taken into
account. We report average precision (AP0.5), average recall (AR0.5), F10.5-score for a fixed τ = 0.5
as well as the mean AP over thresholds in range [0.5, 0.95] with stepsize 0.05 (Everingham et al.,
2010). Furthermore, we list the ratio of scenes were all visible objects were found w.r.t. τ = 0.5
(allObj). Next, we evaluate the quality of both the RGB and depth reconstruction obtained from the
generated objects. To assess the image reconstruction, we report Root Mean Squared Error (RMSE),
Structural SIMilarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR) scores. For the object
geometry, we compute similar to (Eigen et al., 2014) the Absolute Relative Difference (AbsRD),
Squared Relative Difference (SqRD), as well as the RMSE for the predicted depth. Furthermore,
we report the error on the estimated objects’ position (mean) and rotation (median, sym.: up to
symmetries) for objects with a valid match w.r.t. τ = 0.5. More details on the metrics are provided
in the supplementary material. We show results over five runs per configuration and report the mean.

4.1 CLEVR DATASET

In Fig. 4, we show reconstructed images, depth and normal maps on the Clevr (Johnson et al., 2017)
scenes. Our model provides a complete reconstruction of the individual objects although they might
be partially hidden in the image. The network can infer the color of the objects correctly and gets a
basic idea about shading (e.g. that spheres are darker on the lower half) and coarse texture. The shape
characteristics such as extent, edges or curved surfaces are well recognized. Our model needs to fill
all object slots. We sometimes observed that it fantasizes and hides additional objects behind others.
Some reconstruction artifacts at object boundaries are due to rendering hard transitions between
objects and background. More results and typical failure cases are shown in the supplementary
material. Our 3D scene model naturally facilitates generation and manipulation of scenes by altering
the latent representation. In Fig. 1, we show example operations like switching the positions of two
objects, changing their shape, or removing an entire object. The explicit knowledge about 3D shape
also allows us to reason about object penetrations when generating new scenes. Specifically, we
evaluate an object intersection loss Lint on the newly sampled scenes to filter out those that turn out
to be unrealistic due to an intersection between objects (see supplementary material for details).

Ablation Study. We evaluate various components of our model on the Clevr dataset with three
objects. In Table 1, we evaluate on training settings where we left out each of the loss functions and
also demonstrate the benefit of Gaussian smoothing (denoted by G) on the image reconstructions.
At the beginning of training, the shape regularization loss is crucial to keep the shape encoder close
to the pretrained DeepSDF shape space and to prevent it from diverging due to the inaccurate pose
estimates of the objects. Applying and decaying Gaussian blur distributes gradient information in the
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Table 1: Results on Clevr dataset (Johnson et al., 2017). The combination of our proposed loss
with Gaussian blur is essential to guide the learning of scene decomposition and object-wise repre-
sentations. We highlight best (bold) and second best (underlined) result for each measure. Using
different maximum numbers of objects in our network, we further train our model on scenes with 2,
4, or 5 objects. Despite the increased difficulty for larger number of objects, our model recognizes
most objects in scenes with two to five objects. Models trained with fewer objects can successfully
explain scenes with a larger number of objects (# obj=otrain/otest).

Instance Reconstruction Image Reconstruction Depth Reconstruction Pose Est.

mAP ↑ AP0.5 ↑ AR0.5 ↑ F10.5 ↑ allObj ↑ RMSE ↓ PSNR ↑ SSIM ↑ RMSE ↓ AbsRD ↓ SqRD ↓ Errpos

# obj=3/3, w/o LI 0.686 0.941 0.879 0.899 0.709 0.199 14.176 0.713 0.595 0.023 0.073 0.159
# obj=3/3, w/o LD 0.023 0.086 0.076 0.078 0.008 0.085 22.142 0.837 2.745 0.231 1.061 1.341
# obj=3/3, w/o Lsh 0.01 0.032 0.027 0.028 0.001 0.13 17.907 0.763 1.455 0.147 0.556 0.676
# obj=3/3, w/o Lgr 0.09 0.195 0.205 0.198 0.008 0.09 21.163 0.799 1.159 0.087 0.32 0.81
# obj=3/3, w/o G 0.164 0.296 0.161 0.199 0.001 0.114 19.065 0.792 1.331 0.112 0.441 0.182

# obj=3/3, full 0.712 0.949 0.942 0.943 0.85 0.049 26.466 0.914 0.554 0.019 0.061 0.155

# obj=2/2 0.782 0.977 0.963 0.967 0.928 0.039 28.389 0.941 0.432 0.012 0.04 0.138
# obj=4/4 0.688 0.941 0.919 0.926 0.746 0.054 25.632 0.899 0.584 0.022 0.064 0.151
# obj=5/5 0.604 0.895 0.861 0.872 0.539 0.061 24.568 0.876 0.593 0.025 0.067 0.149
# obj=3/2 0.756 0.974 0.969 0.97 0.942 0.041 28.011 0.937 0.452 0.013 0.044 0.14
# obj=3/4 0.613 0.883 0.853 0.863 0.512 0.06 24.669 0.88 0.665 0.028 0.083 0.179
# obj=3/5 0.478 0.775 0.71 0.735 0.212 0.072 23.093 0.841 0.69 0.033 0.086 0.201

images beyond the object masks and allows the model to be trained in a coarse-to-fine manner. This
helps the model to localize the various objects in the scene. Moreover, the depth loss is essential for
learning the scene decomposition. Without this loss, the network can simply describe several objects
using a single object with more complex texture. The usage of the ground loss prevents the model
from fitting objects into the ground plane. The image reconstruction loss plays only a minor part for
the scene decomposition task but is merely responsible for learning the texture of the objects. Using
all our proposed loss functions yields best results over all metrics. Remarkably, our model is able to
find objects at high recall rates (0.942 AR at 50% IoU).

Object Count. We also report results when varying the maximum number of objects in our model
in Tab. 1. We train the models with the corresponding number of objects in the dataset. Obviously,
it is on average easier for our model to find and describe the objects in less crowded scenes, while it
still performs with high accuracy for five objects.

Due to the sequential architecture of our model, it can even be extended for scenes with more objects
than that it has been trained for. As we use a shared encoder for all objects, we can simply reset the
number of encoding rollouts to the number of objects in the test data. Again, we assume the number
of objects to be known. Although our model would be able to hide redundant objects behind already
reconstructed ones without this explicit change, it could not reconstruct additional objects. In these
experiments, it performs less well than the trained models for the respective object counts. The
achieved average recall and allObj measures still indicate that the model is able to detect the objects
at good rates. For instance, for # obj=3/5, we find all objects in about 21% cases but overall 71% of
the objects according to AR0.5. Extended quantitative evaluation as well as qualitative results can be
viewed in the supplementary material.

4.2 SHAPENET DATASET

Our composed multi-object variant of ShapeNet (Chang et al., 2015) models is more difficult in
shape and texture variation than Clevr (Johnson et al., 2017). For some object categories such as
cups or armchairs, training can converge to local minima. We report mean and best results over five
training runs in Tab. 2, where the best run is chosen according to F1 score on the validation set.
Evaluation is performed on two different testsets: scenes containing (1) object instances with shapes
and textures used for training and (2) unseen object instances. We show several scene reconstructions
in Fig. 5. Further qualitative results are provided in the supplementary material.

For the cars, our model yields consistent performance in all runs with comparable decomposition
results to our Clevr experiments. However, we found that cars exhibit a pseudo-180-degree shape
symmetry which was difficult for our model to differentiate. Especially for small objects in the
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Table 2: Evaluation on scenes with ShapeNet objects (Chang et al., 2015). Results for scenes
containing objects from different categories. We differentiate between scenes that consist of shapes
that were seen during training and novel objects. We report mean and best outcome over five runs.

Instance Reconstruction Image Reconstruction Depth Reconstruction Pose Estimation

mAP↑AP0.5 ↑AR0.5 ↑F10.5 ↑ allObj ↑ RMSE ↓PSNR ↑SSIM ↑ RMSE ↓AbsRD ↓SqRD ↓ Errpos ↓Errrot [sym.] ↓

ca
rs

seen best 0.750 0.991 0.991 0.991 0.979 0.064 24.092 0.898 0.158 0.006 0.004 0.144 23.67◦ [3.29◦]
mean 0.738 0.990 0.990 0.990 0.975 0.064 23.979 0.894 0.160 0.006 0.005 0.146 22.09◦ [3.07◦]

unseen best 0.639 0.980 0.980 0.980 0.955 0.077 22.442 0.843 0.210 0.010 0.008 0.183 24.24◦ [4.53◦]
mean 0.632 0.977 0.977 0.977 0.944 0.077 22.454 0.842 0.208 0.010 0.008 0.184 24.25◦ [4.41◦]

ch
ai

rs

seen best 0.432 0.897 0.871 0.881 0.640 0.086 21.576 0.803 0.829 0.040 0.117 0.308 43.64◦ [9.13◦]
mean 0.329 0.642 0.638 0.640 0.188 0.102 20.137 0.772 1.021 0.058 0.196 0.296 55.12◦ [7.25◦]

unseen best 0.377 0.852 0.821 0.833 0.534 0.092 20.994 0.778 0.890 0.052 0.137 0.395 58.79◦ [10.66◦]
mean 0.278 0.613 0.607 0.609 0.158 0.106 19.740 0.746 1.068 0.069 0.213 0.372 68.29◦ [9.28◦]

ta
bl

et
op

seen best 0.628 0.936 0.870 0.895 0.659 0.057 25.242 0.908 0.786 0.026 0.132 0.182 89.14◦

mean 0.394 0.565 0.537 0.546 0.251 0.078 22.871 0.861 1.022 0.050 0.231 0.155 88.53◦

unseen best 0.435 0.839 0.816 0.823 0.569 0.083 21.807 0.840 1.034 0.044 0.224 0.275 89.25◦

mean 0.285 0.530 0.521 0.523 0.237 0.102 20.160 0.800 1.172 0.061 0.291 0.238 89.99◦

Input View Normals Input View Normals Input View Normals
GT Prediction GT Prediction GT Prediction GT Prediction GT Prediction GT Prediction

se
en

un
se

en

Figure 5: Qualitative results on ShapeNet (Chang et al., 2015). Our model obtains a good scene
understanding if confronted with more difficult objects (cars, armchairs) and even handles objects
from different categories (tabletop scenes with mugs, bottles and cans). It is able to estimate plausi-
ble pose and shape of individual objects and learns to decode more complex textures.

background, it favors to adapt the texture over rotating the object. For the armchair shapes, our
model finds local minima in pseudo-90-degree symmetries. The median rotation error indicates
better than chance prediction for the correct orientation. Rotation error histograms can be found
in the supplementary material. For approximately correct rotation predictions, we found that our
model was able to differentiate between basic shape types but often neglected finer details like thin
armrests which are difficult to differentiate in the images. Our tabletop dataset provides another type
of challenge: the network needs to distinguish different object categories with larger shape and scale
variation. For this setting, we added further auxiliary losses to penalize object positions outside of
the image view as well as object intersections (see supplementary material for details). Our model
is able to predict the different shape types with coarse textures. On scenes with instances that were
not seen during training, our model often approximates the shapes with similar training instances.

Due to the learned 3D structure, our model is able to render novel views from a scene given a single
image (see Fig. 6). Although our model never saw multiple views of the same scene during training
and is not tuned for this task, we obtain reasonable results for both scene geometry and appearance.
We observe a lower reconstruction accuracy for invisible scene parts, especially for the texture.

Input -90◦ -67.5◦ -45◦ -22.5◦ 0◦ +22.5◦ +45◦ +67.5◦ +90◦ +180◦

...

Figure 6: Novel view renderings. Our model is able to generate new scene renderings for largely
rotated camera views from just a single input RGB image. While we noticed a reduced texture
accuracy for unseen object parts compared to visible parts, the normal maps are generally good and
demonstrate that our model obtains a good 3D structural understanding of the scene.
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GT Prediction GT Prediction GT Prediction GT Prediction

Figure 7: Evaluation on real images. We show preliminary results on real images by our model that
was trained on synthetic data. We notice that our model is able to capture the coarse scene layout and
shape properties of the objects. However, challenges arise due to domain, lighting, camera intrinsics
and view point changes indicating interesting directions for future research.

Input Pred. Input Pred. Input Prediction Input Prediction Input Prediction

Figure 8: Limitations. Input and output pairs for typical failure cases and limitations of our method
due to ambiguities for self-supervised learning. See text for details.

We further evaluated our model on real images of toy cars and building blocks (see Fig. 7) for which
we adjusted brightness and contrast to visually match the background color of the synthetic data.
Note while the scene perspective, camera and image properties are different, our model is able to
decompose the scene in these examples into the individual objects and obtain a coarse understanding
about their shape and appearance without any further fine-tuning on the new data domain.

Limitations. We show typical failure cases of our approach in Fig. 8. Self-supervised learning
without regularizing assumptions leads typically to ill-conditioned problems. We use a pre-trained
3D shape space to confine the possible shapes, impose a multi-object decomposition of the scene,
and use a differentiable renderer of the latent representation. In our self-supervised approach, am-
biguities can arise due to the decoupling of shape and texture. For instance, the network can choose
to occlude the background partially with the shape but fix the image reconstruction by predicting
background color in these areas. Rotations can only be learned up to a pseudo-symmetry by self-
supervision when object shapes are rotationally similar and the subtle differences in shape or texture
are difficult to differentiate in the image. In such cases, the network can favor to adapt texture over
rotating the shape. Depending on the complexity of the scenes and the complex combination of loss
terms, training can run into local minima in which objects are moved outside the image or fit the
ground plane. Currently, the network is trained for a maximum number of objects. If all objects in
the scene are explained, it hides further objects which could be alleviated by learning a stop criterion.

5 CONCLUSION

We propose a novel deep learning approach for multi-object scene representation learning and pars-
ing. Our approach infers the 3D structure of a scene in RGB images by recursively parsing the image
for shape, texture and poses of the objects. A differentiable renderer allows images to be generated
from the latent scene representation and the network to be trained semi-supervised from RGB-D
images. We represent object shapes by signed distance functions. To confine the search space of
possible shapes, we employ pre-trained shape spaces in our network. The shape space is represented
by a deep neural network using a continuous function representation. Our experiments demonstrate
that our model achieves scene parsing for a variety of object counts and shapes. We provide an
ablation study to motivate design choices and discuss assumptions and limitations of our approach.
We further demonstrate the advantages of our model to reason about the underlying 3D space of a
seen scene by performing explicit manipulation on the individual objects or rendering novel views.
To the best of our knowledge, our approach is the first to jointly learn the tasks of object instance
detection, instance segmentation, object pose estimation, and inference of 3D shape and texture in
a single RGB image in a semi-supervised way. We believe our approach provides an important step
towards self-supervised learning of object-level 3D scene parsing and generative modeling of com-
plex scenes from real images. Our work is currently limited to simple scenes with few objects on a
uniformly colored background. The usage of such synthetic data allows us to evaluate the individual
design choices of our model in a controlled setup. In future work, we plan to address challenges of
more complex scenes with more diverse background and objects and real imagery.
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A. Kar, C. Häne, and J. Malik. Learning a multi-view stereo machine. In Proc. of Advances in
Neural Information Processing (NeurIPS), 2017.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2018.

Hiroharu Kato, Deniz Beker, Mihai Morariu, Takahiro Ando, Toru Matsuoka, Wadim Kehl, and
Adrien Gaidon. Differentiable rendering: A survey, 2020.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 12 2014.

Vladimir A. Kniaz, Vladimir V. Knyaz, Fabio Remondino, Artem Bordodymov, and Petr Moshkant-
sev. Image-to-voxel model translation for 3d scene reconstruction and segmentation. In Proceed-
ings of the European Conference on Computer Vision (ECCV). Springer International Publishing,
2020.

Yiyi Liao, Katja Schwarz, Lars Mescheder, and Andreas Geiger. Towards unsupervised learning of
generative models for 3d controllable image synthesis. In Proceedings IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2020.

Chen-Hsuan Lin, Chen Kong, and Simon Lucey. Learning efficient point cloud generation for dense
3d object reconstruction. In Sheila A. McIlraith and Kilian Q. Weinberger (eds.), Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,
pp. 7114–7121. AAAI Press, 2018. URL https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/16530.

11

https://doi.org/10.1007/s11263-019-01219-8
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16530
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16530


Under review as a conference paper at ICLR 2021

Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. SPACE: Unsupervised object-oriented scene representation via spatial
attention and decomposition. In Accepted for International Conference on Learning Representa-
tions (ICLR), 2020.

Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft rasterizer: A differentiable renderer for
image-based 3d reasoning. In Proc. of the IEEE International Conference on Computer Vision
(ICCV), 2019.

Matthew M. Loper and Michael J. Black. OpenDR: An approximate differentiable renderer. In
European Conference on Computer Vision (ECCV), 2014.

Abhimitra Meka, Maxim Maximov, Michael Zollhoefer, Avishek Chatterjee, Hans-Peter Seidel,
Christian Richardt, and Christian Theobalt. LIME: Live intrinsic material estimation. In Pro-
ceedings of Computer Vision and Pattern Recognition (CVPR), 2018.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

Thu Nguyen-Phuoc, Chuan Li, Stephen Balaban, and Yong-Liang Yang. RenderNet: A deep convo-
lutional network for differentiable rendering from 3D shapes. In Advances in Neural Information
Processing Systems (NeurIPS), 2018.

Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo Strauss, and Andreas Geiger. Texture
fields: Learning texture representations in function space. In Proceedings IEEE International
Conf. on Computer Vision (ICCV), 2019.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Mihir Prabhudesai, Shamit Lal, Hsiao-Yu Fish Tung, Adam W. Harley, Shubhankar Potdar, and
Katerina Fragkiadaki. 3dq-nets: Visual concepts emerge in pose equivariant 3d quantized neural
scene representations. In Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 1567–1570. IEEE, 2020. doi: 10.1109/CVPRW50498.2020.00202. URL https:
//doi.org/10.1109/CVPRW50498.2020.00202.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on point
sets for 3d classification and segmentation. In Proc. of IEEE Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2017.

Charles Ruizhongtai Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and Leonidas
Guibas. Volumetric and multi-view cnns for object classification on 3d data. In Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE, 2016.

Ravi Ramamoorthi and Pat Hanrahan. A signal-processing framework for inverse rendering. In
SIGGRAPH, pp. 117–128, 2001.

Elad Richardson, Matan Sela, Roy Or-El, and Ron Kimmel. Learning detailed face reconstruction
from a single image. In Proceedings of the Int. Conf. on Computer Vision and Pattern Recognition
(CVPR), 2016.

Daeyun Shin, Charless Fowlkes, and Derek Hoiem. Pixels, voxels, and views: A study of shape
representations for single view 3d object shape prediction. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Con-
tinuous 3d-structure-aware neural scene representations. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2019.

Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. Multi-view 3d models from single
images with a convolutional network. In Proc. of the European Conference on Computer Vision
(ECCV), pp. 322–337, Cham, 2016. Springer International Publishing.

12

https://doi.org/10.1109/CVPRW50498.2020.00202
https://doi.org/10.1109/CVPRW50498.2020.00202


Under review as a conference paper at ICLR 2021

A. Tewari, O. Fried, J. Thies, V. Sitzmann, S. Lombardi, K. Sunkavalli, R. Martin-Brualla, T. Simon,
J. Saragih, M. Nießner, R. Pandey, S. Fanello, G. Wetzstein, J.-Y. Zhu, C. Theobalt, M. Agrawala,
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