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Figure 1. Overview. Our SEMANTICDRAW is a sub-second (0.64 seconds) solution for region-based text-to-image generation. This
streaming architecture enables an interactive application framework, dubbed semantic palette, where image is generated in near instant
interactivity based on online user commands of hand-drawn semantic masks.

Abstract

We introduce SemanticDraw, a new paradigm of interac-
tive content creation where high-quality images are gen-
erated in near real-time from given multiple hand-drawn
regions, each encoding prescribed semantic meaning. In
order to maximize the productivity of content creators and
to fully realize their artistic imagination, it requires both
quick interactive interfaces and fine-grained regional con-
trols in their tools. Despite astonishing generation qual-
ity from recent diffusion models, we find that existing ap-
proaches for regional controllability are very slow (52 sec-
onds for 512 × 512 image) while not compatible with ac-
celeration methods such as LCM, blocking their huge po-
tential in interactive content creation. From this obser-
vation, we build our solution for interactive content cre-

ation in two steps: (1) we establish compatibility between
region-based controls and acceleration techniques for diffu-
sion models, maintaining high fidelity of multi-prompt im-
age generation with ×10 reduced number of inference steps,
(2) we increase the generation throughput with our new
multi-prompt stream batch pipeline, enabling low-latency
generation from multiple, region-based text prompts on a
single RTX 2080 Ti GPU. Our proposed framework is gen-
eralizable to any existing diffusion models and accelera-
tion schedulers, allowing sub-second (0.64 seconds) im-
age content creation application upon well-established im-
age diffusion models. Our project page is: https:
//jaerinlee.com/research/semantic-draw .
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1. Introduction

Recent massive advancements and widespread adoptions
of generative AI [1, 38, 39, 41, 43, 54] are fundamentally
transforming the landscape of content creation, demonstrat-
ing huge potential for improving efficiency of production
processes and expanding the boundaries of creativity. Es-
pecially, diffusion models [41] are gaining significant at-
tention in generative AI for image content creation be-
cause of their ability to produce realistic, high-resolution
images. Nevertheless, in the perspective of content creators,
a pure generative quality is not the only point of consider-
ation [34]. Diffusion models for content creators should
require efficient, interactive tools that can swiftly translate
their artistic imaginations into refined outputs, supporting
a more responsive and iterative creative process with fine-
grained controllability under straightforward control panels
as illustrated in Figure 1 and 7. These goals should all be
satisfied simultaneously.

The academic community had several attempts to ad-
dress these criteria in isolated areas, but has yet to tackle
them comprehensively. On one hand, there is a line of
works dealing with acceleration of the inference speed [7,
24, 31, 32, 40, 47, 48] of diffusion models. Accelera-
tion schedulers including DDIM [47], latent consistency
models (LCM) [31, 32, 48], SDXL-Lightning [24], Hyper-
SD [40], and Flash Diffusion [7] reduced the number of
required inference steps from several thousand to a few
tens and then down to 4. Focusing on the throughput di-
rectly, StreamDiffusion [21] reformed diffusion models into
a pipelined architecture, enabling streamed generation and
real-time video styling. On the other hand, methods to en-
hance the controllability [4, 5, 53, 54] of the generative
framework were also heavily sought. ControlNet [54] and
IP-Adapter [53] enabled image-based conditioning of the
pre-trained diffusion models. SpaText [4] and MultiDiffu-
sion [5] achieved image generation from multiple region-
based texts, allowing more fine-grained controls over the
generation process from localized text prompts.

Those two areas of research have developed largely inde-
pendently. This suggests a straightforward approach to meet
our goal: simply combine achievements from both lines of
works for fast yet controllable generation. For example, ac-
celeration technique such as LCM [32] can serve a pair of
a noise schedule sequence and fine-tuned model weights.
This may achieve faster image-conditioned generation after
applying the pre-baked LCM with ControlNet [54] attached
to a DreamBooth [42]-stylized model.

However, directly combining multiple works together
does not work as intended. Figure 2 illustrates an example
where diffusion models fail when extended to complex real-
world scenarios. Here, inspired from the famous yet com-
plex artwork of Korean royal folding screen, Irworobongdo
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Text prompt: Background: “Clear deep blue sky”, Green: “Summer
mountains”, Red: “The Sun”, Pale Blue: “The Moon”, Light Orange:
“A giant waterfall”, Purple: “A giant waterfall”, Blue: “Clean deep blue
lake”, Orange: “A large tree”, Light Green: “A large tree”

Figure 2. Example of large-size region-based text-to-image syn-
thesis inspired by Korean traditional art, Irworobongdo. Our SE-
MANTICDRAW can synthesize high-resolution images from multi-
ple, locally assigned text prompts with ×52.5 faster speed of con-
vergence. The size of the image is 768 × 1920 and we use 9 text
prompt-mask pairs including the background. The time is mea-
sured with a RTX 2080 Ti GPU. Note that time takes longer than
regular sized images (e.g., 512 ×512) due to panoramic shape.

(“Painting of the Sun, Moon, and the Five Peaks”)1, we
generate an image of size 768 × 1920 from nine region-
ally assigned text prompts as defined by a user under
Figure 2. At this scale, previous state-of-the-art (SOTA)
region-based controlling pipeline [5] fails to match the des-
ignated mask regions and text prompts despite its extremely
slow and, hence, cautious reverse diffusion process. Apply-
ing a famous acceleration method LCM [32] on the diffu-

1https://g.co/arts/9DESwLeAtdtaHkGv9
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sion model [5] does not solve high-latency problem, pro-
ducing noisy output in the second row in Figure 2. This
proves that the problem of controllability and acceleration
cannot be scaled to real-world scenarios when simply com-
bining the existing diffusion models and acceleration meth-
ods, due to their poor compatibility.

Our goal is to build a real-time pipeline for image content
creation, ready for interactive user applications. The system
should be operated at least in near real-time, while main-
taining stability of fine-grained regional controls. In the
end, we propose SEMANTICDRAW which solves the prob-
lems from existing methods as shown in Figure 3. Elabo-
rated in Section 3.2, we establish a stable pipeline for ac-
celerated image synthesis with fine-grained controls, given
through multiple, locally assigned text prompts. Building
upon the rapid development from both acceleration sched-
ulers [7, 24, 31, 32, 40] and network architectures [37,
41, 45] for diffusion models, we propose the first method
to allow the acceleration schedulers to be compatible with
region-based controllable diffusion models. We achieve
up to ×50 speed-up of the multi-prompt generation while
maintaining or even surpassing the image fidelity of the
original algorithm [5].

Even after resolving the compatibility problem between
the acceleration and controllability modules, generation
throughput remains to be a main obstacle to interactive ap-
plication. To this end, as illustrated in Section 3.3, we re-
structure our multi-prompt reverse diffusion process into a
pipelined architecture [21], which we call the multi-prompt
stream batch architecture. By bundling multi-prompt la-
tents at different timesteps as a batched sequence of requests
for image generation, we can perform the multi-prompt
text-to-image synthesis endlessly by repeating a single,
batched reverse diffusion. The result is a sub-second inter-
active image generation framework, achieving 1.57 FPS in a
single 2080 Ti GPU. This high, stable throughput from SE-
MANTICDRAW allows a novel type of application for im-
age content creation, named semantic palette, in which we
can draw semantic masks in real-time to create an endless
stream of images as in Figure 1 and 7. Our model-agnostic
and acceleration-agnostic design allows the framework to
be suitable for any existing diffusion pipelines [37, 41, 45].
We highly recommend readers to try our technical demo ap-
plication in our official code repository2.

2. Related Work

Accelerating Inference from Diffusion Models. Diffu-
sion model [15, 41, 47] is a branch of generative models
that sample target data distributions, e.g., images, videos,
sounds, etc., by iteratively reducing randomness from a pure
noise. The earliest form of diffusion models [15, 46, 47]

2https://github.com/ironjr/semantic-draw

traded off inference efficiency against sample diversity and
quality, requiring thousands of iterations to generate a sin-
gle high quality image. Hence, acceleration of reverse dif-
fusion process by reducing the number of inference steps,
while maintaining quality of the output, has been the topic
of greatest interest. Majority of works [28, 29, 47] achieved
accelerated inference through reformulation of reverse dif-
fusion process. DDIM [47] used non-Markovian proba-
bilistic graphical model, and DPM-Solvers [28, 29] inter-
preted generation process as an Euler’s method for solving
ordinary differential equations. These methods cut down
the required number of inference to 10-20 steps. Later,
Consistency Models [48] exploits identity map boundary
condition, and Flow Matching [26] adopted optimal trans-
port to sample efficiently towards the data manifold. These
methods became the foundations of the most recent ac-
celerated schedulers, including latent consistency model
(LCM) [31, 32], SDXL-Lightning [24], Hyer-SD [40] and
Flash Diffusion [7], which build upon popular checkpoint
for latent diffusion models [9, 37, 41]. They distribute the
pre-trained weights as low-rank adaptations (LoRA) [16]
of the baseline models fine-tuned with specific knowledge
distillation methods [14]. Different from the above meth-
ods, StreamDiffusion [21] introduced a novel pipelined
architecture for video-to-video transfer, video stylization,
and streamed image generation from a latent consistency
model [31]. Our multi-prompt stream batch architecture for
interactive semantic drawing extends this philosophy to en-
able fast multi-prompt region-based generation.

Controlling Generation from Diffusion Models. En-
hancing controllability of diffusion models is another in-
tensely investigated area of research. There are five major
subgroups: (1) modifying from intermediate latent vectors,
(2) modifying from inpainting masks, (3) attaching separate
conditional branches, (4) connecting a subset of prompt to-
kens to positions in an image, and (5) enabling finer-grained
generation from multiple, region-based prompts. The first
group including ILVR [8], RePaint [30], and SDEdit [33]
attempt to hijack the intermediate latent variables in the re-
verse process. There is another major group about utilizing
the inpainting function [36] of diffusion models in editing
images [3, 17, 30, 36, 51]. After diffusion models have
become massively publicized as image generation [2, 41]
and editing [11, 19, 20, 27, 33, 35, 49, 52] tools, the de-
mand for easier, modularized controls on behalf of pro-
fessional creators has increased. ControlNet [54] and IP-
Adapter [53] introduce simple yet effective way to append
image conditioning feature to existing pre-trained diffusion
models. Various text-conditioning [11, 19, 20, 27, 35] and
image-conditioning [10, 49, 52] methods are included in
this group. The third group, including GLIGEN [23] and
InstanceDiffusion [50] attach add-on modules to the diffu-
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Background: “A photo of a Greek temple”, Yellow: “A photo of God Zeus with arms open”, Red: “A tiny sitting eagle”

(a) Prompt (b) MD 50steps 52s (c) MD+LCM 5steps 5s (d) +PreAvg 5steps 5s (e) +Bstrap 5steps 5s (f) +QMask(Ours)5steps 5s

Figure 3. Our SEMANTICDRAW enables fast region-based text-to-image generation by stable acceleration of MultiDiffusion [5]. PreAvg,
Bstrap, and QMask stand for the latent pre-averaging, mask-centering bootstrapping, and quantized masks, our first three proposed strate-
gies. Each method used in (d), (e), (f) contains the method used in the previous image. The images are single tiles of size 768× 512 .

sion model that focus on increasing the positional accuracy
of a single prompt. Instead, we are mainly interested in
a scenario where image diffusion models continuously cre-
ate new images from multiple, dynamically moving, region-
ally assigned text prompts. This is most related to the final
group [4, 5] which focus on controlling the semantic com-
position of the generated images.

Generation from Multiple Regional Text Prompts. The
last group mentioned above provides a way to flexibly inte-
grate multiple regionally assigned text prompts into a single
image. SpaText [4], a pioneering work, achieves generation
from multiple spatially localized text prompts by utilizing
CLIP-based spatio-temporal representation. On the other
hand, MultiDiffusion [5] presents simple yet effective way
to generate from multiple different semantic masks: to it-
eratively decompose and recompose the latent images ac-
cording to different regional prompts during reverse diffu-
sion process. This simple formulation works not only with
irregular-shaped regions, but also with irregular-sized can-
vases. However, as mentioned in Section 1 and depicted in
Figure 2, this breakthrough has not been developed in aware
of modern acceleration methods, reducing their practical at-
traction in this era of rapid diffusion models. Starting from
the following section, we will establish the compatibility
between these type of pipeline architecture with accelerated
samplers. This opens a new type of semantic drawing ap-
plication, SEMANTICDRAW, where users draw images in-
teractively with brush-type tools that paints semantic mean-
ings as shown in Section 5.

3. Method
3.1. Preliminary
A latent diffusion model (LDM) [41] ϵθ is an additive Gaus-
sian noise estimator defined over a latent space. The model

ϵθ receives a combination of a noisy latent x , a text prompt
embedding y, and a timestep t ∈ [0, T ]. It outputs an esti-
mation of the noise ϵ that was mixed with the true latent x0 .
At inference, the diffusion model ϵθ is consulted multiple
times to estimate a latent x̂0 ≈ x0, which correlates to the
information described in the conditional input y , starting
from a pure noise xT ∼ N (0, 1)HWD . Each of the recur-
sive calls to the reverse diffusion process can be expressed
as a summation of a denoising term and a noise-adding term
to the intermediate latent:

xti−1
= STEP(xti ,y, i, ϵ; ϵθ, α, t) , (1)

where, we denote i as the index of the current time step ti .
Note that the newly added noise ϵ depends on the type of
scheduler.

Although this abstract form embraces almost every gen-
eration algorithm of diffusion models [15, 28, 47], it does
not consider practical scenarios of our interest: (1) when
the desired shape (H ′ × W ′) of the latent x̂′

0 is different
from that of the training set (H × W ) or (2) multiple text
prompts y1, . . . ,yp correlate to different regions of the gen-
erated images. MultiDiffusion [5] is one of the pioneers
to deal with this problem. Their main idea is to aggre-
gate (AGGRSTEP) multiple overlapping tiles of intermedi-
ate latents with simple averaging. That is, for every sam-
pling step ti , perform:

x′
ti−1

= AGGRSTEP(x′
ti ,y, i,W; STEP) (2)

=

∑
w∈W STEP(crop(w ⊙ x′

ti),yw, i, ϵ)∑
w∈W w

, (3)

where ⊙ is an element-wise multiplication, w ∈ W ⊂
{0, 1}H′W ′

is a binary mask for each latent tile, yw is a con-
ditional embedding corresponding to the tile w , and crop
is a cropping operation to chop down large x′

ti into tiles of
same size as training image latents.
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(a) Bootstrapping strategy overview. (b) Multi-prompt stream batch architecture.

Figure 4. SEMANTICDRAW pipeline architecture. We stabilize regionally controlled multi-prompt generation pipeline to build a precise
and fast sampling of region-based text-to-image generation. The effect of our bootstrapping and mask quantization strategies are shown
in Figure 3. The bootstrapping, centering, and uncentering only apply for the first few (1-3) steps in the generation process, whereas
MultiDiffusion aggregation is applied from the beginning to the end. The reader can also consult rigorous notations of Algorithm S2 in
Appendix S1 and our actual implementation. Further, with multi-prompt stream batch architecture in (b), we can maximize throughput by
hiding the latency by aggregating latents at different timesteps a single batch.

3.2. Acceleration-Compatible Regional Controls
Our objective is to build an accelerated solution to im-
age generation from multiple regionally assigned text
prompts. Unfortunately, simply replacing the Stable Dif-
fusion (SD) model [9, 37, 41] with an acceleration module,
such as Latent Consistency Model (LCM) [31] or SDXL-
Lightning [24], etc., and updating the default DDIM sam-
pler [47] with the corresponding accelerated sampler [18,
31] does not work in general. This incompatibility greatly
limits potential applications of both acceleration [7, 24, 31,
40] and region-based control techniques [4, 5]. We dis-
cuss each of the causes and seek for faster and stronger
alternatives. In summary, our stabilization trick consists
of three strategies: (1) latent pre-averaging, (2) mask-
centering bootstrapping, and (3) quantized masks.

Step 1: Achieving Compatibility through Latent Pre-
Averaging. The primary reason for the blurry image of
the second row of Figure 2 is that the previous algorithm [5]
is not aware of different types of underlying reverse diffu-
sion step functions STEP. While the reverse diffusion al-
gorithms can be categorized into two types: (1) additional
noise at each step [28, 31], (2) no additional noise at each
step [5, 47], the previous SOTA region-based controllable
method [5] falls into the latter. Hence, applying the averag-
ing aggregation of the method [5] cancels the prompt-wise
added noises in STEP, which leads to overly smooth latents.
We can avoid this problem with a simple workaround. First,
we split the STEP function into a deterministic denoising
part (DENOISE) and an optional noise addition:

xti−1 = x̃ti−1 + ηti−1ϵ (4)
= DENOISE(xti ,y, i; ϵθ, α, t) + ηti−1ϵ , (5)

where ηt is an algorithm-dependent parameter. The aver-
aging of equation (3) is then applied to the output of the
denoising part x̃ti−1 , instead of the output of the full step
xti−1

. Note that the noise is added after aggregation step.

x′
ti−1

= AGGRSTEP(x′
ti ,y, i,W; DENOISE) + ηti−1

ϵ .
(6)

As it can be seen in Figure 3d, this change alleviates the
compatibility issue with acceleration methods like LCM.

Step 2: Mask-Centering Bootstrapping for Few-Step
Generation. The second cause of the incompatibility lies
in the bootstrapping stage of the previous method [5]. Mul-
tiDiffusion [5] introduced bootstrapping stages that replace
the background latents with random colors in the first 40%
of total steps. This is performed to cut out the gener-
ated regions outside of object masks, which claims to en-
hance mask-fidelity. In original form, the perturbation in-
troduced by the bootstrapping cancels out during long in-
ference steps. However, as we decrease the number of
timesteps in ten-fold from n = 50 steps to n = 4 or 5
steps, the number of bootstrapping stage is reduced down
to n = 2 . Regrettably, this magnifies the effect of pertur-
bation introduced by the random color latents in the boot-
strapping phase, and results in leakage of mixed colors onto
the final image as shown in Figure 3. Instead, we propose to
use a mixture of white background and aggregation of con-
tents co-generated from other regional prompts (blue in Fig-
ure 4a), which alleviates the problem and allows compati-
bility with the accelerated generation as seen in Figure 3e.

Furthermore, we empirically found that first two steps of
reverse diffusion process determine the overall structure of
generated images when sampling with accelerated sched-
ulers. Even after the first step, the network formulates the
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Figure 5. Mask smoothing and quantization to control the tight-
ness of the prompt mask.

rough structure of the objects being created. The problem
is, diffusion models have strong bias to generate screen-
centered objects. After the first step, the object for every
mask is generated at the center of the screen, not at the cen-
ter of the mask. Off-centered objects are often masked out
by the pre-averaging step (yellow in Figure 4a). The final
results often neglect small, off-centered regional prompts,
and the large objects are often unnaturally cut, lacking har-
monization within the image. To prevent this, we propose
mask centering strategy (pink in Figure 4a) to exploit the
center-bias of the diffusion model. Especially, for the first
two steps of generation, we shift the intermediate latents
from each prompt to the center of the frame before being
handled by the noise estimator ϵθ . The result of Step 2 can
be seen in Figure 3e.

Step 3: Quantized Mask for Seamless Generation. An-
other problem from the reduced number of inference steps is
that harmonization of the generated content becomes more
difficult. As Figure 3e shows, all the objects appear to be
salient and their abrupt boundaries are visible between re-
gions. This is because the number of later sampling steps
that contribute to the harmonization is now insufficient. In
contrast, the baseline with long reverse diffusion steps 3b
effectively smooth out the mask boundaries by consecu-
tively adding noises and blurring them. To mitigate this
issue, we develop an alternative way to seamlessly amal-
gamate generated regions: quantized masks, shown in Fig-
ure 5. Given a binary mask, we obtain a smoothened mask
by applying Gaussian blur. Then, we quantize the real-
numbered mask by the noise levels of the diffusion sampler.
As Figure 4a illustrates, for each denoising step, we use a
mask with corresponding noise level. Since the noise lev-
els monotonically decrease throughout iterations, the cover-
age of a mask gradually increases along with each sampling
step, gradually mixing the boundary regions. The final re-
sult can be seen from Figure 3f. This relaxation of semantic

masks also provides intuitive interpretation of brushes, one
of the most widely used tool in professional graphics editing
software. We will revisit this interpretation in Section 5.

3.3. Optimization for Throughput
As mentioned in Section 1, achieving real-time response is
important for practical end-user application. Inspired by
StreamDiffusion [21], we reconstruct our region-based text-
to-image synthesis framework into a pipelined architecture
to maximize the throughput of image generation.

Multi-Prompt Stream Batch Architecture. Figure 4b il-
lustrates the architecture and the interfaces of our pipeline.
Instead of the typical mini-batched use of diffusion model
with synchronized timesteps, the noise estimator is fed with
a new input image every timestep along with the last pro-
cessed batch of images. In other words, each image in a
mini-batch has different timestep. This architecture hides
the latency caused by multi-step algorithm of reverse dif-
fusion. Restructuring our stabilized framework in 4a takes
several steps. The quantized masks, the background im-
ages, the noises, and the prompt embeddings differ along
each timesteps and should be saved separately. Instead of a
single image, we change the architecture to process a mini-
batch of images of different prompts and masks to the U-
Net at every timestep, as depicted in Figure 4b. We call
this the multi-prompt stream batch architecture. To further
reduce the latency, we added asynchronous pre-calculation
step applied only when a user command changes the con-
figuration of the text prompts and masks. This allows inter-
active brush-like interfaces elaborated in Section 5.

Optimizing Throughput. Additional increase of
throughput can be achieved by using a compressed autoen-
coder such as Tiny AutoEncoder [6]. Detailed analysis on
the effect of throughput optimization is in Table 6.

4. Experiment
We provide comprehensive evaluation of our SEMANTIC-
DRAW using various types of acceleration modules and
samplers. We compare our experiments based on the public
checkpoints of Stable Diffusion 1.5 [41], SDXL [37], and
SD3 [45]. However, we note that our method can be applied
to any community-trained models using DreamBooth [42].
More results can be found in Section S2 of our Supplemen-
tary Materials.

4.1. Quality of Generation
Generation from Multiple Region-Based Prompts. We
first demonstrate the stability and speed of our algorithm
for image generation from multiple regionally assigned text
prompts. The evaluation is based on COCO validation
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Table 1. Comparison of generation from region-based prompts
between DDIM [47] (default) and LCM [31] sampler.

Method Sampler FID ↓ IS ↑ CLIPfg ↑ CLIPbg ↑ Time (s) ↓

SD1.5 (512× 512)
MultiDiffusion (Ref.) DDIM [47] 70.93 16.24 24.09 27.55 14.1

MultiDiffusion (MD) LCM [31] 270.55 2.653 22.53 19.63 1.7
SemanticDraw (Ours) LCM [31] 93.93 14.12 24.14 24.00 1.3

Table 2. Comparison of generation from region-based prompts
between DDIM [47] (default) and Hyper-SD [40] sampler.

Method Sampler FID ↓ IS ↑ CLIPfg ↑ CLIPbg ↑ Time (s) ↓

SD1.5 (512× 512)
MultiDiffusion (Ref.) DDIM [47] 70.93 16.24 24.09 27.55 14.1

MultiDiffusion (MD) Hyper-SD [40] 168.34 10.12 20.08 15.90 1.7
SemanticDraw (Ours) Hyper-SD [40] 98.60 14.90 24.48 23.31 1.3

Table 3. Comparison of generation from region-based prompts
between DDIM [47] (default) and Euler Discrete [18] sampler.

Method Sampler FID ↓ IS ↑ CLIPfg ↑ CLIPbg ↑ Time (s) ↓

SDXL (1024× 1024)
MultiDiffusion (Ref.) DDIM [47] 73.77 16.31 24.16 28.11 50.6

MultiDiffusion (MD) EulerDiscrete [18] 572.95 1.328 21.02 17.36 4.3
SemanticDraw (Ours) EulerDiscrete [18] 84.27 15.04 24.19 24.22 3.6

Table 4. Comparison of generation from region-based prompts
between Flow Match Euler Discrete [9] (default) and Flash Flow
Match Euler Discrete [7] sampler.

Method Sampler FID ↓ IS ↑ CLIPfg ↑ CLIPbg ↑ Time (s) ↓

SD3 (1024× 1024)
MultiDiffusion (Ref.) FlowMatch [9] 166.42 8.517 20.66 16.39 46.3

MultiDiffusion (MD) FlashFlowMatch [7] 209.36 5.347 19.83 14.48 4.0
SemanticDraw (Ours) FlashFlowMatch [7] 79.2 17.41 23.59 27.83 3.2

dataset [25], where we generate images from the image cap-
tions as background prompts and object masks with cate-
gories as foreground prompts. The public latent diffusion
models [37, 41, 45] are trained for specific range of image
sizes, and reportedly fail when given image sizes are small.
Since COCO datasets consists of relatively small images
compared to the default size the models were trained for,
we rescale the object masks with nearest neighbor interpo-
lation to the default size of each model. This is 512×512 for
SD1.5 [41] and 1024× 1024 for SDXL [37] and SD3 [45].
To compare the image fidelity, we use Fréchet Inception
Distance (FID) [13] and Inception Score (IS) [44]. We
also use CLIP scores [12] to compare the text prompt fi-
delity. We separate the foreground score (CLIPfg), which
is obtained by taking the average CLIP score between each
generated image and corresponding set of foreground object
categories, from the background score (CLIPbg), which is a
measured between images and their corresponding COCO
captions. Tables 1 through 4 summarizes the results. We
implement MultiDiffusion [5] for SDXL [37] and SD3 [45]
simply by changing the pipelines, accelerator LoRAs [16],
and schedulers, from the official implementation. Even

Background: “Plain wall”, Yellow: “A desk”, Red: “A flower vase”, Blue: “A window”

Background: “A photo of backyard”, Yellow: “A yellow bird”, Red: “A red bird”

Background: “A floor”, Yellow: “A box”, Red: “A tiny head of a cat”

Background: “A photo”, Yellow: “A smiling girl”, Red: “A cool beret hat”, Blue: “Sky at noon”

(a) Prompt (b) MD, 50 steps (c) MD+LCM,
5 steps

(d) Ours, 5 steps

Figure 6. Region-based text-to-image synthesis results. Our sta-
bilization methods accelerate MultiDiffusion [5] up to ×10 while
preserving quality in small image domain. For larger image, refer
to Figure 2.

though schedulers with higher numbers of iterations gener-
ally produce better quality images [47], the tables show that
our accelerated pipeline achieves comparable quality with
more than ×10 reduction of time. These results demonstrate
that our method provides universal acceleration under dif-
ferent types of diffusion pipelines (SD1.5 [32] , SDXL [37],
SD3 [9]), noise schedulers (DDIM [47], LCM [31], Euler
Discrete [18], Flow Match Euler Discrete [9]), and acceler-
ation methods (LCM [31], Lightning [24], Hyper-SD [40],
Flash Diffusion [7]), without compromising the visual qual-
ity. Figure 6 shows a random subset of generation from the
experiments in Table 1. Comparable visual quality from our
method is consistent to the quantitative comparisons.

Stabilized Acceleration of Region-Based Generation.
Next, we evaluate the effectiveness of each stabilization step
introduced in Section 3.2. Figure 3 and Table 5 summarize
the result on region-based text-to-image generation from
the same setup as Table 1. Applying each strategy con-
sistently boosts both perceptual quality, measured by FID
score [13], and text prompt-fidelity, measured by the two
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Table 5. Ablation on the effectiveness of our stabilization tech-
niques on the fidelity of region-based generation.

Method FID ↓ CLIPfg ↑ CLIPbg ↑
No stabilization 270.55 22.53 19.63
+ Latent pre-averaging 80.64 22.80 26.95
+ Mask-centering bootstrapping 79.54 23.06 26.72
+ Quantized masks (σ = 4) 78.21 23.08 26.72

Table 6. Ablations on throughput optimization techniques, mea-
sured with a single RTX 2080 Ti. Images of 512× 512 are gener-
ated from three prompt-mask pairs.

Method Throughput (FPS) Relative Speedup

Baseline [5] 0.0189 ×1.0
+ Stable Acceleration 0.183 ×9.7
+ Multi-Prompt Stream Batch 1.38 ×73.0
+ Tiny AutoEncoder [6] 1.57 ×83.1

CLIP scores [12]. This reveals that our techniques help al-
leviating the incompatibility as intended.

Throughput Maximization. Lastly, Table 6 compares
the effect of throughput optimization. We have already
achieved ×9.7 speed-up by establishing the compatibility
with acceleration modules. This is further enhanced though
our multi-prompt stream batch architecture. By introducing
low-memory autoencoder [6] to trade quality off for speed,
we could finally achieve 1.57 FPS (0.64 seconds per frame).
We believe that this near real-time, sub-second generation
speed is a necessary condition towards practical applica-
tions of generative models.

5. SemanticDraw
Our real-time interface of SEMANTICDRAW opens up a
new paradigm of user-interactive application for image gen-
eration. We discuss the key features of the application.

Concept. Responsive region-based text-to-image synthe-
sis enabled by our streaming pipeline allows users to edit
their prompt masks similarly to drawing. Since it is the
prompt and not the mask that requires heavy pre-processing
as discussed in Section 3.3, the mask modification feed-
back can be immediately given to users to iteratively change
their commands according to the generated image. In other
words, once the prompt is preprocessed by the application,
the users can paint with text prompts just like they can paint
a drawing with colored brushes, hence the name: SEMAN-
TICDRAW.

Sample Application Design. This is a brief description
of our demo application. Screenshots are shown in Fig-
ure 7. The application consists of a front-end user interface

(a) Semantic Draw. (b) Streaming Semantic Draw.

Figure 7. Screenshot of the sample applications of SEMANTIC-
DRAW. After registering prompts and optional background im-
age, the users can create images in real-time by drawing with text
prompts. All the applications are available from our project page.
We invite readers to play with the accompanied demo application.
It is enjoyable.

and a back-end server that runs SEMANTICDRAW. Each
user input is either a modification of the background im-
age, the text prompts, the masks, and the tweakable options
for the text prompts and the masks such as mix ratios and
blur strengths. When commanding major changes requiring
preprocessing stages, such as a change of prompts or the
background, the back-end pipeline is flushed and reinitial-
ized with the newly given context. Otherwise, the pipeline
is repeatedly called to obtain a stream of generated images.
The user first selects the background image and creates a
palette of semantic masks by entering a pair of positive and
negative text prompts. The user can then draw masks cor-
responding to the created palette with a familiar brush tool,
a shape tool, or a paint tool. The application automatically
generates a stream of synthesized images according to user
inputs. We gently invite readers to play with our technical
demo from our official code repository3.

6. Conclusion

We proposed SEMANTICDRAW, a new type image content
creation where users interactively draw with a brush tool
that paints semantic masks to endlessly and continuously
create images. Enabling this application required high gen-
eration throughput and well-established compatibility be-
tween regional control pipelines and acceleration sched-
ulers. We devised multi-prompt regional control pipeline
that is both scheduler-agnostic and network-agnostic in or-
der to maximize the compatibility. We further proposed
multi-prompt stream batch architecture to build a near real-
time, highly interactive image content creation system for
professional usage. Our SEMANTICDRAW achieves up to
×50 faster generation of large scale images than the base-
line, bringing the latency of multi-prompt irregular-sized
generation down to a practically meaningful bounds.

3https://github.com/ironjr/semantic-draw
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SemanticDraw: Towards Real-Time Interactive Content Creation
from Image Diffusion Models

Supplementary Material

Abstract

Section S1 shows implementation details of our accelera-
tion methods. In Section S2, additional visual results are
shown. Finally, we provide our demo application as we
have promised in our main manuscript. Our formulation in-
troduces new controllable hyperparameters that users may
interact in order to create images that respect their inten-
tions. Section S3 demonstrates how our new tool can be
used in image content creation.

S1. Implementation Details
We begin by providing additional implementation details.

S1.1. Acceleration-Compatible Regional Controls
Algorithm S1 compares between the the baseline MultiDif-
fusion [5] and our stabilized sampling from multiple region-
ally assigned text prompts introduced in Section 3.2 of the
main manuscript. As we have discussed in Section 3 of the
main manuscript, improper placing of the aggregation step
and strong interference of its bootstrapping strategy limit
the ability to generate visually pleasing images under mod-
ern fast inference algorithms [7, 24, 31, 32, 40, 48]. There-
fore, we instead focus on changing the bootstrapping stage
of line 9-13 and the diffusion update stage of line 14-15 of
Algorithm S1 in order to establish compatibility to acceler-
ating diffusion samplers.

The resulting Algorithm S2 developed in Section 3.2
of the main manuscript achieves this. The differences be-
tween our approach from the baseline inference algorithm
are marked with blue. First, in line 10, we change the boot-
strapping background color to white. Having extremely low
number of sampling steps (4-5), this bootstrapping back-
ground is easily leaked through the final image as seen in
Figure 3 of the main manuscript. We notice that white back-
grounds are common in public image datasets on which the
diffusion models are trained. Therefore, changing random
background images into white backgrounds alleviate this
leakage problem.

Diffusion models have a strong tendency to generate ob-
jects at the center of the frame. This positional bias makes
generation from small, off-centered masks difficult espe-
cially in the accelerated sampling, where the final struc-
ture of generated images are determined at the first two
inference steps. By masking with off-centered masks, the
objects under generation are unnaturally cut, leading to

User Cmd t t + 1 t + 2 t + 3 t + 4 t + 5

1: initialize E U0 U1 U2 U3 U4 D

2: no-op
U0 U1 U2 U3 U4 D

3: draw mask
U0 U1 U2 U3

4: edit prompt E U0 U1 U2

5: edit mask
U0 U1

6: no-op
U0

Figure S1. Example execution process of Multi-Prompt Stream
Batch pipeline of SEMANTICDRAW. By aggregating latents at
different timesteps a single batch, we can maximize throughput
by hiding the latency.

defective generations. Lines 13-14 of Algorithm S2 are
our mask-centering stage for bootstrapping to alleviate this
problem. In the first few steps of generation, for each
mask-designated object, intermediate latents are masked
then shifted to the center of the object bounding box. This
operation enforces the denoising network to focus on each
foreground object located at the center of the screen. Lines
17-19 of Algorithm S2 undo this centering operation done
in lines 13-14. The separately estimated foreground objects
are aggregated into the single scene by shifting them back
to their original absolute positions.

Finally, a single reverse diffusion step in line 14 of Al-
gorithm S1 is split into the denoising part in line 16 of Al-
gorithm S2 and the noise addition part in line 24 of Algo-
rithm S2. As we have discussed with visual example in
Figure 3c in the main manuscript, this simple augmenta-
tion of the original MultiDiffusion [5] stabilizes the algo-
rithm to work with fast inference techniques such as LCM-
LoRA [31, 32], SDXL-Lightning [24], Hyper-SD [40], and
Flash Diffusion [7]. Also refer to panorama generation
in Figure S5 where this wrongly placed aggregation after
STEP operation causing extremely blurry generation under
accelerating schedulers [31, 32]. The readers may also con-
sult our submitted code for the implementation of Algo-
rithm S2.

S1.2. Streaming Pipeline Execution

Extending Figure 4b of the main manuscript, Figure S1
elaborates on the pipelined execution from our multi-prompt
stream batch architecture for near real-time generation from
multiple regionally assigned text prompts. We have empiri-
cally found that the text and image encoders for popular dif-
fusion models take significantly longer latency than the de-
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Algorithm S1: Baseline [5].
Input: a diffusion model ϵθ , a latent autoencoder (enc,dec) , prompt embeddings y1:p , masks w1:p , timesteps t = t1:n , the output size

(H′,W ′) , the tile size (H,W ) , an inference algorithm STEP , a noise schedule α , the number of bootstrapping steps nbstrap .
Output: An image I of designated size (8H′, 8W ′) generated from multiple text-mask pairs.

1 x′
tn
∼ N (0, 1)H

′×W ′×D // sample the initial latent

2 {T1, . . . , Tm} ⊂ {(ht, hb, wl, wr) : 0 ≤ ht < hb ≤ H′, 0 ≤ wl < wr ≤W ′}
// get a set of overlapping tiles

3 for i← n to 1 do
4 x̃← 0 ∈ RH′×W ′×D // placeholder for the next step latent

5 w̃ ← 0 ∈ RH′×W ′
// placeholder for the next step mask weights

6 for j ← 1 to m do
7 x̄1:p ← repeat(crop(xti , Tj), p) // get a cropped intermediate latent tile

8 w̄1:p ← crop(w1:p, Tj) // get cropped mask tiles

9 if i ≤ nbstrap then
10 xbg ← enc(c1) , where c ∼ U(0, 1)3 // get a uniform color background

11 xbg ←
√

α(ti)xbg
√

1− α(ti)ϵ , where ϵ ∼ N (0, 1)H×W×D // add noise to the background for mixing

12 x̄1:p ← w̄1:p ⊙ x̄1:p + (1− w̄1:p)⊙ xbg // bootstrap by treating as multiple single-instance images

13 end
14 x̄1:p ← STEP(x̄1:p,y1:p, i; ϵθ, α, t) // prompt-wise batched diffusion update

15 x̃[Tj ]← x̃[Tj ] +
∑p

k=1 w̄k ⊙ x̄k // aggregation by averaging

16 w̃[Tj ]← w̃[Tj ] +
∑p

k=1 w̄k // total weights for normalization

17 end
18 xti−1 ← x̃⊙ w̃−1 // reverse diffusion step

19 end
20 I ← dec(xt1 ) // decode latents to get an image

Algorithm S2: SEMANTICDRAW pipeline of Section 3.2.

Input: a diffusion model ϵθ , a latent autoencoder (enc,dec) , prompt embeddings y1:p , quantized masks w(t1:n)
1:p , timesteps t = t1:n , the

output size (H′,W ′) , a noise schedule α and η , the tile size (H,W ) , an inference algorithm STEPEXCEPTNOISE , the number of
bootstrapping steps nbstrap .

Output: An image I of designated size (8H′, 8W ′) generated from multiple text-mask pairs.
1 x′

tn
∼ N (0, 1)H

′×W ′×D

2 {T1, . . . , Tm} ⊂ {(ht, hb, wl, wr) : 0 ≤ ht < hb ≤ H′, 0 ≤ wl < wr ≤W ′}
3 for i← n to 1 do
4 x̃← 0 ∈ RH′×W ′×D

5 w̃ ← 0 ∈ RH′×W ′

6 for j ← 1 to m do
7 x̄1:p ← repeat(crop(xti , Tj), p)
8 w̄

(ti)
1:p ← crop(w

(ti)
1:p , Tj) // use different quantized masks for each timestep

9 if i ≤ nbstrap then
10 xbg ← enc(1) // get a white color background

11 xbg ←
√

α(ti)xbg
√

1− α(ti)ϵ , where ϵ ∼ N (0, 1)H×W×D

12 x̄1:p ← w̄1:p ⊙ x̄1:p + (1− w̄1:p)⊙ xbg

13 u1:p ← get bounding box centers(w̄1:p) ∈ Rp×2 // get the bounding box center of each mask

14 x̄1:p ← roll by coordinates(x̄1:p,u1:p) // center foregrounds to their mask centers

15 end
16 x̄1:p ← STEPEXCEPTNOISE(x̄1:p,y1:p, i; ϵθ, α, t) // pre-averaging

17 if i ≤ nbstrap then
18 x̄1:p ← roll by coordinates(x̄1:p,−u1:p) // restore from centering

19 end
20 x̃[Tj ]← x̃[Tj ] +

∑p
k=1 w̄k ⊙ x̄k

21 w̃[Tj ]← w̃[Tj ] +
∑p

k=1 w̄k

22 end
23 xti−1 ← x̃⊙ w̃−1

24 xti−1 ← xti−1 + ηti−1ϵ , where ϵ ∼ N (0, 1)H×W×D // post-addition of noise

25 end
26 I ← dec(xt1 )
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Background: “A brick wall”, Red: “A moss”

(a) Prompt mask. (b) σ = 0 , i.e., no QMask.

(c) σ = 16 . (d) σ = 32 .

Figure S2. Effect of the standard deviation in mask smoothing.

noising network. Assuming that users change text prompts
and background images less frequently than they change the
areas occupied by each semantic masks, such latency can
be hidden under the high-throughput streaming generation
of images. Moreover, mask processing takes almost negli-
gible latency compared to image generation or text encod-
ing. In other words, drawing with semantic masks of pre-
encoded text prompts do not affect the generation speed,
allowing users to almost seamlessly interact with the gener-
ation pipeline by friendly drawing interface. This user in-
terface of our drawing-based interactive content creation is
the same as commercial drawing software with brush tools.
The only difference is that our brush tools apply semantic
masks instead of colors or patterns. This similarity opens
up a novel application for diffusion models, i.e., SEMAN-
TICDRAW.

S1.3. Mask Quantization
To increase harmonization within a created image, we have
introduced mask quantization as our final piece of the puz-
zle in Section 3.2 of the main manuscript. Mask quanti-
zation allows smooth masks with controllable smoothness
that resemble soft brush tools in common drawing software.
Therefore, this stage not only increases image fidelity but
also enhances user experience in our SEMANTICDRAW ap-
plication. This section explains additional technical details
of mask quantization.

As Figure 5 of the main manuscript shows, the mask
smoothing is an optional preprocessing procedure before

generation. Once users provide a set of masks correspond-
ing to a set of text prompts they want to draw, the binary
masks are smoothened with a low-pass filter such as Gaus-
sian blurs. In order to perform masking with these con-
tinuous masks for discrete denoising steps of the acceler-
ated schedulers [7, 24, 31, 32, 40], we create a set of binary
masks from each of the continuous masks by thresholding
with the noise levels predefined by the diffusion scheduler.
For example, Figure 5 of the main manuscript shows five
noise levels actually used in generating the results in the
main manuscript and throughout this Supplementary Mate-
rial. The resulting set of binary masks have monotonically
increasing sizes as the corresponding noise levels become
lower. Note that we can interpret a noise level of each gen-
erating step as a magnitude of uncertainty during the re-
verse diffusion process. Since the boundary of an object is
fuzzier than the center of the object of prescribed masked
region, the more uncertain boundary regions can be sam-
pled only during the few latest steps where detailed textures
dominant over structural development. Therefore, a natural
way of applying these binary masks is in the order of in-
creasing size. By applying each generated binary mask at
the timestep with corresponding noise level, we effectively
enlarge the size of the mask of a foreground text prompt as
we proceed on the generative denoising steps.

The blurring and quantization of the binary masks have
a nice interpretation of a rough sketch. In many cases where
users prescribe masks to query for multi-object generation,
the exact boundary locations for the best visual construction
of an image are not known a priori. In other words, human
creation of arts almost always starts with rough sketches.
We can increase or decrease the standard deviation of the
blur to control the roughness of the sketch, i.e., the certainty
of our designation on the boundary. This additional control
knob is effective in creating AI-driven arts which inherently
exploits high randomness in practice. For reference, Fig-
ure S2 shows the effect of increasing the blurriness at the
mask proprocessing step. As the standard deviation of the
mask blur increases from 0 to 32, the moss, the content of
the mask, gradually shrinks and semantically blurred with
the brick wall, the background content. As our supplemen-
tary code show, this semantic mixing effect of mask blurring
and quantization is helpful to harmonize contents in genera-
tive editing tasks, i.e., inpainting, where background images
are predefined and not fully masked out during generation.

S2. More Results
In this section, we provide additional visual comparison
results between baseline MultiDiffusion [5], a simple ap-
plication of acceleration modules [31, 32] to the baseline,
and our stabilized Algorithm S2. We show that our al-
gorithm is capable of generating large-scale images from
multiple regional prompts with a single commercial off-the-
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Image prompt (row, column): Background (1, 1): “Clear deep blue sky”, Green (1, 2): “Summer mountains”, Red (1, 3): “The Sun”, Pale Blue (2, 1): “The Moon”, Light Orange
(2, 2): “A giant waterfall”, Purple (2, 3): “A giant waterfall”, Blue (3, 1): “Clean deep blue lake”, Orange (3, 2): “A large tree”, Light Green (3, 3): “A large tree”

Figure S3. Mask overlay images of the generation result in Figure 2 of the main manuscript. Generation by our SEMANTICDRAW not only
achieves high speed of convergence, but also high mask fidelity in the large-size region-based text-to-image synthesis, compared to the
baseline MultiDiffusion [5]. Each cell shows how each mask (including the background one) maps to each generated region of the image,
as described in the label below. Note that we have not provided any additional color or structural control other than our semantic palette,
which is simply pairs of text prompts and binary masks.

shelf graphics card, e.g., an RTX 2080 Ti GPU.

S2.1. Region-Based Text-to-Image Generation

We show additional region-based text-to-image generation
results in Figure S4. In addition to Figure 6 of the main
manuscript, the generated samples show that our method
is able to accelerate region-based text-to-image generation
consistently by ×10 without compromising the generation
quality. Moreover, Figure 2 of the main manuscript has
shown that the benefits from our acceleration method for
arbitrary-sized generation and region-based controls are in-
deed simultaneously enjoyable. Our acceleration method
enables publicly available Stable Diffusion v1.5 [41] to gen-
erate a 1920 × 768 scene from eight hand-drawn masks in
59 seconds, which is ×52.5 faster than the baseline [5] tak-
ing more than 51 minutes to converge into a low-fidelity
image. Figure S3 shows mask fidelity of this generation.
We can visualize that even if the generated image has larger
dimension than the dimensions the model has been trained
for, i.e., 768 × 768 , the mask fidelity is achieved under
this accelerated generation. Locations and sizes of the Sun
and the Moon match to the provided masks in near per-
fection; whereas mountains and waterfalls are harmonized
within the overall image, without violating region bound-
aries. This shows that the flexibility and the speed of our
generation paradigm, SEMANTICDRAW, is also capable of
professional usage.

Regarding that professional image creation process us-

ing diffusion models typically involves a multitude of re-
sampling trials with different seeds, the original baseline
model’s convergence speed of one image per hour severely
limits the applicability of the algorithm. In contrast, our ac-
celeration method enables the same large-size region-based
text-to-image synthesis to be done under a minute, making
this technology practical to industrial usage.

S2.2. Panorama Generation

We can also visually compare arbitrary-sized image cre-
ation with panorama image generation task. As briefly
mentioned in Section S1, comparing with this task reveals
the problem of incompatibility between accelerating sched-
ulers and current region-based multiple text-to-image syn-
thesis pipelines. Figure S5 shows the results of large-scale
panorama image generation using our method, where we
generate 512 × 4608 images from a single text prompt.
Naı̈vely applying acceleration to existing solution leads to
blurry unrealistic generation, enforcing users to resort to
more conventional diffusion schedulers that take long time
to generate [47]. Instead, our method is compatible to ac-
celerated samplers [7, 24, 31, 32, 40], showing ×13 faster
generation of images with sizes much larger than the reso-
lutions of 512× 512 or 768× 768 , for which the diffusion
model [41] is trained. Combining results from Section S2.1
and S2.2 our Algorithm S2 significantly broadens the us-
ability of diffusion models for professional content creators.
This leads to the last section of this Supplementary Mate-
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Background: “A cinematic photo of a sunset”, Yellow: “An abandoned castle wall”, Red: “A photo of Alps”, Blue: “A daisy field”

Background: “A photo of outside”, Yellow: “A river”, Red: “A photo of a boy”, Blue: “A purple balloon”

Background: “A grassland”, Yellow: “A tree blossom”, Red: “A photo of small polar bear”

Background: “A photo of mountains with lion on the cliff”, Yellow: “A rocky cliff”, Red: “A dense forest”, Blue: “A walking lion”

Background: “A photo of the starry sky”, Yellow: “The Earth seen from ISS”, Red: “A photo of a falling asteroid”

(a) Prompt (b) MD, 50 steps (c) MD+LCM, 5 steps (d) Ours, 5 steps

Figure S4. Additional region-based text-to-image synthesis results. Our method accelerates MultiDiffusion [5] up to ×10 while preserving
or even boosting mask fidelity. 15
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Figure S5. Additional panorama generation results. The images of size 512 × 4608 are sampled with 50 steps for MD and 4 steps for
MD+LCM and Ours. Our SEMANTICDRAW can synthesize high-resolution images in seconds. We achieve ×13 improvement in inference
latency.
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(a) Screenshot of the application. (b) Application design schematics.

Figure S6. Sample application demonstrating semantic palette enabled by our SEMANTICDRAW algorithm. After registering prompts and
optional background image, the users can create images in real-time by drawing with text prompts.

rial, the description of our submitted demo application.

S3. Design of a Sample Application

This last section elaborates on the design and the example
usage of our demo application of SEMANTICDRAW, intro-
duced in Section 5 of the main manuscript. Starting from
the basic description of user interface in Section S3.1, we
discuss the expected usage of the app in Section S3.2. Our
discussion mainly focuses on how real-time interactive con-
tent creation is achieved from accelerated region-based text-
to-image generation algorithm we have provided.

S3.1. User Interface
As illustrated in Figure S6b, user interactions are classified
into two groups, i.e., the slow processes and the fast pro-
cesses, based on the latency of response from the model.
Due to the high overhead of text encoder and image en-
coder, the processes involving these modules are classified
as slow processes. However, operations such as preprocess-
ing or saving of mask tensors and sampling of the U-Net
for a single step take less than a second. These processes
are, therefore, classified as fast ones. SEMANTICDRAW,
our suggested paradigm of image generation, comes from
the observation that, if a user first registers text prompts,
image generation from user-drawn regions can be done in
real-time.

The user interface of Figure S7 is designed based on the
philosophy to maximize user interactions of the fast type
and to hide the latency of the slow type. Figure S7 and
Table S1 summarize the components of our user interface.
The interface is divided into four compartments: the (a) se-
mantic palette, which is a palette of registered text prompts
(no. 1-2), the (b) drawing screen (no. 3-5), the (c) streaming
display and controls (no. 6-7), and the (d) control panel for
the additional controls (no 8-13). The (a) semantic palette

manages the number of semantic brushes to be used in the
generation, which will be further explained below. Users
are expected to interact with the application mainly through
(b) drawing screen, where users can upload backgrounds
and draw on the screen with selected semantic brush. Then,
by turning (c) streaming interface on, the users can receive
generated images based on the drawn regional text prompts
in real-time. The attributes of semantic brushes are modi-
fied through (d) control panel.

Types of the transaction data between application and
user are in twofold: a (1) background and a (2) list of text
prompt-mask pairs, named semantic brushes. The user can
register these two types of data to control the generation
stream. Each semantic brush consists of two part: (1) text
prompt, which can be edited in the (d) control panel after
clicking on the brush in (a) semantic palette, a set of avail-
able text prompts to draw with, and (2) mask, which can be
edited by selecting the corresponding color brush at draw-
ing tools (no. 5), and drawing on the drawing pad (no. 3)
with a brush of any color. Note that in the released ver-
sion of our code, the color of semantic brush does not affect
generation results. Its color only separates a semantic brush
from another for the users to discern.

As the interface of the (d) control panel implies, our re-
formulation of MultiDiffusion [5] provides additional hy-
perparameters that can be utilized for professional creators
to control their creation processes. The mask alpha (no.
11) and the mask blur std (no. 12) determine preprocess-
ing attributes of selected semantic brush. Before the mask
is quantized into predefined noise levels of scheduler, as
elaborated in Section S1.3, mask is first multiplied by mask
alpha and goes through an isotropic Gaussian blur with a
specified standard deviation. That is, given a mask w ,
a mask alpha a , and the noise level scheduling function
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Figure S7. Screenshot of our supplementary demo application. Details of the numbered components are elaborated in Table S1.

Table S1. Description of each numbered component in the SEMANTICDRAW demo application of Figure S7.

No. Component Name Description

1 Semantic palette Create and manage text prompt-mask pairs.
2 Import/export semantic palette Easy management of text prompt sets to draw.
3 Main drawing pad User draws at each semantic layers with brush tool.
4 Background image upload User uploads background image to start drawing.
5 Drawing tools Using brush and erasers to interactively edit the prompt masks.
6 Display Generated images are streamed through this component.
7 History Generated images are logged for later reuse.
8 Prompt edit User can interactively change the positive/negative prompts at need.
9 Prompt strength control Prompt embedding mix ratio between the current & the background. Helps content blending.

10 Brush name edit Adds convenience by changing the name of the brush. Does not affect the generation.
11 Mask alpha control Changes the mask alpha value before quantization. Recommended: > 0.95 .
12 Mask blur std. dev. control Changes the standard deviation of the quantized mask of the current semantic brush.
13 Seed control Changes the seed of the application.
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(a) Upload a background image. (b) Register semantic palette.

(c) Draw with semantic brushes. (d) Play the stream and interact.

Figure S8. Illustrated usage guide of our demo application of SEMANTICDRAW.

β(t) =
√
1− α(t) , the resulting quantized mask w

(ti)
1:p is:

w
(ti)
1:p = 1[aw > β(ti)] , (S7)

where 1[·] is an indicator function taking the inequality as
a binary operator to make a boolean mask tensor w(ti)

1:p at
time ti . The default noise levels β(t) of the acceleration
modules [7, 24, 31, 32, 40] are close to one, as shown in
Figure 5 of the main manuscript. This makes mask alpha
extremely sensitive. By changing its value only slightly,
e.g., down to 0.98, the corresponding prompt already skips
first two sampling steps. This quickly degenerates the con-
tent of the prompt, and therefore, the mask alpha (no. 11)
should be used in care. The effect of mask blur std (no.
12) is shown in Figure S2, and will not be further elabo-
rated in this section. The seed of the system can be tuned
by seed control (no. 13). Nonetheless, controlling pseudo-

random generator will rarely be needed since the applica-
tion generates images in an infinite stream. The prompt
edit (no. 8) is the main control of semantic brush. The
users can change text prompt even when generation is on
stream. It takes exactly the total number of inference steps,
i.e., 5 steps, for a change in prompts to take effect. Fi-
nally, we provide prompt strength (no. 9) as an alterna-
tive to highly sensitive mask alpha (no. 11) to control the
saliency of the target prompt. Although modifying the al-
pha channel provides good intuition for graphics designer
being already familiar to alpha blending, the noise levels of
consistency model [7, 24, 31, 32, 40, 48] make the mask
alpha value not aligned well with our intuition in alpha
blending. Prompt strength is a mix ratio between the em-
beddings of the foreground text prompt of given semantic
brush and background text prompt. We empirically find that
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changing the prompt strengths gives smoother control to the
foreground-background blending strength than mask alpha.
However, whereas the mask alpha can be applied locally,
the prompt strength only globally takes effect. Therefore,
we believe that the two controls are complementary to one
another.

S3.2. Basic Usage
We provide the simplest procedure of creating images from
SEMANTICDRAW pipeline. Screenshots in Figure S8 illus-
trate the four-step process.

1. Start the Application. After installing the required
packages, the user can open the application with the fol-
lowing command prompt:

1 python app.py --model
"KBlueLeaf/kohaku-v2.1" --height 512
--width 512

The application front-end is web-based and can be opened
with any web browser through localhost:8000 . We
currently support various baseline architecture including
Stable Diffusion 1.5 [41], Stable Diffusion XL [37], and
Stable Diffusion 3 [45] checkpoints for --model op-
tion. For SD1.5, we support latent consistency model
(LCM) [31, 32] and Hyper-SD [40], for SDXL, we support
SDXL-Lightning [24], and for SD3, we support Flash Dif-
fusion [7] for acceleration of the generation process. The
height and the width of canvas should be predefined at the
startup of the application.

2. Upload Background Image. See Figure S8a. The
first interaction with the application is to upload any im-
age as background by clicking the background image up-
load (no. 4) panel. The uploaded background image will
be resized to match the canvas. After uploading the im-
age, the background prompt of the uploaded image is au-
tomatically generated for the user by pre-trained BLIP-2
model [22]. The background prompt is used to blend be-
tween foreground and background in prompt-level globally,
as elaborated in Section S3.1. The interpolation takes place
when a foreground text prompt embedding is assigned with
a prompt strength less than one. User is always able to
change the background prompt like other prompts in the se-
mantic palette.

3. Type in Text Prompts. See Figure S8b. The next
step is to create and manage semantic brushes by interact-
ing with the semantic palette (no. 1). A minimal required
modification is text prompt assignment through the prompt
edit (no. 8) panel. The user can additionally modify other
options in the control panel marked as yellow in Figure S8b.

4. Draw. See Figure S8c. A user may start drawing by se-
lecting a brush in drawing tools (no. 5) toolbar that matches
the user-specified text prompt in the previous step. Grab
a brush, draw, and submit the drawn masks. After initiat-
ing the content creation, the images are streamed through
the display (no. 6) in real-time from dynamically changing
user inputs. The past generations are saved in history (no.
7).
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