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Abstract

Contrastive learning is a method of learning visual representations by training
Deep Neural Networks (DNNs) to increase the similarity between representations
of positive pairs (transformations of the same image) and reduce the similarity
between representations of negative pairs (transformations of different images).
Here we explore Energy-Based Contrastive Learning (EBCLR) that leverages
the power of generative learning by combining contrastive learning with Energy-
Based Models (EBMs). EBCLR can be theoretically interpreted as learning the
joint distribution of positive pairs, and it shows promising results on small and
medium-scale datasets such as MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-
100. Specifically, we find EBCLR demonstrates from x4 up to x20 acceleration
compared to SIimCLR and MoCo v2 in terms of training epochs. Furthermore, in
contrast to SImCLR, we observe EBCLR achieves nearly the same performance
with 254 negative pairs (batch size 128) and 30 negative pairs (batch size 16) per
positive pair, demonstrating the robustness of EBCLR to small numbers of negative
pairs. Hence, EBCLR provides a novel avenue for improving contrastive learning
methods that usually require large datasets with a significant number of negative
pairs per iteration to achieve reasonable performance on downstream tasks. Code:
https://github.com/1202kbs/EBCLR

1 Introduction

In computer vision, supervised learning requires a large-scale human-annotated dataset of images to
train accurate deep neural networks (DNNs). However, acquiring labels for millions of images can be
difficult or impossible in practice. This has led to the rise of self-supervised learning, which learns
useful visual representations by forcing DNNs to be invariant or equivariant to image transformations.
Among self-supervised learning algorithms, contrastive methods are rapidly gaining popularity for
their superb performance.

Specifically, contrastive learning methods [} 2 3} |4, I5] train DNNs by increasing the similarity
between representations of positive pairs (transformations of the same image) and decreasing the
similarity between representations of negative pairs (transformations of different images). The
negative pairs prevent DNNs from collapsing to the trivial constant function. There are numerous
contrastive learning methods, such as SimCLR [4], Momentum Contrast (MoCo) [3], etc.

Despite this flurry of research in contrastive learning, contrastive methods require large datasets and
a large number of negative pairs per positive pair to achieve reasonable performance on downstream
tasks. Although there are recently proposed non-contrastive methods such as BYOL [6] and SimSiam
[7]] that do not rely on negative pairs, they require heuristic techniques such as stop-gradient to avert
collapsing to the trivial solution. There has been an effort to explain the dynamics of non-contrastive
methods with linear neural networks [3]], but it is unclear how the analyses generalize to DNNs.
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Figure 1: Left: An illustration of EBCLR. Here, o means “is a monotonically increasing function
of”. We use p(v,v’), the joint distribution of positive pairs, as a measure of semantic similarity of
images. Specifically, p(v,v’) will be high when v and v’ are semantically similar, and low otherwise.
A DNN fy is trained such that the distance in the projection space is controlled by 1/p(v,v"). Right:
Comparison of EBCLR, SimCLR, and MoCo v2 on CIFAR10 in terms of linear evaluation accuracy.
EBCLR at epoch 10 beats MoCo v2 at epoch 100, and EBCLR at epoch 20 beats SimCLR and MoCo
v2 at epoch 100. Moreover, EBCLR shows identical performance regardless of whether we use 254
negative pairs (batch size 128) or 30 negative pairs (batch size 16) per positive pair.

In this paper, we explore a novel avenue in visual representation learning: Energy-Based Contrastive
Learning (EBCLR) which leverages the power of generative learning [8, 9, [10] by combining
contrastive learning with energy-based models (EBMs). EBCLR complements the contrastive
learning loss with a generative loss, and it can be interpreted as learning the joint distribution of
positive pairs. In fact, we demonstrate that the existing contrastive loss is a special case of the EBCLR
loss if the generative term is not used. Although EBMs are notorious for being difficult to train
due to their reliance on Stochastic Gradient Langevin Dynamics (SGLD) [[11], another important
contribution of this work is that we overcome this by appropriate modifications to SGLD.

Extensive experiments on a variety of small and medium-scale datasets demonstrate that EBCLR is
robust to small numbers of negative pairs, and it outperforms SimCLR and MoCo v2 [12]] in terms of
sample efficiency and linear evaluation accuracy. Hence, EBCLR opens up a new research direction
for alleviating the dependence of contrastive methods on large datasets and large batches.

Our contributions can be summarized as follows:

* We propose a novel contrastive learning method called EBCLR which learns the joint
distribution of positive pairs. We show that EBCLR loss is equivalent to a combination of a
contrastive term and a generative term (Section[3). To the best of our knowledge, this is the
first work to apply EBMs to contrastive learning of visual representations.

* We show that EBCLR offers two advantages over conventional contrastive learning methods:
EBCLR is several times more sample efficient (Section[4.I)) and robust to small batch sizes
(Section[d.2). These factors lead to a non-trivial performance gain for EBCLR.

* We perform thorough ablation studies of the components of EBCLR: effect of changing the
weight of the generative term (Section [4.3)), effect of projection space dimension (Section
[3), and the effect of the proposed SGLD modifications (Section [d.4).

2 Related Works

In this section, we go over related works necessary for understanding EBCLR. In Appendix[A] we
give a more extensive review of relevant works for those not familiar with EBMs, contrastive learning,
or generative models.

2.1 Contrastive Learning

For a given batch of images {z,, }_; and two image transformations ¢, ', contrastive learning
methods first create two views v, = t(z,), v}, = t'(z,,) of each instance z,,. Here, the pair (v, v),)



is called a positive pair if n = m and a negative pair if n # m. Given a DNN fy, the views are then
embedded into the projection space by passing the views through fy and normalizing.

Contrastive methods train fy to increase agreement between projections of positive pairs and decrease
agreement between projections of negative pairs. Specifically, fy is trained to maximize the InfoNCE
objective [[II]. After training, outputs from the final layer or an intermediate layer of fy are used for
downstream tasks.

There are numerous variants of contrastive methods. For instance, SImCLR [4]] uses a composition
of random cropping, random flipping, color jittering, color dropping, and blurring as the image
transformation. Negative pairs are created by transforming different images within a batch. On the
other hand, MoCo [[12] maintains a queue of negative samples, so negative samples are not limited to
views of images from the same batch.

2.2 Energy-Based Models

Given a scalar-valued energy function Eg(v) with parameter 6, an energy-based model (EBM) [13]]
defines a distribution by the formula

1

q6(v) = Z00) exp{—Ep(v)} ey
where Z(0) is the partition function which guarantees gy integrates to 1. Since there are essentially no
restrictions on the choice of the energy function, EBMs have great flexibility in modeling distributions.
Hence, EBMs have been applied to a wide variety of machine learning tasks, such as dimensionality
reduction via autoencoding [[14], learning generative classifiers [8, 9,10, [15]], generating images [[16],
and training regression models [[17,|18]]. Wang et al. [[19] have explored connections between EBMs
and InfoNCE to enhance generative performance of EBMs. However, to the best of our knowledge,
this paper is the first to combine EBMs with contrastive learning for representation learning.

Given a target distribution, an EBM can be used to estimate its density p when we can only sample
from p. One way of achieving this is by minimizing the Kullback-Leibler (KL) divergence between
go and p that maximizes the expected log-likelihood of ¢y under p [20]:

max E, [log go(v)]. 2

Stochastic gradient ascent can be used to solve [20]]. Specifically, the gradient of the expected
log-likelihood with respect to the parameters 6 can be shown to be

VoEp[log go(v)] = Eq, [VoEo(v)] — Ep[VoEp(v)]- 3
Hence, updating 6 with (3) amounts to pushing up on the energy for samples from ¢y and pushing

down on the energy for samples from p. This optimization method is also known as contrastive
divergence [21].

While the second term in (3] can be easily calculated as we have access to samples from p, the first
term requires sampling from gg. Previous works [16} 22 10} [15] have used Stochastic Gradient
Langevin Dynamics (SGLD) [[L1] to generate samples from gg. Specifically, given a sample vy from
some proposal distribution g, the iteration

Q
V41 = Vg — ?tvv,Ee(Ut) + €, €~ N(Oa Uf) “

guarantees that the sequence {v;} converges to a sample from gy assuming {«; } decays at a polyno-
mial rate [[11].

However, SGLD requires an infinite number of steps until samples from the proposal distribution
converge to samples from the target distribution. This is unfeasible, so in practice, only a finite
number of steps along with constant step size, i.e. a; = « and constant noise variance o; = o2 are
used [[16} 22, (10} [15]. Moreover, Yang and Ji [15] noted SGLD often generates samples with extreme
pixel values that cause EBMs to diverge during training. Hence, they have proposed proximal SGLD
which clamps gradient values into an interval [—4, §] for a threshold § > 0. Then, the update equation

becomes
Vip1 = v — o~ clamp{V,Ep(vy),0} + € ©)
fort =0,...,T — 1, where ¢ ~ N(0,0?) and clamp{-, §} clamps each element of the input vector

into [—4,6]. In our work, we introduce additional modifications to SGLD which accelerate the
convergence of EBCLR.
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Figure 2: An illustration of the learning process of EBCLR.

3 Theory

3.1 Energy-Based Contrastive Learning

Let D be a distribution of images and 7 a distribution of stochastic image transformations. Given
x ~ Dandiid. t, ¢ ~ T, our goal is to approximate the joint distribution of the views

p(v,v"), where v=t(z), v =t'(x)

using the model distribution

1
v,0") = —— exp{—|z — 2'||*/7}. 6
qo(v, ') 70 p{—|l 1°/7} (©)
where Z(6) is a normalization constant, 7 > 0 is a temperature hyper-parameter, and z and z’ are
projections computed by passing the views v and v’ through the DNN fy and then normalizing to
have unit norm. We now explain the intuitive meaning of matching gy to p.

Our key idea is to use p(v, v’) as a measure of semantic similarity of v and v’. If two images v and v’
are semantically similar, they are likely to be transformations of similar images. So, p(v,v’) will be
high when v and v’ are semantically similar and low otherwise. Suppose gg successfully approximates
p. If we equate p(v,v’) to go(v,v') in (6] and solve for ||z — 2’|, we see that the distance between z
and z’ will become a monotone increasing function of 1/p(v, v’), which is the inverse of semantic
similarity of v and v’. So, semantically similar images will have nearby projections, and dissimilar
images will have distant projections. This idea is illustrated in Figure[I]

To approximate p using gg, we train f to maximize the expected log-likelihood of gy under p:
max E,[log go (v, v")]. @)

In order to solve this problem with stochastic gradient ascent, we could naively extend (3) to the
setting of joint distributions to obtain the following result.

Proposition 1. The the joint distribution (6) can be formulated as an EBM

1
qo(v,v') = 70) exp{—FEy(2,2)},  Eo(v,v) =z = 2|*/7 ®
and the gradient of the objective of (7)) is given by
Vol [log go(v,v')] = Eqy [V By (v, v")] — Ep[VeEp(v, v")]. ©)

However, computing the first expectation in (9) requires sampling pairs of views (v, v") from gg (v, v")
via SGLD, which could be expensive. To avert this problem, we use Bayes’ rule to decompose

E,[log go(v,v")] = E,[log go(v' | v)] + Ep[log go(v)] where gp(v) = /qg(v,v') dv'.  (10)



In the first equation of (T0), the first and second terms at the RHS will be referred to as discriminative
and generative terms, respectively, throughout the paper. A similar decomposition was used by
Grathwohl et al. [10] in the setting of learning generative classifiers.

Furthermore, we add a hyper-parameter A to balance the strength of the discriminative term and the
generative term. The advantage of this modification will be discussed in Section[d.3] This yields our
Energy-Based Contrastive Learning (EBCLR) objective

L(0) ==E,[log go(v" | v)] + AE,[log go(v)]. (11)

The discriminative term can be easily differentiated since the partition function Z(6) cancels out
when gg(v,v") is divided by g (v). However, the generative term still contains Z(#). We now present
our key result, which is used to maximize (TT)). The proof is deferred to Appendix [C.1]

Theorem 2. The marginal distribution in (10) can be formulated as an EBM

qo(v) = Z;@) exp{—Fy(v)}, Ey(v) = —log/e_”z_z/uzh dv’ (12)
where Z(0) is the partition function in (), and the gradient of the generative term is given by
VoE,[log go(v)] = Eq, () [V Eg(v)] = Ep[VoEa(v)]. (13)
Thus, the gradient of the EBCLR objective is
VoL (0) = Ep[Volog go(v' | v)] + ABgy () [Vo Ep(v)] — AEp [V Ey(v)] (14)

Theorem [2] suggests that the EBM for the joint distribution can be learned by computing the gradients
of the discriminative term and the EBM for the marginal distribution. Moreover, we only need to
sample v from gy (v) to compute the second expectation in (I4).

3.2 Approximating the EBCLR Objective

To implement EBCLR, we need to approximate expectations in (IT)) with their empirical means.
Suppose samples {(v,,, v/,) }_, from p(v,v’) are given, and let {(z,, z/,) }N_, be the corresponding
projections. As the learning goal is to make qg(vy,, v),) approximate the joint probability density
function p(v,,, v/,), the empirical mean gy(v,,) can be defined as:

~ 1 ,
Go(vn) =37 D as(vn,v)) (15)

! eyt
vl v, Fon

where the sum is over the collection of v/, defined as

{v], v # vn} = ok} U{vitees — {vn} (16)

and N := |{v], : v}, # vn}| = 2N — 1. One could also use a simpler form of the empirical mean:

_ 1 o ,
Go(vn) = > ao(vn,v),) (17)
m=1

Similarly, gg(v’|v) in (TT)), which should approximate the conditional probability density p(v’|v), can

be represented in terms of gy (v,,, v}, ). Specifically, we have

72
qo(vn, v,) q6(vn; V) e ezl
(v o) = = s ) T Iy Ty (19
qo (Un) N vl vl Ao, QQ(UYN Um) N7 Lav! !, Fo, € oo

It is then immediately apparent that the empirical form of the discriminative term using is
a particular instance of the contrastive learning objective such as InfoNCE and SimCLR. Hence,
EBCLR can be interpreted as complementing contrastive learning with a generative term defined by
an EBM. We will demonstrate in Section[4.T] that the generative term offers significant advantages
over other contrastive learning methods.



For the second term, we use the simpler form of the empirical mean in (17):

1 Y 1 1Y
o (vn) = N Z (U, v},) = Z0) N Z exp{—lzn — 2, |I°/7} (19)
m=1 m=1

We could also use (T3] as the empirical mean, but either choice showed identical performance (see
Appendix [E.3). So, we have found to be not worth the additional complexity, and have resorted
to the simpler approximation instead. In Appendix [C.2] we theoretically justify that EBCLR will
work as intended even with the approximations or (I7). If we compare (19) with (I2), we can
see that this approximation of gy (v) yields the energy function (after ignoring the constant log V)

N
Ep(v; {vp,}mer) = —log (Z e_|z_z,;n2/7> : (20)
m=1

3.3 Modifications to SGLD

According to Theorem we need samples from the marginal gy (v) to calculate the second expectation
in (T4). Hence, we apply proximal SGLD (3] with the energy function (20) to sample from gy (v) as

b1 = 0y — o - clamp{V, Eg(0y; {v), }—1), 0} + € @2y

fort =0,...,T — 1, where ¢ ~ N(0,02). We make three additional modifications to proximal
SGLD to expedite the training process. From here on, we will be referring to proximal SGLD in (3)
when we say SGLD.

First, we initialize SGLD from generated samples from previous iterations, and with probability
p, we reinitialize SGLD chains from samples from a proposal distribution ¢g. This is achieved by
keeping a replay buffer B of SGLD samples from previous iterations. This technique of maintaining
a replay buffer has also been used in previous works and has proven to be crucial for stabilizing and
accelerating the convergence of EBMs [16, 10} [15].

Second, the proposal distribution gy is set to be the data distribution p(v). This choice differs from
those of previous works [[16, 10, 15] which have either used the uniform distribution or a mixture of
Gaussians as the proposal distribution.

Finally, we use multi-stage SGLD (MSGLD), which adaptively controls the magnitude of noise added
in SGLD. For each sample v in the replay buffer 3, we keep a count s of number of times it has
been used as the initial point of SGLD. For samples with a low count, we use noise of high variance,
and for samples with a high count, we use noise of low variance. Specifically, in (3)), we set

0 = Omin + (Umax - Umin) : [1 - HE/K]-#- (22)

where []4 = max{0,-}, 02, and 02, are the upper and lower bounds on the noise variance,
respectively, and K controls the decay rate of noise variance. The purpose of this technique is to
facilitate quick exploration of the modes of gy and still guarantee SGLD generates samples with
sufficiently low energy. The pseudocodes for MSGLD and EBCLR are given in Algorithms [I|and 2}

respectively, in Appendix B} and the overall learning flow of EBCLR is described in Figure

4 Experiments

We now describe the experimental settings. A complete description is deferred to Appendix

Baseline methods and datasets. The baseline methods are SimCLR, MoCo v2, SimSiam, and
BYOL. The hyper-parameters are chosen closely following the original works [4} 12,7} 16]]. We use
four datasets: MNIST [23]], Fashion MNIST (FMNIST) [24], CIFAR10, and CIFAR100 [25].

DNN architecture. We decompose fy = my o ¢pg9 where ¢y is the encoder network and 7y is the
projection network. Rather than using the output of fy for downstream tasks, we follow previous
works [4} 15, [1, 12} 131 6 [7] and use the output of ¢y instead. In our experiments, we set ¢y to be
a ResNet-18 [26] up to the global average pooling layer and 7y to be a 2-layer MLP with output
dimension 128. However, we remove batch normalization because batch normalization hurts SGLD
[16]. We also replace ReLLU with leaky ReLLU to expedite the convergence of SGLD. For the baselines,
we use settings proposed in the original works while keeping the backbone fixed to be ResNet-18.

Evaluation. We evaluate the representations by training a linear classifier on top of frozen ¢y.



Dataset MNIST FMNIST CIFAR10 CIFAR100
Statistic  Accuracy Rel. Eff. Accuracy Rel. Eff. Accuracy Rel. Eff. Accuracy Rel. Eff.

SimSiam 98.6 0.1 87.4 0.1 70.4 0.25 38.3 0.1
BYOL 99.3 0.4 89.0 0.2 70.9 0.25 41.7 0.2
SimCLR 99.0 0.1 88.5 0.15 68.0 0.15 43.1 0.25
MoCo v2 98.1 0.05 87.8 0.1 64.0 0.1 38.2 0.1
EBCLR 99.3 - 90.1 - 77.3 - 49.1 -

Table 1: Linear evaluation accuracy and efficiency relative to EBCLR. Efficiency of a method relative
to EBCLR is calculated by the following formula: (number of epochs used by EBCLR to reach the
final accuracy of the method) / (total number of training epochs).

4.1 Comparison with Baselines

We use batch size 128 for EBCLR and
batch size 256 for the baseline methods

Direction M—FM FM —-M C10— C100 C100 — C10

following Wang et. al [27] and train each SimSiam _ 86.9 972 395 610
method for 100 epochs. Table |1| shows BYOL 87.3 97.8 42.3 70.2
the result of training each method for 100 VO o o o
epochs. Observe that EBCLR consistently EBCLR 874 085 169 724

outperforms all baseline methods in terms
of linear evaluation accuracy. Moreover,
relative efficiency indicates EBCLR is ca- Table 2: Comparison of transfer learning results in the
pable of achieving the same level of perfor- linear evaluation setting. Left side of the arrow is the
mance as the baseline methods with much dataset than the encoder was pre-trained on, and right
fewer training epochs. Concretely, we ob- side of the arrow is the dataset that linear evaluation
serve at least x4 acceleration in terms of was performed on. We use the following abbreviations.
epochs compared to contrastive methods. M : MNIST, FM : FMNIST, C10 : CIFAR10, C100 :
Hence, EBCLR is a much more desirable CIFAR100.

choice than SimCLR or MoCo v2 for learn-

ing visual representations when we have a small number of training samples.

We also investigate the transfer learning performance of EBCLR. Table [2] compares the transfer
learning accuracies. EBCLR always outperforms the baseline methods, and the performance gap is
especially large on CIFAR10 and CIFAR100. This indicates EBCLR learns visual representations
that generalize well across datasets. Repeating the above experiments with longer training or KNN
classification led to similar conclusions (see Appendixes and respectively).

4.2 Effect of Reducing Negative Pairs

We compared the performances of EBCLR and SimCLR as we reduced the number of negative
pairs per positive pair. For MoCo v2, the negative samples are provided by a queue updated by a
momentum encoder. On the other hand, for EBCLR and SimCLR, negative samples come from the
same batch as the positive pair. So, we did not have a way of fairly comparing EBCLR and SimCLR
with MoCo v2. Hence, we excluded MoCo v2 from this experiment.

We note that, according to (I8)), given a batch of size N, we obtain 2N — 2 negative pairs for
each positive pair. SImCLR also has 2N — 2 negative pairs for each positive pair. Hence, we can
conveniently compare the sensitivity of EBCLR and SimCLR to the number of negative pairs by
varying the batch size.

Table [3|shows the result of training each method for 100 epochs with batch sizes in {16, 64, 128}.
We make three important observations. First, EBCLR consistently beats SimCLR in terms of linear
evaluation accuracy for every batch size. Second, EBCLR is invariant to the choice of batch size.
This contrasts with SImCLR whose performance degrades as batch size decreases. Consequently,
EBCLR with batch size 16 beats SimCLR with batch size 128. Finally, as a byproduct of the second
observation, the efficiency of EBCLR relative to SimCLR increases as batch size decreases. These
properties make EBCLR suitable for situations where we cannot use large batch sizes, e.g., when we



Dataset MNIST FMNIST CIFAR10 CIFAR100
Batch Size 16 64 128 16 64 128 16 64 128 16 64 128

SimCLR 987 99.1 99.1 87.1 88.0 882 652 676 690 369 391 43.0
EBCLR 994 993 993 896 904 901 776 782 773 488 498 491

Rel. Eff.  0.05 0.1 015 0.05 0.15 0.1 0.1 015 0.2 0.1 015 0.25

Table 3: Linear evaluation accuracies and efficiencies relative to EBCLR with various batch sizes.
Efficiency of SimCLR relative to EBCLR is calculated by the following formula: (number of epochs
used by EBCLR with the same batch size to reach the final accuracy of SimCLR) / (total number of
training epochs).

have a small number of GPUs. Repeating the experiments with longer training or KNN classification
again led to similar conclusions (see Appendixes[E.2]and [E-4] respectively).

4.3 Effect of \ and Projection Dimension

We explored the effect of changing the hyper-
parameter A which controls the importance of
the generative term relative to the discriminative
term (see Equation (TT)). Figure 3a]shows the
performance of EBCLR with various values of \
as training progresses. We observe that naively
using A = 1.0 leads to poor results. The perfor- .
mance peaks at A = 0.1, and then degrades as 5101520 25 30 35 40 45 50 S 101520 25 30 35 40 45 30
we further decrease .

o
3
m
3

<
3
G

u o
383
3

5

S
3

Linear Evaluation Accuracy
b ow o
8

5
Linear Evaluation Accuracy
v o2 @ N~
3

. =10 = A=0.01
A=01 mmm A=0.0

N

== Proj. Dim. 128
Proj. Dim. 256

= Proj. Dim. 512

3 o

o

(a) Effect of \. (b) Effect of proj. dim.
This result has two crucial implications. First, o ] )
the generative term plays a non-trivial role in Figure 3 ) Effegt of A and projection dimension
EBCLR. Second, we need to strike a right bal- (output dimension of 7y, demonstrated on CI-
ance between the discriminative term and the FARIO.
generative term to achieve good performance on
downstream task

We also investigated the effect of varying the output dimension of 7. Figure 3B shows linear
evaluation results for projection dimensions in {128,256,512}. We observe that the projection
dimension has essentially no influence on the training process. In this respect, EBCLR resembles
SimCLR which is also invariant to the output dimension (see Figure 8 in the work by Chen et. al [4]).

4.4 Effect of SGLD Modifications

We now study the roles of the three SGLD modifications proposed in Section [3.3] Figure ] shows the
results of varying one parameter of MSGLD while keeping the others fixed.

Effect of reintialization frequency p. Figure fa] displays linear evaluation results for p €
{0.0,0.2,1.0}. We note that setting p = 1.0 is equivalent to removing the replay buffer. Also,
setting p = 0.0 is equivalent to never reinitializing SGLD chains.

Initially, p = 0.0 shows the best performance, as SGLD quickly reaches samples of lower energy.
However, learning then slows down because of the lack of diversity of samples in the replay buffer B.
This implies that it is necessary to set p > 0 in order to learn good representations.

On the other hand, p = 1.0 shows slow convergence in the beginning because samples in the replay
buffer are not given enough iterations to reach low energy. Although it does beat p = 0.0 at latter
epochs, it still often performs worse than p = 0.2. Moreover, it is not sample-efficient compared to
p = 0.2 since we have to provide an entire batch of new samples for reinitializing SGLD chains at
each iteration.

nterestingly, we observed a similar phenomenon when we used models trained with EBCLR to generate
images. For more details, we refer the readers to AppendixlE;_Sl



Given the above observations, it is clear why the intermediate value 0.2 is the best choice out of
p € {0.0,0.2,1.0}. p = 0.2 allows enough time for samples in the replay buffer to reach low energy
while still maintaining the diversity of samples in B. Also, it is sample-efficient compared to p = 1.0.

Effect of proposal distribution go. Figure #b]compares linear evaluation accuracies with gq as the
uniform distribution and gy = p(v). We observe prominent acceleration in the initial epochs for
go = p(v). Hence, we can conclude that this choice of proposal distribution is crucial for the high
efficiency of EBCLR compared to the baseline methods in Tables [[]and [3]

We believe this acceleration effect can be explained
by the work of Hinton [21]]. Specifically, let us ob- . %

serve that the EBM update equation (3) pushes up ~ £7% T >

the energy on the model distribution gg. In the im- ‘gzz | } || |I Il in

plementation of EBCLR with gg = p(v), however, Zas | } | iz ‘
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data points (see Section [3.3). Hence, the modified
EMB update equation contains the curvature informa-  (a) Effect of varying p. (b) Effect of varying qo.
tion of the data manifold. This curvature information ~ ®°

may expedite the training process of EBCLR. For a e ‘

detailed discussion on this, we refer the readers to ‘ ‘ \

Section 3 of the work by Hinton [21]]. . ‘ i \

Comparison of SGLD and MSGLD. Figure Sers } } } }

shows results with SGLD with o € {0.01,0.05} and ~ £eso | | | -
MSGLD with oyi, = 0.01 and oax = 0.05. We &5 | | ‘ o
note that setting Omin = Omax reduces MSGLD to 00 20 30 40 50 60 70 80 S0 200 110 120 130 140 1%
SGLD. We observe o = 0.01 initially shows fast con- o

vergence but then saturates due to the lack of diversity  (¢) SGLD with o € {0.01,0.05} and MSGLD.
of generated samples. On the other hand, o = 0.05 . .
inigally has the \I:/orst performance but eventually ~Ligure 4: Ablation study of SGLD modifica-
beats 0 = 0.01 since o = 0.05 quickly explores the tions on CIFARIO.
modes of ¢g. MSGLD inherits the best of both set-
tings. Specifically, MSGLD is as fast as 0 = 0.01 in
the beginning, and it does not suffer from the saturation problem.

5 Limitations and Societal Impacts

Limitations. The main limitation of our work is of scale. While EBCLR demonstrates superior
sample efficiency, it requires inner SGLD iterations (which cannot be parallelized) and a replay buffer
B. These two components increase the computational burden of EBCLR. So, we found it difficult to
apply EBCLR to large-scale data such as ImageNet. However, we note that inner SGLD iterations
and the replay buffer are not particular limitations of EBCLR, but limitations of EBMs in general.
Given the increasing efforts to overcome these limitations such as Proximal-YOPO-SGLD (for more
discussion, see Appendix [F]), we believe EBCLR will eventually be applicable to larger data.

Social Impacts. We generally expect positive outcomes from this research. Further development
of EBCLR can mitigate the need for large amount of data and large batch sizes to learn good
representations and ultimately lead to a reduction in resource consumption.

6 Conclusion

In this work, we proposed EBCLR which combines contrastive learning with EBMs. This amal-
gamation of ideas has led to both theoretical and practical contributions. Theoretically, EBCLR
associates distance in the projection space with the density of positive samples. Since the distribution
of positive samples reflects the semantic similarity of images, EBCLR is capable of learning good
visual representations. Practically, EBCLR is several times more sample-efficient than conventional
contrastive and non-contrastive learning approaches and is robust to small numbers of negative pairs.
Hence, EBCLR is applicable even in scenarios with limited data or devices. We believe that EBCLR
makes representation learning available to a wider range of machine learning practitioners.
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