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Abstract

Tabular data is a ubiquitous data modality due to its versatility and ease of use in many
real-world applications. The predominant heuristics for handling classification tasks on
tabular data rely on classical machine learning techniques, as the superiority of deep learn-
ing models has not yet been demonstrated. This raises the question of whether new deep
learning paradigms can surpass classical approaches. Recent studies on tabular data offer
a unique perspective on the limitations of neural networks in this domain and highlight the
superiority of gradient boosted decision trees (GBDTs) in terms of scalability and robust-
ness across various datasets. However, novel foundation models have not been thoroughly
assessed regarding quality or fairly compared to existing methods for tabular classification.
Our study categorizes ten state-of-the-art neural models based on their underlying learning
paradigm, demonstrating specifically that meta-learned foundation models outperform GB-
DTs in small data regimes. Although dataset-specific neural networks generally outperform
LLM-based tabular classifiers, they are surpassed by an AutoML library which exhibits the
best performance but at the cost of higher computational demands.

1 Introduction

Tabular data has long been one of the most common and widely used data formats, with applications
spanning various fields such as healthcare (Johnson et al., 2016; Ulmer et al., 2020), finance (A. & E., 2022),
and manufacturing (Chen et al., 2023), among others. Despite being a ubiquitous data modality, tabular
data has only been marginally impacted by the deep learning revolution (Van Breugel & Van Der Schaar,
2024). A significant portion of the research community in tabular data mining continues to advocate for
traditional machine learning methods, such as gradient-boosting decision trees (GBDTs) (Friedman, 2001;
Chen & Guestrin, 2016; Prokhorenkova et al., 2018). Recent empirical studies agree that GBDTs are still
competitive for tabular data (McElfresh et al., 2023). Nevertheless, an increasing segment of the community
highlights the benefits of deep learning methods (Kadra et al., 2021; Gorishniy et al., 2021; Arik & Pfister,
2021; Somepalli et al., 2021; Kadra et al., 2024), (Holzmüller et al., 2024).

The community remains divided on whether Deep Learning approaches are the undisputed state-of-the-art
methods for tabular data (Shwartz-Ziv & Armon, 2022). To resolve this debate and determine the most
effective methods for tabular data, multiple recent studies have focused on empirically comparing GBDT
with Deep Learning methods (Grinsztajn et al., 2022; Borisov et al., 2022; McElfresh et al., 2023). These
studies suggest that tree-based models outperform deep learning models on tabular data even after tuning
neural networks.

However, these recent empirical surveys only include non-meta-learned neural networks (Grinsztajn et al.,
2022; Borisov et al., 2022) and do not incorporate the recent stream of methods that leverage foundation
models and LLMs for tabular data (Zhu et al., 2023; Hollmann et al., 2023; Yan et al., 2024; Kim et al., 2024).
Furthermore, the empirical setup of the recent empirical benchmarks is sub-optimal because no thorough
hyperparameter optimization (HPO) techniques were applied to carefully tune the hyperparameters of neural
networks.
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Figure 1: Taxonomy tree of algorithms applied to tabular classification (TC) models

In this empirical survey paper, we address a simple question: "Is Deep Learning now state-of-the-art on
tabular data, compared to GBDTs?" Providing an unbiased and empirically justified answer to this question
has a significant impact on the large community of practitioners. Therefore, we designed a large-scale
experimental protocol using 68 diverse OpenML datasets and 11 recent baselines, including foundation
models for tabular data. In our protocol, we use 10-fold cross-validation experiments for all the datasets and
fairly tune the hyperparameters of all the baselines with an equally large HPO budget.

Moreover, to fully unlock a model’s potential, after HPO we refit all models on the joined training and
validation set. Hence, our study provides a fair investigation of post-hyperparameter optimization. We
argue that this is a crucial oversight because training on the combined dataset can provide additional
information to a model, potentially improving generalization, especially, in small data regimes. Hence, in
our large-scale study, the aim is to compare classical gradient-boosted decision trees to most modern deep
learning model families. We classify models according to their underlying paradigm and provide a taxonomy
tree in Figure 1 including tree-based models stemming from classical machine learning, in-context learning
and fine-tuned models as sub-paradigms of foundation models, and dataset-specific architectures for tabular
data, which we subclassify into feedforward approaches and transformer-based models. Additionally, we
include the performance of an AutoML library in our study.

In summary, we employ two well-established models from traditional machine learning, namely XGBoost
(Chen & Guestrin, 2016) and CatBoost (Prokhorenkova et al., 2018), and compare them with 8 deep learning
architectures (Somepalli et al., 2021; Gorishniy et al., 2021; Arik & Pfister, 2021; Hollmann et al., 2023; Kim
et al., 2024; Yan et al., 2024) categorized in model families w.r.t. their learning paradigm. For a fair
comparison, we evaluate all models on 68 benchmark datasets from the OpenML datasets (Bischl et al.,
2021). The key findings of this study are:

• Meta-learned foundation models (Hollmann et al., 2023) outperform GBDTs in small datasets.

• In mid-size and large datasets, XGBoost and CatBoost (Chen & Guestrin, 2016; Prokhorenkova
et al., 2018) continue to be competitive against Deep Learning methods in terms of performance per
training cost.

• AutoML libraries, particularly AutoGluon (Erickson et al., 2020), deliver the highest overall per-
formance compared to other methods but introduce a significant computational overhead.

• Dataset-specific neural networks (e.g., FT-Transformer, SAINT, ResNet) generally outperform LLM-
based tabular classifiers.

2 Related Work

Given the prevalence of tabular data in numerous areas, including healthcare, finance, psychology, and
anomaly detection, as highlighted in various studies (Chandola et al., 2009; Johnson et al., 2016; Guo et al.,
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Table 1: Comparison with prior empirical survey works. In our study, we include 6 model families: Gradient
Boosted Decision Trees (GBDT), AutoML, In-Context Learning (ICL), Fine-tuning (FT), Feed forward
neural networks (FNN), and Transformer-based Models (Transformer).

Protocol Model families
Study Refitting Model-based HPO # Datasets GBDT AutoML ICL FT FNN Transformer # Baselines
Ye et al. (2025) ✗ ✓ 300 ✓ ✗ ✓ ✗ ✓ ✓ 31
Rubachev et al. (2024) ✗ ✓ 8 ✓ ✗ ✗ ✗ ✓ ✓ 14
McElfresh et al. (2023) ✗ ✗ 176 ✓ ✗ ✓ ✗ ✓ ✓ 19
Borisov et al. (2022) ✗ ✓ 5 ✓ ✗ ✗ ✗ ✓ ✓ 20
Grinsztajn et al. (2022) ✗ ✗ 45 ✓ ✗ ✗ ✗ ✓ ✓ 7
Shwartz-Ziv & Armon (2022) ✗ ✓ 11 ✓ ✗ ✗ ✗ ✗ ✓ 5
Gorishniy et al. (2021) ✗ ✓ 11 ✓ ✗ ✗ ✗ ✓ ✓ 11
Ours ✓ ✓ 68 ✓ ✓ ✓ ✓ ✓ ✓ 13

2017; Ulmer et al., 2020; Urban & Gates, 2021; A. & E., 2022; Van Breugel & Van Der Schaar, 2024),
there has been significant research dedicated to developing algorithms that effectively address the challenges
inherent in this domain. We summarize all algorithms evaluated in our study in a taxonomy tree shown in
Figure 1.

Classical Machine Learning. Gradient Boosted Decision Trees (GBDTs) (Friedman, 2001), including
popular implementations like XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), and Cat-
Boost (Prokhorenkova et al., 2018), are widely favored by practitioners for their robust performance on
tabular datasets, and their short training times.

Deep Learning. In terms of neural networks, prior work shows that meticulously searching for the opti-
mal combination of regularization techniques in simple multilayer perceptrons (MLPs) called Regularization
Cocktails (Kadra et al., 2021) can yield impressive results. Two recent papers (Kadra et al., 2021; Gorishniy
et al., 2021) propose adaptations of the ResNet architecture for tabular data, demonstrating the potential
of deep learning approaches in handling tabular data. This version of ResNet, originally conceived for im-
age processing (He et al., 2016), has been effectively repurposed for tabular datasets in their research. We
demonstrate that with thorough hyperparameter tuning, a ResNet model tailored for tabular data rivals the
performance of transformer-based architectures. Furthermore, recent research underscores that numerical
embeddings (Gorishniy et al., 2022) for tabular data are underexplored. Incorporating these embeddings
into neural network architectures, including MLPs and transformer-based models, can substantially enhance
performance. Additionally, novel approaches such as RealMLP (Holzmüller et al., 2024) introduce various
enhancements to the standard MLP architecture. These include using robust scaling at the preprocessing
stage and experimenting with alternative numerical embedding strategies. In doing so, the authors show
that RealMLP surpasses other neural network models but also remains competitive with GBDT methods.

Reflecting their success in various domains, transformers have also garnered attention in the tabular data
domain. TabNet (Arik & Pfister, 2021), an innovative model in this area, employs attention mechanisms
sequentially to prioritize the most significant features. SAINT (Somepalli et al., 2021), draws inspiration
from the seminal transformer architecture (Vaswani et al., 2017). It addresses data challenges by applying
attention both to rows and columns. They also offer a self-supervised pretraining phase, particularly benefi-
cial when labels are scarce. The FT-Transformer (Gorishniy et al., 2021) stands out with its two-component
structure: the Feature Tokenizer and the Transformer. The Feature Tokenizer is responsible for converting
numerical and categorical features into embeddings. These embeddings are then fed into the Transformer,
forming the basis for subsequent processing.

Recently, a new avenue of research has emerged, focusing on the use of foundation models for tabular data.
XTab (Zhu et al., 2023) utilizes shared Transformer blocks, similar to those in FT-Transformer (Gorishniy
et al., 2021), followed by fine-tuning dataset-specific encoders. Another notable work, TabPFN (Hollmann
et al., 2023), employs in-context learning (ICL), by leveraging sequences of labeled examples provided in
the input for predictions, thereby eliminating the need for additional parameter updates after training. TP-
BERTa (Yan et al., 2024), a pre-trained language model for tabular data prediction, uses relative magnitude
tokenization to convert scalar numerical features into discrete tokens. TP-BERTa also employs intra-feature
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attention to integrate feature values with feature names. The last layer of the model is then fine-tuned on
a per-dataset basis. In contrast, CARTE (Kim et al., 2024) utilizes a graph representation of tabular data
and a neural network capable of capturing the context within a table. The model is then fine-tuned on a
per-dataset basis.

Empirical Studies. Significant research has delved into understanding the contexts where neural networks
(NNs) excel, and where they fall short (Shwartz-Ziv & Armon, 2022; Borisov et al., 2022; Grinsztajn et al.,
2022). The recent study by (McElfresh et al., 2023) is highly related to ours in terms of research focus.
However, the authors used only random search for tuning the hyperparameters of neural networks, whereas
we employ Tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011) as employed by (Gorishniy
et al., 2021), which provides a more guided and efficient search strategy. Additionally, (McElfresh et al.,
2023) study was limited to evaluating a maximum of 30 hyperparameter configurations, in contrast to our
more extensive exploration of up to 100 configurations. Furthermore, despite using the validation set for
hyperparameter optimization (HPO), they do not retrain the model on the combined training and validation
data using the best-found configuration before evaluating the model on the test set. Our paper delineates
from prior studies by applying a methodologically correct experimental protocol involving thorough HPO
for neural networks. Moreover, Table 1 summarizes the model families evaluated in related empirical studies
and highlights the differences in the evaluation protocol. To the best of our knowledge, we are the first
to provide a thorough assessment of foundation models leveraging fine-tuning (FT) as a new player in the
field of tabular classification (TC), and AutoML where - at the time of writing - both model families have
been overlooked in most recent studies Ye et al. (2025); Rubachev et al. (2024), and compare them to other
learning paradigms.

3 Experimental Protocol

In our study, we focus on binary and multi-class classification problems on tabular data. The general learning
task is described in Section 3.1. A detailed description of our evaluation protocol is provided in Section 3.2.

3.1 Learning with Tabular Data

A tabular dataset contains N samples with d features defining a N × d table. A sample xi ∈ Rd is defined
by its d feature values. The features can be continuous numerical values or categorical where for the latter a
common heuristic is to transform the values in numerical space. Given labels yi ∈ Y being associated with the
instances (rows) in the table, the task to solve is a binary or multi-class classification problem or a regression
task iff yi ∈ R. In our study, we focus on the former. Hence, given a tabular dataset D = {(xi, yi)}N

i=1, the
task is to learn a prediction model f(·, ·) to minimize a classification loss function ℓ(·, ·):

arg min
θ

∑
(xi,yi)∈D

ℓ(yi, f(xi; θ, λ)), (1)

where we use f(xi; θ, λ) for denoting the predicted label by a trained model parameterized by the model
weights θ and hyperparameter configuration λ.

3.2 Experimental Setup

Datasets. In our study, we assess all the methods using OpenMLCC18 (Bischl et al., 2021), a well-established
tabular benchmark in the community, which comprises 72 diverse datasets1. The datasets contain 5 to 3073
features and 500 to 100,000 instances, covering various binary and multi-class problems. The benchmark
excludes artificial datasets, subsets or binarizations of larger datasets, and any dataset solvable by a single
feature or a simple decision tree. For the full list of datasets used in our study, please refer to Appendix C.

Evaluation Protocol. Our evaluation employs a nested cross-validation approach. Initially, we partition
the data into 10 folds. Nine of these folds are then used for hyperparameter tuning. Each hyperparameter

1Due to memory issues encountered with several methods, we exclude four datasets from our analysis.
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configuration is evaluated using 9-fold cross-validation. The results from the cross-validation are used to
estimate the performance of the model under a specific hyperparameter configuration.

For hyperparameter optimization, we utilize Optuna (Akiba et al., 2019), a well-known HPO library with
the Tree-structured Parzen Estimator (TPE) (Bergstra et al., 2011) algorithm, the default Optuna HPO
method. The optimization is constrained by a budget of either 100 trials or a maximum duration of 23
hours. Upon determining the optimal hyperparameters using Optuna, we train the model on the combined
training and validation splits. We provide a detailed description of our protocol in Algorithm 1. It shows
the nested-cross validation with the outer folds (lines 1-16) and inner folds (lines 5-9). In each trial (lines
3-12), the mean performance across inner folds are calculated in line 10 which is used as the objective value
for Optuna in line 11. After the maximal number of trials T is reached or the time budget is exceeded, we
select the best hyperparameter setting in line 13. In comparison to previous studies, we now refit the model
in line 14 which yields for each outer fold a performance measurement in line 15. We refer to Appendix F
for an ablations study on the refitting procedure. The final performance is calculated across all outer folds
in line 17. To enhance efficiency, we execute every outer fold in parallel across all datasets.

All experiments are run on NVIDIA RTX2080Ti GPUs with a memory of 11 GB. Our evaluation protocol
dictates that for every algorithm, up to 68K different models will be evaluated, leading to a total of approxi-
mately 800K individual evaluations. As our study encompasses thirteen distinct methods, this methodology
culminates in a substantial total of over 8M evaluations, involving more than 900K unique models.

Metrics. Lastly, we report the model’s performance as the average Area Under the Receiver Operating
Characteristic (ROC-AUC) across 10 outer test folds. Given the prevalence of imbalanced datasets in the
OpenMLCC18 benchmark, we employ ROC-AUC as our primary metric. This measure offers a more reliable
assessment of model performance across varied class distributions, as it is less influenced by the imbalance
in a dataset.

In our study, we adhered to the official hyperparameter search spaces from the respective papers for tuning
every method. For a detailed description of the hyperparameter search spaces of all other methods included
in our analysis, we refer the reader to Appendix A.

Code: For reproducibility, our code is available at: https://anonymous.4open.science/r/TabularStudy-
0EE2.

4 Baselines

In our experiments, we compare a range of methods categorized into three distinct groups: Classical Machine
Learning Classifiers (§ 4.1), Deep Learning Methods (§ 4.2), and AutoML frameworks (§ 4.3) as shown in
Figure 1.

4.1 Classical Machine Learning Classifiers

Gradient Boosted Decision Trees. First, we consider XGBoost (Chen & Guestrin, 2016), a well-
established GBDT library that uses asymmetric trees. The library does not natively handle categorical
features, which is why we apply one-hot encoding. Moreover, we consider CatBoost, a well-known library for
GBDT that employs oblivious trees as weak learners and natively handles categorical features with various
strategies.

4.2 Deep Learning Methods

Dataset-Specific Neural Networks. Recent works have shown that MLPs featuring residual connections
outperform plain MLPs and make for very strong competitors to state-of-the-art architectures (Kadra et al.,
2021; Gorishniy et al., 2021). As such, in our study, we include the ResNet implementation provided in Gor-
ishniy et al. (2021). Furthermore, research indicates that incorporating numerical embeddings (Gorishniy
et al., 2022), such as PLR, into neural networks significantly improves performance, motivating us to include
an MLP with PLR embeddings in our study Throughout this paper, any mention of MLP refers specifically
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Algorithm 1: Nested Cross-Validation for Hyperparameter Optimization
Input : Dataset D, Number of outer folds K = 10, Number of inner folds J = 9, Number of

hyperparameter optimization trials T = 100, Search space Λ
Output: Overall performance P̄outer

1 for k ← 1 to K do
2 Split D into training set Dk

train and test set Dk
test;

3 for t← 1 to T do
4 Sample hyperparameter configuration θt from the search space Λ;
5 for j ← 1 to J do
6 Split Dk

train into inner training set Dk,j
train and validation set Dk,j

val ;
7 Train model M(λt) on Dk,j

train;
8 Evaluate M(λt) on Dk,j

val to get performance P k,j(λt);
9 end

10 Compute mean performance P̄ k(λt) = 1
J

∑J
j=1 P k,j(λt);

11 Use P̄ k(λt) as the objective value for λt;
12 end
13 Select the best hyperparameter configuration λ∗

k ;
14 Train final model M(λ∗

k) on Dk
train;

15 Evaluate M(λ∗
k) on Dk

test to get outer performance P k
outer;

16 end
17 Compute overall performance P̄outer = 1

K

∑K
k=1 P k

outer;
18 return P̄outer;

to an MLP with PLR embeddings. Additionally, RealMLP (Holzmüller et al., 2024) not only leverages nu-
merical embeddings but also employs techniques like robust scaling, smooth clipping, and a diagonal weight
layer, enabling it to surpass other neural network models. Consequently, we include RealMLP in our analysis
as well.

Additionally, we consider several transformer-based architectures designed specifically for tabular data. Tab-
Net (Arik & Pfister, 2021) employs sequential attention to selectively utilize the most pertinent features at
each decision step. For the implementation of TabNet, we use a well-maintained public implementation2.
SAINT (Somepalli et al., 2021) introduces a hybrid deep learning approach tailored for tabular data chal-
lenges. SAINT applies attention mechanisms across both rows and columns and integrates an advanced
embedding technique. Lastly, FT-Transformer Gorishniy et al. (2021) is an adaptation of the Transformer
architecture for tabular data. It transforms categorical and numerical features into embeddings, which are
then processed through a series of Transformer layers.

Foundation Models for Tabular Classification. These models can be further divided into two categories
based on their learning strategies: In-Context Learning and Fine-Tuning. The former eliminates the need
for per-dataset finetuning, whereas the latter requires models to undergo finetuning specific to each dataset.

For in-context learning, we consider TabPFN, a meta-learned transformer architecture.

Among fine-tuned models, XTab proposes a cross-table pretraining approach that can work across multiple
tables with different column types and structures. The approach utilizes independent featurizers for individ-
ual columns and federated learning to train a shared transformer component, allowing better generalization.
Next, TP-BERTa is a variant of the BERT language model being specifically adapted for tabular predic-
tion. It introduces a relative magnitude tokenization to transform continuous numerical values into discrete
high-dimensional tokens. Its learning procedure relies on an intra-feature attention module that learns rela-
tionships between feature values and their corresponding feature names, effectively bridging the gap between
numerical data and language-based feature representation. Lastly, CARTE utilizes a graph representation

2https://github.com/dreamquark-ai/tabnet
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of tabular data to process tables with differing structures. It applies an open vocabulary setting and con-
textualizes the relationship between table entries and their corresponding columns by a graph-attentional
network. CARTE is pre-trained on a large knowledge base enhancing generalization.

Since all the fine-tuned models were pretrained on real-world datasets, we ensure that no datasets overlapping
with the OpenMLCC18 benchmark are included in the evaluation. For all baselines, we use their official
implementations. We refer the readers to Appendix A for more details.

4.3 AutoML Frameworks

Due to the large number of AutoML frameworks available in the community (Feurer et al., 2015; Erickson
et al., 2020; LeDell & Poirier, 2020; Feurer et al., 2022), it was infeasible to include all of them in our
experimental study. Therefore, we selected AutoGluon (Erickson et al., 2020), which is regarded as one of
the best AutoML frameworks according to the AutoML Benchmark study (Gijsbers et al., 2024). Unlike
other AutoML systems, AutoGluon does not recommend performing hyperparameter optimization, instead,
it relies on stacking and ensembling. In our study, we include two versions of AutoGluon: one where we
perform hyperparameter optimization for all models, and a version where we follow the original author’s
recommendations by setting presets="best_quality".

5 Experiments and Results

In this study, we aim to address several key research questions related to the performance of machine learning
techniques and various deep learning model families on tabular data classification:

•R1: Do DL models outperform gradient boosting methods in tabular data classification? (§ 5.1)
→ GBDTs show robust performance while TabPFN is competitive on small datasets.

•R2: Do meta-learned NNs outperform data-specific NNs in tabular data classification? (§ 5.1)
→ TabPFN is superior on small datasets. Dataset-specific sota models outperform foundation models.

•R3: Do in-context models or fine-tuned models perform better? (§ 5.2)
→ TabPFN wins on small datasets. XTab as a fine-tuned model yields the most robust performance.

•R4: Do DL models outperform AutoML libraries? (§ 5.3)
→ AutoML is superior to DL models on a broad range of datasets.

•R5: What is the influence of hyperparameter optimization on the output quality? (§ 5.4)
→ HPO shows significant improvements besides for models reaching computational limits.

•R6: How do dataset characteristics relate to the performance of different model families? (§ 5.5)
→ No significant relations of meta features to performance across different model families.

•R7: What is the cost vs. efficiency relation of various model families? (§ 5.6)
→ GBDTs show best relations w.r.t. inference time while AutoML is competitive w.r.t. total time.

5.1 (R1+R2) Quality metrics

To address our first two research questions, we compare the performance of different families of methods by
ranking each method on every dataset and analyzing the distribution of these ranks. Figure 2 presents a
comparison between Deep Learning methods and classical ML methods. The results indicate that Classical
ML methods - namely CatBoost and XGBoost - demonstrate robust and consistent performance across
datasets, with CatBoost achieving a median rank of 2 and XGBoost a median rank of 2.5. Among the Deep
Learning methods, TabPFN exhibits the best performance with a median rank of 2.
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To address the second research question R2, we analyzed the distribution of ranks between the two subfamilies
within the Deep Learning category: Foundation Models and Dataset-Specific Neural Networks. Figure 3
illustrates that, overall, dataset-specific neural networks outperform foundation models, with the notable
exception of TabPFN, which achieved a median rank of 2 across its 17 evaluated datasets. Within the
dataset-specific family, RealMLP demonstrated the best performance, attaining a median rank of 3 across
all 68 datasets. This is followed by MLP with PLR embeddings and ResNet, both with a median rank of 3,
however, MLP exhibited a narrower interquartile range, indicating a more consistent performance. Among
the foundation models, after TabPFN, XTab shows the next best performance with a median rank of 3,
followed by CARTE, and finally, TP-BERTa, which displays the lowest performance within this group.

To compare foundation models with dataset-specific NNs in the small data regime, we utilized the autorank
package Herbold (2020), performing a Friedman test followed by a Nemenyi post-hoc test at a significance
level of 0.05. This statistical analysis allows for generating a critical difference (CD) diagram shown in the
left plot of Figure 4.
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Figure 4: Statistical analysis in the small data domain (number of instances ≤ 1000). Left: Critical
Difference (CD) Diagram of dataset-specific neural networks against foundation models. Right: Critical
Difference (CD) Diagram of Deep Learning models against GBDT models

Due to the limited number of datasets shared among the methods, TP-BERTa was excluded from this
comparison. The black bars connecting methods indicate that there is no statistically significant difference
in performance. While TabPFN outperforms RealMLP, FT-Transformer, MLP, ResNet, SAINT and XTab
these results are not statistically significant. The CD diagram illustrates that in the small data domain, i.e.,
number of instances ≤ 1,000, TabPFN outperforms other methods, demonstrating superior performance.
We also compare the performance of deep learning models with classical machine learning models in the
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small data domain. Right plot of Figure 4 presents a critical difference diagram, which indicates that
TabPFN achieves the highest rank overall. A comprehensive presentation of the raw results for all methods,
both after hyperparameter optimization (HPO) and with default hyperparameter configurations, is provided
in Appendix B.

5.2 (R3) In-context learning vs. Fine-tuning

To further investigate the family of foundation models whether fine-tuning or in-context learning models
yield better performance, we conducted an analysis similar to our previous research questions. We employ
boxplots to display the distribution of ranks and use critical difference (CD) diagrams to evaluate the
statistical significance of the results.

Figure 5 illustrates that TabPFN, categorized under in-context learning methods, achieved a median rank
of 1 with no interquartile range, indicating highly consistent performance across its 17 evaluated datasets.
Among the fine-tuning methods, XTab showed the best performance with a median rank of 1 but exhibited
a larger interquartile range, followed by CARTE and TP-BERTa.

For a statistical comparison, we present a CD diagram in Figure 6, from which TP-BERTa is excluded due
to the limited number of common datasets among the methods. The CD diagram reveals that TabPFN
outperforms both XTab and CARTE, highlighting its superiority within the Foundation Models category.
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significant differences.

5.3 (R4) Deep Learning models vs. AutoML Libraries

In our study, we include AutoGluon Erickson et al. (2020), a prominent AutoML library, to compare against
the Deep Learning methods. We consider two versions of AutoGluon: one where we perform hyperparameter
optimization (HPO) and the officially recommended version configured with presets=best_quality. We
compare all methods within the Deep Learning family to these versions of AutoGluon.

Figure 7 presents boxplots showing the distribution of ranks for all Deep Learning methods compared to
AutoGluon. The left-hand side illustrates the comparison with the HPO version of AutoGluon. Except for
TabPFN, which achieves a median rank of 2, while RealMLP follows closely with a strong median rank of 3,
all other methods are outperformed by AutoGluon, which has a median rank of 3, with its interquartile range
extending down to rank 1 across its 68 evaluated datasets. The right-hand side displays the recommended
version of AutoGluon, which exhibits even better performance with a median rank of 1 and a very narrow
interquartile range, indicating robust performance.
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Figure 7: Distribution of ranks for the Deep Learning Models (10 methods) and AutoML (1 method)
classifier families. Left: AutoGluon with hyperparameter optimization (HPO). Right: AutoGluon in its
recommended configuration. The boxplot illustrates the rank spread, with medians represented by red lines
and whiskers showing the range.
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Figure 8: Comparative analysis of Deep learning models against AutoGluon. Left: AutoGluon with hyper-
parameter optimization (HPO). Right: AutoGluon in its recommended configuration.

Consistent with our previous analyses, we also present critical difference (CD) diagrams for this comparison.
Figure 8 shows, on the left side, the CD diagram of AutoGluon with HPO and, on the right side, AutoGluon
with its recommended configuration, both compared against the Deep Learning methods across all datasets.
The left CD diagram indicates that while AutoGluon attains the highest rank, the differences are not
statistically significant when compared to SAINT, FT-Transformer, ResNet, and XTab; however, they are
statistically significant when compared to CARTE and TabNet. The right CD diagram tells a different story:
AutoGluon with its recommended settings is superior to every method in the comparison with a statistically
significant result.
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Figure 9: Comparative analysis of Deep learning models against AutoGluon in the small data domain (num-
ber of instances ≤ 1000). Left: AutoGluon with hyperparameter optimization (HPO). Right: AutoGluon
in its recommended configuration.

Furthermore, we conduct the same analysis in the small data domain, where the number of instances is
≤ 1000, to include TabPFN in the analysis. Figure 9 presents these results. In the left diagram, TabPFN
outperforms all other methods, including the HPO version of AutoGluon. However, in the right diagram,
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AutoGluon with its recommended settings outperforms every method, including TabPFN, nevertheless, the
difference is not statistically significant.

5.4 (R5) Analysis of HPO
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Figure 10: Comparison of average rank
performance between hyperparameter-
optimized (HPO) models and default
models. The blue dots represent the
performance of the HPO models, while
the red crosses denote the default models.
Lower ranks indicate better performance.

In our analysis of hyperparameter optimization (HPO) versus
default configurations across various machine learning meth-
ods, we observed that HPO generally led to improved perfor-
mance. The analysis is depicted in Figure 10. This improve-
ment is reflected in the average rank reductions for most meth-
ods when HPO was applied. For example, XGBoost’s average
rank improved significantly from 1.94 in its default configura-
tion to 1.06 with HPO, and XTab showed a similar enhance-
ment, moving from a rank of 1.96 down to 1.04. These find-
ings are visually represented in the accompanying plot, which
illustrates the performance gains achieved through HPO. An
exception to the general trend was observed with TP-BERTa,
where the default configuration slightly outperformed the HPO
version (average ranks of 1.47 and 1.53, respectively). This
anomaly can be attributed to the computational demands of
TP-BERTa. Due to its large model size, TP-BERTa was unable
to complete the full 100 hyperparameter tuning trials within
the allotted 23-hour time frame, often finishing only a few tri-
als. Consequently, the HPO process may have converged to a
suboptimal configuration that did not surpass the performance
of the default settings.

Figure 11 illustrates the importance of the individual hyperparameters tuned for every method. We calculate
hyperparameter importance using the fANOVA (Hutter et al., 2014) implementation in Optuna (Akiba et al.,
2019). According to our analysis, the most important hyperparameter for CatBoost is the learning rate, while
for XGBoost, it is the subsample ratio of the training instances. For XTab, the learning rate is also the most
important hyperparameter, closely followed by the light_finetune hyperparameter, which is a categorical
parameter taking values True or False. When light_finetune is True, we fine-tune XTab for only 3
epochs; when it is False, we use the same range of epochs as for the other methods (10 to 500). Similarly,
for the MLP with PLR embeddings, the learning rate proves to be the most influential hyperparameter,
whereas for RealMLP, the number of units in the hidden layers. For the remaining dataset-specific neural
networks in the deep learning family, as well as for CARTE, the number of training epochs is the most
important hyperparameter, indicating that training duration plays a critical role in their performance.

5.5 (R6) Influence of meta-feature characteristics on the predictive performance

Following the methodology of McElfresh et al. (2023), we employed the PyMFE library (Alcobaça et al.,
2020) to extract meta-features from the datasets used in our study. Specifically, we extracted General,
Statistical, and Information-theoretical meta-features.

Figure 12 displays the mean correlation coefficients of the most significant meta-features concerning the
performance of all methods, averaged across datasets. To produce this plot, we first calculate the correlation
coefficients between each method’s performance and each meta-feature for all datasets. For each method,
we then selected the top k meta-features with the highest absolute value of the correlation coefficients across
all datasets, identifying them as the most important ones for that specific method. We compiled a list
of significant meta-features by taking the union of these top meta-features across all methods. For each
meta-feature in this combined list, we computed the mean of its correlation coefficients across datasets for
all methods. Figure 12 illustrates that TabPFN and TPBERTa significantly deviate from the overall pattern
observed in the other methods, exhibiting negative correlations for the meta-features mad.mean, median.sd,
t_mean.mean, and t_mean.sd. To determine whether this deviation is due to the inherent properties of
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Figure 11: Hyperparameter importance for various methods

these methods or is a consequence of the limited number of datasets they were evaluated on, we repeated
the analysis for all methods using only the datasets on which TabPFN and TPBERTa were run.
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Figure 12: Mean correlation coefficient of most important meta-features with performance across all methods
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Figure 13: Mean correlation coefficient of most important meta-features with performance across all methods
on datasets with results for TabPFN and TPBERTa

Figure 13 demonstrates that when the analysis is confined to only the intersection of datasets on which
TabPFN and TPBERTa were evaluated, the previously observed deviation disappears. This suggests that
the initial divergence was likely due to the limited number of datasets rather than the inherent properties
of these methods. Therefore, it appears that all methods, regardless of their method families, are similarly
influenced by the meta-features in terms of their predictive performance. In general, the strongest correlation
coefficients are observed for three meta-features: eq_num_attr, w_lambda, and can_cor.mean.

The eq_num_attr meta-feature, which measures the number of attributes equivalent in information con-
tent for the predictive task, exhibits a strong negative correlation with performance across most methods.
This suggests that methods generally perform worse on datasets with high feature redundancy, likely due to
challenges in handling overlapping information or overfitting. Similarly, the w_lambda meta-feature, which
computes Wilk’s Lambda to quantify the separability of classes in the feature space, also shows a consis-
tently negative correlation. This indicates that methods struggle on datasets with poor class separability,
where the features do not adequately distinguish between the target classes. Conversely, the can_cor.mean
meta-feature, representing the mean canonical correlation between features and the target, shows a positive
correlation with performance. This implies that methods perform better on datasets where the features are
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strongly predictive of the target variable, highlighting their reliance on well-aligned feature-target relation-
ships.

Generally, the findings align with the common intuition of the performance of ML methods under sub-optimal
class separation and further validate the empirical protocol of our study. For detailed explanations of the
meta-feature abbreviations used in the plots, please refer to the official PyMFE documentation3.

5.6 (R7) Cost vs. efficiency relation

To address the final research question, to see what is the cost vs. efficiency relation of various model families,
we plot the intra-search space normalized Average Distance to the Maximum (ADTM) Wistuba et al. (2016)
in Figure 14, illustrating how quickly each method converges to its best solution during the HPO process.

The plot shows that XGBoost is the fastest, reaching nearly optimal performance within just
5 hours. ResNet and MLP also demonstrate notable speed, followed closely by CatBoost.
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Figure 14: Intra-search space normalized average
distance to the maximum over the cumulative train-
ing time (seconds).

Overall, the gradient boosting methods (GBDT) con-
verge faster than the deep learning models. XTab,
which shares the same transformer architecture as FT-
Transformer, exhibits quicker convergence, likely due
to its static architecture, while the FT-Transformer’s
architectural components were also tuned. On the
other hand, TP-BERTa is the slowest to converge,
likely due to the high computational demands of its
BERT-like architecture.

In Figure 15, we show the performance profiles of the
models considered. We first normalize the performance
values and the logarithmic time values. Let P

(j)
i and

T
(j)
i be the performance of algorithm i on dataset j,

resp., the measured time. Let m
(j)
∗ = maxi P

(j)
i be

the model yielding the best performance and t
(j)
† = maxi T

(j)
i denoting the greatest running time on

dataset j, we compute the performance gap gap(j)
i = (m(j)

∗ − Pi(j))/m
(j)
∗ and the temporal gain tgain(j)

i =
(t(j)

† − T
(j)
i )/t

(j)
† being achieved for each algorithm i on a dataset j. We define a Performance-Time Ratio

ptr(j)
i = gap(j)

i / tgain(j)
i , where ptr(j)

i > 1 values indicate that the performance gain outweighs the time cost,
ptr(j)

i = 1 yields a balanced view, whereas ptr(j)
i < 1 indicate that the time cost outweighs the performance

gain. We further normalize the ptr(j)
i to be in the range of [0, 1] such that values closer to 1 (0) indicate a

better (poorer) trade-off in terms of performance gain relative to time cost. To determine the cumulative
proportion for a given threshold τ , we count how many normalized ptr ′(j)

i = ptr(j)
i /(1 + ptr(j)

i ) are less than
or equal to τ for each algorithm i. Hence, the closer a line reaches 1.0 for smaller values of τ , the more often
an algorithm is close to having the best performance-time-cost, i.e., lines that rise more steeply indicate
better overall ratios on the datasets considered. A red star in the upper left of the illustrations indicates the
best value.

On the left, the performance profiles are shown w.r.t. the measured inference time. The evaluation shows
that both GBDT models yield the best performance-time ratio, followed by the dataset-specific deep learn-
ing models FT-Transformer and ResNet. Even though the AutoML framework AutoGluon shows strong
performance values as discussed in Section 5.3, the hyperparameter optimization comes at the cost of higher
computational cost resulting in expensive costs w.r.t. the temporal domain. Both TP-Berta and TabPFN
are only evaluated on a small subset of the available datasets as indicated by the small cumulative proportion
value for both approaches, where the latter shows its strong performance on the datasets it has been evalu-
ated on by a steep increase. The approaches SAINT, TabNet, CARTE, and XTab range in-between, where
CARTE and SAINT show slightly better performance-cost ratios compared to AutoGluon with increased
values for the performance ratio τ considering a broader range of various datasets.

3https://pymfe.readthedocs.io/en/latest/auto_pages/meta_features_description.html
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Figure 15: Left: Performance profiles based on inference time. Right: Performance profiles based on total
time. Steeper curves indicate better overall performance and efficiency across datasets.

The right plot shows the equivalent performance profiles w.r.t. the measured total time. Notably, XGBoost
and AutoGluon with hyperparameter optimization result in strong performance-time ratios. Transformer-
based models are outperformed by more lightweight models like CatBoost and ResNet which both show
competitive results. From the model family encompassing foundation models, XTab shows the strongest
performance, however, is outperformed by classical GBDT approaches. TabPFN as an in-context learning
model is only applicable on small data regimes and is therefore not competitive considering all datasets. In
Appendix E.6, we provide a performance profiles analysis in the small-data and large-data regimes separately.

6 Conclusion

Our comprehensive empirical study evaluates the quality of eleven state-of-the-art tabular classification
models. We categorize the approaches into model families according to their underlying learning scheme,
which encompasses gradient-boosted decision trees (GBDTs) as tree-based models, foundation models with
sub-paradigms of in-context learning and fine-tuning, and dataset-specific neural networks as umbrella for
feedforward networks and transformer-based approaches. Our study is conducted with 68 diverse datasets
from the OpenMLCC18 benchmark repository. Our study provides a rigorous assessment of state-of-the-
art learning paradigms that reveals that dataset-specific neural networks, e.g., ResNet, FT-Transformer,
and SAINT, generally outperform meta-learned approaches, e.g., TP-BERTa. We are the first to have a
deeper investigation on foundation models, showing that TabPFN excels all other models in small data
scenarios. However, classical machine learning methods, such as XGBoost and CatBoost still demonstrate
robust performance while highly efficient in comparison to other model families on a broad range of datasets.
Moreover, AutoGluon as an AutoML framework exhibits superior performance across diverse datasets, albeit
at the cost of increased computational resources. Next to a fair comparison of model families, we provide an
in-depth analysis of the influence of hyperparameter optimization on the models’ performance and provide
a cost-efficiency analysis that highlights that GBDT approaches outperform most modern deep learning
methods. Our study contributes valuable insights into the current landscape of tabular classification data
modeling and encourages further potential research directions with promising model families.
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A Configuration Spaces

A.1 CatBoost

Table 2: Search space for CatBoost.

Parameter Type Range Log Scale
max_depth Integer [3, 10]
learning_rate Float [10−5, 1] ✓
bagging_temperature Float [0, 1]
l2_leaf_reg Float [1, 10] ✓
leaf_estimation_iterations Integer [1, 10]
iterations Integer [100, 2000]

The specific search space employed for CatBoost is detailed in Table 2. Our implementation heavily relies
on the framework provided by the official implementation of the FT-Transformer, as found in the following
repository4. We do this to ensure a consistent pipeline across all methods, that we compare. The CatBoost
algorithm implementation, however, is the official one5.

For the default configuration of CatBoost, we do not modify any hyperparameter values. This approach
allows the library to automatically apply its default settings, ensuring that our implementation is aligned
with the most typical usage scenarios of the library.

A.2 XGBoost

Table 3: Search space for XGBoost.

Parameter Type Range Log Scale
max_depth Integer [3, 10]
min_child_weight Float [10−8, 105] ✓
subsample Float [0.5, 1]
learning_rate Float [10−5, 1] ✓
colsample_bylevel Float [0.5, 1]
colsample_bytree Float [0.5, 1]
gamma Float [10−8, 102] ✓
reg_lambda Float [10−8, 102] ✓
reg_alpha Float [10−8, 102] ✓
n_estimators Integer [100, 2000]

We utilized the official XGBoost implementation6. While the data preprocessing steps were consistent across
all methods, a notable exception was made for XGBoost. For this method, we implemented one-hot encoding
on categorical features, as XGBoost does not inherently process categorical values.

The comprehensive search space for the XGBoost hyperparameters is detailed in Table 3. In the case of
default hyperparameters, our approach mirrored the CatBoost implementation where we opted not to set
any hyperparameters explicitly but instead, use the library defaults.

4https://github.com/yandex-research/rtdl-revisiting-models
5https://catboost.ai/
6https://xgboost.readthedocs.io/en/stable/
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Furthermore, it is important to note that XGBoost lacks native support for the ROC-AUC metric in mul-
ticlass problems. To address this, we incorporated a custom ROC-AUC evaluation function. This function
first applies a softmax to the predictions and then employs the ROC-AUC scoring functionality provided by
scikit-learn, which can be found at the following link7.

A.3 FT-Transformer

Table 4: Search space for FT-Transformer.

Parameter Type Range Log Scale
n_layers Integer [1, 6]
d_token Integer [64, 512]
residual_dropout Float [0, 0.2]
attn_dropout Float [0, 0.5]
ffn_dropout Float [0, 0.5]
d_ffn_factor Float [ 2

3 , 8
3 ]

lr Float [10−5, 10−3] ✓
weight_decay Float [10−6, 10−3] ✓
epochs Integer [10, 500]

In our investigation, we adopted the official implementation of the FT-Transformer (Gorishniy et al., 2021).
Diverging from the approach from the original study, we implemented a uniform search space applicable
to all datasets, rather than customizing the search space for each specific dataset. This approach ensures
a consistent and comparable application across various datasets. The uniform search space we employed
aligns with the structure proposed in Gorishniy et al. (2021). Specifically, we consolidated the search space
by integrating the upper bounds defined in the original paper with the minimum bounds identified across
different datasets.

Regarding the default hyperparameters, we adhered strictly to the specifications provided in Gorishniy et al.
(2021).

A.4 SAINT

We utilize the official implementation of the method as detailed by the respective authors (Somepalli et al.,
2021). The comprehensive search space employed for hyperparameter tuning is illustrated in Table 5.

Regarding the default hyperparameters, we adhere to the specifications provided by the authors in their
original implementation.

Table 5: Search space for SAINT.

Parameter Type Range Log Scale
embedding_size Categorical {4, 8, 16, 32}
transformer_depth Integer [1, 4]
attention_dropout Float [0, 1.0]
ff_dropout Float [0, 1.0]
lr Float [10−5, 10−3] ✓
weight_decay Float [10−6, 10−3] ✓
epochs Integer [10, 500]

7https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
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A.5 TabNet

Table 6: Search space for TabNet.

Parameter Type Range Log Scale
n_a Integer [8, 64]
n_d Integer [8, 64]
gamma Float [1.0, 2.0]
n_steps Integer [3, 10]
cat_emb_dim Integer [1, 3]
n_independent Integer [1, 5]
n_shared Integer [1, 5]
momentum Float [0.001, 0.4] ✓
mask_type Categorical {entmax, sparsemax}
epochs Integer [10, 500]

For TabNet’s implementation, we utilized a well-maintained and publicly available version, accessible at the
following link8. The hyperparameter tuning search space for TabNet, detailed in Table 6, was derived from
McElfresh et al. (2023).

Regarding the default hyperparameters, we followed the recommendations provided by the original authors.

A.6 ResNet

Table 7: Search space for ResNet.

Parameter Type Range Log Scale
layer_size Integer [64, 1024]
lr Float [10−5, 10−2] ✓
weight_decay Float [10−6, 10−3] ✓
residual_dropout Float [0, 0.5]
hidden_dropout Float [0, 0.5]
n_layers Integer [1, 8]
d_embedding Integer [64, 512]
d_hidden_factor Float [1.0, 4.0]
epochs Integer [10, 500]

We employed the ResNet implementation as described in prior work (Gorishniy et al., 2021). The entire
range of hyperparameters explored for ResNet tuning is detailed in Table 7. Since the original study did not
specify default hyperparameter values, we relied on the search space provided in a prior work (Kadra et al.,
2021).

8https://github.com/dreamquark-ai/tabnet
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A.7 MLP-PLR

We employ the MLP implementation proposed by (Gorishniy et al., 2022). The search space used for
hyperparameter optimization is detailed in Table 8. Default hyperparameters are adapted from (McElfresh
et al., 2023), while the search space is based on the original work of (Gorishniy et al., 2022).

Table 8: Search space for MLP-PLR.

Parameter Type Range Log Scale
lr Float [10−5, 10−3] ✓
weight_decay Float [10−6, 10−3] ✓
dropout Float [0, 0.5]
n_layers Integer [1, 16]
d_embedding Integer [64, 512]
d_num_embedding Integer [1, 128]
d_first Integer [1, 1024]
d_middle Integer [1, 1024]
d_last Integer [1, 1024]
n Integer [1, 128]
sigma Float [0.01, 100] ✓
epochs Integer [10, 500]

A.8 RealMLP

For our RealMLP experiments, we use the official implementation 9. Following the authors’ recommenda-
tions, we impute missing values using the mean of the training split before applying their preprocessing
pipeline. We adopt the recommended default hyperparameters and search space, detailed in Table 9. Ad-
ditionally, we extend the search space for the initialization standard deviation of the first embedding layer
and tune the embedding dimensions, as done for the MLP, to achieve optimal performance.

Table 9: Search space for RealMLP.

Parameter Type Range Log Scale
num_emb_type Categorical {None, PBLD, PL, PLR}
add_front_scale Categorical {True, False}
lr Float [2e-2, 3e-1] ✓
p_drop Categorical {0.0, 0.15, 0.3}
act Categorical {relu, selu, mish}
hidden_sizes Categorical {[256, 256, 256], [64, 64, 64, 64, 64], [512]}
wd Categorical {0.0, 0.02}
plr_sigma Float [0.05, 1e1] ✓
ls_eps Categorical {0.0, 0.1}
embedding_size Integer [1, 64]
n_epochs Integer [10, 500]

9https://github.com/dholzmueller/pytabkit
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A.9 XTab

For XTab, we utilize the official implementation10. To ensure comparability with other methods, we decouple
XTab from AutoGluon and apply the same preprocessing and training pipeline as used for the other models.
The original work reports results for both light finetuning and heavy finetuning, so we introduce this as a
categorical hyperparameter. If light_finetuning is set to True, the model is finetuned for only 3 epochs.
Otherwise, we follow the same epoch range as for the other methods, i.e., [10, 500]. Furthermore, we use the
checkpoint after 2000 iterations (iter_2k.ckpt), provided by the authors. Table 10 outlines the complete
search space used for XTab during hyperparameter optimization (HPO).

Table 10: Search space for XTab.

Parameter Type Range Log Scale
lr Float [10−5, 10−3] ✓
weight_decay Float [10−6, 10−3] ✓
light_finetuning Categorical {True, False}
epochs Integer 3 (if light_finetuning=True) or [10, 500] (otherwise)

A.10 CARTE

For CARTE, we use the official implementation11. Similar to XTab, since it is a pretrained model, we do
not tune the architectural hyperparameters but keep them fixed and load the checkpoint provided by the
authors. The search space used for CARTE during our hyperparameter optimization (HPO) process is shown
in Table 11.

Table 11: Search space for CARTE.

Parameter Type Range Log Scale
lr Float [10−5, 10−3] ✓
weight_decay Float [10−6, 10−3] ✓
epochs Integer [10, 500]

A.11 TP-BERTa

We use the official implementation for TP-BERTa12. Similar to the other pretrained models, we only tune
the learning rate, weight decay, and the number of finetuning epochs. The search space is shown in
Table 12.

Table 12: Search space for TP-BERTa.

Parameter Type Range Log Scale
lr Float [10−5, 10−3] ✓
weight_decay Float [10−6, 10−3] ✓
epochs Integer [10, 500]

10https://github.com/BingzhaoZhu/XTab
11https://github.com/soda-inria/carte
12https://github.com/jyansir/tp-berta
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A.12 TabPFN

For TabPFN, we utilized the official implementation from the authors13. We followed the settings suggested
by the authors and we did not preprocess the numerical features as TabPFN does that natively, we ordinally
encoded the categorical features and we used an ensemble size of 32 to achieve peak performance as suggested
by the authors.

A.13 AutoGluon

For our experiments, we utilize the official implementation of AutoGluon14. Specifically, we evaluate two
configurations of AutoGluon: the HPO version and the recommended version.

• For the HPO version, we use the default search spaces for the models included in AutoGluon’s
ensemble.

• For the recommended version, we set presets="best_quality" as per the official documentation
and do not perform hyperparameter optimization.

A.14 Preprocessing

Our codebase is heavily based on that of (Gorishniy et al., 2021), and we employ the same preprocessing
pipeline. Methods for which we do not apply this preprocessing are those that inherently require a different
approach, such as TP-BERTa and CARTE, or those implemented within libraries where modifying the
preprocessing pipeline is not trivial, such as AutoGluon and RealMLP. In these cases, we use the preprocessing
strategies from the original works.

Regarding batch size, we do not tune it in our experiments due to memory constraints. Instead, we determine
batch size heuristically similar to (Chen et al., 2024) based on the number of features in the dataset. While
batch sizes may vary across datasets, they remain consistent across methods.

13https://github.com/automl/TabPFN
14https://auto.gluon.ai/stable/index.html
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B Raw results tables

B.1 Results after hyperparameter optimization

Table 13 shows the raw results after HPO for CatBoost and XGBoost.

Table 13: Average test ROC-AUC per dataset for XGBoost and CatBoost after hyperparameter optimization
across CV folds.

Dataset CatBoost XGBoost
adult 0.930747 0.930482
analcatdata_authorship 0.999662 0.999816
analcatdata_dmft 0.579136 0.572150
balance-scale 0.972625 0.991268
bank-marketing 0.938831 0.938384
banknote-authentication 0.999935 0.999935
Bioresponse 0.885502 0.888615
blood-transfusion-service-center 0.754965 0.750671
breast-w 0.989162 0.992112
car 1.000000 0.999902
churn 0.922968 0.914432
climate-model-simulation-crashes 0.951480 0.947000
cmc 0.740149 0.735649
cnae-9 0.996316 0.997454
connect-4 0.921050 0.931952
credit-approval 0.934006 0.934692
credit-g 0.801762 0.798571
cylinder-bands 0.912070 0.928116
diabetes 0.837869 0.835638
dna 0.995028 0.995278
dresses-sales 0.595731 0.622414
electricity 0.980993 0.987790
eucalyptus 0.923334 0.918055
first-order-theorem-proving 0.831775 0.834883
GesturePhaseSegmentationProcessed 0.916674 0.916761
har 0.999941 0.999960
ilpd 0.744702 0.748019
Internet-Advertisements 0.979120 0.982276
isolet 0.999389 0.999488
jm1 0.756611 0.759652
jungle_chess_2pcs_raw_endgame_complete 0.976349 0.974087
kc1 0.825443 0.832007
kc2 0.846802 0.843295
kr-vs-kp 0.999392 0.999796
letter 0.999854 0.999819
madelon 0.937562 0.932249
mfeat-factors 0.998910 0.999004
mfeat-fourier 0.984714 0.983375
mfeat-karhunen 0.999264 0.999211
mfeat-morphological 0.965406 0.963075
mfeat-pixel 0.999422 0.999378
mfeat-zernike 0.977986 0.974231
MiceProtein 1.000000 0.999923
nomao 0.996439 0.996676
numerai28.6 0.529404 0.529457
optdigits 0.999844 0.999855
ozone-level-8hr 0.929094 0.922663
pc1 0.875471 0.863061
pc3 0.851122 0.854543
pc4 0.953309 0.951037
pendigits 0.999752 0.999703
PhishingWebsites 0.996482 0.997425
phoneme 0.968024 0.967421
qsar-biodeg 0.930649 0.934875
satimage 0.991978 0.992114
segment 0.996231 0.996126
semeion 0.998687 0.998272
sick 0.998331 0.997950
spambase 0.989935 0.990726
splice 0.995472 0.995049
steel-plates-fault 0.974350 0.972743
texture 0.999948 0.999940
tic-tac-toe 1.000000 0.999710
vehicle 0.943460 0.942080
vowel 0.999259 0.999428
wall-robot-navigation 0.999990 0.999981
wdbc 0.993813 0.994467
wilt 0.990950 0.992192

26



Under review as submission to TMLR

Table 14 shows the raw results after HPO for dataset-specific neural networks.

Table 14: Average test ROC-AUC per dataset for dataset-specific neural networks after hyperparameter
optimization across CV folds. Missing datasets are represented by "-".

Dataset FT-Transformer ResNet SAINT TabNet
adult 0.914869 0.913790 0.920246 0.882450
analcatdata_authorship 0.999985 1.000000 0.999974 0.999249
analcatdata_dmft 0.576947 0.584338 0.544695 0.515962
balance-scale 0.999735 0.989061 0.999266 0.979668
bank-marketing 0.938198 0.935740 0.936560 0.887319
banknote-authentication 1.000000 1.000000 1.000000 1.000000
Bioresponse 0.820159 0.850801 - -
blood-transfusion-service-center 0.745975 0.738502 0.746726 0.660675
breast-w 0.989503 0.995477 0.988470 0.986694
car 0.999751 0.994154 1.000000 1.000000
churn 0.914596 0.918713 0.915603 0.891443
climate-model-simulation-crashes 0.934671 0.918990 0.925643 0.868204
cmc 0.739402 0.737829 0.738490 0.647121
cnae-9 0.994497 0.997106 - -
connect-4 0.901170 0.933333 - -
credit-approval 0.935798 0.933113 0.933493 0.878500
credit-g 0.783048 0.783524 0.786402 0.696905
cylinder-bands 0.915494 0.909989 0.923391 0.837792
diabetes 0.831108 0.821798 0.827285 0.756416
dna 0.990937 0.992543 0.992473 0.991448
dresses-sales 0.620033 0.575205 0.624704 0.555993
electricity 0.963076 0.960658 0.967012 0.938656
eucalyptus 0.923933 0.916785 0.925970 0.872365
first-order-theorem-proving 0.796707 0.784636 0.802392 0.774094
GesturePhaseSegmentationProcessed 0.895166 0.914196 0.919006 0.850596
har 0.999685 0.999921 - 0.999515
ilpd 0.751488 0.747491 0.698718 0.704840
Internet-Advertisements 0.974513 0.974187 - -
isolet 0.998817 0.999401 - 0.998813
jm1 0.709321 0.720444 0.719464 0.674043
jungle_chess_2pcs_raw_endgame_complete 0.999975 0.999956 0.999926 0.991981
kc1 0.783519 0.806819 0.796918 0.762807
kc2 0.832014 0.833248 0.834436 0.713458
kr-vs-kp 0.999777 0.999369 0.999789 0.998872
letter 0.999919 0.999926 0.999853 0.999606
madelon 0.747391 0.605018 - 0.630669
mfeat-factors 0.999015 0.999472 0.999385 0.998125
mfeat-fourier 0.984511 0.981725 0.980508 0.970539
mfeat-karhunen 0.998682 0.998448 0.999078 0.996960
mfeat-morphological 0.970198 0.968651 0.967681 0.955818
mfeat-pixel 0.997451 0.998690 0.999217 0.998200
mfeat-zernike 0.983479 0.984488 0.981874 0.968629
MiceProtein 0.999973 0.999973 1.000000 0.999344
nomao 0.990908 0.993048 - -
numerai28.6 0.530315 0.528012 0.525822 -
optdigits 0.999616 0.999927 0.999841 0.998871
ozone-level-8hr 0.919484 0.925416 0.919315 0.864067
pc1 0.917591 0.889458 0.870543 0.804412
pc3 0.828743 0.829637 0.827322 0.788151
pc4 0.934944 0.944447 0.934528 0.920943
pendigits 0.999703 0.999638 0.999782 0.999753
PhishingWebsites 0.996760 0.996975 0.996746 0.996196
phoneme 0.965071 0.963591 0.960382 0.956279
qsar-biodeg 0.919584 0.932220 0.930632 0.902748
satimage 0.993516 0.991995 0.992630 0.987482
segment 0.994124 0.993581 0.994831 0.992317
semeion 0.995548 0.997689 0.997630 0.994019
sick 0.997937 0.968841 0.998281 0.981838
spambase 0.985969 0.987683 0.986263 0.980804
splice 0.992276 0.993514 0.995073 0.990441
steel-plates-fault 0.959182 0.949067 0.955379 0.947456
texture 0.999983 0.999999 0.999976 0.999763
tic-tac-toe 0.996152 0.999462 0.999725 0.993030
vehicle 0.963362 0.967212 0.955127 0.943787
vowel 0.999713 0.999813 0.999875 0.999686
wall-robot-navigation 0.999900 0.999042 0.999844 0.997585
wdbc 0.993967 0.995409 0.995546 0.986656
wilt 0.993047 0.990726 0.993139 0.991289
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Table 15 shows the raw results after HPO for MLP with PLR embeddings and RealMLP.

Table 15: Average test ROC-AUC per dataset for MLP and RealMLP after hyperparameter optimization
across CV folds. Missing datasets are represented by "-".

Dataset MLP RealMLP
adult 0.928689 0.923327
analcatdata_authorship 0.999770 1.000000
analcatdata_dmft 0.574532 0.574396
balance-scale 0.998659 1.000000
bank-marketing 0.937054 0.937031
banknote-authentication 1.000000 1.000000
Bioresponse 0.825631 0.859065
blood-transfusion-service-center 0.770627 0.746350
breast-w 0.992380 0.992882
car 0.999992 1.000000
churn 0.922938 0.913533
climate-model-simulation-crashes 0.948857 0.962163
cmc 0.744580 0.735472
cnae-9 0.996716 0.997569
connect-4 0.927373 0.928258
credit-approval 0.938866 0.917352
credit-g 0.788476 0.779381
cylinder-bands 0.886405 0.910680
diabetes 0.837342 0.837507
dna 0.992220 0.994111
dresses-sales 0.635468 0.537849
electricity 0.969201 0.961467
eucalyptus 0.921873 0.915693
first-order-theorem-proving 0.798812 0.795637
GesturePhaseSegmentationProcessed 0.911434 0.901441
har 0.999783 0.999959
ilpd 0.671938 0.729412
Internet-Advertisements - 0.973810
isolet 0.998295 0.999635
jm1 0.715620 0.713988
jungle_chess_2pcs_raw_endgame_complete 0.999965 0.999774
kc1 0.805465 0.796117
kc2 0.829426 0.845768
kr-vs-kp 0.999686 0.999704
letter 0.999894 0.999914
madelon 0.883991 0.930302
mfeat-factors 0.998875 0.999625
mfeat-fourier 0.984929 0.985483
mfeat-karhunen 0.998849 0.999019
mfeat-morphological 0.967719 0.969994
mfeat-pixel 0.998674 0.999492
mfeat-zernike 0.984610 0.982993
MiceProtein 0.999973 0.999971
nomao 0.986577 0.989803
numerai28.6 0.525920 0.529534
optdigits 0.999794 0.999968
ozone-level-8hr 0.927900 0.923252
pc1 0.832532 0.844517
pc3 0.842511 0.814590
pc4 0.945813 0.939257
pendigits 0.999705 0.999659
PhishingWebsites 0.996991 0.997208
phoneme 0.967617 0.966456
qsar-biodeg 0.924951 0.929226
satimage 0.992308 0.993034
segment 0.995046 0.994075
semeion 0.997350 0.998976
sick 0.997048 0.998661
spambase 0.988185 0.987799
splice 0.994053 0.994420
steel-plates-fault 0.964693 0.959639
texture 0.999991 0.999999
tic-tac-toe 1.000000 0.999711
vehicle 0.961813 0.965844
vowel 0.999638 0.999955
wall-robot-navigation 0.999689 0.998720
wdbc 0.996065 0.996038
wilt 0.997690 0.993197
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Table 16 shows the raw results after HPO for the meta-learned neural networks.

Table 16: Average test ROC-AUC per dataset for meta-learned neural networks after hyperparameter opti-
mization across CV folds. Missing datasets are represented by "-".

Dataset CARTE TPBerta TabPFN XTab
adult 0.902677 - - -
analcatdata_authorship 0.999181 - 1.000000 0.999991
analcatdata_dmft 0.586376 - 0.586630 0.556971
balance-scale 0.999413 - 0.997656 0.997420
bank-marketing 0.924664 - - -
banknote-authentication 1.000000 0.994512 - 1.000000
Bioresponse - - - -
blood-transfusion-service-center 0.739571 0.633041 0.752586 -
breast-w 0.987912 0.986514 0.994131 0.989666
car 0.997126 - - -
churn 0.923626 - - -
climate-model-simulation-crashes 0.938531 - 0.968010 0.944367
cmc 0.738379 - - -
cnae-9 0.990151 - - -
connect-4 - - - -
credit-approval 0.909279 0.901989 0.932397 0.939620
credit-g 0.769619 - 0.768476 -
cylinder-bands 0.848539 0.820399 0.886616 0.881396
diabetes 0.823615 0.778356 0.836120 0.815847
dna 0.986120 - - 0.992479
dresses-sales 0.589655 0.534893 0.538916 0.613136
electricity 0.909407 - - 0.966899
eucalyptus 0.905245 - 0.928493 0.918317
first-order-theorem-proving 0.764092 - - 0.798803
GesturePhaseSegmentationProcessed 0.798024 - - 0.886960
har - - - -
ilpd 0.704712 0.586083 0.757892 0.726413
Internet-Advertisements - - - -
isolet - - - -
jm1 0.728512 - - 0.727984
jungle_chess_2pcs_raw_endgame_complete 0.973383 - - 0.999950
kc1 0.797680 - - 0.803082
kc2 0.842828 - 0.850065 0.835476
kr-vs-kp 0.999685 0.855273 - 0.999616
letter 0.999440 - - 0.999859
madelon 0.836760 - - 0.845746
mfeat-factors 0.996064 - - 0.998443
mfeat-fourier 0.976986 - - 0.982539
mfeat-karhunen 0.994814 - - 0.998582
mfeat-morphological 0.967325 - - 0.967136
mfeat-pixel 0.996175 - - 0.998642
mfeat-zernike 0.978119 - - 0.980183
MiceProtein 0.999582 - - 1.000000
nomao - - - 0.992727
numerai28.6 0.514361 - - 0.528062
optdigits 0.999112 - - 0.999712
ozone-level-8hr 0.890063 - - 0.915744
pc1 0.835444 - - 0.855741
pc3 0.831574 0.625642 - 0.823532
pc4 0.937337 0.744304 - 0.938455
pendigits 0.999468 - - 0.999751
PhishingWebsites 0.994582 - - 0.996896
phoneme 0.948702 0.796404 - 0.961749
qsar-biodeg 0.921153 0.833852 - 0.926795
satimage 0.988038 - - 0.992918
segment 0.993491 - - 0.994697
semeion 0.993378 - - 0.997064
sick 0.995762 - - 0.998232
spambase 0.983228 - - 0.986044
splice 0.987950 - - 0.992444
steel-plates-fault 0.943636 - - 0.957088
texture 0.999541 - - 0.999962
tic-tac-toe 0.984361 0.993803 0.996086 1.000000
vehicle 0.941691 - 0.970556 0.955838
vowel 0.998092 - - 0.999630
wall-robot-navigation 0.999505 - - 0.999846
wdbc 0.990612 - 0.996298 0.994317
wilt 0.994858 0.880733 - 0.994261
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Lastly, Table 17 shows the raw results of AutoGluon using HPO and AutoGluon with its recommended
settings.

Table 17: Average test ROC-AUC per dataset for AutoGluon with HPO and AutoGluon with its recom-
mended settings across CV folds.

Dataset AutoGluon AutoGluon (HPO)
adult 0.931792 0.931658
analcatdata_authorship 1.000000 0.999887
analcatdata_dmft 0.577809 0.553672
balance-scale 0.997339 0.995057
bank-marketing 0.941273 0.940659
banknote-authentication 1.000000 0.999957
Bioresponse 0.888693 0.881238
blood-transfusion-service-center 0.741733 0.733305
breast-w 0.994394 0.993510
car 0.999861 0.999998
churn 0.927520 0.920213
climate-model-simulation-crashes 0.970051 0.926306
cmc 0.737077 0.536500
cnae-9 0.998524 0.997965
connect-4 0.934636 0.941976
credit-approval 0.940476 0.933497
credit-g 0.802381 0.773238
cylinder-bands 0.933320 0.903658
diabetes 0.833641 0.827171
dna 0.995385 0.994906
dresses-sales 0.615107 0.597537
electricity 0.987260 0.986609
eucalyptus 0.933782 0.925856
first-order-theorem-proving 0.835425 0.825561
GesturePhaseSegmentationProcessed 0.936667 0.917835
har 0.999958 0.999942
ilpd 0.765098 0.745564
Internet-Advertisements 0.985963 0.984740
isolet 0.999744 0.999696
jm1 0.770272 0.761065
jungle_chess_2pcs_raw_endgame_complete 0.999278 0.999444
kc1 0.835974 0.815660
kc2 0.834913 0.813625
kr-vs-kp 0.999405 0.999412
letter 0.999934 0.999933
madelon 0.932817 0.929882
mfeat-factors 0.999350 0.999111
mfeat-fourier 0.986058 0.986717
mfeat-karhunen 0.999575 0.998740
mfeat-morphological 0.977508 0.968908
mfeat-pixel 0.999403 0.999139
mfeat-zernike 0.995249 0.985279
MiceProtein 0.999929 0.999981
nomao 0.996892 0.996441
numerai28.6 0.530150 0.527692
optdigits 0.999925 0.999893
ozone-level-8hr 0.936029 0.930880
pc1 0.888177 0.860825
pc3 0.865766 0.845648
pc4 0.955384 0.950117
pendigits 0.999725 0.999642
PhishingWebsites 0.997572 0.997102
phoneme 0.973342 0.964555
qsar-biodeg 0.942988 0.932276
satimage 0.993557 0.993220
segment 0.996895 0.996421
semeion 0.998506 0.998210
sick 0.998367 0.997357
spambase 0.991092 0.989781
splice 0.995941 0.995249
steel-plates-fault 0.973843 0.972323
texture 0.999998 0.999995
tic-tac-toe 1.000000 0.996585
vehicle 0.969797 0.965886
vowel 0.999910 0.999618
wall-robot-navigation 0.999993 0.999984
wdbc 0.995799 0.992456
wilt 0.995652 0.994495
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B.2 Results using default hyperparameter configurations

Table 18 shows the raw results for CatBoost and XGBoost using the default hyperparameter configurations.

Table 18: Average test ROC-AUC per dataset for XGBoost and CatBoost using the default hyperparamater
configurations across CV folds.

Dataset CatBoost XGBoost
adult 0.930571 0.929316
analcatdata_authorship 0.999710 0.999518
analcatdata_dmft 0.549171 0.531850
balance-scale 0.952530 0.926923
bank-marketing 0.938725 0.934864
banknote-authentication 0.999957 0.999914
Bioresponse 0.879217 0.880176
blood-transfusion-service-center 0.729842 0.712258
breast-w 0.991254 0.990430
car 0.999509 0.998790
churn 0.924606 0.913882
climate-model-simulation-crashes 0.962296 0.955828
cmc 0.709590 0.684939
cnae-9 0.996007 0.994232
connect-4 0.893587 0.899588
credit-approval 0.937424 0.930615
credit-g 0.800667 0.788381
cylinder-bands 0.885160 0.912564
diabetes 0.835137 0.797009
dna 0.994641 0.994699
dresses-sales 0.598768 0.570699
electricity 0.958153 0.971787
eucalyptus 0.921691 0.902805
first-order-theorem-proving 0.826532 0.826895
GesturePhaseSegmentationProcessed 0.898407 0.892459
har 0.999899 0.999905
ilpd 0.741153 0.722052
Internet-Advertisements 0.979992 0.976972
isolet 0.999407 0.998854
jm1 0.748060 0.729353
jungle_chess_2pcs_raw_endgame_complete 0.972286 0.974856
kc1 0.823661 0.791182
kc2 0.821163 0.771390
kr-vs-kp 0.999521 0.999720
letter 0.999740 0.999648
madelon 0.928172 0.890107
mfeat-factors 0.999031 0.998356
mfeat-fourier 0.984181 0.982669
mfeat-karhunen 0.999128 0.997700
mfeat-morphological 0.962489 0.958908
mfeat-pixel 0.999289 0.998703
mfeat-zernike 0.972961 0.966633
MiceProtein 0.999983 0.999680
nomao 0.995620 0.995690
numerai28.6 0.518341 0.511976
optdigits 0.999808 0.999586
ozone-level-8hr 0.925485 0.911594
pc1 0.891257 0.857895
pc3 0.850219 0.816916
pc4 0.953689 0.942808
pendigits 0.999764 0.999760
PhishingWebsites 0.995801 0.996764
phoneme 0.955202 0.957311
qsar-biodeg 0.934769 0.926970
satimage 0.991815 0.990907
segment 0.996012 0.995267
semeion 0.998163 0.996029
sick 0.998355 0.996943
spambase 0.989066 0.988888
splice 0.995198 0.994788
steel-plates-fault 0.972233 0.970148
texture 0.999908 0.999795
tic-tac-toe 1.000000 0.999181
vehicle 0.942832 0.935079
vowel 0.999237 0.996947
wall-robot-navigation 0.999989 0.999934
wdbc 0.994217 0.994471
wilt 0.991488 0.988659
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Table 19 shows the raw results for dataset-specific neural networks using the default hyperparameter config-
urations.

Table 19: Average test ROC-AUC per dataset for dataset-specific neural networks using default hyperpa-
rameter configurations across CV folds. Missing datasets are represented by "-".

Dataset FT-Transformer ResNet SAINT TabNet
adult 0.893029 0.905838 0.870099 0.912781
analcatdata_authorship 0.999392 1.000000 0.999983 0.993186
analcatdata_dmft 0.553755 0.553675 0.526597 0.534271
balance-scale 0.988863 0.992229 0.991970 0.972816
bank-marketing 0.907667 0.926617 0.892316 0.927765
banknote-authentication 1.000000 1.000000 1.000000 1.000000
Bioresponse 0.804580 0.843462 - 0.812061
blood-transfusion-service-center 0.713181 0.742088 0.723673 0.728919
breast-w 0.988615 0.991140 0.992220 0.984383
car 0.999758 0.998600 0.999828 0.931659
churn 0.915966 0.914732 0.910996 0.905642
climate-model-simulation-crashes 0.840724 0.904025 0.937306 0.825571
cmc 0.686016 0.687757 0.642394 0.689043
cnae-9 0.994801 0.996595 - 0.912423
connect-4 0.922969 0.926041 0.756318 0.856762
credit-approval 0.915482 0.916769 0.908623 0.875614
credit-g 0.731714 0.735071 0.744000 0.632571
cylinder-bands 0.908565 0.891759 0.909314 0.710240
diabetes 0.755846 0.789923 0.737127 0.785077
dna 0.988362 0.992218 0.520670 0.962713
dresses-sales 0.571921 0.536617 0.568144 0.560591
electricity 0.963347 0.930924 0.960991 0.911419
eucalyptus 0.917340 0.897582 0.904708 0.877684
first-order-theorem-proving 0.796282 0.793079 0.772449 0.743350
GesturePhaseSegmentationProcessed 0.827939 0.853272 0.893255 0.781506
har 0.999876 0.999859 - 0.999147
ilpd 0.724591 0.758030 0.713191 0.715948
Internet-Advertisements 0.973465 0.967077 - 0.892480
isolet 0.999463 0.999307 - 0.997706
jm1 0.723314 0.734238 0.652524 0.722615
jungle_chess_2pcs_raw_endgame_complete 0.998738 0.977410 0.999876 0.974173
kc1 0.804719 0.795200 0.742990 0.792858
kc2 0.805644 0.771497 0.742400 0.806986
kr-vs-kp 0.999792 0.999476 0.723052 0.987183
letter 0.999825 0.999864 0.999784 0.997271
madelon 0.770769 0.600713 - 0.559015
mfeat-factors 0.998765 0.998892 0.499849 0.993717
mfeat-fourier 0.977475 0.980419 0.971772 0.961111
mfeat-karhunen 0.997503 0.998097 0.998387 0.982592
mfeat-morphological 0.967733 0.969308 0.967478 0.963611
mfeat-pixel 0.997658 0.998676 0.553414 0.992500
mfeat-zernike 0.978039 0.980858 0.969257 0.966992
MiceProtein 1.000000 0.999963 1.000000 0.987043
nomao 0.992049 0.992530 0.499521 0.991441
numerai28.6 0.507813 0.517071 0.507780 0.522797
optdigits 0.999631 0.999837 0.999057 0.998476
ozone-level-8hr 0.893747 0.826296 0.881560 0.869228
pc1 0.852119 0.820008 0.866325 0.863233
pc3 0.810311 0.771759 0.804479 0.809443
pc4 0.944764 0.936765 0.931286 0.900752
pendigits 0.999740 0.999691 0.999785 0.999088
PhishingWebsites 0.996882 0.997134 0.996805 0.993856
phoneme 0.956543 0.938565 0.956949 0.933545
qsar-biodeg 0.916158 0.916804 0.918103 0.893489
satimage 0.992141 0.990613 0.985874 0.986280
segment 0.994709 0.993821 0.993989 0.992101
semeion 0.995507 0.996745 0.576269 0.957550
sick 0.997877 0.969015 0.991121 0.929353
spambase 0.983325 0.985056 0.981111 0.978240
splice 0.989898 0.990917 0.991932 0.972882
steel-plates-fault 0.959626 0.959356 0.948021 0.916561
texture 0.999976 0.999999 0.996944 0.999441
tic-tac-toe 0.998605 0.999375 0.996921 0.899715
vehicle 0.956404 0.963268 0.944376 0.923325
vowel 0.999618 0.999966 0.999888 0.986644
wall-robot-navigation 0.999757 0.998972 0.999104 0.997972
wdbc 0.994847 0.997080 0.997234 0.985323
wilt 0.994235 0.994057 0.988766 0.991840
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Table 20 shows the raw results for MLP and RealMLP using the default hyperparameter configurations.

Table 20: Average test ROC-AUC per dataset for MLP and RealMLP using the default hyperparamater
configurations across CV folds.

Dataset MLP RealMLP
adult 0.897504 0.908495
analcatdata_authorship 0.999934 0.999952
analcatdata_dmft 0.554240 0.575077
balance-scale 0.995111 0.980107
bank-marketing 0.904699 0.816579
banknote-authentication 1.000000 1.000000
Bioresponse 0.560952 0.824996
blood-transfusion-service-center 0.762080 0.746119
breast-w 0.994222 0.993411
car 0.999678 1.000000
churn 0.903166 0.917012
climate-model-simulation-crashes 0.935571 0.947857
cmc 0.710134 0.700557
cnae-9 0.500463 0.992911
connect-4 0.915051 0.909829
credit-approval 0.931215 0.914531
credit-g 0.726875 0.758000
cylinder-bands 0.874205 0.906434
diabetes 0.829853 0.822211
dna 0.990128 0.988320
dresses-sales 0.536782 0.526601
electricity 0.950665 0.950555
eucalyptus 0.922173 0.903885
first-order-theorem-proving 0.782461 0.781809
GesturePhaseSegmentationProcessed 0.819054 0.890444
har 0.999848 0.999630
ilpd 0.748217 0.727899
Internet-Advertisements 0.982883 0.961953
isolet 0.847095 0.999135
jm1 0.726646 0.721977
jungle_chess_2pcs_raw_endgame_complete 0.998486 0.996257
kc1 0.801565 0.806604
kc2 0.840419 0.829826
kr-vs-kp 0.999765 0.998737
letter 0.999640 0.999820
madelon 0.500000 0.915592
mfeat-factors 0.998668 0.999075
mfeat-fourier 0.978653 0.974028
mfeat-karhunen 0.998582 0.999439
mfeat-morphological 0.965494 0.968706
mfeat-pixel 0.946632 0.999500
mfeat-zernike 0.980681 0.965872
MiceProtein 0.999963 1.000000
nomao 0.991436 0.983015
numerai28.6 0.513601 0.522412
optdigits 0.999454 0.999927
ozone-level-8hr 0.906572 0.822254
pc1 0.853077 0.828996
pc3 0.784672 0.768438
pc4 0.940799 0.906347
pendigits 0.999687 0.999850
PhishingWebsites 0.996479 0.994417
phoneme 0.948168 0.952913
qsar-biodeg 0.924529 0.911174
satimage 0.990975 0.986944
segment 0.993795 0.994189
semeion 0.968306 0.998289
sick 0.989590 0.976784
spambase 0.983168 0.978382
splice 0.990919 0.991318
steel-plates-fault 0.963250 0.955133
texture 0.999956 0.999992
tic-tac-toe 0.999145 0.997548
vehicle 0.944588 0.961117
vowel 0.997520 0.999641
wall-robot-navigation 0.999245 0.998582
wdbc 0.994219 0.998021
wilt 0.994105 0.993080
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Table 21 shows the raw results for the meta-learned neural networks using the default hyperparameter
configurations.

Table 21: Average test ROC-AUC per dataset for meta-learned neural networks using default hyperparameter
configurations across CV folds. Missing datasets are represented by "-".

Dataset CARTE TPBerta TabPFN XTab
adult 0.897259 - - -
analcatdata_authorship 0.998103 - 1.000000 0.997620
analcatdata_dmft 0.572113 - 0.586630 0.550627
balance-scale 0.998116 - 0.997656 0.895083
bank-marketing 0.907972 - - -
banknote-authentication 1.000000 0.997535 - 0.996615
blood-transfusion-service-center 0.705189 0.659754 0.752586 -
breast-w 0.984775 0.967673 0.994131 0.988527
car 0.992862 - - -
churn 0.920360 - - -
climate-model-simulation-crashes 0.938031 - 0.968010 0.568735
cmc 0.730370 - - -
cnae-9 0.986921 - - -
connect-4 0.500681 - - -
credit-approval 0.906552 0.891294 0.932397 0.922447
credit-g 0.700952 - 0.768476 -
cylinder-bands 0.810318 0.814857 0.886616 0.778646
diabetes 0.755348 0.768974 0.836120 0.822370
dna 0.981979 - - 0.992857
dresses-sales 0.591297 0.565189 0.538916 0.585057
electricity 0.874950 - - 0.900765
eucalyptus 0.907418 - 0.928493 0.814121
first-order-theorem-proving 0.735870 - - 0.721997
GesturePhaseSegmentationProcessed 0.771707 - - 0.737155
har - - - 0.999241
ilpd 0.729851 0.672431 0.757892 0.724427
isolet 0.995113 - - 0.998455
jm1 0.704730 - - 0.721445
jungle_chess_2pcs_raw_endgame_complete 0.918894 - - 0.965961
kc1 0.805108 - - 0.793122
kc2 0.826925 - 0.850065 0.835398
kr-vs-kp 0.958715 0.999107 - 0.995940
letter 0.998939 - - 0.989493
madelon 0.789929 - - 0.689657
mfeat-factors 0.794171 - - 0.997867
mfeat-fourier 0.969911 - - 0.956494
mfeat-karhunen 0.978967 - - 0.990728
mfeat-morphological 0.961442 - - 0.948069
mfeat-pixel 0.759099 - - 0.997478
mfeat-zernike 0.964453 - - 0.965907
MiceProtein 0.986177 - - 0.972404
nomao 0.981817 - - 0.991110
numerai28.6 0.521094 - - 0.527797
optdigits 0.998452 - - 0.999031
ozone-level-8hr 0.861468 - - 0.915294
pc1 0.791339 - - 0.729942
pc3 0.784448 0.683751 - 0.816464
pc4 0.907759 0.699487 - 0.888728
pendigits 0.999522 - - 0.999222
PhishingWebsites 0.991886 - - 0.987949
phoneme 0.932082 0.798855 - 0.911417
qsar-biodeg 0.914703 0.817997 - 0.919134
satimage 0.982299 - - 0.982955
segment 0.992163 - - 0.974072
semeion 0.983218 - - 0.989977
sick 0.991907 - - 0.950283
spambase 0.748573 - - 0.982966
splice 0.701980 - - 0.991116
steel-plates-fault 0.925718 - - 0.848468
texture 0.993709 - - 0.999521
tic-tac-toe 0.861176 0.958328 0.996086 0.744202
vehicle 0.929483 - 0.970556 0.893891
vowel 0.995589 - - 0.812581
wall-robot-navigation 0.998981 - - 0.986489
wdbc 0.993948 - 0.996298 0.984744
wilt 0.994112 0.960758 - 0.979966
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Lastly, Table 22 shows the raw results of AutoGluon using the default settings.

Table 22: Average test ROC-AUC per dataset for AutoGluon using default configurations across CV folds.

Dataset AutoGluon
adult 0.931179
analcatdata_authorship 0.999782
analcatdata_dmft 0.584732
balance-scale 0.594936
bank-marketing 0.939889
banknote-authentication 0.999957
Bioresponse 0.884276
blood-transfusion-service-center 0.741962
breast-w 0.992231
car 0.999593
churn 0.922201
climate-model-simulation-crashes 0.957745
cmc 0.691344
cnae-9 0.997878
connect-4 0.936000
credit-approval 0.935450
credit-g 0.783286
cylinder-bands 0.900459
diabetes 0.821997
dna 0.994904
dresses-sales 0.586043
electricity 0.987262
eucalyptus 0.754274
first-order-theorem-proving 0.830805
GesturePhaseSegmentationProcessed 0.920355
har 0.999938
ilpd 0.737184
Internet-Advertisements 0.984077
isolet 0.999636
jm1 0.764863
jungle_chess_2pcs_raw_endgame_complete 0.992186
kc1 0.821507
kc2 0.812567
kr-vs-kp 0.999619
letter 0.999901
madelon 0.925627
mfeat-factors 0.999142
mfeat-fourier 0.984642
mfeat-karhunen 0.998693
mfeat-morphological 0.969200
mfeat-pixel 0.998731
mfeat-zernike 0.982779
MiceProtein 0.899990
nomao 0.996397
numerai28.6 0.527789
optdigits 0.999670
ozone-level-8hr 0.927357
pc1 0.876676
pc3 0.849770
pc4 0.952137
pendigits 0.999684
PhishingWebsites 0.997256
phoneme 0.966521
qsar-biodeg 0.931279
satimage 0.992096
segment 0.996333
semeion 0.998341
sick 0.997864
spambase 0.989571
splice 0.995584
steel-plates-fault 0.971070
texture 0.999996
tic-tac-toe 0.999951
vehicle 0.958256
vowel 0.999641
wall-robot-navigation 0.898793
wdbc 0.992978
wilt 0.994524
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C Datasets

In Table 23 we show a summary of all the OpenMLCC18 datasets used in this study.

Table 23: Summary of OpenML-CC18 Datasets with Feature and Class Frequency Statistics.

Dataset
ID

Dataset Name Number of
Instances

Number of
Features

Numerical
Features

Categorical
Features

Binary
Features

Number of
Classes

Min-Max
Class Freq

3 kr-vs-kp 3196 37 0 37 35 2 0.91
6 letter 20000 17 16 1 0 26 0.90
11 balance-scale 625 5 4 1 0 3 0.17
12 mfeat-factors 2000 217 216 1 0 10 1.00
14 mfeat-fourier 2000 77 76 1 0 10 1.00
15 breast-w 699 10 9 1 1 2 0.53
16 mfeat-karhunen 2000 65 64 1 0 10 1.00
18 mfeat-morphological 2000 7 6 1 0 10 1.00
22 mfeat-zernike 2000 48 47 1 0 10 1.00
23 cmc 1473 10 2 8 3 3 0.53
28 optdigits 5620 65 64 1 0 10 0.97
29 credit-approval 690 16 6 10 5 2 0.80
31 credit-g 1000 21 7 14 3 2 0.43
32 pendigits 10992 17 16 1 0 10 0.92
37 diabetes 768 9 8 1 1 2 0.54
38 sick 3772 30 7 23 21 2 0.07
44 spambase 4601 58 57 1 1 2 0.65
46 splice 3190 61 0 61 0 3 0.46
50 tic-tac-toe 958 10 0 10 1 2 0.53
54 vehicle 846 19 18 1 0 4 0.91
151 electricity 45312 9 7 2 1 2 0.74
182 satimage 6430 37 36 1 0 6 0.41
188 eucalyptus 736 20 14 6 0 5 0.49
300 isolet 7797 618 617 1 0 26 0.99
307 vowel 990 13 10 3 1 11 1.00
458 analcatdata_authorship 841 71 70 1 0 4 0.17
469 analcatdata_dmft 797 5 0 5 1 6 0.79
1049 pc4 1458 38 37 1 1 2 0.14
1050 pc3 1563 38 37 1 1 2 0.11
1053 jm1 10885 22 21 1 1 2 0.24
1063 kc2 522 22 21 1 1 2 0.26
1067 kc1 2109 22 21 1 1 2 0.18
1068 pc1 1109 22 21 1 1 2 0.07
1461 bank-marketing 45211 17 7 10 4 2 0.13
1462 banknote-authentication 1372 5 4 1 1 2 0.80
1464 blood-transfusion-service-center 748 5 4 1 1 2 0.31
1468 cnae-9 1080 857 856 1 0 9 1.00
1475 first-order-theorem-proving 6118 52 51 1 0 6 0.19
1478 har 10299 562 561 1 0 6 0.72
1480 ilpd 583 11 9 2 2 2 0.40
1485 madelon 2600 501 500 1 1 2 1.00
1486 nomao 34465 119 89 30 3 2 0.40
1487 ozone-level-8hr 2534 73 72 1 1 2 0.07
1489 phoneme 5404 6 5 1 1 2 0.42
1494 qsar-biodeg 1055 42 41 1 1 2 0.51
1497 wall-robot-navigation 5456 25 24 1 0 4 0.15
1501 semeion 1593 257 256 1 0 10 0.96
1510 wdbc 569 31 30 1 1 2 0.59
1590 adult 48842 15 6 9 2 2 0.31
4134 Bioresponse 3751 1777 1776 1 1 2 0.84
4534 PhishingWebsites 11055 31 0 31 23 2 0.80
4538 GesturePhaseSegmentationProcessed 9873 33 32 1 0 5 0.34
6332 cylinder-bands 540 40 18 22 4 2 0.73
23381 dresses-sales 500 13 1 12 1 2 0.72
23517 numerai28.6 96320 22 21 1 1 2 0.98
40499 texture 5500 41 40 1 0 11 1.00
40668 connect-4 67557 43 0 43 0 3 0.15
40670 dna 3186 181 0 181 180 3 0.46
40701 churn 5000 21 16 5 3 2 0.16
40966 MiceProtein 1080 82 77 5 3 8 0.70
40975 car 1728 7 0 7 0 4 0.05
40978 Internet-Advertisements 3279 1559 3 1556 1556 2 0.16
40979 mfeat-pixel 2000 241 240 1 0 10 1.00
40982 steel-plates-fault 1941 28 27 1 0 7 0.08
40983 wilt 4839 6 5 1 1 2 0.06
40984 segment 2310 20 19 1 0 7 1.00
40994 climate-model-simulation-crashes 540 21 20 1 1 2 0.09
41027 jungle_chess_2pcs_raw_endgame_complete 44819 7 6 1 0 3 0.19
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D Hyperparameter analysis

In this section, we analyze the impact of individual hyperparameters on the performance metric. The x-axis
represents the hyperparameters, while the y-axis denotes the ROC-AUC performance. These plots provide
an overview of the performance landscape for each hyperparameter, illustrating their influence on model
effectiveness.

D.1 CatBoost
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Figure 16: Effect of all the hyperparameters on model performance for CatBoost. The x-axis represents the
hyperparameter values, while the y-axis shows the corresponding performance.
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D.2 ResNet

100 200 300 400 500
d_embedding

0.84

0.86

0.88

0.90

0.92

RO
C-

AU
C

1.0 1.5 2.0 2.5 3.0 3.5 4.0
d_hidden_factor

0.84

0.86

0.88

0.90

RO
C-

AU
C

0.0 0.1 0.2 0.3 0.4 0.5
hidden_dropout

0.84

0.86

0.88

0.90

RO
C-

AU
C

200 400 600 800 1000
layer_size

0.82

0.84

0.86

0.88

0.90

0.92

RO
C-

AU
C

10 5 10 4 10 3 10 2
lr

0.84

0.86

0.88

0.90

0.92

RO
C-

AU
C

1 2 3 4 5 6 7 8
n_layers

0.87

0.88

0.89

0.90

0.91

RO
C-

AU
C

0.0 0.1 0.2 0.3 0.4 0.5
residual_dropout

0.86

0.87

0.88

0.89

0.90

0.91

RO
C-

AU
C

0 100 200 300 400 500
epochs

0.82

0.84

0.86

0.88

0.90

0.92

RO
C-

AU
C

10 6 10 5 10 4 10 3
weight_decay

0.87

0.88

0.89

0.90

0.91

RO
C-

AU
C

Figure 17: Effect of all the hyperparameters on model performance for ResNet. The x-axis represents the
hyperparameter values, while the y-axis shows the corresponding performance.
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D.3 MLP-PLR
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Figure 18: Effect of all the hyperparameters on model performance for MLP-PLR. The x-axis represents the
hyperparameter values, while the y-axis shows the corresponding performance.
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D.4 RealMLP
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Figure 19: Effect of all the hyperparameters on model performance for RealMLP. The x-axis represents the
hyperparameter values, while the y-axis shows the corresponding performance.

Since fANOVA does not support categorical hyperparameters, we exclude them from this analysis.
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D.5 XGBoost
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Figure 20: Effect of all the hyperparameters on model performance for XGBoost. The x-axis represents the
hyperparameter values, while the y-axis shows the corresponding performance.
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D.6 FT-Transformer
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Figure 21: Effect of all the hyperparameters on model performance for FT-Transformer. The x-axis represents
the hyperparameter values, while the y-axis shows the corresponding performance.

D.7 SAINT

0.0 0.2 0.4 0.6 0.8 1.0
attention_dropout

0.84

0.86

0.88

0.90

0.92

0.94

RO
C-

AU
C

0.0 0.2 0.4 0.6 0.8 1.0
ff_dropout

0.84

0.86

0.88

0.90

0.92

RO
C-

AU
C

10 5 10 4 10 3
lr

0.86

0.88

0.90

0.92

RO
C-

AU
C

0 100 200 300 400 500
epochs

0.800

0.825

0.850

0.875

0.900

0.925

0.950

RO
C-

AU
C

1.0 1.5 2.0 2.5 3.0 3.5 4.0
transformer_depth

0.89

0.90

0.91

0.92

0.93

RO
C-

AU
C

10 6 10 5 10 4 10 3
weight_decay

0.86

0.88

0.90

0.92

RO
C-

AU
C

Figure 22: Effect of all the hyperparameters on model performance for SAINT. The x-axis represents the
hyperparameter values, while the y-axis shows the corresponding performance.
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D.8 TabNet
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Figure 23: Effect of all the hyperparameters on model performance for TabNet. The x-axis represents the
hyperparameter values, while the y-axis shows the corresponding performance.

D.9 XTab
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Figure 24: Effect of all the hyperparameters on model performance for XTab. The x-axis represents the
hyperparameter values, while the y-axis shows the corresponding performance.
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D.10 CARTE
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Figure 25: Effect of all the hyperparameters on model performance for CARTE. The x-axis represents the
hyperparameter values, while the y-axis shows the corresponding performance.

D.11 TP-BERTa
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Figure 26: Effect of all the hyperparameters on model performance for TP-BERTa. The x-axis represents
the hyperparameter values, while the y-axis shows the corresponding performance.

E Analysis of Dataset Characteristics: Instances and Features

To analyze the relationship between dataset size and the performance of different methods, we categorize
datasets based on two key attributes: the number of instances and the number of features.

• Instance-based Categorization:

– Datasets with 1000 or fewer instances.
– Datasets with 1001 to 5000 instances.
– Datasets with 5001 to 10000 instances.
– Datasets with 10001 to 50000 instances.
– Datasets with more than 50000 instances.

• Feature-based Categorization: Within each instance-based group, datasets are further divided
based on the number of features:

– Datasets with 100 or fewer features.
– Datasets with 101 to 500 features.
– Datasets with 501 to 1000 features.
– Datasets with more than 1000 features.

• Unavailable Results: Having split the datasets into these groups, we note the ones in which no
dataset belongs:

– Datasets with instances between 5001 and 10000, and features between 100 and 500.
– Datasets with instances between 5001 and 10000, and features greater than 1000.
– Datasets with instances between 10001 and 50000, and features greater than 1000.

44



Under review as submission to TMLR

– For datasets with more than 50000 instances, we only have results for datasets with 100 or fewer
features.

– For datasets with fewer than 1000 instances, we only have results for datasets with 100 or fewer
features.

For the analysis, we present boxplots and critical difference diagrams, if the number of datasets is at least
10 for meaningful analysis. If the number of datasets in a group is fewer than 10, we use tabular results
instead of boxplots or critical difference diagrams.

E.1 Datasets with fewer than 1000 instances

In this section, we focus on datasets with fewer than 100 features and fewer than 1000 instances, resulting
in a total of 18 datasets used in our study. Consequently, most methods in Figure 27 are evaluated on 18
datasets. However, there are a few exceptions: TabPFN is incompatible with one dataset, "vowel," due to
it containing more than 10 classes; XTab excludes 2 datasets that were part of its pretraining phase; and
TP-Berta encounters memory limitations on 10 out of the 18 datasets, reducing its coverage.
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Figure 27: Distribution of ranks for all the methods in the small data domain. The boxplot illustrates the
rank spread, with medians represented by red lines and whiskers showing the range.

Figure 27 reveals that AutoGluon achieves the strongest overall performance, closely followed by TabPFN.
Among feedforward networks, MLP and RealMLP both rank well, though MLP shows a tighter (i.e. more
robust) interquartile range. Among the other dataset-specific neural networks, FT-Transformer and SAINT
perform comparably. Interestingly, MLP-like methods also show a lower median rank than the classical
CatBoost and XGBoost, although CatBoost occasionally achieves ranks as low as 2.5. By contrast, TabNet
and the fine-tuning–based models generally exhibit the weakest performance.
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Figure 28: Left: Distribution of ranks for all the methods in the small data domain. The boxplot illustrates
the rank spread, with medians represented by red lines and whiskers showing the range. Right: Comparative
analysis of all the methods.

Similarly, Figure 28 shows a boxplot on the left—evaluated on the same datasets but excluding TP-
BERTa—and a critical difference diagram on the right. A clear pattern emerges: in the small-data domain,
dataset-specific neural architectures (e.g., MLP with PLR embeddings, RealMLP and FT-Transformer) dis-
play highly competitive performance, surpassing even CatBoost and XGBoost.

E.2 Datasets with 1,000 to 5,000 instances

Following the previous analysis, we now focus on datasets with 1,000 to 5,000 instances and fewer than 100
features. Figure 29 illustrates the results for this subset of datasets. Similar to the small data domain,
AutoGluon remains the top-performing method. However, an interesting shift occurs, CatBoost shows a
significant improvement in performance, achieving the second-best overall rank, while XGBoost maintains
a performance level similar to the smaller datasets. Additionally, dataset-specific neural networks continue
to outperform meta-learned neural networks, with the MLP with PLR embeddings standing out due to
its strong performance. It exhibits a better median rank and a narrower interquartile range compared to
XGBoost.
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Figure 29: Distribution of ranks for all the methods in the datasets withh 1000 to 5000 instances, and
less than 100 features. The boxplot illustrates the rank spread, with medians represented by red lines and
whiskers showing the range.
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Figure 30: Left: Distribution of ranks for all the methods in the common datasets with instances between
1000 and 5000, and features fewer than 100. The boxplot illustrates the rank spread, with medians repre-
sented by red lines and whiskers showing the range. Right: Comparative analysis of all the methods.

In Figure 30, we exclude TP-BERTa again to ensure a reasonable number of common datasets, resulting in a
total of 19 datasets. The left plot tells a similar story, with XGBoost now achieving the same median rank as
the MLP with PLR embeddings. The right plot presents a critical difference diagram, showing AutoGluon,
CatBoost, MLP, XGBoost and RealMLP as the top-performing methods. Among them, AutoGluon is
statistically significantly better than all other methods, except for the aforementioned top performers.

For the remaining dataset categorization groups, we present only tabular results due to the limited number
of datasets in these categories. Table 24 provides the results for datasets with 1000 to 5000 instances and
100 to 500 features. Similarly, Table 25 summarizes the performance for datasets in the 500 to 1000 features
range, while Table 26 presents results for datasets with more than 1000 features. Detailed results for all
other dataset categorization groups can be found below.

Table 24: Classifier Performance for Instance Range: 1000-5000 and Feature Range: 100-500

Dataset dna mfeat-factors mfeat-pixel semeion
AutoGluon 0.995385 0.999350 0.999403 0.998506
CARTE 0.986120 0.996064 0.996175 0.993378
CatBoost 0.995028 0.998910 0.999422 0.998687
FT-Transformer 0.990937 0.999015 0.997451 0.995548
MLP 0.992220 0.998875 0.998674 0.997350
RealMLP 0.994111 0.999625 0.999492 0.998976
ResNet 0.992543 0.999472 0.998690 0.997689
SAINT 0.992473 0.999385 0.999217 0.997630
TabNet 0.991448 0.998125 0.998200 0.994019
XGBoost 0.995278 0.999004 0.999378 0.998272
XTab 0.992479 0.998443 0.998642 0.997064

47



Under review as submission to TMLR

Table 25: Classifier Performance for Instance Range: 1000-5000 and Feature Range: 500-1000

Dataset cnae-9 madelon
AutoGluon 0.998524 0.932817
CARTE 0.990151 0.836760
CatBoost 0.996316 0.937562
FT-Transformer 0.994497 0.747391
MLP 0.996716 0.883991
RealMLP 0.997569 0.930302
ResNet 0.997106 0.605018
TabNet - 0.630669
XGBoost 0.997454 0.932249
XTab - 0.845746

Table 26: Classifier Performance for Instance Range: 1000-5000 and Feature Range: >1000

Dataset Bioresponse Internet-Advertisements
AutoGluon 0.888693 0.985963
CatBoost 0.885502 0.979120
FT-Transformer 0.820159 0.974513
MLP 0.825631 -
RealMLP 0.859065 0.973810
ResNet 0.850801 0.974187
XGBoost 0.888615 0.982276

E.3 Datasets with 5,000 to 10,000 instances

Table 27: Classifier Performance for Instance Range: 5000-10000 and Feature Range: <=100

Dataset GPhaseSeg first-ord-TP optdigits phoneme satimage texture wall-rob-nav
AutoGluon 0.936667 0.835425 0.999925 0.973342 0.993557 0.999998 0.999993
CARTE 0.798024 0.764092 0.999112 0.948702 0.988038 0.999541 0.999505
CatBoost 0.916674 0.831775 0.999844 0.968024 0.991978 0.999948 0.999990
MLP 0.911434 0.798811 0.999794 0.967617 0.992308 0.999990 0.999689
RealMLP 0.901441 0.795637 0.999968 0.966456 0.993034 0.999999 0.998720
FT-Transformer 0.895166 0.796707 0.999616 0.965071 0.993516 0.999983 0.999900
XGBoost 0.916761 0.834883 0.999855 0.967421 0.992114 0.999940 0.999981

Table 28: Classifier Performance for Instance Range: 5000-10000 and Feature Range: 500-1000

Dataset isolet
AutoGluon 0.999744
CatBoost 0.999389
FT-Transformer 0.998817
MLP 0.998295
RealMLP 0.999634
ResNet 0.999401
TabNet 0.998813
XGBoost 0.999488
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E.4 Datasets with 10,000 to 50,000 instances

Table 29: Classifier Performance for Instance Range: 10000-50000 and Feature Range: <=100

Dataset Phishing Adult BankMkt Elec JM1 JngChess Letter PenDigits
AutoGluon 0.997572 0.931792 0.941273 0.987260 0.770272 0.999278 0.999934 0.999725
CARTE 0.994582 0.902677 0.924664 0.909407 0.728512 0.973383 0.999440 0.999468
CatBoost 0.996482 0.930747 0.938831 0.980993 0.756611 0.976349 0.999854 0.999752
FT-Transformer 0.996760 0.914869 0.938198 0.963076 0.709321 0.999975 0.999919 0.999703
MLP 0.996991 0.928689 0.937054 0.969201 0.715620 0.999965 0.999894 0.999705
RealMLP 0.997208 0.923327 0.937031 0.961467 0.713988 0.999774 0.999914 0.999659
ResNet 0.996975 0.913790 0.935740 0.960658 0.720444 0.999956 0.999926 0.999638
SAINT 0.996746 0.920246 0.936560 0.967012 0.719464 0.999926 0.999853 0.999782
TabNet 0.996196 0.882450 0.887319 0.938656 0.674043 0.991981 0.999606 0.999753
XGBoost 0.997425 0.930482 0.938384 0.987790 0.759652 0.974087 0.999819 0.999703
XTab 0.996896 - - 0.966899 0.727984 0.999950 0.999859 0.999751

Table 30: Classifier Performance for Instance Range: 10000-50000 and Feature Range: 100-500

Dataset nomao
AutoGluon 0.996892
CatBoost 0.996439
FT-Transformer 0.990908
MLP 0.986577
RealMLP 0.989803
ResNet 0.993048
XGBoost 0.996676
XTab 0.992727

Table 31: Classifier Performance for Instance Range: 10000-50000 and Feature Range: 500-1000

Dataset har
AutoGluon 0.999958
CatBoost 0.999941
FT-Transformer 0.999685
MLP 0.999783
RealMLP 0.999958
ResNet 0.999921
TabNet 0.999515
XGBoost 0.999960
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E.5 Datasets with more than 50,000 instances

Table 32: Classifier Performance for Instance Range: >50000 and Feature Range: <=100

Dataset connect-4 numerai28.6
AutoGluon 0.934636 0.530150
CARTE - 0.514361
CatBoost 0.92105 0.529404
FT-Transformer 0.90117 0.530315
MLP 0.927373 0.525920
RealMLP 0.928258 0.529534
ResNet 0.933333 0.528012
SAINT - 0.525822
XGBoost 0.931952 0.529457
XTab - 0.528062

E.6 Performance Profiles on Small and Large Data Domain

For a more fine-granular analysis of the models’ performance profiles, we conducted the analysis proposed
in Section 5.6 in the small- and large-data regime separately.

Small-Data Domain. In Figure 31, the performance profiles are shown w.r.t. the measured inference time
(left) and the measured total time (right) in the small-data regime. The models CatBoost and AutoGluon
yield the best performance-time ratios, with SAINT from the transformer-base models being a competitor
in increasing the performance ratio τ . The models FT-Transformer, ResNet, and TabNet yield similar
results, where the first performs slightly better for small performance ratios, i.e., the models yield a better
performance-cost ratio for a larger amount of datasets. The worst trade-off is given by TB-BERTa, where
the inference time outweighs the performance.
On the right side, the performance plots are given w.r.t. the total time. In the small-data regime, as
discussed in Section 5.6, the model TabPFN yields strong performance-cost ratios resulting in a superior
performance followed by XGBoost, and the feedforward models MLP, and ResNet. Due to the larger training
time, the fine-tuned models CARTE, XTab, and TP-BERTa are not competitive with models from other
model families.

0.0 0.2 0.4 0.6 0.8 1.0
Performance Ratio ( )

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
op

or
tio

n 
of

 D
at

as
et

s Best

0.0 0.2 0.4 0.6 0.8 1.0
Performance Ratio ( )

0.0

0.2

0.4

0.6

0.8

1.0 Best

AutoGluon
AutoGluon (HPO)
CARTE

CatBoost
FT-Transformer
MLP

ResNet
SAINT
TabNet

TabPFN
TPBERTa

XGBoost
XTab

Figure 31: Performance profiles in the small data domain. Left: Performance profiles based on inference
time. Right: Performance profiles based on total time. Steeper curves indicate better overall performance
and efficiency across datasets.
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Large-Data Domain. In Figure 32, the performance profiles are shown w.r.t. the measured inference
time (left) and the measured total time(right) in the large-data regime. As discussed in Section 5, TabPFN
is only applicable on small-data, hence, it is not included in the large-data analysis. Regarding the inference
time, the models AutoGluon as an AutoML-driven approach and CatBoost from the GDBTs are superior
compared to other approaches. FT-Transformer show strong results on about half the datasets used in our
analysis, but cannot hold up the performance overall the whole set. The models ResNet, FT-Transformer,
CARTE, and SAINT show slightly better trade-off values compared to other competitors for an increase
performance ratio τ . As before, TP-Berta struggles to be competitive and shows the worst performance-cost
ratios.
When considering the total amount of time, the models AutoGluon (HPO) and XGBoost show the strongest
performance-cost trade-offs. It is followed by CatBoost from the GDBTs family, followed by the lightweight
feedforward networks, ResNet and MLP. From the fine-tuned models, XTab beats CARTE, whereas FT-
Transformer wins over SAINT and Tabnet from the transformer-based approaches. Like before, TP-BERTa
could not be competitive to any of the other approaches.

0.0 0.2 0.4 0.6 0.8 1.0
Performance Ratio ( )

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Pr
op

or
tio

n 
of

 D
at

as
et

s Best

0.0 0.2 0.4 0.6 0.8 1.0
Performance Ratio ( )

0.0

0.2

0.4

0.6

0.8

1.0 Best

AutoGluon
AutoGluon (HPO)
CARTE

CatBoost
FT-Transformer
MLP

ResNet
SAINT

TabNet
TPBERTa

XGBoost
XTab

Figure 32: Performance profiles in the large data domain. Left: Performance profiles based on inference
time. Right: Performance profiles based on total time. Steeper curves indicate better overall performance
and efficiency across datasets.

F Ablating the Choice of Refitting

In this ablation, we explore whether refitting the model on the combined training and validation sets (after
hyperparameter optimization, HPO) provides any measurable benefit. The standard procedure, as described
in 3.2, uses a 10-fold nested cross-validation: we split the data into 10 folds, use 9 folds for inner cross-
validation and HPO, then identify the best hyperparameter configuration and refit the model on all 9 folds
before testing on the remaining fold.

We compare this approach to a no-refitting variant. Here, we still employ 10-fold cross-validation, but
replace the inner cross-validation with a single 70/30 split of the 9 folds for training and validation. We
train the model on the 70% partition, perform HPO on the 30% partition, and then save both the optimal
hyperparameter configuration and the resulting trained model. Hence, when moving to the test fold, we
simply load this trained model (with its fixed hyperparameters) instead of retraining on the entire 9-fold set.
We repeat this for each of the 10 folds, ensuring the test set remains identical across both approaches.

The results of this ablation for CatBoost and FT-Transformer are presented below, comparing the outcomes
with and without refitting.

Figure 33 presents boxplots for both considered methods: CatBoost (left) and FT-Transformer (right). In
the left plot, the absence of interquartile ranges indicates that CatBoost without refitting exhibits a highly
consistent rank distribution, with a median rank of 1. In contrast, CatBoost with refitting has a median
rank of 2. The right plot reveals a slightly different trend for the FT-Transformer. While the refitted FT-
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Figure 33: Distribution of ranks for CatBoost Left and FT-Transformer Right, with and without refitting.
Lower ranks indicate better performance. The spread shows the variability in rankings across datasets.

Transformer also achieves a median rank of 1, its interquartile range extends up to rank 2, indicating a
broader spread in rank distribution. Meanwhile, the FT-Transformer without refitting maintains a median
rank of 2. Note that one dataset was excluded for the FT-Transformer without refitting due to memory
constraints.
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Figure 34: Performance Difference Between CatBoost with refitting and CatBoost without refitting Across
Datasets. Positive values indicate an improvement in ROC-AUC when refitting is applied, while negative
values indicate a performance drop.

Figure 34 illustrates the performance difference between CatBoost with and without refitting across all
datasets. The results clearly show that, with only a few exceptions, CatBoost with refitting consistently
outperforms its non-refitted counterpart. Similarly, Figure 35 presents the performance difference for FT-
Transformer with and without refitting. Unlike CatBoost, a greater number of datasets favor the non-refitted
FT-Transformer. However, overall, the majority of datasets still show improved performance with refitting.
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Figure 35: Performance Difference Between FT-Transformer with refitting and FT-Transformer without
refitting Across Datasets. Positive values indicate an improvement in ROC-AUC when refitting is applied,
while negative values indicate a performance drop.

Furthermore, we conducted a Wilcoxon signed-rank test to compare the performance of refitting versus
no-refitting across multiple datasets for both CatBoost and FT-Transformer. The statistical results are
summarized in Table 33. For CatBoost, we observed an average performance improvement of 0.0079 when
refitting, with a median difference of 0.0016. The Wilcoxon test yielded a test statistic of 180.0000 and
a highly significant p-value of 1.2985 · 10−9. This strongly suggests that refitting leads to a statistically
significant and consistent improvement in CatBoost’s performance across datasets. Given the very low p-
value p < 0.001, we can confidently reject the null hypothesis that refitting has no effect. In contrast,
for FT-Transformer, the average improvement due to refitting was 0.0035, with a median difference of
0.0004. However, the Wilcoxon test yielded a test statistic of 843.0000 and a p-value of 0.0936, which is not
statistically significant (p > 0.05). This suggests that while refitting improves FT-Transformer’s performance
on average, the improvement is not consistent or significant across datasets.

Table 33: Statistical Comparison of Refit vs. No-Refit Methods

Method Pair #Datasets Avg. Diff Median Diff Wilcoxon Stat p-value
CatBoost vs. CatBoost_noRefit 68 0.0079 0.0016 180.0000 1.298511e-09
FT vs. FT_noRefit 67 0.0035 0.0004 843.0000 9.356765e-02

Additionally, Tables 34 and 35 present the raw results of FT-Transformer and CatBoost, respectively, in
comparison to their non-refitted counterparts.
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Table 34: Average test ROC-AUC per dataset for FT-Transformer using default refitting vs. no refitting
across CV folds.

Dataset FT-Transformer FT-Transformer_norefit
adult 0.914869 0.915875
analcatdata_authorship 0.999985 0.999566
analcatdata_dmft 0.576947 0.579169
balance-scale 0.999735 0.995086
bank-marketing 0.938198 0.937470
banknote-authentication 1.000000 1.000000
Bioresponse 0.820159 -
blood-transfusion-service-center 0.745975 0.748119
breast-w 0.989503 0.989074
car 0.999751 0.999969
churn 0.914596 0.915300
climate-model-simulation-crashes 0.934671 0.933561
cmc 0.739402 0.736959
cnae-9 0.994497 0.994377
connect-4 0.901170 0.921978
credit-approval 0.935798 0.944236
credit-g 0.783048 0.777810
cylinder-bands 0.915494 0.826412
diabetes 0.831108 0.823379
dna 0.990937 0.989937
dresses-sales 0.620033 0.610016
electricity 0.963076 0.957884
eucalyptus 0.923933 0.911772
first-order-theorem-proving 0.796707 0.785106
GesturePhaseSegmentationProcessed 0.895166 0.799810
har 0.999685 0.999706
ilpd 0.751488 0.737753
Internet-Advertisements 0.974513 0.985391
isolet 0.998817 0.999282
jm1 0.709321 0.725904
jungle_chess_2pcs_raw_endgame_complete 0.999975 0.999861
kc1 0.783519 0.803310
kc2 0.832014 0.837281
kr-vs-kp 0.999777 0.999173
letter 0.999919 0.999886
madelon 0.747391 0.793476
mfeat-factors 0.999015 0.998560
mfeat-fourier 0.984511 0.982372
mfeat-karhunen 0.998682 0.997649
mfeat-morphological 0.970198 0.967869
mfeat-pixel 0.997451 0.998448
mfeat-zernike 0.983479 0.981858
MiceProtein 0.999973 1.000000
nomao 0.990908 0.992552
numerai28.6 0.530315 0.527963
optdigits 0.999616 0.999487
ozone-level-8hr 0.919484 0.919689
pc1 0.917591 0.840223
pc3 0.828743 0.835171
pc4 0.934944 0.944674
pendigits 0.999703 0.999668
PhishingWebsites 0.996760 0.996105
phoneme 0.965071 0.957862
qsar-biodeg 0.919584 0.914716
satimage 0.993516 0.992003
segment 0.994124 0.993598
semeion 0.995548 0.996208
sick 0.997937 0.997762
spambase 0.985969 0.983881
splice 0.992276 0.995195
steel-plates-fault 0.959182 0.962215
texture 0.999983 0.999973
tic-tac-toe 0.996152 0.996209
vehicle 0.963362 0.940233
vowel 0.999713 0.999198
wall-robot-navigation 0.999900 0.999870
wdbc 0.993967 0.986203
wilt 0.993047 0.992642
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Table 35: Average test ROC-AUC per dataset for CatBoost using default refitting vs. no refitting across CV
folds.

Dataset CatBoost CatBoost_norefit
adult 0.930747 0.924052
analcatdata_authorship 0.999662 0.999470
analcatdata_dmft 0.579136 0.547691
balance-scale 0.972625 0.962132
bank-marketing 0.938831 0.937464
banknote-authentication 0.999935 0.999979
Bioresponse 0.885502 0.872449
blood-transfusion-service-center 0.754965 0.749848
breast-w 0.989162 0.992507
car 1.000000 0.998453
churn 0.922968 0.916146
climate-model-simulation-crashes 0.951480 0.944551
cmc 0.740149 0.735398
cnae-9 0.996316 0.994599
connect-4 0.921050 0.913372
credit-approval 0.934006 0.940661
credit-g 0.801762 0.773381
cylinder-bands 0.912070 0.867995
diabetes 0.837869 0.822365
dna 0.995028 0.994658
dresses-sales 0.595731 0.605008
electricity 0.980993 0.937421
eucalyptus 0.923334 0.916719
first-order-theorem-proving 0.831775 0.811589
GesturePhaseSegmentationProcessed 0.916674 0.779683
har 0.999941 0.999887
ilpd 0.744702 0.731536
Internet-Advertisements 0.979120 0.972513
isolet 0.999389 0.999282
jm1 0.756611 0.742362
jungle_chess_2pcs_raw_endgame_complete 0.976349 0.973983
kc1 0.825443 0.814042
kc2 0.846802 0.841593
kr-vs-kp 0.999392 0.999419
letter 0.999854 0.999802
madelon 0.937562 0.929178
mfeat-factors 0.998910 0.997917
mfeat-fourier 0.984714 0.984229
mfeat-karhunen 0.999264 0.998802
mfeat-morphological 0.965406 0.965867
mfeat-pixel 0.999422 0.999183
mfeat-zernike 0.977986 0.977831
MiceProtein 1.000000 0.999991
nomao 0.996439 0.995329
numerai28.6 0.529404 0.529350
optdigits 0.999844 0.999780
ozone-level-8hr 0.929094 0.923125
pc1 0.875471 0.850199
pc3 0.851122 0.833527
pc4 0.953309 0.945471
pendigits 0.999752 0.999728
PhishingWebsites 0.996482 0.995649
phoneme 0.968024 0.958699
qsar-biodeg 0.930649 0.928167
satimage 0.991978 0.990444
segment 0.996231 0.995441
semeion 0.998687 0.997784
sick 0.998331 0.997520
spambase 0.989935 0.988718
splice 0.995472 0.992511
steel-plates-fault 0.974350 0.968766
texture 0.999948 0.999946
tic-tac-toe 1.000000 0.999952
vehicle 0.943460 0.933394
vowel 0.999259 0.998833
wall-robot-navigation 0.999990 0.999910
wdbc 0.993813 0.991693
wilt 0.990950 0.991393
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