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Abstract

Meta reinforcement learning sets a distribution over a set of tasks on which the agent
can train at will, then is asked to learn an optimal policy for any test task efficiently.
In this paper, we consider a finite set of tasks modeled through Markov decision
processes with various dynamics. We assume to have endured a long training phase,
from which the set of tasks is perfectly recovered, and we focus on regret minimization
against the optimal policy in the unknown test task. Under a separation condition
that states the existence of a state-action pair revealing a task against another, Chen
et al. (2022) show that O(M2 log(H)) regret can be achieved, where M, H are the
number of tasks in the set and test episodes, respectively. In our main contribution,
we demonstrate that the latter rate is nearly optimal by developing a novel lower
bound for test-time regret minimization under separation, showing that a linear
dependence with M is unavoidable. Our paper provides a new understanding of the
statistical barriers of the deployment of a meta-trained agent.

1 Introduction

Reinforcement Learning (RL, Sutton & Barto, 2018) is a popular tool for learning an optimal decision
policy through sampled interactions with a Markov Decision Process (MDP), a general framework
encompassing countless applications, ranging from robotics (Xu et al., 2023; Kaufmann et al., 2023)
to algorithms design (Fawzi et al., 2022), conversational agents (Stiennon et al., 2020), and others.

Although powerful, the efficiency of RL is a long-standing issue. The theory says that the regret of a
RL algorithm, i.e., the difference between the value of the deployed policy and the optimal policy in
hindsight, inescapably scales with

√
H in the worst case (Jaksch et al., 2010; Osband & Van Roy,

2016), H being the total number of episodes of interactions with the MDP. Even if the real world is
arguably better behaved than the worst-case MDP, the most successful algorithms (Schulman et al.,
2015; Mnih et al., 2015) still take thousands of interaction episodes to learn a competitive policy in
simulation, which draw pessimism for RL to be applied for learning in the real world?

A promising direction to improve RL efficiency is meta RL (Ghavamzadeh et al., 2015), in which
a distribution over the set of tasks we can face is considered. In meta RL, we first have a training
phase on some tasks sampled from the latter, for which the learning efficiency is less of an issue (e.g.,
a simulator is available). Then, we exploit the collected knowledge to achieve faster learning in a test
task, which is assumed to come from the same distribution.

Much of the previous work in meta RL focuses on algorithms for the training stage (Duan et al.,
2016; Finn et al., 2017; Rakelly et al., 2019; Zintgraf et al., 2019; 2021), or analyse generalization of
the trained model to the test task (Simchowitz et al., 2021; Tamar et al., 2022; Rimon et al., 2022;
Zhao et al., 2022; Zisselman et al., 2023).

Here we study meta RL from a different perspective. We assume to have spent infinite time in the
training phase, such that the task distribution can be recovered (we mean the full specifications of all
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the MDPs in the set, not just the task distribution itself), and we aim to minimize the regret against
the optimal policy in the test task. Especially: Does perfect meta RL training provably improve the
learning efficiency on the test task against standard RL?

We believe that a positive answer is an essential theoretical ground for motivating meta RL, as there
is little incentive to undergo a costly training (at least in terms of computation) without guarantees
of improved efficiency on the test task.

Even in simple settings, in which the distribution is supported on a finite set of M tasks, meta RL
provides little hope, as the regret still scales with

√
H in the worst case, with marginal gains only

in the statistical efficiency w.r.t. standard RL (Chen et al., 2022; Ye et al., 2023). Nonetheless,
under a common separation assumption on set of tasks (Chen et al., 2022; Kwon et al., 2021b), i.e.,
there exists at least one reachable state-action pair that reveals one task against the others, the
prospects of meta RL become brighter. Chen et al. (2022) show that O(M2 log(MH)) regret can be
achieved by first identifying the test task (with high probability) and then deploying the best policy
for the latter. Their approach is somewhat wasteful in the identification, as the algorithm performs a
sequence of one-vs-one tests on candidate tasks, which induces the M factor. However, it is unclear
if the latter is necessary or better algorithms could be developed.

In this paper, we provide a nuanced understanding of the statistical barriers of test-time regret
minimization in meta RL. First, we provide a novel lower bound Ω(TM log(H)) for test-time regret
minimization under separation, where T is the horizon of an interaction episode with the test MDP.
Our lower bound demonstrates that the “wasteful” algorithm by Chen et al. (2022) is nearly optimal
and the M factor is unavoidable under separation alone. The way the lower bound is derived
philosophically confirms that probing the MDP to first identify the test task and then exploit the
collected information is not just reasonable but also optimal. Nevertheless, we note that a linear
dependence with M is less than desirable if we aim to scale meta RL to large task distributions.

Contributions. Our main contributions are:
• We revise an analysis of domain randomization (Chen et al., 2022) through the lenses of meta

RL, adapting their result on sim-to-real gap into a regret upper bound O(M2 log(MH)) for
our setting (Section 3);

• We derive a lower bound Ω(TM log(H)) to test-time regret minimization under separation
(Section 4) through original techniques that formally link our problem to Best Policy
Identification (BPI, Fiechter, 1994). The proof requires a tailored lower bound to the sample
complexity of BPI, which can be of independent interest (Appendix B);

• We provide additional sharp rates to the test-time regret for meta learning in bandits
(Appendix C).

Complete proofs of the theorems are in Appendix A. A full version of this paper is in (Mutti &
Tamar, 2024), which can be accessed at https://arxiv.org/abs/2406.02282.

2 Problem Formulation

In this section, we first present the necessary background on Markov decision processes (Section 2.1)
and meta RL (Section 2.2). Then, we formulate the learning problem we will address in the remainder
of the paper (Section 2.3).

Notation. Let A a set or space, we denote its elements a ∈ A, and its size |A|. For a finite A,
the simplex on A is P(A) := (p ∈ [0, 1]|A||

∑
a∈A p(a) = 1). Let p, q ∈ P(A), their ℓ1-distance

is ∥p − q∥1 =
∑

a∈A |p(a) − q(a)|, their total variation is TV(p, q) = supa∈A |p(a) − q(a)|, their
Kullback-Leibler (KL) divergence is KL(p, q) =

∑
a∈A p(a) log(p(a)/q(a)), and we denote KLp|q :=

KL(p, q) + KL(q, p). Let A, B two spaces, f : A → B is a function from A to B. We will denote sets
and sequences as (ai)i∈[I] := (a1, . . . , aI), where [I] := (1, . . . , I) for some constant I ∈ N.

https://arxiv.org/abs/2406.02282
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2.1 Markov Decision Processes and RL

A finite-horizon time-homogeneous Markov Decision Process (MDP, Puterman, 2014) is defined by a
tuple1 Mi := (S, A, pi, ri, s1, T ) where S is a finite set of states (S = |S|), A is a finite set of actions
(A = |A|), pi : S × A → P(S) is a transition model such that pi(s′|s, a) denotes the conditional
probability of transitioning to s′ taking action a in state s, ri : S × A → [0, 1] is a reward function
such that ri(s, a) is the reward collected by taking action a in s, s1 is the initial state,2 and T < ∞
is the horizon of an episode.

An episode of interaction between an agent and the MDP Mi goes as follows. At each step t ∈ [T ],
the agent observes the current state st and takes action at. The environment transitions to the next
state st+1 ∼ pi(·|st, at) and the agent collects reward ri(sh, ah).

The agent selects its actions by means of a non-stationary Markovian policy π := (πt : S →
P(A))t∈[T ] ∈ Π where πt(a|s) denotes the conditional probability of action a in state s at time step
t, and Π is the set of policies. We define the value at step t of playing policy π in state s of Mi as

V π
it (s) := E

π,Mi

[
T∑

t′=t

ri(st′ , at′)
∣∣∣ st = s

]
,

where the expectation is on all the sources of randomness, i.e., the action selection induced by π and
the state transitions induced by pi, which may be stochastic. We further denote Vi(π) := Vi1(s1)
the value of the policy in the initial state. The objective function of the agent in Mi can then be
written as maxπ∈Π Vi(π), where we denote as π∗ the policy attaining the maximum and V ∗

i := Vi(π∗).
RL (Sutton & Barto, 2018) is a paradigm for learning an (approximately) optimal policy π, such
that V ∗

i − Vi(π) ≤ ϵ for some ϵ > 0, from sampled interactions with an unknown MDP Mi.

2.2 Meta Reinforcement Learning

Meta RL (Duan et al., 2016), initially introduced in Schmidhuber (1987), extends the RL paradigm
to a set of M MDPs M := (Mi)i∈[M ] = (S, A, pi, ri, s1, T )i∈[M ] having the same S, A, s1, T , but
possibly different transition model pi and reward ri. Just like in RL, the latter MDPs are typically
unknown to the agent. In a process called training, the agent can collect interactions with a number
of tasks3 drawn from M according to a task distribution P ∈ P(M) such that the probability of
drawing Mi is P (Mi). In training, the agent collects information into a prior model, e.g., a policy,
a model of transitions, an algorithm, that is then used to address a RL problem on a test task Mi

assumed to be drawn from the same task distribution P .

Bayesian RL (Ghavamzadeh et al., 2015) formulates the target of the training in an optimal sense under
the task distribution P , which is to learn a Bayes-optimal policy4 πBO ∈ arg maxπ∈Π EMi∼P [Vi1(π)].
As we describe below, here we study meta RL from a frequentist perspective rather than a Bayesian
formulation.

2.3 Test-Time Regret Minimization

In this paper, instead of focusing on the training phase of meta RL, we assume perfect knowledge of
the set of tasks M, such that every transition model pi and reward ri are fully known to the agent.
With this prior knowledge, we aim to minimize the test-time regret over H episodes

RH(Mi,A) := E

[
H∑

h=1
V ∗

i − Vi(πh)
]

(1)

1The meaning of the subscripts will become clear later.
2Note that unique initial state is without loss of generality, as we can accommodate an initial state distribution

µ ∈ P(S) through a fictitious state s0 such that p(s|s0, a) = µ(s), ∀a ∈ A.
3We are going to use the term task and MDP interchangeably.
4Note that the Bayes-optimal policy is history-dependent in general (Ghavamzadeh et al., 2015).
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where Mi ∈ M is a test task, πh is the policy deployed in episode h by algorithm A, and the
expectation is over realizations taken from Mi. The motivation for this objective is twofold.
Comparing against the optimal policy for the test task, instead of a an optimal policy on average over
the task distribution (Ye et al., 2023), gives a regret measure that is robust to the worst case, arguably
a minimal requirement given the perfect training assumption. We see the latter as a necessary first
step towards a more realistic setting with approximate knowledge of M only. If we cannot succeed
with the former, the latter is hopeless.

Two other important observations are in order. First, in this paper we study the regret of
adaptive algorithms A that deploy a non-stationary Markovian policy πh at each episode. This
is only slightly restrictive as the policy πh is computed having the full history of realizations
Hh = ((st,h, at,h, rt,h)t∈[T ])h′∈[h], which means an algorithm A corresponds to a non-Markovian
policy with low switching cost (Bai et al., 2019). Second, the expression in (1) is different from the
notion of Bayesian regret that is common Bayesian RL (Ghavamzadeh et al., 2015), in which the
regret is taken in expectation over the task distribution P instead of fixing the test task. As a result,
the optimal algorithm A for the test-time regret does not correspond to the Bayes-optimal policy
in general, although it holds RH(Mi, πBO) ≤ O(M · RH(Mi,A)) for any algorithm A from (Chen
et al., 2022, Lemma 1).

3 Previous Fast Rates for Test-Time Regret Minimization

In this section, we discuss the known results for the test-time regret minimization objective we
described above. In this paper we especially care for fast rates, i.e., those settings in which the
knowledge of the set of tasks and its structure allow to overcome the statistical barrier for regret
minimization in finite-horizon RL, which we know is of order Θ(poly(T, S, A)

√
H) from lower bounds

and minimax algorithms (Osband & Van Roy, 2016; Azar et al., 2017).

Chen et al. (2022) address a regret minimization problem that is very close to our test-time regret
formulation, although their narrative is centered around domain randomization rather than meta RL.
When the set of tasks is finite, they provide a lower bound of order Ω(

√
DMH), in which D is the

diameter of a communicating infinite-horizon MDP (see Assumption 1 and Theorem 3 in Chen et al.,
2022).5 The latter result demonstrates that additional assumptions are needed to break the

√
H

barrier of RL.

To this end, Chen et al. (2022) introduce a separation condition within the set of tasks M. Formally,
Assumption 1 (λ-separation (Chen et al., 2022)). For any Mi, Mj ∈ M, there exists (s, a) ∈ S ×A
such that ∥(pi − pj)(·|s, a)∥1 ≥ λ.

The latter assumption guarantees the existence of a revealing state-action pair to tell apart a task
from another. This allows to design an algorithm which repeatedly tests that revealing state-action
pair to identify the test task efficiently. First, we need to further make sure that the revealing
state-action can be reached with meaningful probability.6

Assumption 2 (Reachable MDPs). Let X(s|Mi, π) denote the random variable of the first time
step in which the state s ∈ S is reached by playing policy π in the MDP Mi. We say that an MDP is
reachable if it holds minπ∈Π E[X(s|Mi, π)] ≤ T/2, ∀s ∈ S.

With the combination of the latter assumptions, we can directly adapt the algorithmic solution
in Chen et al. (2022) to the finite-horizon setting.7 We report the pseudocode of the resulting
procedure in Algorithm 1.

5Note that the results in Chen et al. (2022) are given for a slightly different setting (detailed comparisons are in
Section 5). We will explicitly adapt to our setting the most relevant results.

6This is the technical adaptation of the communicating MDP assumption in Chen et al. (2022) for the finite-horizon
setting.

7We refer to Algorithm 1 in Chen et al. (2022), which we name here the “Identify-then-Commit” algorithm.
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Algorithm 1 Identify-then-Commit (Chen et al., 2022)
1: input set of MDPs D and visitation count n
2: while |D| > 1 do
3: Draw M1, M2 from D at random
4: Let (s̄, ā) ∈ arg max(s,a)∈S×A ∥(p1 − p2)(·|s, a)∥1
5: Call Algorithm 2 with D, (s̄, ā), n to collect X
6: if ∃s′ ∈ X : p2(s′|s̄, ā) = 0 or

∏
s′∈X

p1(s′|s̄,ā)
p2(s′|s̄,ā) ≥ 1 then

7: Eliminate M2 from D
8: else
9: Eliminate M1 from D

10: end if
11: end while
12: Take M̂ ∈ D and run π̂ ∈ arg maxπ∈Π VM̂(π) for the remaining episodes

Algorithm 2 Sampling Routine
1: input set of MDPs D, state-action pair (s̄, ā), and visitation count n
2: Initialize Ns̄ā = 0 and X = ∅
3: while Ns̄ā < n do
4: for Mi ∈ D do
5: Run the policy πi ∈ arg minπ∈Π E[X(s̄|Mi, π)] for two episodes
6: if s̄ is reached then
7: Take action ā and collect the next state s′

8: Update Ns̄ā = Ns̄ā + 1, X = X
⋃

(s′)
9: end if

10: end for
11: end while
12: output the set X = (s′

1, . . . , s′
n)

The procedure consists of two stages: An “Identify” stage aiming at identifying the test task with
high probability (lines 2-11) and a “Commit” stage in which the collected information is exploited
(line 12). The “Identify” stage works as follows. At each iteration, a pair of MDPs are drawn from
the set of potential test tasks (line 3). A sampling routine (Algorithm 2) is invoked (line 5) to collect
samples from the state-action pair where the transition models of the two tasks differ the most (see
line 4). The collected information is used to eliminate the task that is less likely to be the test task
within the drawn pair (lines 6-10). The “Identify” stage ends when the set of potential tasks D is
reduced to a single candidate. The “Commit” stage then runs the optimal policy of the candidate
task for the remaining episodes.

We can provide the following regret upper bound for Algorithm 1 by adapting (Chen et al., 2022,
Theorem 1).
Theorem 3.1 (Chen et al. 2022). Let M be a set of MDPs for which Assumption 1, 2 hold. For
any Mi ∈ M, we have

RH(Mi,A) ≤ O

(
TM2 log(MH) log2(SMH/λ)

λ4

)
where A is Algorithm 1 with inputs D = M and n = c log2(SMH/λ) log(MH)

λ4 for a sufficiently large
constant c.

The latter result is promising as it provides a fast rate with only logarithmic dependencies on H, but
it also scales super-linearly with the size of the set M, which is less than ideal for larger task sets. A
natural question that arises is whether this is the best we can achieve under the considered separation
condition. The latter is arguably a very important question as the separation condition is the minimal
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structural assumption that makes test-time regret minimization “interesting”, statistically separating
the problem from RL. In the next section, we provide an answer through a lower bound specifically
designed for this setting.

4 A Lower Bound for Test-Time Regret Minimization under Separation

In this section, we analyze the statistical barrier for test-time regret minimization under separation
(Assumption 1) by providing a novel lower bound. Formally,
Theorem 4.1 (Lower bound). Let M be a set of MDPs for which Assumptions 1, 2 hold. Let
T > M and M − 1 ≤ H ≤ C for some constant C < ∞. For any Mi ∈ M, algorithm A, and
confidence δ ∈ (0, 1), we have

RH(Mi,A) ≥ Ω
(

TM log(H)
λ

log
(

1
δ

))
with probability at least 1 − δ.

Interesting observations come through the lenses of the result above. The lower bound shows that
the regret rate of Algorithm 1 (Chen et al., 2022) matches the optimal dependencies in H, T factors,
while it nearly matches the dependencies with λ and the size of the set of tasks M . The factor of 1/λ
is not surprising, tying the complexity of the problem to how hard it is to distinguish one task from
another. The result has a fairly negative flavor on the dependency with M instead. It demonstrates
that the regret of any algorithm achieving fast rate log(H) has to scale at least linearly with M
under separation, essentially implying that those algorithms are unfit for large sets of tasks.

Unfortunately, the latter settings in which the size of M may grow exponentially with the size of the
tasks, or even be infinite (e.g., when tasks are continuous), are extremely relevant in practice, and it
is arguably where the promises of meta RL for improved efficiency are the most enticing.

An open question remains on whether there exist relevant meta RL settings in which the structure of
the problem can be further exploited to achieve fast rates log(H) while avoiding the dependence with
M . In the next section, we discuss structural assumptions that go beyond the separation condition
and allow to obtain the most efficient algorithms for test-time regret minimization.

Before that, we briefly sketch the main components of the proof of Theorem 4.1, which make use
of original techniques and constructions that may be of independent interest. We defer thorough
derivations to Appendix A.2.

4.1 Proof Sketch

The key to our proof is to design a hard instance that links test-time regret minimization to the
problem of best policy identification (Fiechter, 1994), and then invokes a lower bound to the sample
complexity of the latter to derive the result. While instance-dependent lower bounds of this kind
exist in the literature (e.g., Al Marjani et al., 2021; Wagenmaker et al., 2022; Al-Marjani et al., 2023),
as a preliminary step we derive a result that is specifically tailored to our setting. Here we do not
report derivations, which are non-trivial adaptations from a lower bound for BPI in infinite-horizon
MDPs (see Al Marjani et al., 2021, Proposition 2). We leave a detailed description to Appendix B.

In Figure 1, we report a visualization of the instance constructed to derive the lower bound, which
consists of M MDPs having 2M + 3 states and 2 actions each, a high-rewarding state sH , and an
absorbing state sL with zero reward. It is easy to see that the optimal policy for Mi goes to the
state si and then takes action a1, which gives the highest probability to visit sH . However, taking
action a1 in every other state sj ∈ (s1, . . . , sM ) ⊆ si is only slightly sub-optimal, meaning that regret
minimization is hard. Instead, it is easier to identify the test task Mi first, by playing action a1
in the states sj ∈ (sM+1, . . . , s2M ), for which at least one (sj , a1) pair is guaranteed to reveal the
test task against any other, and then to play the optimal policy thereafter. To formalize the latter
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Figure 1: Visualization of the MDP Mi in the lower bound instance. Note that the role of state
si and sM+i, . . . , s 3M

2 +i change for every MDP in M. Also note that sL, sH on the left and right
refer to the same pair of states, which are reported twice only to ease inspection. The bottom chart
report the specification of the transition probabilities. The values of ∆1, ∆2 are designed to be small
enough to make the optimal policy hard to identify playing only slightly sub-optimal policies and
large enough to penalize easy identification, respectively.

intuition, we note that identifying the test task is equivalent to a BPI problem for this instance and
we center the proof around the event

E :=
{

“best policy is identified within H episodes”
}

.

Then, we show that the regret is lower bounded by Ω(
√

H) when E does not hold, which implies
that solving the BPI problem is necessary to obtain the best rate.8 At this point, we invoke the BPI
lower bound in Lemma B.1, which simultaneously guarantees that E holds with probability at least
1 − δ and that the regret is lower bounded by

RH(Mi,A) ≥ E[τ ]∆2

where E[τ ] ≥ TM/λ2 log(1/2.4δ) is the sample complexity of the BPI problem on the constructed
instance and ∆2 := V ∗

i − V (π) = log(H)/
√

H is the value gap of playing a sub-optimal policy to
identify the task. Theorem 4.1 is obtained through additional algebraic manipulations.

5 Related Works

While we are not aware of any previous work explicitly addressing test-time regret minimization
under perfect training within the meta RL paradigm, slight variations of our problem setting have
been considered in different domains.

As we extensively reported in the previous sections, Chen et al. (2022) provides theoretical results on
the sim-to-real gap in domain randomization that can be transferred to our setting almost verbatim.
Their sim stage coarsely correspond to our training, while their real stage is our test task, for which
they study a notion of regret against the optimal policy specific to the task. Differently from our
setting, they consider infinite-horizon MDPs and they analyse the regret rate of a Bayes-optimal policy
instead of our adaptive algorithms. Notably, they assume to have recovered an exact Bayes-optimal
policy from simulations, which is similar in nature to our perfect training assumption. In their
setting of interest, they provide regret guarantees of order O(M2 log(MH)) for finite set of tasks

8Note that this does not prescribe how the algorithm collect samples. It tells that, whatever the sampling strategy,
the BPI problem has to be solved within H episodes.
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under separation, O(M2
√

H) for finite set of tasks without separation, and O(
√

dH) for infinite set
of tasks with function approximation, where d is the eluder dimension of the function class. Finally,
they provide a lower bound Ω(H) for finite sets without separation. We fill the gaps in their analysis
providing a lower bound specialized for the separation condition and assumptions beyond separation
for faster rates.

The work by Ye et al. (2023) studies generalization guarantees of pre-training in RL, in terms of
Bayesian and frequentist regret, zero-shot generalization or with additional test-time interaction. The
latter setting in the frequentist regret formulation is the analogous to our test-time regret minimization,
for which they provide a policy-collection elimination algorithm with regret of order O(

√
C(P )H),

where C(P ) is a measure of complexity of the task distribution. Although the complexity C(P ) can
capture structured finite or infinite set of tasks, it does not allow for escaping the

√
H regret of

standard RL.

Kwon et al. (2021b) address regret minimization in Latent MDPs (LMDPs). In their setting, at
every episode a task is drawn from a set of finite but unknown tasks, for which the agent tries to
minimize the regret against an optimal policy for the specific task. Essentially, LMDPs formalism
can be seen as a variation of our setting in which the test task is not persistent but changes at
every episode, and the agent does not have full knowledge of the transition dynamics of the tasks,
which have to be estimated from samples. In its full generality, LMDPs are statistically intractable.
Analogously to our work, they consider a (stronger) version of the separation condition to achieve a
regret rate of order O(

√
MH) for their inherently harder setting. Further variations of LMDPs have

been studied, including reward-mixing MDPs (Kwon et al., 2021a; 2023a), analogous of LMDPs with
fixed dynamics but changing rewards, LMDPs with side information partially revealing the current
task (Kwon et al., 2023b), and mixture of MDPs (Kausik et al., 2023).

6 Conclusion

In this paper, we provided a formal study on the statistical barriers of test-time regret minimization
under strong structural assumptions, shedding light on when meta RL can be expected to provide
significant benefits over standard RL. Especially, we settled the complexity of test-time regret
minimization under separation deriving a lower bound specialized for the assumption, for which only
upper bounds were known in the literature.

Future works may extend our results in various directions. Additional structural assumptions beyond
separation for faster rates may be investigated, as well as separation conditions at the level of
trajectory generation processes rather than single state-action pairs. Understanding the impact of
approximate training, i.e., only imperfect estimates of the tasks’ transition dynamics are available, on
our test-time regret minimization results is important to bring our analysis in a more realistic setting.
Whether there exists minimal assumptions that allow for fast rates of order log(H) for infinite set of
tasks is also a question worth investigating. Finally, we hope that our theoretical study can bring
inspiration to design practical algorithms for improved efficiency of test-time learning in meta RL.
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A Missing Proofs

In this section, we provide complete derivations to prove the theoretical results presented in the
paper.

A.1 Proof of Theorem 3.1

Here we prove the upper bound to the test-time regret under separation of Algorithm 1, which is a
straightforward adaptation of the derivations in Chen et al. (2022, Theorem 5) to the finite-horizon
setting.
Theorem 3.1 (Chen et al. 2022). Let M be a set of MDPs for which Assumption 1, 2 hold. For
any Mi ∈ M, we have

RH(Mi,A) ≤ O

(
TM2 log(MH) log2(SMH/λ)

λ4

)
where A is Algorithm 1 with inputs D = M and n = c log2(SMH/λ) log(MH)

λ4 for a sufficiently large
constant c.

Proof. Analogously as in Chen et al. (2022, Theorem 5), the proof is based on showing that the
true MDP Mi will not be eliminated from D (lines 6-10 in Algorithm 1) with probability at least
1 − 1/H (Chen et al., 2022, Lemma 4). Especially, we can write

P
(

“Mi is eliminated from D”
)

= P

(
M−1⋃
m=1

“Mi is eliminated from D at iteration m”
)

≤
M−1∑
m=1

P
(

“Mi is eliminated from D at iteration m”
)

by noting that the loop in lines 2-11 of Algorithm 1 is executed for M −1 iterations and then applying
a union bound. Next, we call Lemma A.1 to prove that the event “Mi is eliminated from D at
iteration m” holds with probability less than 1/MH.9

Then, we just need to prove that those n samples rquired by Lemma A.1 can be collected efficiently
through the sampling routine in Algorithm 2, which is where our approach differs from Chen et al.
(2022). In Lemma A.2, we provide a quick adaptation of their infinite-horizon communicating MDP
setting to our finite-horizon reachable MDP setting.

Now let H0 the number of episodes needed to collect n samples through Algorithm 2 for every time
is called from Algorithm 1 (line 5), which is M − 1 times in total. We have

E[H0] = h0 ≤ 2(M − 1)Mn ≤ cM2 log2(SMH/λ) log(MH)
λ4 .

Finally, we can write

RH(Mi, π) = E

[
h0∑

h=1
V ∗

i − Vi(πh)
]

+ E

[
H∑

h=h0

V ∗
i − Vi(π̂)

]
≤

cTM2 log2 (SMH
λ

)
log(MH)

λ4

by noting that E[
∑h0

h=1 V ∗
i − Vi(πh)] ≤ E[H0]T through ri(s, a) ∈ [0, 1], ∀Mi ∈ M, and that

E[
∑H

h=h0
V ∗

i −Vi(π̂)] ≤ T , as it is V ∗
i −Vi(π̂) = 0 with probability at least 1−1/H and V ∗

i −Vi(π̂) ≤ TH
with probability at most 1/H.

9Note that the derivations in the corresponding (Chen et al., 2022, Lemma 5) apply verbatim as there is no
assumption on how samples in X are collected, and whether they are coming from a finite-horizon or an infinite-horizon
MDP.
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Lemma A.1 (Chen et al. 2022). Let X = (s′
1, . . . , s′

n) be a set of n = c log2(SMH/λ) log(MH)
λ4

independent samples from pi(·|s̄, ā) for a large enough constant c and let M1 be an MDP such that
∥(pi − p1)(·|s̄, ā)∥1 ≥ λ. Then, it holds ∏

s′∈X

pi(s′|s̄, ā)
p1(s′|s̄, ā) > 1

with probability at least 1 − 1/MH.
Lemma A.2. Let Mi ∈ D an MDP and let H0 a random variable denoting the number of episodes
needed by Algorithm 2 to collect n samples from pi(·|s̄, ā) in Mi. We can upper bound the expected
number of episodes as h0 := E[H0] ≤ 2Mn.

Proof. We can follow similar steps as in Chen et al. (2022, Lemma 7). From Assumption 2 we have
that E(X(s̄|Mi, πi)) ≤ T/2 for πi ∈ arg minπ∈Π E[X(s̄|Mi, π)]. Then, by applying the Markov’s
inequality P (X(s̄|Mi, πi) ≥ T ) ≤ E[X(s̄|Mi, πi)]/T we get

X(s̄|Mi, πi) ≤ T (2)

with probability at least 1/2. Let Y be the random variable denoting the number of episodes needed
to reach state s̄. From (2), we have that P (Y = k) ≤ 1/2k, which gives E[Y ] ≤

∑∞
k=1 k/2k = 2.

Since Algorithm 2 deploys πj ∈ arg minπ∈Π E[X(s̄|Mj , π)] for all Mj ∈ D (lines 4-9), then also πi is
deployed.

A.2 Proof of Theorem 4.1

Here we provide complete derivations for the proof of the lower bound to the test-time regret under
separation, which we briefly sketched in Section 4. In the proof, we will refer to the hard instance
depicted in Figure 1 of the main paper.
Theorem 4.1 (Lower bound). Let M be a set of MDPs for which Assumptions 1, 2 hold. Let
T > M and M − 1 ≤ H ≤ C for some constant C < ∞. For any Mi ∈ M, algorithm A, and
confidence δ ∈ (0, 1), we have

RH(Mi,A) ≥ Ω
(

TM log(H)
λ

log
(

1
δ

))
with probability at least 1 − δ.

Proof. The key idea behind this proof is to construct an instance of the problem in which it is hard
to minimize the regret without knowing the MDP, whereas it is easy to identify the MDP playing
sub-optimal policies.

Hard instance. The instance consists of M MDPs having 2M +3 states and 2 actions each. Figure 1
depicts the sample MDP Mi ∈ M, but all of the MDPs in the instance are similarly constructed.
For any Mi ∈ M, the state sin is the initial state such that p(s1|sin, a1) = p(sM+1|sin, a2) = 1,
sL is an absorbing state with p(sL|sL, a1) = p(sL|sL, a2) = 1, sH is an high-reward state such that
p(sL|sH , a1) = p(sL|sH , a2) = 1 and r(sH , a1) = r(sH , a2) = 1. For all the other states s ∈ S \ (sH)
we have r(s, a1) = r(s, a2) = 0. The states s ∈ S \ (sH , sL, sin) are arranged in two different
chains: (s1, . . . , si, . . . , sM ) on the left and (sM+1, . . . , sM+i, . . . , s2M ) on the right, respectively. In
every state of those chains, the action a2 gives a deterministic transition to the next state in their
respective chain, i.e., p(sj+1|sj , a2) = 1, ∀sj ∈ (s1, . . . , sM−1) ∪ (sM+1, . . . , s2M−1) and self-loops
p(sM |sM , a2) = p(s2M |s2M , a2) = 1 for the closing end of the chains. For any Mi ∈ M, the state si

is the one leading to the state sH with higher probability than all of the other states pi(sH |si, a1) = 1.
For all of the other states in the left chain, i.e., s ∈ (s1, . . . , sM ) \ (si), the transition to sH has
probability pi(sH |s, a1) = 1−∆1 = 1−1/

√
H. In the right chain, the states are divided in two groups of
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M/2 states, which are G1 := (sM+i, . . . , s 3M
2 +i) and G2 := (sM+1, . . . , sM+i−1) ∪ (s 3M

2 +i, . . . , s2M ).10

The transition model is equivalent within the two groups, which is pi(sH |s ∈ G1, a1) = 1 − ∆2 =
1 − log(H)/

√
H and pi(sH |s ∈ G2, a1) = 1 − ∆2 − λ/2 = 1 − log(H)/

√
H − λ/2. Thanks to the

construction of G1 and G2, for every pair Mi, Mj ∈ M there is at least one state-action pair for
which the λ-separation holds (Assumption 1). To ease the visual inspection of the sample MDP
Mi in Figure 1, the state si and related transitions are blue colored, the states in G1 and related
transitions are red colored.

Event. Together with the described instance, we use terminology from best policy identification
(see Appendix B for details) to define a convenient event around which the analysis is centered. We
consider a class of stopping rules τ such that EMi [τ ] ≤ H, and we define:

E =
{

π̂τ ∈ arg maxπ∈Π Vi(π) : “best policy is identified within H steps”
}

.

To derive the lower bound, we consider the two cases in which E hold or does not hold with high
probability, respectively.

Bad Event. If the event E does not hold with high probability, i.e., P(E) < 1 − δ, then we can
show that the regret scales with Ω(

√
H).

Let us consider any triplet (π, τ, π̂τ ). Without loss of generality, we take EMi [τ ] = h, from which we
have

RH(Mi, π) = Rh(Mi, π) +
H∑

h̄=h

V ∗
i − Vi(π̂τ ) ≥ Rh(Mi, π) + (H − h)∆1 (3)

with probability at least δ. The latter inequality is obtained by noting that the set of policies going to
the left in the initial state π1(a1|sin) = 1, then taking action a1 at some state sj ∈ (s1, . . . , sM ), and
then taking the same action until the episode ends (formally, πt(a2|st) = 1 for all t < j, πj(a1|sj) = 1,
and πt(a1|sH) = πt(a1|sL) = 1 for all t > j) include an optimal policy for every Mi ∈ M. We denote
this sufficient set of policies as Π̃. For any MDP Mi ∈ M, it holds Vi(π) = ∆1 for all π ∈ Π̃ \ (π∗

i )
and V ∗

i = 1, which gives the above.

Then, we lower bound the term Rh(Mi, π) in (3) through regret minimization. Due to how the
instance is constructed, there is no incentive to take action a2 in sin since the best policy identification
fails in the bad event. Thus, we restrict the set of policies to Π̃ again. Notably, this set of policies is
finite, having size |Π̃| = M . We can cast the regret minimization problem over this set of policies
as a bandit with M actions with parameters (µj = Vi(πj))j∈[M ] for some arbitrary ordering of the
policies in Π̃. It is easy to see that the regret of the original MDP problem cannot be smaller than
the regret of the latter bandit reformulation, which we can lower bound through the techniques in
the proof of Theorem C.1. We have

Rh(Mi, π) ≥ h∆1

8 exp
(

−h(∆1)2

2

)
. (4)

Finally, substituting (4) into (3) we get

RH(Mi, π) ≥ h∆1

8 exp
(

−h(∆1)2

2

)
+ (H − h)∆1 ≥

√
H

8 exp
(

−1
2

)
with probability at least δ, where the last inequality is obtained by taking ∆1 = 1/

√
H and noting

that the left-hand side is minimized for EMi [τ ] = h = H.
10Here we consider i ≤ M/2 for the sake of clarity. If i > M/2 some of the indices of G1 will exceed 2M , so that the

exceeding states are to be taken from the start of the right chain (sM+i, sM+u), where u is the number of exceeding
indices.
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Good Event. The previous result states that the regret is at least Ω(
√

H) when the event E does not
hold with high probability. This hints that solving the best policy identification problem is necessary
to minimize the regret. To derive the lower bound, we instantiate a proper best policy identification
problem on the considered instance M and we derive the corresponding sample complexity through
Lemma B.1. We have EMi

[τ ] ≥ T ∗(Mi)−1 log(1/2.4δ) where

T ∗(Mi) = sup
ω∈Σ(Mi)

inf
Mj∈M−i

∑
s,a

ω(s, a) KLMi|Mj
(s, a).

From Assumption 1 and the Pinsker’s inequality we have

KLMi|Mj
(s, a) ≥ 4TV2(pi(·|s, a), pj(·|s, a)) ≥ ∥(pi − pj)(·|s, a)∥2

1 ≥ λ2.

By staring at the instance, it can be seen that the allocation vector attaining the supre-
mum is the one assigning even probabilities to all the pairs (sM+x, a1)x∈[M ], as it guarantees
ω(s, a) = 1/TM for at least two revealing state-action pairs against any MDP Mj ∈ M−i, such that∑

s,a ω(s, a) KLMi|Mj
(s, a) ≥ 2λ2

T M , while any other allocation can be hacked by the infimum over
Mj ∈ M−i to a lesser value.11

We just need to show that the desired allocation can be obtained and does not violate the flow
constraints of the MDP (see the statement of Lemma B.1). We set ω(s1, a2, 1) = 1, which implies∑

a ω(sM+x, a) ≤ 1/T, ∀x ∈ [M ], since the states of the right chain cannot be visited more than once
in an episode. Then, we set ω(sM+x, a1) = 1/TM, ∀x ∈ [M ] from the desired allocation, which gives
ω(sM+x, a1, x + 1) = 1/M, ∀x ∈ [M ]. We have

ω(sM+1, a1, 2) = 1
M

and ω(sM+1, a2, 2) = M − 1
M

from
∑

a

ω(sM+1, a, 2) =
∑
s′,a′

pi(sM+1|s′, a′)ω(s′, a′, 1) = ω(s1, a2, 1) = 1,

ω(sM+2, a1, 3) = 1
M

and ω(sM+2, a2, 3) = M − 2
M

from
∑

a

ω(sM+2, a, 3) =
∑
s′,a′

pi(sM+2|s′, a′)ω(s′, a′, 2) = ω(sM+1, a2, 2) = M − 1
M

,

ω(sM+3, a1, 4) = 1
M

and ω(sM+3, a2, 4) = M − 3
M

from
∑

a

ω(sM+3, a, 4) =
∑
s′,a′

pi(sM+3|s′, a′)ω(s′, a′, 3) = ω(sM+2, a2, 3) = M − 2
M

,

. . .

ω(s2M , a1, M + 1) = 1
M

and ω(s2M , a2, M + 1) = 0

from
∑

a

ω(s2M , a, M + 1) =
∑
s′,a′

pi(s2M |s′, a′)ω(s′, a′, M) = ω(s2M−1, a2, M) = 1
M

,

which gives ω(sM+x, a2, x) = M−x
M , ∀x ∈ [M ], while all of the additional probability to have ω(s, a, t) ∈

P(S × A), ∀t ∈ [T ] is absorbed by sL and sH .

Having proved that the desired allocation complies to the flow constraints, we proceed as

E
Mi

[τ ] ≥ TM

2λ2 log
(

1
2.4δ

)
.

11There are actually other allocation vectors that have equivalent value of T ∗(Mi), which is the one assigning
even probabilities to all the pairs (s, a1)s∈G1 or (s, a1)s∈G2 . For the sake of the proof, we use the most convenient to
algebraic manipulations.
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Finally, we can derive the lower bound through

RH(Mi, π) ≥ EMi
[τ ]∆2 = TM

2λ2
log(H)√

H
log
(

1
2.4δ

)
≥ 1

4(
√

C − log(C))
TM log(H)

λ
log
(

1
2.4δ

)
where the last inequality is obtained by exploiting H ≤ C and that transition probabilities are in
[0, 1] to write λ

2 + log(H)√
H

≤ 1, which gives λ ≤ 2(
√

C−log(C))√
H

.

B Best Policy Identification in Finite-Horizon MDPs: A Tailored Lower
Bound

In Best Policy Identification (BPI, Fiechter, 1994), the learner interacts with an unknown MDP
Mi with the goal of minimizing the expected number of samples to be taken in order to tell an
optimal policy π∗ ∈ arg maxπ∈Π Vi(π) for Mi with probability at least 1 − δ, where δ ∈ (0, 1) is a
fixed confidence.

The literature provides theoretical guarantees on the latter expected number of samples, called
sample complexity, in a variety of settings ranging from worst-case results for discounted (Azar et al.,
2013; Agarwal et al., 2020) and finite-horizon MDPs (Dann & Brunskill, 2015; Dann et al., 2019;
Kaufmann et al., 2021; Ménard et al., 2021) to instance-dependent analyses (Al Marjani & Proutiere,
2021; Al Marjani et al., 2021; Wagenmaker et al., 2022; Tirinzoni et al., 2022; 2023; Al-Marjani et al.,
2023).

For the purpose of deriving a lower bound for test-time regret minimization (Theorem 4.1), we use,
as a building block, an instance-dependent, non-asymptotic lower bound to the sample complexity of
any δ-PC (Probably Correct) BPI algorithm in finite-horizon MDPs.12 To the best of our knowledge,
the only result of this kind is given in Al-Marjani et al. (2023, Theorem 2). Here we derive an
alternative result that is tailored to our setting, i.e., in which the set of possible MDPs is restricted
to a finite set M fulfilling the λ-separation (Assumption 1).

Additional Notation. Let Hh := (st, at, rt)t∈[T ] be a trajectory collected by executing a policy πh

at the episode h. We denote Fh := σ((Hh′)h′∈[h]) the sigma algebra of the trajectories up to episode
h, such that (Fh′)h′∈[h] is the corresponding filtration. We define

• (πh′ : Fh′−1 → P(A))h′∈[h] a sampling rule that determines the policy to be run at each
episode given the past observations;

• τ a stopping rule that gives the time at which the sampling process is stopped given past
observations;

• π̂τ ∈ Π a decision rule, which is the policy selected when τ is triggered, i.e., the best guess
on the optimal policy given past observations.

We denote as E[τ ] the sample complexity of the BPI problem. Notably, the identification can span
several episodes of our finite-horizon MDP setting, which means that at any step h′ such that
mod(k′, T ) = 0 the process will be reset to state s1. To simplify the analysis, we assume that
whenever the stopping rule τ is triggered, the process proceeds until the end of the episode, which
means the sample complexity is a multiple of T .

Now, we have all of the elements to derive our tailored lower bound. Specifically, we adapt to our
BPI problem of interest the result (Al Marjani et al., 2021, Proposition 2), which was originally
derived for the infinite-horizon and δ-asymptotic setting. We obtain the following.

12A δ-PC algorithm (e.g., Al Marjani et al., 2021) is an algorithm that is guaranteed to output an optimal policy π∗

with probability at least 1 − δ with a finite sample complexity.
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Lemma B.1 (Best policy identification). Let assume all the Mj ∈ M admit unique optimal policies.
For Mi ∈ M, let us define the set of allocation vectors

Σ(Mi) =
{

ω ∈ P(S × A) : ω(s, a) = 1
T

∑
t∈[T ]

ω(s, a, t),

ω(·, ·, 1) ∈ P(S × A),
∑
a∈A

ω(s1, a, 1) = 1,

∀(s, t) ∈ S × (2, . . . , T ),
∑
a∈A

ω(s, a, t) =
∑
s′,a′

pi(s|s′, a′)ω(s′, a′, t − 1)
}

.

Let M−i := M ⊆ Mi. For δ ∈ (0, 1), any δ-PC BPI algorithm has sample complexity

E
Mi

[τ ] ≥ T ∗(Mi)−1 log(1/2.4δ) where T ∗(Mi) = sup
ω∈Σ(Mi)

inf
Mj∈M−i

∑
s,a

ω(s, a) KLMi|Mj
(s, a).

Proof. The derivations are adapted from the proof of Proposition 2 in Al Marjani et al. (2021). First,
we report a sample complexity result on best policy identification with a generative model (Al Marjani
& Proutiere, 2021), which, for any Mj ∈ M−i, states that∑

s,a

E
Mi

[Nτ (s, a)] KLMi|Mj
(s, a) ≥ kl(δ, 1 − δ) (5)

where Nτ (s, a) is the number of samples of the (s, a) pair collected within τ ∈ N steps and kl(x, y)
denotes the Kullback Leibler divergence between Bernoulli distributions with parameters x, y re-
spectively. Differently from the generative model setting, we have to enforce MDP constraints on
EMi

[Nτ (s, a)], which gives the recursive expression

if mod(τ, T ) ̸= 0
∑

a

E
Mi

[Nτ (s, a)] =
∑
s′,a′

pMi(s|s′, a′)
(

E
Mi

[Nτ−1(s′, a′)] + 1
)

, ∀(s, a) ∈ S × A

else
∑

a

E
Mi

[Nτ (s1, a)] =
∑

a

E
Mi

[Nτ−1(s1, a)] + 1 and E
Mi

[Nτ (s, a)] = E
Mi

[Nτ−1(s, a)], ∀s ̸= s1.

Then, we can combine the latter constraints with (5) to write the following optimization problem

inf
n≥0

∑
s,a,t

nsat (6)

subject to
∑
s,a,t

nsat KLMi|Mj
(s, a) ≥ kl(δ, 1 − δ) ∀Mj ∈ M−i (7)

∑
a

nsat =
∑
s′,a′

pMi
(s|s′, a′)(ns′a′t−1 + 1) ∀s, ∀t : mod(t, T ) ̸= 0 (8)

∑
a

ns1at =
∑

a

ns1at−1 + 1 ∀t : mod(t, T ) = 0 (9)

nsat = nsat−1 ∀s ̸= s1, ∀t : mod(t, T ) = 0 (10)

To prove the result, let us take the constraint (7). Since it has to hold for every Mj ∈ M−i, we can
write

inf
Mj∈M−i

∑
s,a,t

nsat KLMi|Mj
(s, a) ≥ kl(δ, 1 − δ).

Let us denote N∗ the value of (6), we write

inf
Mj∈M−i

∑
s,a,t

nsat

N∗ KLMi|Mj
(s, a) ≥ kl(δ, 1 − δ)

N∗ .
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Through constraints (8-10) and the definition of N∗, we have that (nsat/N∗) ∈ Σ(Mi), where the
latter is the set of allocation vectors. Hence, we can write

sup
ω∈Σ(Mi)

inf
Mj∈M−i

∑
s,a

ω(s, a) KLMi|Mj
(s, a) ≥ kl(δ, 1 − δ)

N∗ .

Finally, we know from (Al Marjani et al., 2021, Proposition 10) that EMi
[τ ] ≥ N∗, which together

with kl(δ, 1 − δ) ≥ log(1/2.4δ) (see Kaufmann et al., 2016) gives the result.

C Meta Learning in Bandits

In this section, we analyze a simplified bandit version of the test-time regret minimization problem
described in the paper. The aim of this study is to serve both as a gentle introduction to the more
advanced results and techniques presented in the paper, which come more naturally in the bandit
setting, as well as a standalone analysis that may be of independent interest.

We consider a class M = (Mi)i∈[M ] of bandits (Lattimore & Szepesvári, 2020), each of them having
a set of actions A = (aj)j∈[A] with corresponding reward distributions Ri(aj) for all i ∈ [M ], j ∈ [A]
with bounded mean µij ∈ [0, 1]. First, we rephrase the separation condition presented in the paper
(Assumption 1) as follows,
Assumption 3 (λ-separation (bandit)). For any Mi, Mj ∈ M, there exists a ∈ A such that
∥Ri(a) − Rj(a)∥1 ≥ λ.

Just like in the MDP setting, we assume the reward distribution of all bandits Mi ∈ M, as well as
the set M itself, to be fully known to the agent, who faces a test task (i.e., bandit) that is instead
unknown but belonging to M. To evaluate the agent’s performance, we redefine the H-steps test-time
regret for the task Mi ∈ M as

RH(Mi, π) = E

[
H∑

h=1
Ri(a∗) − Ri(ah)

]
= E

[
H∑

h=1
µ∗ − µh

]
where a∗ ∈ arg maxa∈A µ(a) is the optimal action in the bandit Mi, ah ∈ A is the action played by
policy π at step h, and µ∗, µh are the mean of their reward distribution, respectively. Just as we
did in the paper for the more general MDP setting, we provide both a lower bound and a nearly
minimax optimal algorithm for the test-time regret minimization in bandits.

C.1 Lower Bound

We now prove a lower bound to the test-time regret suffered by any algorithm in the introduced
meta learning in bandits setting under the above separation condition (Assumption 3). Formally,
Theorem C.1 (Lower bound). Let M be a set of bandits for which Assumption 3 holds. Let C < ∞
a constant, and let δ ∈ (0, 1). For any horizon M − 1 ≤ H ≤ C, it holds

RH(Mi, π) = Ω
(

M log(H)
λ

log
(

1
δ

))
with probability at least 1 − δ.

Proof. To prove the lower bound, we first construct a convenient instance in which it is hard to
minimize the regret without knowing the task, while it is easy to identify the task playing sub-optimal
actions. Then, we derive the lower bound on the regret suffered by any algorithm leveraging minimax
lower bounds for standard bandits (Lattimore & Szepesvári, 2020) and best arm identification
results (Garivier & Kaufmann, 2016).

Let M = (Mi)i∈[M ] a problem instance in which every Mi has |A| = 2M actions and Gaussian reward
distributions Ri(aj) = N (µij , 1). For each Mi, we specify the first set of M actions (aj)M

j=1 as follows:
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Figure 2: Visualization of the Mi bandit in the problem instance designed to derive the lower bound.
The optimal action ai and the identifying actions a ∈ A1 ∪ A2 change for every Mi.

The action ai is the optimal action with mean µi = µ∗, while all of the other actions are slightly
sub-optimal µ∗ − µj = ∆1 = 1/

√
H. The second set of actions (aj)2M

j=M+1 is specified as follows: The
actions A1 := (aM+i, . . . , a 3M

2 +i) have mean reward such that µ∗ − µa = ∆2 = log(H)/
√

H, ∀a ∈ A1,
and all of the other actions A2 := (aM+1, . . . , aM+i−1) ∪ (a 3M

2 +i+1, . . . , 2M) have mean reward
µa < µM+i such that ∥R(aM+i) − R(a)∥1 ≥ λ, ∀a ∈ A2, fulfilling λ-separation. The instance is
depicted in Figure 2.13

In general, there are two ways to approach the described instance. Since it is known that the second
set of M actions is sub-optimal in every Mi, we can minimize the regret playing only the first set of
actions. Otherwise, we can exploit the separation condition on the second set of arms to identify the
task and then playing the optimal arm. To formalize this intuition, we borrow notation from best
arm identification literature (e.g. Garivier & Kaufmann, 2016) similarly as we did in Appendix B.

Additional Notation. Let Hh := (ah′ , rh′)h′∈[h] be a trajectory collected by executing a policy π.
We denote Fh≥1 the corresponding filtration on Hh. We define

• (πh′)h
h′=1 a sampling rule over A that determines the next action to play given past observa-

tions;

• τ a stopping rule that gives the stopping time w.r.t. Hh;

• âτ ∈ A a decision rule, which is the action selected when τ is triggered, i.e., the best guess
on the optimal arm given past observations.

We denote as E[τ ] the sample complexity of the best arm identification problem. Further, we restrict
τ to the class of stopping rules such that EMi

[τ ] ≤ H, and we define the following event:

E =
{

âτ ∈ arg maxa∈A µ(a) : “best arm is identified within H steps”
}

.

To derive the lower bound, we consider the two cases in which E hold or does not hold with high
probability, respectively.

Bad Event. If the event E does not hold with high probability, i.e., P(E) < 1 − δ, we can show
that the regret scales with Ω(

√
H).

Let us consider any triplet (π, τ, âτ ). Without loss of generality, we take EMi
[τ ] = h, from which we

have
RH(Mi, π) = Rh(Mi, π) + (H − h)∆1 (11)

13Note that, for describing the instance, we conveniently consider i ≤ M/2, but it is straightforward to understand
how it works for i > M/2 by substituting the exceeding indices in A1 back with the first arms of the sequence
aM+1, aM+2, . . . until A1 consists of M/2 arms.
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with probability at least δ.

First, we lower bound the term Rh(Mi, π) through regret minimization. We can restrict the action
set to Ã = (aj)M

j=1 as there is no incentive to play surely sub-optimal actions aj for j > M when
minimizing the regret. We take a policy π inducing pulls (ah′)h

h′=1 and corresponding counts
Tj(h) :=

∑h
h′=1 1(aj = ah′) over the actions Ã of M1. Then, we select Mi ∈ M such that

i = arg minj∈[M ] EM1 [Tj(h)]. We have that

max
M∗∈M

Rh(M∗, π) ≥ max {Rh(M1, π), Rh(Mi, π)} ≥ Rh(M1, π) + Rh(Mi, π)
2 .

We can further expand the terms on the right hand-side by noting that

Rh(M1, π) ≥ PM1(T1(h) ≤ h/2)h∆1

2 and Rh(Mi, π) ≥ PMi
(T1(h) > h/2)h∆1

2

from which we can write

Rh(M1, π) + Rh(Mi, π) >
h∆1

2 (PM1(T1(h) ≤ h/2) + PMi(T1(h) > h/2))

≥ h∆1

4 exp (−KL(PM1 ,PMi))

where the latter is obtained through the Bretagnolle-Huber inequality. Then, we can upper bound
the KL divergence as

KL(PM1 ,PMi
)

= E
M1

[T1(h)]KL(N (µ∗, 1), N (µ − ∆1, 1)) + E
M1

[Ti(h)]KL(N (µ − ∆1, 1), N (µ∗, 1))

≤ (∆1)2

2

(
E

M1
[T1(h)] + E

M1
[Ti(h)]

)
≤ h(∆1)2

2

from which we derive
max

M∗∈M
Rh(M∗, π) ≥ h∆1

8 exp
(

−h(∆1)2

2

)
.

Finally, we substitute the latter in (11) to get

RH(Mi, π) ≥ h∆1

8 exp
(

−h(∆1)2

2

)
+ (H − h)∆1 ≥

√
H

8 exp
(

−1
2

)
with probability at least δ, where the last inequality is obtained by taking ∆1 = 1/

√
H and noting

that the left-hand side is minimized for EMi [τ ] = h = H.

Good Event. The previous result states that the regret is at least Ω(
√

H) when the event E
does not hold with high probability. This hints that solving the best arm identification problem
is necessary to minimize the regret. To derive the lower bound, we instantiate a proper best arm
identification problem on the considered instance M.

Since the separation condition is fulfilled in the second set of actions, we can restrict our best arm
identification problem to the action set Â = (aj)2M

j=M+1. From Theorem 1 in (Garivier & Kaufmann,
2016), for any confidence δ ∈ (0, 1), we have that

EMi
[τ ] ≥ T ∗(Mi)−1 log(1/2.4δ)

where

T ∗(Mi)−1 := sup
ω∈P(Â)

inf
Mj∈M\(Mi)

( 2M∑
k=M+1

ωkKL(Ri(ak), Rj(ak))
)

(12)
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holds with probability 1 − δ. From the separation condition (Assumption 3) and the Pinsker’s
inequality we have

KL(Ri(a), Rj(a)) ≥ 2TV2(Ri(a), Rj(a)) ≥ 1
2∥Ri(a) − Rj(a)∥2

1 ≥ λ2

2
for every i ̸= j. By noting that the supremum in (12) is attained by ω = (1/M, . . . , 1/M) we get

EMi
[τ ] ≥ 2M

λ2 log
(

1
2.4δ

)
.

Finally, we can derive the lower bound through

RH(Mi, π) ≥ EMi
[τ ]∆2 = 2M

λ2
log(H)√

H
log
(

1
2.4δ

)
≥ 2√

C − log(C)
M log(H)

λ
log
(

1
2.4δ

)
where the last inequality is obtained by exploiting H ≤ C and that the mean of the reward distribution
is bounded in [0, 1] to write λ + log(H)√

H
≤ 1, which gives λ ≤

√
C−log(C)√

H
.

C.2 Upper Bound

In this section, we provide a simple algorithm, which is practically a direct adaptation to the bandit
setting of Algorithm 1, in turn inspired by Chen et al. (2022), that nearly matches the lower bound
presented in the previous section.

The idea of the algorithm is to exploit the knowledge of the class M to quickly identify the test task
M∗ and then commit to the optimal action a∗ for M∗. The pseudocode of this simple procedure is
provided in Algorithm 3.

Algorithm 3 Identify-then-Commit for Bandits
1: Initialize D = M and n = 2 log(2MH)

λ4

2: while |D| > 1 do
3: Draw M1, M2 from D at random
4: Take ã ∈ arg maxa∈A ∥R1(a) − R2(a)∥1
5: Collect n samples X = (x1, . . . , xn) pulling action ã

6: if
∏

xh∈X
R1(xh|ã)
R2(xh|ã) ≥ 1 then

7: Eliminate M2 from D
8: else
9: Eliminate M1 from D

10: end if
11: end while
12: Take M̂ ∈ D and pull the action â ∈ arg maxa∈A µ̂(a) for the remaining steps

The upper bound to the test-time regret suffered by Algorithm 3 is provided by the following result.
Theorem C.2 (Upper bound). Let M be a set of bandits for which Assumption 3 holds. For any
H ≥ M − 1, we have

RH(Mi, π̂) = O

(
M log(MH)

λ4

)
where π̂ is the sampling rule induced by Algorithm 3.

Proof. The scheme of the proof follows closely the one of Chen et al. (2022, Theorem 1), which is
simplified and adapted to the bandit setting we care about here.

First, we note that the Algorithm 3 is made of two stages: An “Identify” stage (lines 2-11) in which
we seek to find out the test task Mi irrespective of the regret, a “Commit” stage (line 12) in which



Depoyable RL @ RLC 2024

we exploit the gathered information to minimize the regret in the remaining steps. Notably, at every
iteration of the while loop (lines 2-11) a potential task is eliminated from the set |D|, which means
the “Identify” stage consists of exactly h0 := (M − 1)n steps, and the “Commit” stage takes the
remaining H − h0 steps. Thus, we can decompose the regret as

RH(Mi, π̂) = E

[
h0∑

h=1
Ri(a∗) − Ri(ã)

]
+ E

[
H∑

h=h0

Ri(a∗) − Ri(â)
]

. (13)

Now, we just need to upper bound the term on the left with h0 through Ri(a∗) − Ri(ã) ≤ 1 and to
show that the second term is zero with high probability to prove the result.

Since â is the optimal action of the remaining task in the set D, to prove that it holds E[
∑H

h=h0
Ri(a∗)−

Ri(â)] = 0 with high probability, we have to show that the test task Mi is not eliminated from D
with high probability. Especially, for some confidence δ ∈ (0, 1) we need

P
(

“Mi is eliminated from D”
)

= P

( ∏
xh∈X

Ri(xh|ã)
Rj(xh|ã) < 1

)
≤ δ

M

where the right-hand side is obtained from a union bound over the event that the test task Mi is
eliminated in each iteration of the while loop (lines 2-11). Equivalently, we need

log
( ∏

xh∈X

Ri(xh|ã)
Rj(xh|ã)

)
=
∑

xh∈X
log
(

Ri(xh|ã)
Rj(xh|ã)

)
> 0

to hold with probability at least 1 − δ
M . First, we note that

E
x∼Ri(ã)

[ ∑
xh∈X

log
(

Ri(x|ã)
Rj(x|ã)

)]
=
∑

xh∈X
E

x∼Ri(ã)

[
log
(

Ri(x|ã)
Rj(x|ã)

)]
= nKL(Ri(ã), Rj(ã)) ≤ nλ2

2

where the last inequality is obtained from the separation condition (Assumption 3) and the Pinsker’s
inequality. Then, we have

∑
xh∈X

log
(

Ri(xh|ã)
Rj(xh|ã)

)
≥ E

x∼Ri(ã)

[ ∑
xh∈X

log
(

Ri(x|ã)
Rj(x|ã)

)]
−

√
n

2 log
(

2M

δ

)
≥ nλ2

2 −

√
n

2 log
(

2M

δ

)

with probability 1 − δ
M through the Hoeffding’s inequality. Now, we need to set n such that the

right-hand side is greater than zero, which gives n = 2 log( 2M
δ )

λ4 and h0 = 2(M−1) log( 2M
δ )

λ4 .

Finally, we set δ = 1
H and we plug the expression into (13). Noting that, in the bad event

occurring with probability less than 1/H the right-hand side of (13) is still less than H, we have
E[
∑H

h=h0
Ri(a∗) − Ri(â)] ≤ 1 from which we get

RH(Mi, π̂) = O

(
M log(MH)

λ4

)
.


