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Abstract

Accurate spatiotemporal calibration between heteroge-
neous sensors such as cameras and LiDAR is essential for
robust performance in tasks like localization, mapping, and
object detection. Traditional calibration methods rely on
physical targets and manual procedures, limiting scalability
and applicability in dynamic or real-time environments. Re-
cent advances in targetless and scene reconstruction-based
calibration have improved spatial alignment but often ne-
glect temporal synchronization and are computationally in-
tensive. In this work, we propose PACS (Periodic Activation
with 2D Gaussian Splatting for Multimodal SpatioTempo-
ral Calibration), a novel and efficient calibration frame-
work that jointly estimates spatial and temporal alignment
across sensors. PACS uses a sine-activated multilayer per-
ceptron (MLP) to effectively capture high-frequency scene
details, enhancing convergence and representational power.
Leveraging an anchor-based decoding scheme, our method
significantly accelerates training while maintaining robust
scene reconstruction. Furthermore, we employ 2D Gaus-
sian splatting to render scenes with improved alignment
between visual and LiDAR-based geometry. Experimental
results demonstrate that PACS achieves accurate, efficient,
and robust calibration across multimodal sensor configura-
tions.

1. Introduction
Sensors such as cameras and LiDAR play a critical role in
intelligent systems by providing essential spatial informa-
tion about the surrounding environment. Each sensor type
offers a unique modality—for instance, LiDAR delivers
precise geometric range data, whereas RGB cameras cap-
ture rich color and texture information. Consequently, the
fusion of data from multiple sensors enables a more holis-
tic understanding of the scene in the wild, thereby improv-
ing the performance of key tasks such as localization [19],
mapping [3, 15], and object detection [2, 10, 20]. To fully
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leverage this multi-modal information from heterogeneous
sensors, accurate spatial and temporal calibration is essen-
tial.

Sensors frequently operate at different sampling rates,
capturing observations at misaligned time steps. This mis-
alignment introduces both temporal and spatial inconsis-
tencies, even when accurate extrinsic parameters are avail-
able. Recently, multimodal spatiotemporal calibration has
garnered increasing attention, with the goal of jointly esti-
mating both spatial and temporal alignments across hetero-
geneous sensors. Building on the work of Zhou et al. [21],
several studies [5, 7] have proposed NeRF-based pipelines
that leverage the differentiable structure of Neural Radi-
ance Fields (NeRF) [13] to jointly optimize scene represen-
tations, including geometry, appearance, and sensor poses.
While these approaches have demonstrated promising cal-
ibration performance, they are computationally demanding
and require long training times, limiting their practicality in
real-time or large-scale applications.

3DGS-Calib [6] integrates 3D Gaussian Splatting
(3DGS) [9] with a multi-resolution hash grid structure [14],
enabling progressive learning of scene details from coarse
to fine spatial frequencies. Despite the effectiveness, it
presents several limitations when applied to large-scale en-
vironments such as autonomous driving scenarios [11]. In
such cases, representing extensive scenes with sufficient de-
tail requires extremely high-resolution grids, which signifi-
cantly increases the computational overhead. Moreover, for
accurate scene representation, the attributes of neighboring
Gaussians often need to vary substantially—especially in
regions with complex geometry or fine structures. However,
learning such high-frequency variations from grid features
using a simple MLP with ReLU activations can be ineffi-
cient, resulting in slow convergence.

To this end, we propose PACS (Periodic Activation with
2D Gaussian Splatting for Multimodal SpatioTemporal Cal-
ibration), a novel framework for fast and precise multi-
modal spatiotemporal calibration. The PACS framework is
designed to enhance calibration performance across hetero-
geneous sensors by focusing on three key aspects. First, we
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Figure 1. The pipeline of our framework. We downsample the accumulated LiDAR point cloud to define anchors. Each anchor generates
multiple Gaussians using a hash grid and a sine-activated MLP. These Gaussians are transformed to the camera frame using calibration
parameters and rendered via 2D Gaussian Splatting. The rendered image is compared with the ground-truth to compute the photometric
loss, and gradients are backpropagated to update both the network and calibration parameters.

introduce a sine-activated multilayer perceptron (MLP) to
efficiently capture fine-grained (or high-frequency) visual
features using a periodic activation function. Second, the
use of the sine-activated MLP enhances the representational
power of the network, enabling a reduction in the number
of query points through the adoption of an anchor-based
decoding scheme [12]. In this scheme, a sparse set of an-
chor points is utilized to infer the attributes of multiple sur-
rounding Gaussian components. We observe that this ap-
proach significantly accelerates the training process while
promoting more robust and structured scene reconstruction.
Lastly, conventional methods typically employ 3D Gaus-
sians whose positions are fixed to the LiDAR point cloud.
This rigid coupling often results in misalignment between
the rendered surfaces and the actual LiDAR geometry. To
address this limitation, we propose the use of 2D Gaussian
splatting for rendering, which enables more precise align-
ment between the rendered appearance and the surfaces
captured by LiDAR. By decoupling the rendering process
from fixed 3D positions, our approach achieves improved
consistency between visual and geometric modalities.

We validate our approach on the KITTI-360 dataset by
injecting noise into the camera extrinsic parameters across
multiple sequences. Our method demonstrates strong ro-
bustness in recovering accurate spatial and temporal cali-
bration under noisy initialization, while achieving signifi-
cantly faster convergence compared to prior approaches.

2. Method

2.1. Overall Framework

The spatiotemporal multimodal calibration task estimates
extrinsic parameters and temporal offsets of multiple cam-
eras with respect to a reference LiDAR. Given LiDAR poses

TLiDAR
t ∈ SE(3) from SLAM [16] or ICP [1, 4], we interpo-

late trajectories using SLERP [17] for rotation and linear in-
terpolation for translation, following prior work [5–7]. For
each camera Ci, we solve for extrinsics Θi = Ri, ti, δti,
where δti is the temporal offset. The global pose at time
t+ δti is obtained as

TCi

t+δti
= TL

t+δti ·
[
Ri ti
0⊤ 1

]
(1)

To represent the scene, we accumulate LiDAR scans into
a reference point cloud, downsample to anchors, and use a
hash-grid–encoded sine-activated MLP to predict k Gaus-
sian attributes (scale, opacity, rotation, 2D scale). These
Gaussians are transformed to the camera frame, rendered
via Gaussian Splatting, and optimized against ground-truth
images. An overview is shown in Fig. 1.

2.2. Gaussian Parameters from Sine-activated MLP
While conventional Gaussian splatting [8, 9] allows the
variation of Gaussian attributes, such as scale and rota-
tion, grid-based optimization with Instant-NGP [14] im-
poses regularization that encourages similar attribute values
among adjacent Gaussians. This regularization is effective
for large regions (e.g., walls and roads), however, it lim-
its the ability to capture fine-grained, high-frequency varia-
tions inherent in the scene, resulting in slower convergence
during optimization. An intuitive solution is to increase the
grid resolution; however, it hinders efficient training due to
significant computational cost growth.

To balance the efficient cost and performance, we intro-
duce a periodic activation function into the MLP follow-
ing the grid-based interpolation. Inspired by [18], we use
sine activations to enhance the network’s ability to represent
high-frequency components within the grid, enabling more



expressive Gaussian parameterization without increasing
the grid resolution. By leveraging the sine-activated MLP,
a small number of anchors can effectively represent a large
number of Gaussians while preserving fine details.

2.3. Anchor-based Multi-Gaussian Parameteriza-
tion

Prior work [6] renders Gaussians from dense point clouds,
creating a computational bottleneck. We alleviate this with
anchor-based parameterization, generating multiple Gaus-
sians from a single interpolated anchor feature. Since these
Gaussians are decoupled from the original point locations,
we employ 2D Gaussian Splatting to correct geometric mis-
alignments and ensure accurate alignment.

To generate anchors and initialize Gaussians, we use two
point cloud levels: the accumulated dense LiDAR points X
and a downsampled cloud Xc. Each point in Xc is an an-
chor, with k neighbors from X (within its voxel) used to ini-
tialize Gaussians. Neighbor coordinates provide initial po-
sitional offsets relative to the anchor. If neighbors exceed k,
we randomly sample; if fewer, we sample with replacement
to ensure a fixed number of Gaussians per anchor.

We denote the learnable positional offset for each Gaus-
sian as δp. Given an anchor position pa, the global position
pg of a Gaussian is computed as:

pg = pa + δp (2)

where δp is initialized with the 3D coordinates of sam-
pled neighboring points. Other Gaussian attributes—scale,
opacity, color, and rotation—are predicted through separate
output heads of the neural network. Each head predicts k
sets of attribute values for each anchor, resulting in an out-
put tensor of shape N × d × k, where N is the number
of anchors, d is the dimensionality of each attribute (e.g.,
3 for color), and k is the number of Gaussians per anchor.
This design enables efficient parallel prediction of multi-
ple Gaussians from each anchor feature while maintaining
modularity across different attributes. Although using only
N sparse anchors as input, our method produces NK dense
Gaussians, enriching scene representation without extra fea-
ture extraction cost.
2D Gaussian Splatting for Scene Representation. Since
the positions of the Gaussians are learnable and may deviate
from the original LiDAR points during optimization, main-
taining geometric consistency with the underlying LiDAR
structure becomes challenging. To address this issue, we in-
troduce a depth consistency loss to enforce alignment be-
tween the generated Gaussians and the LiDAR point cloud.
The depth loss is defined as:

Ldepth = ||D(Φ,Θi, δp)− D̄(Θi)||1 (3)

where D̄(Θi) denotes the depth map obtained by pro-
jecting the original point cloud X using the given camera

extrinsic transformation Θi, and D(Φ,Θi, δp) represents
the depth map rendered from the Gaussians with the learn-
able offsets. By minimizing the discrepancy between these
two depth maps, we prevent misalignments between the
Gaussian representations and the original LiDAR geome-
try, ensuring accurate spatial consistency during training.
To ensure that the optimization focuses solely on adjust-
ing the offsets, we detach the neural representation Φ and
the camera extrinsic parameters Θi from the computation
graph when computing the depth loss. This prevents gradi-
ents from being propagated to Φ and Θi , ensuring that only
δp is updated by the depth supervision.

2.4. Optimization
Rendered Image Optimization. The Gaussians are splat-
ted to render an image, and the photometric loss Lphoto

minimizes the discrepancy between the rendered and GT
image. Specifically, following the formulation from [9],
Lphoto consists of an L1 loss and a D-SSIM term:

Lphoto = (1− λssim)L1 + λssimLD-SSIM (4)

2D Gaussians Optimization. Following [8], we introduce
2DGS optimization function to improve geometric consis-
tency and stability for 2D Gaussians:

L2dgs = λdLd + λnLn (5)

Regularization Terms. To stabilize the optimization pro-
cess, we propose two additional regularization terms: a
scale normalization loss Lsn to prevent overly sharp Gaus-
sians that harm stability and rendering quality, and an offset
loss Los to limit drift from anchor positions, promoting ge-
ometric consistency while allowing flexible offsets. These
losses are defined as:

Lsn =
1

N · k

N ·k∑
i

||si − s̃i||, Los =
1

N · k

N∑
i=1

k∑
j=1

∣∣δpi,j

∣∣
1

(6)

The proposed regularization loss Lreg is defined as:

Lreg = λdepthLdepth + λsnLsn + λosLos (7)

Finally, during the training phase, we employ the loss func-
tions defined above as follows:

Ltotal = Lphoto + L2dgs + Lreg (8)

3. Experimental Results
Spatiotemporal calibration. We evaluate both spatial and
temporal calibration results in Tab. 1. While the calibra-
tion errors of prior methods vary across different scenes,
our method consistently achieves less than 0.21◦ in rota-
tion, 9.8 cm in translation, and 7.1 ms in time offset. In



Figure 2. Calibration results of PACS. Boxes with the same color indicate zoomed-in views of the corresponding regions.

(d) Ours (Rendered Image)

(c) Ours (RGB Image)

(b) Initial errors (RGB Image)

(a) GT (RGB Image)

Figure 3. Comparison of calibration results. (a) GT on RGB image, (b) Initial error on RGB image, (c) Ours on RGB image, and
(d) Ours on rendered image on KITTI-360 [11] dataset. The red boxes show enlarged views of the same regions across the images.

Method Voxel Size Training time Rotation Translation Time offset #. of
(sec) ↓ (◦) ↓ (cm) ↓ (sec) ↓ Gaussians

3DGS-Calib [6] 0.10 285 0.28 14.1 8.3 374,797
3DGS-Calib [6] 0.05 620 0.28 10.1 7.2 1,210,066
3DGS-Calib [6] 0.02 1390 0.38 9.0 7.9 3,196,593
3DGS-Calib [6] Iteration-dependent 490 0.31 10.3 6.7 Voxel-dependent

Ours (PACS) 0.10 264 0.21 9.8 7.1 1,873,985

Table 1. Comparison of Spatiotemporal Calibration Accuracy with 3DGS-Calib [6]. ‘Iteration-dependent’ represents the voxel size
is dependent on the iteration number, and ‘Voxel-dependent’ denotes that the number of Gaussians in 3DGS-Calib depends on the voxel
sizes.

addition, our method achieves comparable calibration accu-
racy to 3DGS-Calib while requiring significantly less train-
ing time. Furthermore, while our method also uses voxel-
based downsampling to define anchors, it does not require
dynamic tuning of the voxel resolution as in 3DGS-Calib.
This allows efficient training with a large number of Gaus-
sians without costly resolution adjustment.

Calibration results of PACS. In Figure 2, we visualize the
alignment of reprojected 3D LiDAR points onto the front-
facing image as a result of our LiDAR-to-image calibration.
As shown in the figure, our method successfully aligns the
LiDAR point cloud with the camera image, indicating accu-
rate spatial calibration between the two sensors. Addition-
ally, we reproject the 3D points onto a rendered image that
is generated using the same estimated pose as the LiDAR
mounted on the vehicle.

Comparison of calibration results. We visualize the cali-
bration process from the initial state (e.g., (b)) to the final
output (e.g., (c), (d)) and compare it with the ground truth

(e.g., (a)) to demonstrate the effectiveness of our training.
As shown in Figure 3, our method accurately performs cal-
ibration (see (b), (c)). Following MOISST [5], we project
3D points onto a synthetic image rendered from the LiDAR
viewpoint to ensure alignment and avoid parallax distor-
tions (see (d)). These results highlight the precise spatial
alignment achieved even in complex scenes with fine geo-
metric details.

4. Conclusion
We propose an efficient multimodal spatiotemporal cali-
bration framework using 2D Gaussian Splatting. A sine-
activated MLP enhances high-frequency detail and acceler-
ates convergence, while an anchor-based decoding scheme
infers Gaussian attributes from sparse anchors, reducing
computation without sacrificing fidelity. To address geomet-
ric misalignment of 3D Gaussians, we adopt 2D splatting
for precise alignment with LiDAR. Experiments demon-
strate both efficiency and accuracy in real-world dynamic
settings.
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