
Accelerating Motion Planning via Optimal Transport

An T. Le1, Georgia Chalvatzaki1,3, Armin Biess5 and Jan Peters1,2,3,4

Abstract— Motion planning is still an open problem in
robotics. A class of methods striving to provide smooth solu-
tions is gradient-based trajectory optimization. However, those
methods might suffer from bad local minima, while for many
settings, they may be inapplicable due to the absence of access
to objectives-gradients. In response to these issues, we introduce
Motion Planning via Optimal Transport (MPOT) - a gradient-
free method that optimizes a batch of smooth trajectories over
highly nonlinear costs, even for high-dimensional tasks, while
imposing smoothness through a Gaussian Process trajectory
prior that serves as cost. To facilitate batch trajectory op-
timization, we introduce an original zero-order and highly-
parallelizable update rule – the Sinkhorn Step, which uses the
regular polytope family for its search directions; each regular
polytope, centered on trajectory waypoints, serves as a local
neighborhood, effectively acting as a trust region, where the
Sinkhorn Step “transports” local waypoints toward low-cost
regions. With these properties, MPOT solves batch planning
tasks even with narrow passages in less than a second, finding
locally optimal solutions. We show the efficiency of MPOT in
a range of problems from low-dimensional point-mass navi-
gation to high-dimensional whole-body robot motion planning,
evincing its superiority compared with popular motion planners
and paving the way for new applications of optimal transport
in motion planning.

I. INTRODUCTION

Motion planning is a fundamental problem in robotics [1],
aiming to find feasible, smooth, and collision-free paths
from start-to-goal configurations. Motion planning has been
studied both as sampling-based search [2], [3], [4] and as an
optimization problem [5], [6], [7], [8]. Nevertheless, as with
every optimization pipeline, trajectory optimization depends
on initialization and can get trapped in local minima due
to the non-convexity of complex objectives. Moreover, in
some problem settings, objective gradients are unavailable
or expensive to compute. Indeed, trajectory optimization is
difficult to tune and is often avoided in favor of sampling-
based methods with probabilistic completeness.
To address these issues of trajectory optimization, we pro-
pose a zero-order, fast, and highly parallelizable update rule
– the Sinkhorn Step. We apply this novel update rule in
trajectory optimization, resulting in MPOT – a gradient-
free trajectory optimization method optimizing a batch of
smooth trajectories. MPOT optimizes trajectories by solv-
ing a sequence of entropic-regularized Optimal Transport
(OT), where each OT instance is solved efficiently with
the celebrated Sinkhorn-Knopp algorithm [9]. In particu-
lar, MPOT discretizes the trajectories into waypoints and

This work was funded by the German Research Foundation project
METRIC4IMITATION (PE 2315/11-1). 1Department of Computer Sci-
ence, Technische Universitat Darmstadt, Germany; 2German Research
Center for AI (DFKI); 3Hessian.AI; 4Centre for Cognitive Science;
5armin.biess@gmail.com. Corresponding author: An T. Le, an@robot-
learning.de

structurally probes a local neighborhood around each of
them, which effectively exhibits a trust region, where it
“transports” local waypoints towards low-cost areas given
the local cost approximated by the probing mechanism. Our
method is simple, and neither requires gradients of cost func-
tions nor sampling from proposal distributions. Crucially,
the planning-as-inference perspective [10], [8] allows us to
impose constraints related to transition dynamics as planning
costs, additionally imposing smoothness through a GP prior.
Delegating complex constraints to the planning objective
allows us to locally resolve trajectory update as an OT
problem at each iteration, updating the trajectory waypoints
towards the local optima, thus effectively optimizing for
complex cost functions formulated in joint and task space.
Our contribution is twofold. (i) We propose the Sinkhorn
Step - an efficient zero-order update rule for optimizing a
batch of parameters, formulated as an entropic-regularized
OT problem. (ii) We, then, apply the Sinkhorn Step to motion
planning, resulting in a novel trajectory optimization method
that optimizes a batch of trajectories by efficiently solving a
sequence of linear programs. It treats every waypoint across
trajectories equally, enabling fast batch updates of multiple
trajectories-waypoints over multiple goals within a single OT
instance while retaining smoothness due to integrating the
GP prior as cost function.

II. PRELIMINARIES

Entropic-regularized optimal transport. We briefly
introduce discrete OT. For a thorough introduction, we refer
to [11], [12], [13].
Notation. Throughout the paper, we consider the
optimization on a d-dimensional Euclidean space Rd,
representing the parameter space (e.g., a system state
space). 1d is the vector of ones in Rd. The scalar product
for vectors and matrices is x, y ∈ Rd, ⟨x, y⟩ =

∑d
i=1 xiyi;

and A,B ∈ Rd×d, ⟨A,B⟩ =
∑d

i,j=1 AijBij , respectively.
∥·∥ is the l2-norm, and ∥·∥M denotes the Mahalanobis
norm w.r.t. some positive definite matrix M ≻ 0. For
two histograms n ∈ Σn and m ∈ Σm in the simplex
Σd := {x ∈ Rd

+ : x⊺1d = 1}, we define the set of
n × m matrices U(n,m) := {W ∈ Rn×m

+ | W1m =
n,W ⊺1n = m} containing doubly stochastic n × m
matrices with row and column sums n and m respectively.
Correspondingly, the entropy for A ∈ U(n,m) is defined
as H(A) = −

∑n,m
i,j=1 aij log aij .

Let C ∈ Rn×m
+ be the positive cost matrix,

the OT between n and m given cost C is
OT(n,m) := minW∈U(n,m)⟨W ,C⟩. Traditionally,
OT does not scale well with high dimensions. To address
this, [14] proposes to regularize its objective with an entropy



Sinkhorn step: 0 Sinkhorn step: 10 Sinkhorn step: 20 Sinkhorn step: 40 
Fig. 1: Example of Motion Planning via Optimal Transport (MPOT) in planar navigation scenario with three goals. For each goal, we sample five initial
trajectories from a Gaussian Process (GP) prior. We illustrate four snapshots of our proposed Sinkhorn Step that updates a batch of waypoints from multiple
trajectories over multiple goals. For this example, the total planning time was 0.12s. More demos can be found on https://sites.google.com/
view/sinkhorn-step/

term, resulting in the entropic-regularized OT
OTλ(n,m) := min

W∈U(n,m)
⟨W ,C⟩ − λH(W ). (1)

Solving (1) with Sinkhorn-Knopp [14] has a complexity of
Õ(n2/ϵ3) [15], where ϵ is the approximation error w.r.t. the
original OT. Higher λ enables a faster but “blurry” solution,
and vice versa.

Trajectory optimization. Given a parameterized trajec-
tory by a discrete set of support states and control inputs
τ = [x0,u0, ...,xT−1,uT−1,xT ]

⊺, trajectory optimization
aims to find the optimal trajectory τ ∗, which minimizes
an objective function c(τ ), with x0 being the start state.
Standard motion planning costs, such as goal cost cg defined
as the distance to a desired goal-state xg , obstacle avoidance
cost cobs, and smoothness cost csm can be included in the
objective. Hence, trajectory optimization can be expressed as
the sum of those costs while obeying the dynamics constraint

τ ∗ =argmin
τ

[cobs(τ ) + cg(τ ,xg) + csm(τ )] (2)

s.t. ẋ = f(x,u) and τ (0) = x0.

For many manipulation tasks with high-degrees of freedom
(DoF) robots, this optimization problem is typically highly
nonlinear due to many complex objectives and constraints.

III. SINKHORN STEP

To address the problem of batch-optimizing multiple tra-
jectories in a gradient-free setting, we propose Sinkhorn
Step - a parallelizable zero-order update rule for a batch of
optimization variables. Our method draws inspiration from
the free-support barycenter problem [16], where the mean
support of a set of empirical measures is optimized w.r.t. the
OT cost.

We introduce the Sinkhorn Step, consisting of two com-
ponents: a polytope structure defining the unbiased search-
direction bases, and a weighting distribution for evaluating
the search directions. Particularly, the weighting distribution
has row-column unit constraints and must be efficient to
compute. Following the motivation of [16], the entropic-
regularized OT fits nicely into the second component, pro-
viding a solution for the weighting distribution as an OT
plan, which is solved extremely fast, and its solution is
unique [14].

Sinkhorn Step relates to directional-direct search meth-
ods [17], [18], that typically evaluate the objective func-

tion over a (typically fixed) search-direction-set D ensur-
ing descent with a sufficiently small stepsize. The search-
direction-set is typically a vector-set requiring to be a
positive spanning set [19], i.e., its conic hull is Rd =
{
∑

i widi, di ∈ D, wi ≥ 0}, ensuring that every point (in-
cluding the extrema) in Rd is reachable by a sequence of
positive steps from any initial point.

Regular Polytope Search-Directions. Consider a (d−1)-
unit hypersphere Sd−1 = {x ∈ Rd : ∥x∥ = 1} with the
center at zero. Let us denote the regular polytope family P =
{simplex, orthoplex, hypercube}. Consider a d-dimensional
polytope P ∈ P with m vertices, the search-direction set DP

is constructed from the vertex set of the regular polytope P
inscribing Sd−1

DP = {di | ∥di∥ = 1}mi=1.

The d-dimensional regular polytope family P has all of
its dihedral angles equal and, hence, is an unbiased sparse
approximation of the circumscribed (d − 1)-sphere, i.e.,∑

i di = 0, ∥di∥ = 1∀i. There also exist other regular
polytope families. However, the regular polytope types in
P exist in every dimension (cf. [20]).

Batch Update Rule. At an iteration k, given the current
optimizing points Xk and their matrix form Xk ∈ Rn×d, we
first construct the direction set from a chosen polytope P ,
and denote the direction set DP ∈ Rm×d in matrix form.
Following [16], let us define the prior histograms reflecting
the importance of optimizing points n ∈ Σn and the search
directions m ∈ Σm, then the constraint space U(n,m)
of OT is defined. With these settings, we define Sinkhorn
Step. The batch update rule is the barycentric projection [12]
that optimizes the free-support barycenter of the optimizing
points and the batch polytope vertices

Xk+1 = Xk + Sk, Sk = αkdiag(n)−1W ∗
λD

P

s.t. W ∗
λ = argmin

W∈U(n,m)

⟨W ,C⟩ − λH(W ) (3)

with αk > 0 as the stepsize, C ∈ Rn×m, Ci,j = f(xi +
αkdj), xi ∈ Xk,dj ∈ DP is the local objective matrix
evaluated at the linear-translated polytope vertices. Observe
that the matrix diag(n)−1W ∗

λ has n row vectors in the sim-
plex Σm. The suggested update transports X as a barycenter
shaping by the polytopes with weights defined by the optimal
solution W ∗

λ .

https://sites.google.com/view/sinkhorn-step/
https://sites.google.com/view/sinkhorn-step/


IV. MOTION PLANNING VIA OPTIMAL TRANSPORT

Here, we introduce MPOT - a method that applies
Sinkhorn Step to solve the batch trajectory optimization
problem, where we realize each waypoint in a set of tra-
jectories as an optimizing point. Due to Sinkhorn Step’s
properties, MPOT does not require gradients propagated
from cost functions over long kinematics chains. It optimizes
trajectories by solving a sequence of strictly convex linear
programs with a maximum entropy objective (cf. Eq. (3)),
effectively transporting the waypoints according to the local
polytope structure. To promote smoothness and dynamically
feasible trajectories, we incorporate the GP prior as a cost by
formulating the motion planning problem with a KL diver-
gence between a proposal and a target posterior distribution.1

A. Trajectory optimization objective

We motivate the trajectory optimization problem from
the planning-as-inference perspective [10], [8]. This per-
spective allows us to naturally incorporate the system dy-
namics as a GP prior to the planning objective. Assum-
ing a first-order trajectory optimization, the control se-
quence can be defined as a time-derivative of the states
U = [ẋ0, ..., ẋT ]. With the first-order optimizing trajectory
τ = (X,U) = {xt ∈ Rd : xt = [xt, ẋt]}Tt=1, through a se-
ries of mathematical derivations, the trajectory optimization
can be formulated as

τ ∗ = argmin
τ

T−1∑
t=0

ηC(xt)︸ ︷︷ ︸
state cost

+
1

2
∥Φt,t+1xt − xt+1∥2Q−1

t,t+1︸ ︷︷ ︸
transition model cost

,

(4)
with Φt,t+1 the state transition matrix, and Qt,t+1 the
covariance between time steps t and t + 1 originated from
the GP prior, which are specific to a considered system. This
objective is a batch optimization problem by realizing the
trajectory as a batch of optimizing points τ ∈ RT×d. This
realization also extends naturally to a batch of trajectories
described in the next section.

B. Practical considerations for applying Sinkhorn Step

For the practical implementation, we make the following
modifications to the Sinkhorn Step formulation for optimiz-
ing a trajectory τ .

First, we define a set of probe points (including the
polytope vertices) for denser function evaluations. We pop-
ulate equidistantly probe points along the directions in DP

outwards till reaching a probe radius βk ≥ αk, resulting in
the probe set HP with its matrix form HP ∈ Rm×h×d

with h probe points for each direction. Second, due to
the deterministic behavior of Sinkhorn Step, sometimes the
optimization process empirically converges to undesirable
local minima. We add stochasticity in the search directions
by applying a random d-dimensional rotation R ∈ SO(d) to
the polytopes to promote local exploration. Third, to further
decouple the correlations between the waypoints updates,

1Full derivations can be found at https://www.ias.
informatik.tu-darmstadt.de/uploads/Team/AnThaiLe/
mpot_preprint.pdf

Algorithm 1: Motion Planning via Optimal Transport

T 0 ∼ N (µ0,K0) and n = 1N/N, m = 1m/m
while termination criteria not met do

// Epsilon Annealing for Sinkhorn Step
(Optional) α← (1− ϵ)α, β ← (1− ϵ)β.
Construct randomly rotated DP , HP .
Compute the cost matrix C as in Eq. (5).
Perform Sinkhorn Step T ← T + S.

end
we sample the rotation matrices in batch and then construct
the direction sets from the rotated polytopes, resulting in
the tensor DP ∈ RT×m×d. Similarly, the probe set is also
constructed in batch for every waypoint HP ∈ RT×m×h×d.
The Sinkhorn Step is computed with the einsum operation
along the second dimension of DP .

With these considerations, the element of the tth-waypoint
and ith-search directions in the OT cost matrix C ∈ RT×m is
the mean of probe point evaluation along a search direction
(i.e., cost-to-go)

Ct,i =
1

h

h∑
j=1

ηC(xt + yt,i,j)

+
1

2
∥Φt,t+1xt − (xt+1 + yt+1,i,j)∥2Q−1

t,t+1

(5)

with the probe point yt,i,j ∈ HP . Then, we ensure
the cost matrix positiveness for numerical stability by
subtracting its minimum value. With uniform prior his-
tograms n = 1T /T, m = 1m/m, the problem W ∗ =
argminOTλ(n,m) is instantiated and solved with the log-
domain stabilization version [21], [22] of the Sinkhorn
algorithm.

Most trajectory optimization methods arrive at approxi-
mately locally optimal solutions. Hence, the need for mul-
tiple parallelized trajectory optimizations is evident. We
leverage our Sinkhorn Step to optimize multiple trajectories
in parallel, efficiently providing many feasible solutions for
multi-modal planning problems. Specifically, we implement
MPOT using PyTorch [23] for vectorization across different
motion plans, randomly rotated polytope constructions, and
probe set cost evaluations. For a problem instance, we
consider Np trajectories of horizon T , and thus, the trajectory
set T = {τ1, . . . , τNp

} is the parameter to be optimized.
We can flatten the trajectories into the set of N = Np × T
waypoints. Now, the tensors of search directions and probe
set DP ∈ RN×m×d, HP ∈ RN×m×h×d can be efficiently
constructed and evaluated by the state cost function C(·),
provided that the cost function is implemented with batch-
wise processing (e.g., neural network models in PyTorch).
Similarly, the model cost term in Eq. (4) can also be
evaluated in batch by vectorizing the computation of the
second term in Eq. (5).

To initialize the trajectories, we randomly sample from
the discretized GP prior T 0 ∼ N (µ0,K0), where µ0 is
a constant-velocity, straight-line trajectory from start-to-goal
state, and K0 ∈ R(T×d)×(T×d) is a large GP covariance
matrix for exploratory initialization [24], [25]. For execution,
we select the lowest cost trajectory τ ∗ ∈ T ∗. For collecting
a trajectory dataset, all trajectories T ∗ are stored along with
contextual data, such as the occupancy map, goal state, etc.

https://www.ias.informatik.tu-darmstadt.de/uploads/Team/AnThaiLe/mpot_preprint.pdf
https://www.ias.informatik.tu-darmstadt.de/uploads/Team/AnThaiLe/mpot_preprint.pdf
https://www.ias.informatik.tu-darmstadt.de/uploads/Team/AnThaiLe/mpot_preprint.pdf


TABLE I: Trajectory generation benchmarks in densely cluttered environments. RRT* and I-RRT* success and collision-free rates depict the maximum
achievable values for all planners. For the point-mass environment, we populate 15 square and circle obstacles randomly, with each obstacle having a
radius or width of 2 (cf. Fig. 1). We generate 100 environment-seeds, and for each environment-seed, we randomly sample 10 collision-free pairs of
start and goal states, resulting in 1000 planning tasks. We plan each task in parallel 100 trajectories of horizon 64. For the Panda environment, we also
generate 100 environment-seeds. Each environment-seed contains randomly sampled 15 obstacle-spheres having a radius of 10cm. Then, we sample 5
random collision-free target configurations (including self-collision free), resulting in 500 planning tasks, and plan in parallel 10 trajectories containing 64
timesteps. The metrics are T[s] - planning time until convergence; SUC[%] - success rate over tasks in an environment-seed, where success means there
is at least one successful trajectory found each task; GOOD[%] - success percentage of total parallelized plans in each environment-seed, reflecting the
parallelization quality; S - smoothness measured by the norm of the finite difference of trajectory velocities, averaged over all trajectories and horizons;
PL - path length.

Point-mass Experiment Panda Experiment

T[s] SUC[%] GOOD[%] S PL T[s] SUC[%] GOOD[%] S PL

RRT* 43.2 ± 15.2 100 ± 0. 100 ± 0. 0.43 ± 0.12 23.8 ± 4.6 186.9 ± 184.2 100 ± 0. 73.8 ± 26.7 0.17 ± 0.05 7.8 ± 2.9

I-RRT* 43.6 ± 13.8 100 ± 0. 100 ± 0. 0.43 ± 0.11 23.9 ± 4.8 184.2 ± 166.0 100 ± 0. 74.6 ± 29.0 0.17 ± 0.05 7.6 ± 3.2

STOMP 2.2 ± 0.1 31.4 ± 13.9 10.5 ± 25.7 0.01 ± 0.01 17.0 ± 1.4 4.3 ± 0.1 50.8 ± 28.3 35.3 ± 42.0 0.01 ± 0.0 4.5 ± 0.8
SGPMP 6.5 ± 0.9 98.6 ± 4.5 74.9 ± 28.9 0.03 ± 0.01 18.3 ± 2.0 5.0 ± 0.2 67.8 ± 23.5 58.1 ± 45.8 0.01 ± 0.0 4.5 ± 0.9

CHOMP 0.5 ± 0.1 70.9 ± 16.7 38.6 ± 40.7 0.03 ± 0.0 17.7 ± 1.7 3.1 ± 0.3 63.0 ± 25.5 51.6 ± 46.2 0.02 ± 0.0 4.6 ± 0.8
GPMP2 2.8 ± 0.1 98.3 ± 4.9 74.9 ± 32.1 0.07 ± 0.05 20.3 ± 3.1 3.3 ± 0.2 66.0 ± 25.2 53.2 ± 42.3 0.01 ± 0.0 4.9 ± 0.8

MPOT 0.4 ± 0.0 99.2 ± 3.1 73.6 ± 26.7 0.06 ± 0.03 19.3 ± 2.3 0.8 ± 0.1 71.6 ± 23.2 60.2 ± 44.4 0.01 ± 0.01 4.6 ± 0.9

V. EXPERIMENTS

First, we benchmark our method against strong motion
planning baselines in a densely cluttered 2D-point-mass
and a 7-DoF robot arm (Panda) environment. Then, we
demonstrate the efficacy of our method on high-dimensional
mobile manipulation tasks with TIAGo++.

Experimental setup. In all experiments, all planners
optimize first-order trajectories with positions and velocities
in configuration space. The motion planning costs are the
SE(3) goal, obstacle, self-collision, and joint-limit costs.
The state dimension (configuration position and velocity) is
d = 4 for the point-mass experiment, d = 14 for the Panda
experiment, and d = 36 (3 dimensions for the base, 1 for the
torso, and 14 for the two arms) for the mobile manipulation
experiment. As for polytope settings, we choose a 4-cube
for the point-mass case, a 14-othorplex for Panda, and a 36-
othorplex for TIAGo++.

Baselines. We compare MPOT to popular trajectory plan-
ners, which are also straightforward to implement and vector-
ize in PyTorch for a fair comparison (even if the vectorization
is not mentioned in their original papers). The chosen base-
lines are gradient-based planners: CHOMP [5] and GPMP2
(no interpolation) [6]; sampling-based planners: RRT* [3],
[4] and its informed version I-RRT* [26], STOMP [7], and
the recent work SGPMP [8]. We implemented all baselines
in PyTorch except for RRT* and I-RRT*, which we plan with
a loop.

Results. In point-mass and Panda environments, MPOT
achieves better planning time, success rate, and paralleliza-
tion quality, some with large margins, especially for the
Panda experiments, while retaining smoothness due to the GP
cost. We observe that MPOT performs particularly well in
narrow passages, since each waypoint across all trajectories
is updated independently due to Sinkhorn Step’s property.

The TIAGo++ task requires designing many non-convex
costs, e.g., SDFs for gradient-based planners. Moreover,
the task space is larger while the SE(3) goal is locally
small (i.e., a grasp pose and the whole-body IK solution is
not always good); hence, it typically requires long-horizon
configuration trajectories and a small update step size. These
factors add to the worse performance of the baselines in plan-
ning time (Table II). In contrast, MPOT achieves much better

Fig. 2: TIAGo++ mobile manipulation experiment. The task comprises two
parts: the fetch part and place part; thus, it requires solving two planning
problems. Each plan contains 128 timesteps, and we plan a single trajectory
for each planner due to the high-computational and memory demands. We
generate 20 seeds by randomly spawning the robot in the room, resulting
in 20 tasks.

TABLE II: Mobile fetch & place experiment. TF[s] depicts the planning
time for achieving first successful solution. Due to the sparsity of the
36-othorplex (m = 72) defining the search direction bases in this high-
dimensional case, it becomes hard to balance success rate and smoothness
when tuning MPOT, resulting in lower smoothness than the baselines.

TF[s] SUC[%] S PL

RRT* 1000 ± 0.00 0 - -
I-RRT* 1000 ± 0.00 0 - -

STOMP - 0 - -
SGPMP 27.75 ± 0.29 25 0.010 ± 0.001 6.69 ± 0.38

CHOMP 16.74 ± 0.21 40 0.015 ± 0.001 8.60 ± 0.73
GPMP2 40.11 ± 0.08 40 0.012 ± 0.015 8.63 ± 0.53
MPOT 1.49 ± 0.02 55 0.022 ± 0.003 10.53 ± 0.62

planning times by avoiding the propagation of gradients in
a long computational chain (i.e., gradient propagation over
whole-body kinematics) and by having an efficient update
rule.

VI. CONCLUSIONS

We presented MPOT - a gradient-free and highly-
parallelizable motion planner that optimizes multiple high-
dimensional trajectories over non-convex objectives. In par-
ticular, we proposed the Sinkhorn Step - a zero-order batch
update rule parameterized by a local optimal transport plan
with a nice property of cost-agnostic step bound, effectively
updating waypoints across trajectories independently. We
demonstrated that in practice, our method converges, scales
very well to high-dimensional tasks, and provides practically
smooth plans.



REFERENCES

[1] J.-P. Laumond et al., Robot motion planning and control. Springer,
1998, vol. 229.

[2] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, 1996.

[3] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in IEEE ICRA, 2000.

[4] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846–894, 2011.

[5] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp:
Gradient optimization techniques for efficient motion planning,” in
IEEE ICRA, 2009.

[6] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-
time gaussian process motion planning via probabilistic inference,”
IJRR, 2018.

[7] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
IEEE ICRA, 2011.

[8] J. Urain, A. T. Le, A. Lambert, G. Chalvatzaki, B. Boots, and J. Peters,
“Learning implicit priors for motion optimization,” in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2022.

[9] R. Sinkhorn and P. Knopp, “Concerning nonnegative matrices and
doubly stochastic matrices,” Pacific Journal of Mathematics, vol. 21,
no. 2, pp. 343–348, 1967.

[10] M. Toussaint, “Robot trajectory optimization using approximate infer-
ence,” in Proceedings of the 26th annual international conference on
machine learning, 2009, pp. 1049–1056.

[11] C. Villani, Optimal transport: old and new. Springer, 2009, vol. 338.
[12] G. Peyré, M. Cuturi, et al., “Computational optimal transport: With

applications to data science,” Foundations and Trends® in Machine
Learning, vol. 11, no. 5-6, pp. 355–607, 2019.

[13] A. Figalli and F. Glaudo, An invitation to optimal transport, Wasser-
stein distances, and gradient flows, 2021.

[14] M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal
transport,” Advances in neural information processing systems, vol. 26,
2013.

[15] J. Altschuler, J. Niles-Weed, and P. Rigollet, “Near-linear time ap-
proximation algorithms for optimal transport via sinkhorn iteration,”
Advances in neural information processing systems, vol. 30, 2017.

[16] M. Cuturi and A. Doucet, “Fast computation of wasserstein barycen-
ters,” in International conference on machine learning. PMLR, 2014,
pp. 685–693.

[17] R. Hooke and T. A. Jeeves, ““direct search”solution of numerical and
statistical problems,” Journal of the ACM (JACM), vol. 8, no. 2, pp.
212–229, 1961.

[18] J. Larson, M. Menickelly, and S. M. Wild, “Derivative-free optimiza-
tion methods,” Acta Numerica, vol. 28, pp. 287–404, 2019.

[19] R. G. Regis, “On the properties of positive spanning sets and positive
bases,” Optimization and Engineering, vol. 17, no. 1, pp. 229–262,
2016.

[20] H. S. M. Coxeter, Regular polytopes. Courier Corporation, 1973.
[21] L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard, “Scaling algo-

rithms for unbalanced optimal transport problems,” Mathematics of
Computation, vol. 87, no. 314, pp. 2563–2609, 2018.

[22] B. Schmitzer, “Stabilized sparse scaling algorithms for entropy reg-
ularized transport problems,” SIAM Journal on Scientific Computing,
vol. 41, no. 3, pp. A1443–A1481, 2019.

[23] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” 2019.

[24] J. Peters, K. Mulling, and Y. Altun, “Relative entropy policy search,”
in Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[25] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning. PMLR, 2015, pp. 1889–1897.

[26] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt:
Optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2014, pp. 2997–
3004.


	Introduction
	Preliminaries
	Sinkhorn Step
	Motion Planning via Optimal Transport
	Trajectory optimization objective
	Practical considerations for applying Sinkhorn Step

	Experiments
	Conclusions
	References

