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ABSTRACT

In this paper, we develop a new approach to conformal prediction in which we
aim to output a precise set of promising prediction candidates that is guaranteed
to contain a limited number of incorrect answers. Standard conformal prediction
provides the ability to adapt to model uncertainty by constructing a calibrated
candidate set in place of a single prediction, with guarantees that the set contains
the correct answer with high probability. In order to obey this coverage property,
however, conformal sets can often become inundated with noisy candidates—which
can render them unhelpful in practice. This is particularly relevant to large-scale
settings where the cost (monetary or otherwise) of false positives is substantial,
such as for in-silico screening for drug discovery, where any positively identified
molecular compound is then manufactured and tested. We propose to trade coverage
for precision by enforcing that the presence of incorrect candidates in the predicted
conformal sets (i.e., the total number of false positives) is bounded according to a
user-specified tolerance. Subject to this constraint, our algorithm then optimizes
for a generalized notion of set coverage (i.e., the true positive rate) that allows for
any number of true answers for a given query (including zero). We demonstrate
the effectiveness of this approach across a number of classification tasks in natural
language processing, computer vision, and computational chemistry.

1 INTRODUCTION

For many classification problems, returning a set of plausible responses instead of a single prediction
is a useful way of representing uncertainty (Gammerman and Vovk, 2007; Lei, 2014; Bates et al.,
2020). Aligned with this goal, conformal prediction (Vovk et al., 2005) is an increasingly popular
method for creating confident prediction sets that provably contain the correct answer with high
probability. Unfortunately, these guarantees do not come for free; in order to achieve proper coverage
on difficult tasks, conformal predictors are often unable to rule out an overwhelming number of
candidates—making their prediction sets large and inefficient (Angelopoulos et al., 2021c). This can
make conformal predictors unusable in settings in which the cost of false positives is substantial.

Consider the example of in-silico screening for drug discovery (see Figure 1). In-silico screening uses
computational tools to identify potentially viable molecular compounds for a particular purpose of
interest. For instance, Stokes et al. (2020) recently performed a high-throughput screen of compounds
from the multi-million molecule ZINC15 database (Sterling and Irwin, 2015) using models predictive
of E. coli inhibition in order to find a new antibiotic, and were successful. Clearly, guaranteeing
high hit rates for this task with conformal prediction is an attractive proposition. The catch, however,
is that each returned candidate must be verified experimentally—and too many false positives can
quickly consume the available budget (e.g., of time, funding, or other limited resources). This is
especially relevant when a valid answer—in this case, an effective drug—might not even exist.

In this paper, we are interested in creating confident prediction sets that trade off coverage for
precision in order to provably constrain the total number of false positives (FP). In other words, we
shift the focus of our performance guarantee to be on limiting the number of incorrect answers in our
outputs (e.g., to ≤ k on average), with the understanding that we can potentially fail to recover some
proportion of the true answers—i.e., we may obtain a lower true positive rate (TPR). Concretely,
suppose we have been given n (possibly) multi-label classification examples (Xi, Zi) ∈ X × 2Y ,
i = 1, . . . n as calibration data, that have been drawn exchangeably from some underlying distribution
PXZ . Here we consider the generalized scenario where each observation Xi may have any number
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Figure 1: A demonstration of our proposed approach to trading off standard coverage guarantees
(“Goal A”) for rigorous limits on the total number of false positives included in the output Ck,δ (“Goal
B”). For in-silico screening for drug discovery, limiting false positives is critical when balancing a
budget for experimental validation—even if it means that some true positives may be missed.

of corresponding correct labels (including zero, in the case of having no answer at all). That is, the
response Zi can be any subset of the full label space Y .1 Let Xn+1 ∈ X be a new exchangeable
test example for which we would like to predict Zn+1 ⊆ Y . Our goal is to construct a set predictor
Ck(Xn+1) that maximizes recall with respect to the true Zn+1, but more importantly has an expected
false positive budget that is controlled at a user-defined tolerance level k ∈ R>0, i.e.,

maximize E
[
|Ck(Xn+1) ∩ Zn+1|

max(|Zn+1|, 1)

]
s.t. E

[
|Ck(Xn+1) \ Zn+1|

]
≤ k. (1)

As an additional alternative to bounding the expected number of false positives to k, we also seek a
set predictor Ck,δ that has more direct control of the probability of exceeding k false positives:

maximize E
[
|Ck,δ(Xn+1) ∩ Zn+1|

max(|Zn+1|, 1)

]
s.t. P

(
|Ck,δ(Xn+1) \ Zn+1| ≤ k

)
≥ 1− δ, (2)

where δ ∈ (0, 1) is another user-defined tolerance level. Both constructions define different, but
useful, operating conditions; the first is more straightforward (e.g., for the general practitioner), while
the second offers a finer, two-parameter level of control. Both are well-known concepts in the context
of multiple hypothesis testing—i.e., PFER, the per-family error rate, and k-FWER, the familywise
error rate (Spjøtvoll, 1972; Romano and Wolf, 2007)—though the setting (multi-label classification)
and available tools (conformal prediction) considered here differ substantially (see §2). Note that
both constraints are marginal over the choice of calibration and test data {(Xi, Zi)}n+1

i=1 , however,
enforcing calibration-conditional constraints requires only minor modification (Bates et al., 2020).

In order to achieve the desired levels of false positive control, we present an approach that is based
on set classification, combined with a form of conformal calibration. Specifically, we use a set
nonconformity measure F : X × 2Y → R to score candidate output sets, S ∈ 2Y . We learn this
function from separate multi-label classification training data. Intuitively, a high nonconformity score
should reflect the confidence that the candidate set might contain a high number of false positives, and
vice-versa. To empirically maximize the true positive rate, we then return the largest set among all
candidates that have nonconformity scores below a threshold that we set such that our false positive
constraints are satisfied. Candidate sets are explored greedily with a best-first strategy that adds
top-ranked individual labels to a growing, nested output set S until our nonconformity threshold is
met. This both allows us to find efficient solutions for large label spaces Y , and to leverage prior
theory for calibrating expectations of monotonic losses for set predictors (Angelopoulos et al., 2021b).

Contributions. In summary, our main results are as follows:

• A theoretical reframing of conformal prediction that provides rigorous false positive control;

• A simple and effective strategy for constructing valid output sets with high true positive rates;

• A demonstration of the practical utility of our framework across a range of classification tasks.

1Note that the classification setting typically considered by conformal prediction, where the correct class is
assumed to both exist and be unique, is a special case of this paradigm (i.e., the answer set is always of size one).
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2 RELATED WORK

Uncertainty estimation. In recent years, there has been a growing interest in estimating model
uncertainty. A large body of work focuses on calibrating model-based conditional probabilities,
pθ(ŷn+1|xn+1), such that the accuracy, yn+1 = ŷn+1, is equal to the estimated probability (Niculescu-
Mizil and Caruana, 2005; Kuleshov et al., 2018; Kumar et al., 2019). In theory, these estimates
could be used to create prediction sets with few false positives, but they are not always guaranteed
to be accurate (Guo et al., 2017; Ashukha et al., 2020; Hirschfeld et al., 2020). In a similar vein,
Bayesian formalisms underlie several popular approaches to quantifying predictive uncertainty via
computing the posterior predictive distribution over model parameters (Neal, 1996; Graves, 2011;
Hernández-Lobato and Adams, 2015; Gal and Ghahramani, 2016). However, the quality of these
methods can vary depending on the suitability of the presumed prior and on any approximation error.

Conformal prediction. As introduced in §1, conformal prediction (Vovk et al., 2005) provides a
finite-sample, distribution-free method for obtaining prediction sets C with guarantees on the event
1{Yn+1 ∈ C(Xn+1)}. Most efforts in CP focus on improving the predictive efficiency, E[|C(Xn+1)|],
of the conformal sets (Vovk et al., 2016; Sadinle et al., 2019; Romano et al., 2020; Angelopoulos
et al., 2021c; Fisch et al., 2021; Hoff, 2021). As coverage is guaranteed by design, improving
efficiency will naturally lead to more precise sets with fewer false positives—but not to a specifiable
level. Cauchois et al. (2021) develop a conformal approach to multi-label classification that can
guarantee that the prediction set only contains true labels (i.e., FP = 0), but does not offer fine-grained
control. Most relevant to our work, Bates et al. (2020) gives a flexible framework for controlling the
risk, E[L(Y, T (X))], of a set-valued predictor T with an arbitrary loss function L—as long the loss
respects a monotonic nesting property, S ⊂ S ′ ⇒ L(S) ≥ L(S ′), for any two prediction sets S and
S ′. The calibration strategy we use here for marginal expectations is based on the recent extension in
Angelopoulos et al. (2021b). Concurrent to this work, Angelopoulos et al. (2021a) proposed methods
to rigorously control non-monotonic losses, including the related false discovery rate (FDR), which
normalizes the number of false positives over the size of the prediction set. However, as most of our
target applications have relatively few true positives, FDR control can be somewhat volatile and lead
to many empty predictions (making controlling total false positives a more natural fit for this work).

Multiple testing. Controlling the number of false positives/discoveries over a collection of hypothe-
sis tests is a well-studied problem in statistics (Dunn, 1961; Benjamini and Hochberg, 1995; Lehmann
and Romano, 2005; Romano and Wolf, 2007, etc.). Recently, FDR control has also been studied for
outlier detection in a conformal inference setting (Bates et al., 2021). Most statistical approaches to
false discovery control operate over p-values for each hypothesis test that have specific dependency
structures (e.g., independent or positively dependent), or otherwise use more conservative corrections.
Though similar, our multi-label classification setting is slightly different from standard multiple
testing in that there is (1) an unknown dependency structure between candidate labels for the same
query, but also (2) an extra layer of exchangeability over the n+ 1 queries. Our approach is able to
ignore (1) by leveraging (2) within a conformal calibration framework to obtain desirable guarantees.

Selective classification. Our work also bears some relation to selective classification (El-Yaniv and
Wiener, 2010), where models have the option to abstain from answering. In particular, Geifman
and El-Yaniv (2017) propose a strategy for finding classifiers with specific selective risks (i.e., the
expected accuracy over answered examples). In our setting, this is analogous to controlling false
positives using k ≈ 0. If uncertain, the model would have to “abstain” by outputting an empty set.

3 BACKGROUND

We begin with a review of conformal prediction (see Shafer and Vovk, 2008). Here, and in the rest of
the paper, upper-case letters (X) denote random variables; lower-case letters (x) denote constants,
and script letters (X ) denote sets, unless otherwise specified. Proofs are deferred to the appendix.

Given a new example x, for every candidate label y ∈ Y , single label conformal prediction (where
yn+1 is a scalar) either accepts or rejects the null hypothesis that the pairing (x, y) is correct. The test
statistic for this test is a nonconformity measure,M ((x, y),D), whereD is a dataset of exchangeable,
labeled examples. Informally, a lower value ofM reflects that point (x, y) “conforms” to D, whereas
a higher value of M reflects that (x, y) is atypical relative to D. A practical choice for M is a
model-based loss, e.g., − log pθ(y|x), where θ is a model fit to D. For conformal prediction to
work, is important thatM preserves the exchangeability of its inputs: i.e.,M should be symmetric
with respect to permutations. In order to avoid retrainingM every time a new candidate label y is
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considered, “split” conformal prediction (Papadopoulos, 2008) uses a proper training set Dtrain to
learn a fixedM. This preserves exchangeability of the calibration and test points without further
modification—and is a popular and computationally efficient strategy (which we follow in this work).

To construct a prediction set for a new test point xn+1, the conformal classifier outputs all y for which
the null hypothesis (that pairing (x, y) is correct) is not rejected. This is achieved by comparing the
scores of the test candidates to the scores computed over the first n calibration examples.
Theorem 3.1 (Split CP, Vovk et al. (2005); Papadopoulos (2008)). Assume that examples (Xi, Yi) ∈
X ×Y , i = 1, . . . , n+1 are drawn exchangeably from a distribution PXY . For a fixed nonconformity
measure M, let random variable Vi = M(Xi, Yi) be the nonconformity score of (Xi, Yi). For
ε ∈ (0, 1), define the conformal set (based on the first n examples) at x ∈ X as

Cε(x) :=
{
y ∈ Y : M(x, y) ≤ Quantile(1− ε; V1:n ∪ {∞})

}
. (3)

Then Cε(Xn+1) satisfies P(Yn+1 ∈ Cε(Xn+1)) ≥ 1− ε.
Remark 3.2. Cauchois et al. (2021) recently extended conformal prediction to the multi-label case to
obtain guarantees of the form P(Cinnerε (Xn+1) ⊆ Zn+1 ⊆ Couterε (Xn+1)) ≥ 1− ε. Their approach
constructs bounding sets using a modified version of the single label algorithm (i.e., Eq. (3)).

The motivation for our work is quickly evident from Eq. (3): if we are unable to reject most candidates
y ∈ Y based on their nonconformity scoresM(xn+1, y), then Cε(x) can contain many false positives.

4 CONFORMAL PREDICTION WITH FALSE POSITIVE CONTROL

We now introduce our strategy for trading off coverage for precision by imposing constraints on
the number of false positives that are contained in our output sets. To briefly remind the reader of
our setting, we assume that we have been given n exchangeable multi-label classification examples,
(Xi, Zi) ∈ X × 2Y , i = 1, . . . n as calibration data, that are drawn from a distribution PXZ . The
response Zi is treated as a generalized set of correct labels for input Xi, and is a subset of Y , where Y
is finite. For a prediction C(xn+1) ⊆ Y evaluated at a point xn+1 ∈ X with true label set zn+1 ⊆ Y ,
we define the true positive proportion (TPP) as the ratio of correct labels that are recovered:

TPP(zn+1, C(xn+1)) :=
|C(xn+1) ∩ zn+1|
max(|zn+1|, 1)

(Note that TPR := E[TPP]), (4)

and the number of false positives (FP) as the total count of incorrect labels in C(xn+1):

FP(zn+1, C(xn+1)) := |C(xn+1) \ zn+1|. (5)

Our goal, as stated in §1, is to maximize the expected TPP (in standard classification, this would
equate to accuracy; or power in statistics), while constraining the FP in either of two ways:
Definition 4.1 (k-FP validity). A conformal classifier Ck evaluated at test point (Xn+1, Zn+1) is
k-FP valid if the expectation of its FP satisfies E[FP(Zn+1, Ck(Xn+1))] ≤ k.
Definition 4.2 ((k, δ)-FP validity). A conformal classifier Ck,δ evaluated at test point (Xn+1, Zn+1)
is (k, δ)-FP valid if the CDF of its FP satisfies P(FP(Zn+1, Ck,δ(Xn+1)) ≤ k) ≥ 1− δ.

4.1 AN ORACLE SET PREDICTOR

To motivate our approach, imagine an oracle with access to PZ|X , the conditional distribution of the
multi-label set Z given the input X . Given this information, for any input x ∈ X and candidate set
S ∈ 2Y , such an oracle would be able to exactly calculate both the expectation and the conditional
distribution of the number of false (and true) positives in S given x. In order to maximize the TPR
while meeting k-FP and (k, δ)-FP validity, it could then yield the following set predictions:

Coraclek (x) := arg max
S⊆2Y

{
E[TPP(S) | x] : E[FP(Z,S) | x] ≤ k

}
, and (6)

Coraclek,δ (x) := arg max
S⊆2Y

{
E[TPP(S) | x] : P(FP(Z,S) | x] > k) < δ

}
, (7)

where ties in the arg max are broken by set size (smaller is better). This oracle has the advantage of
not only being marginally valid, but also being conditionally valid given the test input Xn+1 = xn+1.

4



Under review as a conference paper at ICLR 2022

Algorithm 1 Conformal prediction with false positive control (in expectation case, see Eq. (1)).
Definitions: xn+1 is the test point, Dtrain is a training set, Dcal is an exchangeable calibration set, k is
the FP tolerance, and B is a parameter for considering only the top individually ranked candidates y ∈ Y .
MultilabelModel is an abstract model that provides individual label predictions. SetModel is an abstract
FP-prediction model operating over sets (where in this work we propose to use DeepSets (Zaheer et al., 2017)).
1: function TRAIN(Dtrain, k)
2: D(1)

train,D
(2)
train← SPLIT(Dtrain)

3: # Use part of the training set to learn individual label likelihood pθ(yc ∈ Z | x).
4: pθ(yc ∈ Z | x)← TRAIN(MultilabelModel,D(1)

train)
5: # Use the other (smaller) part to learn the FP-predictive set function F(x,S).
6: F(x,S)← TRAIN(SetModel,D(2)

train)
7: # Manually define F to be monotonic for nested sets S1 ⊆ . . . ⊆ Sm.
8: F̃(x,Sm)←max{F(x,S1), . . . ,F(x,Sm)}
9: return pθ , F̃

10: function CALIBRATE(pθ , F̃ , Dcal, k, B)
11: Tcal = {}
12: for (xi, zi) ∈ Dcal do
13: # Rank candidates y ∈ Y by top pθ(yc ∈ Zi | xi), up to bound B.
14: {Si,1, . . . ,Si,B} ← {SORT(Y, pθ(yc ∈ Zi | xi))1:j : j ∈ {1, . . . , B}}
15: # Implicitly define MFP based on this ordering.
16: MFP(xi, zi)← INIT(xi, zi, F̃ , {S1, . . . ,SB})
17: Tcal← Tcal ∪ {MFP(xi, zi)}
18: tk ← FIND_THRESHOLD(Tcal, B, k) # Using Eq. (10).
19: return tk
20: function PREDICT(xn+1, pθ , F̃ , tk, B)
21: # Rank new candidates y ∈ Y by top pθ(yc ∈ Zn+1 | xn+1), up to bound B (as in line 14).
22: {Sn+1,1, . . . ,Sn+1,B} ← {SORT(Y, pθ(yc ∈ Zn+1 | xn+1))1:j : j ∈ {1, . . . , B}}
23: # Return largest prediction set that passes threshold tk.
24: Ck(xn+1)← argmaxS∈{Sn+1,1...,Sn+1,B}{|S| : F̃(xn+1, S) ≤ tk}
25: return Ck(xn+1)

4.2 APPROXIMATING THE ORACLE USING SET FUNCTIONS

Of course, computing such an oracle is not practical, as PZ|X is not known. Instead, let F be a set
function F : X × 2Y → R that generates a score for the candidate set S given xn+1. Importantly, F
can be any function (as we will later show), but to best replicate the oracle’s behavior for k-FP and
(k, δ)-FP valid predictions, F should be a good estimator of the distribution of false positives in S.

We now describe a simple approach to modeling F using DeepSets (Zaheer et al., 2017). DeepSets
is a popular method which is known to be a universal approximator for continuous set functions.
Let {φ(x, y1), . . . , φ(x, ys)} featurize a candidate set S ⊆ Y , where φ(x, yc) ∈ Rd is a function of
(x, yc), for yc ∈ S . In practice, we find that taking φ(x, yc) to be a (fixed) estimate of pθ(yc ∈ Z | x),
the marginal likelihood of yc being a correct label, performs well and is simple to implement. These
(uncalibrated) prediction scores can be provided by any backbone model. For example, in our in-silico
screening task, we define φ using a directed MPNN (Yang et al., 2019) that independently classifies
molecules as active or inactive for the target property. Given φ, the DeepSets model is defined as

Ψ(x,S) := softmax
(

dec
( ∑
yc∈S

enc(φ(x, yc); θ1)); θ2

))
, (8)

where enc(·) and dec(·) are two neural encoder/decoder models parameterized by θ1 and θ2, respec-
tively, and softmax(·) is taken over the total possible number of false positives, {0, . . . , |Y|}. Ψ is
trained to predict the number of false positives in S via cross entropy, using labeled sets sampled
from held-out training data. We then compute Fk and Fk,δ (for either k-FP or (k, δ)-FP validity) as

Fk(x,S) :=

|S|∑
η=0

η ·Ψ(x,S)η and Fk,δ(x,S) := 1−
min(k,|S|)∑

η=0

Ψ(x,S)η, (9)

where Ψ(x,S)η denotes the η-th index of the softmax (i.e., the estimated probability that FP = η). In
the next section we will refer only to F , with the understanding it differs based on the validity goal.
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4.3 IDENTIFYING VALID CANDIDATE SETS

Although our set predictor F is trained to model either the expected FP or its CDF, it is not nec-
essarily accurate. If F were simply substituted into Eq. (6) or Eq. (7), it may not produce valid
set predictions. To remedy this, we carefully calibrate a threshold for accepting candidate sets
based on F . First, we greedily identify a sequence of nested candidate sets, S1 ⊂ S2 ⊂ . . . ⊂ Y ,
by ranking individual labels yc ∈ Y by their estimated likelihoods of being true positives, i.e.,
pθ(yc ∈ Z | x), and include them one by one. Next, each of these candidate sets is given a score
by F , which we treat as a “nonconformity score.” We manually enforce that the scores produce a
ranking consistent with their size: for set Sj we compute its adjusted nonconformity score F̃(x,Sj)
as F̃(x,Sj) := max{F(x,S1), . . . ,F(x,Sj)}. For efficiency (see Remark 4.4), we only take the
top B ≤ |Y| sets (although this doesn’t come for free: a smaller B may result in fewer true positives).

Let MFP(x, z, t) := max
{

FP(z,Sj) : F̃(x,Sj) ≤ t
}

denote the maximum number of false posi-
tives over all nested sets Sj for an input x that have nonconformity scores less than t. If this thresh-
olded set is empty, then the MFP is defined to be 0. Since the sets are ordered by size, this quantity is
guaranteed to be monotonically non-decreasing in t, i.e., t ≤ t′ =⇒ MFP(x, z, t) ≤ MFP(x, z, t′).
Using this property, we can calibrate t to create a set filter with controlled MFP, as formalized next:

Theorem 4.3 (FP-CP). Assume that examples (Xi, Zi) ∈ X × 2Y , i = 1, . . . , n + 1 are drawn
exchangeably from a distribution PXY . For each example i, let Si,j , j = 1, . . . , B (where B ≤ |Y|
is a finite hyper-parameter) be nested sets with non-decreasing, lower-bounded nonconformity scores
F̃(Xi,Si,j). For k ∈ R>0 and δ ∈ (0, 1) define the random variables Tk and Tk,δ as

Tk := sup
{
t ∈ R :

1

n+ 1

(
B +

n∑
i=1

MFP(Xi, Zi, t)
)
≤ k

}
and (10)

Tk,δ := sup
{
t ∈ R :

1

n+ 1

n∑
i=1

1{MFP(Xi, Zi, t) ≤ k} ≥ 1− δ
}
. (11)

Then for any j ∈ {1, . . . , B}, we have that E[FP(Zn+1,Sn+1,j) | F̃(Xi,Sn+1,j) ≤ Tk] ≤ k, and
P(FP(Zn+1,Sn+1,j) ≤ k | F̃(Xi,Sn+1,j) ≤ Tk,δ) ≥ 1− δ.

The proof, given in Appendix A, uses results from marginal RCPS (Angelopoulos et al., 2021b).

Remark 4.4. The hyper-parameter B plays an important role. Tk may be very conservative if
B = |Y| and |Y| is very large, to the point where Tk = −∞ always if |Y| > k ∗ (n+ 1). It can be
beneficial to truncate the considered label space Y for an example xi to only the top B � k ∗ (n+ 1)
individual candidates, {y1, . . . , yB} ∈ YB . For example, for text generation tasks (like machine
translation), the label-space Y is infinite, but we can instead restrict our predictions to a subset of the
top B beam search candidates (where B can still be large to a reasonable degree).

Remark 4.5. Note that no constraints are put on the underlying F̃ in Theorem 4.3; it is model-
agnostic, and need not even be a DeepSets architecture of the form of Eq. (8). If, however, F̃ is a
good estimator of FP(Z,S) | X , then Tk and Tk,δ are likely to identify sets that are approximately
valid conditional on Xn+1, which we show empirically for our choice of DeepSets models in §6.

4.4 SELECTING THE FINAL OUTPUT SET

The main result of Theorem 4.3 is that, using the calibrated nonconformity threshold Tk or Tk,δ = t∗,
we can construct a collection of sets that are simultaneously valid. In other words, we are free to
select any set in the filtered set of candidates {Sn+1,j : F̃(x,Sn+1,j) ≤ t∗} as a valid output. As a
greedy, but simple and robust, approach we simply take the largest set in our filtered set of candidates
as our final output. That is, for an input x ∈ X and calibrated threshold t∗ ∈ R

C◦ (x, t∗) := arg max
S∈{S1...,SB}

{
|S| : F̃(x,S) ≤ t∗

}
(12)

where C◦ is either Ck or Ck,δ (i.e., they are constructed the same way, but for different thresholds t∗),
and where we define arg max to return ∅ if the set {S ∈ {S1, . . . ,SB} : F̃(x,S) ≤ t∗} is empty.

Proposition 4.6 (Greedy FP-CP). As defined in Eq. (12), the set Ck(Xn+1, Tk) is k-FP valid, and the
set Ck,δ(Xn+1, Tk,δ) is (k, δ)-FP valid. Furthermore, among sets Sn+1,j ∈ {Sn+1,1, . . . ,Sn+1,|Y|}
that have nonconformity scores ≤ T◦ = Tk or Tk,δ , the set C◦(Xn+1, T◦) maximizes the TPR.
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5 EXPERIMENTAL SETUP

In this section, we briefly outline our evaluation tasks and associated models. We also describe our
evaluation and baselines. For all experiments, we set B = 100 (recall Remark 4.4), which caps the
number of considered labels per example to the top 100. Appendix C contains additional details.

5.1 TASKS

In-silico screening for drug discovery. As introduced in §1, the goal of in-silico screening is to
identify potentially effective drugs to manufacture and test. We use the ChEMBL database (Mayr et al.,
2018) to screen molecules for combinatorial constraint satisfaction, where given a constraint such as
“has property A but not property B,” we want to identify the subset of molecules from a given set of
candidates that have the desired attributes. We partition the dataset both by molecules and property
combinations, so that at test time the model must make predictions on combinations it has never been
tested on before, over a pool of molecules that it has never seen before. Scores for individual candidate
molecules are obtained via combining independent property assignment probabilities predicted by an
ensemble of directed MPNNs (Yang et al., 2019) using a naive independence assumption.

Object detection. The goal of object detection is to place bounding boxes around all objects of a
certain type that are present in an image (of which there may be few, many, or none). We use the
MS-COCO dataset (Lin et al., 2014), a large scale object detection dataset with images of complex
everyday scenes containing 80 object categories (such as person, bicycle, dog, car, etc). We extract
typed bounding box candidates (i.e., tuples of both location and category) using an EfficientDet
model (Tan et al., 2020) with non-maximum suppression. True positives are defined as boxes that
have an intersection over union (IoU) > 0.5 with a gold annotation of the same type.

Entity extraction. In entity extraction, we are interested in identifying all named entities that appear
in a tokenized sentence x of length l, x = {w1, . . . , wl}. A named entity is a contiguous span
{wstart, . . . , wend} ⊆ x of the input sentence that refers to a real-world object (such as a person,
location, organization, or product) that can be denoted with a proper name. We report results on the
CoNLL NER dataset (Tjong Kim Sang and De Meulder, 2003), where we use the PURE span-based
entity extraction model of Zhong and Chen (2021) to predict scores for all O(l2) candidate spans.
We consider exact span predictions of the correct category to be true positives, and all others to be
false positives. Not all sentences are guaranteed to have entities (in fact, many do not contain any).

5.2 EVALUATION

We use a proper training, validation, and test set for each task. We use the training set to learn all
models, i.e., pθ(yc ∈ Z | x) and F .2 We do model selection on the validation set, and report final
numbers as the average over 1000 random trials on the test set, where in each trial we partition the data
into 80% calibration (x1:n) and 20% prediction points (xn+1). To compare aggregate performance
across tolerance levels, we plot each metric as a function of k (up to k = B), and compute the area
under the curve (AUC). Shaded regions show the 16-84th percentiles across trials. In addition to TPR
and FP, inspired by Angelopoulos et al. (2021c), we compute the size-stratified k-FP violation:

SSFPk(C, {A}as=1) := sup
s

max
(
Ê[FP(Zn+1, Ck(Xn+1)) | |Ck(Xn+1)| ∈ As]− k, 0

)
(13)

where {A}as=1 forms a partition of {1, . . . , |Y|}, and Ê denotes the empirical average over our test
trials. SSFPk,δ for (k, δ)-FP violation is defined similarly, where we compare the worst-case average
number of predictions with more than k false positives to the tolerance δ. As argued in Angelopoulos
et al. (2021c), a lower size-stratified violation suggests that a classifier has better conditional coverage.
As marginal validity is already theoretically guaranteed by our procedure, we focus on this metric.

5.3 BASELINES

For all experiments, we compare our conformalized DeepSets model (NN), to the following baselines:

1. Top-k. We naively take the top k′ fixed predictions for any xn+1, where k′ is found using average
performance on the calibration set (without any correction factors, so it is not generally guaranteed
to be valid). Note that k′ can be (and mostly is) different than the user-specified k for FP.

2If training data is limited, we learn the DeepSets model for F with fixed hyper-parameters on the validation
data, after we have finished performing any other model selection for the base multi-label model, pθ(yc ∈ Z | x).
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(a) In-silico screening (b) Object detection (c) Entity extraction
Figure 2: (k, δ)-FP results as a function of k for δ = 0.1 (up to k = B = 100). The top row
plots SSFPk,δ violation (lower is better). The bottom row plots TPR (higher is better). We see that
compared to the other baselines, our conformal deep sets approach (NN) has the best (or close to the
best) TPR AUC across tasks, while having the lowest (or close to the lowest) SSFPk,δ violation.

2. Outer Sets @ 90. We use the (one-sided) multi-label conformal prediction technique of Cauchois
et al. (2021) to bound P(Zn+1 ⊆ Cε(Xn+1)) ≥ 0.90. Though not directly comparable, we use
this to benchmark our method against sets that preserve marginal coverage (at a typical level). For
simplicity, we use the direct inner/outer method without dynamic CQC quantiles.3

3. Inner Sets. Again, we use the (one-sided) method of Cauchois et al. (2021), this time to bound
P(Cε(Xn+1) ⊆ Zn+1) ≥ 1 − ε at level ε = k/B (recall that B ≤ |Y| is the truncation param-
eter, and the FP upper bound) for k-FP control and at level ε = δ for (k, δ)-FP control. It is
straightforward to show that these levels of ε conservatively achieve k-FP and (k, δ)-FP control.

4. Independent scoring (max). We take F(x,S) to be the maximum individual label uncertainty in
S, max{1− pθ(yc ∈ Z | x) : yc ∈ S}. This is equivalent to choosing labels independently. The
full model is calibrated using the same FP-CP algorithm (it is a drop-in replacement for the NN).

5. Average scoring (avg). We take F(x,S) to be the average individual label uncertainty in S,
|S|−1

∑
yc∈S 1− pθ(yc ∈ Z | x). We calibrate pθ(yc ∈ Z | z) using Platt scaling (Platt, 1999).

As with the max score, the full model is calibrated using the same FP-CP algorithm.

Baseline (1) contrasts our approach with what is normally a “first thought” in practice; (2) and (3) test
the efficacy of our system over existing techniques; (4) and (5) compare to simpler scoring variants.

6 EXPERIMENTAL RESULTS

Constraining false positives. The top rows of Figures 2 and 3 show the size-stratified violation
(Eq. (13)) for (k, δ)-FP and k-FP, respectively. Across levels of k, our approach based on DeepSets
(NN) achieves substantially lower worst-case violations than either of the max or average score
baselines. The Top-k and Inner Sets approaches also prevent large violations (though, by itself, this
result is not necessarily impressive—as simply always returning an empty set will lead to zero SSFP).
When accounting for TPR (bottom rows), we see that our FP-CP model does considerably better.

Maximizing true positive rates. The top rows of Figures 2 and 3 plot TPR rates and AUC across
many values of k, while Table 1 details results for the in-silico screening task for several representative
configurations. On the screening task, we see that our FP-CP (NN) method provides significantly
higher TPR than other baselines. For example, allowing no more than 5 false positives leads to a TPR
of 36.1% with k-FP. In comparison, the TPR of Top k is only 29.8%. Differences in TPR are less
pronounced on the object detection and entity extraction tasks, however, all FP-CP methods (with
max, avg, or NN scoring) provide high TPR (exceeding non FP-CP methods) even at low values of k.

3Preliminary studies indicated that including CQC quantiles did not lead to significantly different results.
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(a) In-silico screening (b) Object detection (c) Entity extraction
Figure 3: k-FP results as a function of k for (up to k = B = 100). The top row plots size-stratified
k-FP violation (lower is better). The bottom row plots the TPR (higher is better). As the number of
allowed false positives grows, our methods quickly achieve high power. Consistent with Figure 2,
our conformal DeepSets approach (NN) demonstrates high TPR and low SSFPk across tasks.

Top k Inner Sets FP-CP (Max) FP-CP (Avg) FP-CP (NN)
k-FP:

Avg. FP TPR Avg. FP TPR Avg. FP TPR Avg. FP TPR Avg. FP TPR

k = 5 4.59 29.8 0.14 2.5 4.98 27.5 4.99 24.1 4.98 36.1
k = 15 14.47 53.4 0.88 9.5 14.98 50.7 14.98 43.8 14.99 59.9
k = 25 24.51 68.0 1.49 13.4 24.98 66.8 24.98 58.9 24.99 73.2
k = 35 34.54 78.2 2.45 18.4 34.97 78.4 34.96 71.2 34.99 82.5

(k, δ)-FP with 1− δ = 0.9:
FP ≤ k TPR FP ≤ k TPR FP ≤ k TPR FP ≤ k TPR FP ≤ k TPR

k = 5 100.0 20.5 96.6 6.36 90.0 15.8 90.0 14.0 90.0 31.6
k = 15 94.7 42.4 99.5 6.36 90.0 26.7 90.0 22.3 90.0 55.3
k = 25 96.6 55.7 100.0 6.36 90.0 37.4 90.0 29.3 90.0 69.0
k = 35 97.5 66.2 100.0 6.36 90.0 49.1 90.0 36.9 90.0 79.0

Table 1: Results for the in-silico screening task over the ChEMBL dataset. TPR and FP ≤ k are
expressed as percents (i.e., ×100). We see that our FP-CP methods meet our target thresholds; using
the Inner Sets formulation does too, but is conservative (as expected). Applying FP-CP calibration
with our DeepSets model (see NN) yields substantially higher TPR across various tolerance levels k.

Comparison to conformal coverage methods. Table B.1 gives the results of the coverage-seeking
Outer Sets method at level 0.90 (a typical tolerance). Indeed, we achieve strong TPR (97.2% for the
in-silico screening task), but also incur a high false positive cost in the process (63.6 average FP for
in-silico screening). In contrast, our method allows us to directly modulate false positives, without
losing high TPR (e.g., equivalently controlling for ≤ 63.6 FP, we acheive 97.0% TPR on screening).

7 CONCLUSION

Conformal prediction, in its standard formulation, already grants theoretical performance guarantees
that can be critical in many machine learning applications. Naively applying CP, however, can yield
disappointing results. Even if the target coverage is indeed upheld, the predicted sets may be too large,
and include too many false positives to be practical. In this paper, we proposed a method for trading
coverage guarantees in favor of precision guarantees, where we enforce a limit to the number of false
positives that are contained in our prediction sets. Our results show that our method yields classifiers
that (1) still achieve strong true positive rates compared to their coverage-seeking counterparts, and
(2) provide meaningful output sets with effectively controlled total false positive counts.
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ETHICS STATEMENT

Our FP control methods are general and can be applied to many applications and on top of any
model for computing nonconformity scores. It’s worth noting that any undesirable biases exhibited
by underlying models can still propagate to the prediction sets of our methods. While our methods
provide marginal performance guarantees, we recommend that any application to perform controlled
evaluation across target populations to ensure fairness.

REPRODUCIBILITY STATEMENT

All datasets used in this paper are publicly available (see §5.1). Also, we use publicly available
models for computing the nonconformity scores. For drug discovery, we use the ensemble of
directed MPNNs from chemprop (https://github.com/chemprop/chemprop). For ob-
ject detection, we use tf_efficientdet_d2 from https://github.com/rwightman/
efficientdet-pytorch. For entity extraction, we train the PURE entity model (https:
//github.com/princeton-nlp/PURE) on the ConLL03 dataset using a context window of
100, batch size 32, albert-base-v2 encoding model, and the suggested learning rate of 1e−5,
and task learning rate 5e−4. Default values were used for all other parameters. The results in
Section 6 are all based on the experimental setting described in Section 5. We will release our code
for running these experiments and for reproducing all plots and tables.
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Appendix
A PROOFS

A.1 PROOF OF THEOREM 3.1

Proof. This is a well-known result; we prove it here for completeness. Since the nonconformity
scores Vi are constructed symmetrically, then

((X1, Y1), . . . , (Xn+1, Yn+1))
d
= ((Xσ(1), Yσ(1)), . . . , (Xσ(n+1), Yσ(n+1)))

⇐⇒ (V1, . . . , Vn+1)
d
= (Vσ(1), . . . , Vσ(n+1))

for all permutations (σ(1), . . . σ(n+ 1)). Therefore, if {(Xi, Yi)}n+1
i=1 are exchangeable, then so too

are their nonconformal scores {Vi}n+1
i=1 .

By the construction of C, we have

Yn+1 ∈ Ck(Xn+1)⇐⇒ Vn+1 ≤ Quantile(1− ε, V1:n ∪ {∞}).

This implies that Vn+1 is ranked among the d(1− ε) · (n+ 1)e smallest of V1, . . . , Vn,∞. Since Vi
are exchangeable, this happens with probability at least 1− ε.

A.2 PROOF OF THEOREM 4.3

Our proof will use Theorem 1 of Angelopoulos et al. (2021a), which we state here:
Theorem A.1 (Marginal RCPS, monotonic non-increasing case). Let Li : R→ R, i = 1, . . . , n+ 1
be exchangeable functions, where Li(t) is non-increasing in t. Also, take g : R→ R where g(x) is
non-decreasing in x. Further assume that g ◦ Li is right-continuous, and

inf
t
g(Li(t)) < γ, sup

t
g(Li(t)) ≤ B <∞ almost surely. (14)

For any γ ≥ 0, define the random variable T (γ, g) as

T (γ; g) := inf

{
t :

1

n+ 1

n∑
i=1

g(Li(t)) ≤ γ

}
. (15)

Then E[g ◦ Ln+1(T (γ; g))] ≤ γ + B
n+1 .

Corollary A.2 (Marginal RCPS, adjusted). Under the same setting as in Theorem A.1,

E[g ◦ Ln+1(T̃ (γ; g))] ≤ γ, (16)
where

T̃ (γ; g) = inf

{
t :

1

n+ 1

(
B +

n∑
i=1

g(Li(t))

)
≤ γ

}
. (17)

Following their analysis, we give a second corollary for lower bounding function Rn+1, where
R1, . . . , Rn+1 are now non-decreasing functions.
Corollary A.3 (Marginal RCPS, monotonic non-decreasing case). Similar to the setting in Theo-
rem A.1, let Ri : R→ R, i = 1, . . . , n+ 1 be exchangeable functions, where Ri(t) is non-decreasing
in t. Also, take g : R → R where g(x) is non-decreasing in x. Further assume that g ◦ Ri is
right-continuous, and

inf
t
g(Ri(t)) ≥ 0, sup

t
g(Ri(t)) > C ≥ γ almost surely. (18)

For any γ ≤ 0, define the random variable T (γ, g) as

T (γ; g) := inf

{
t :

1

n+ 1

n∑
i=1

g(Ri(t)) ≥ γ

}
, (19)

where we define inf ∅ =∞. Then E[g ◦Rn+1(T (γ; g))] ≥ γ.
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Proof. Let

T ′(γ; g) := inf

{
t :

1

n+ 1

n+1∑
i=1

g(Ri(t)) ≥ γ

}
. (20)

Since inft g(Ri(t)) ≥ 0, supt g(Ri(t)) > C ≥ γ, T ′(γ; g) and T (γ, g) are both well-defined almost
surely. Since inft g(Ri(t)) ≥ 0,

1

n+ 1

n∑
i=1

g(Ri(t)) ≥ γ →
1

n+ 1

n+1∑
i=1

g(Ri(t)) ≥ γ. (21)

Thus, T ′(γ; g) ≤ T (γ; g). Since g(Ri(t)) is non-decreasing in t,

E[g ◦Rn+1(T (γ; g))] ≥ E[g ◦Rn+1(T ′(γ; g))]. (22)

Let Ef be the unordered set (bag) of {R1, . . . , Rn+1}. Then T ′(γ; g) is a function of Ef , and is a
constant conditional on Ef . Exchangeability of Ri and right-continuity of g ◦Ri imply

E[g ◦Rn+1(T ′(γ; g)) | Ef ] =
1

n+ 1

n+1∑
i=1

g ◦Ri(T ′(γ; g)) ≥ γ. (23)

The proof is completed by taking the expectation over Ef and then applying Eq. (22).

We now prove our main theorem.

Proof. W.l.o.g. let us the flip signs of our non-conformity measures such that

MFP(x,Z, t) := max
{

FP(Z,Si) : −F̃(x,Si) ≥ t
}
, (24)

and Tk, Tk,δ are instead defined via inf .

We are given that the sets S are nested, and it is clear from its definition that FP is non-decreasing
for Si ⊂ Sj . Since the ranking of −F̃(x,S) is consistent with that of −|S| and monotonically
non-increasing, MFP is therefore also monotonically non-increasing in t.

We prove Tk first.

Since B is constrained to be finite, we have that supt MFP(x,Z, t) ≤ B <∞. Furthermore, since
−F̃(Xi, Si,j) is upper-bounded by assumption, we have that inft MFP(x,Z, t) = 0 < k ∈ R>0.
Finally, as evident from its definition in Eq. (24), MFP(x,Z, t) is right-continuous. Let Li(t) =
MFP(Xi, Zi, t) and g(x) = x. We can then directly apply Corollary A.2 to obtain

E[MFP(Xn+1, Zn+1, Tk)] ≤ k. (25)

The proof for Tk is completed by the fact that MFP(Xn+1, Zn+1, Tk) ≥ FP(Zn+1,Sn+1,j) condi-
tioned on F̃(Xn+1,Sn+1,j) ≤ Tk,δ .
We proceed similarly for Tk,δ .

Let Li(t) = 1{MFP(x,Z, t) ≤ k}. Since MFP is non-increasing and right-continuous, Li(t) is
non-decreasing and right-continuous. Let γ = 1 − δ ∈ (0, 1). By the same argument as before
concerning MFP, and from the fact that Li(t) ∈ {0, 1}, we can apply Corollary A.3 to get

E[1{MFP(Xn+1, Zn+1, Tk,δ) ≤ k}] = P(MFP(Xn+1, Zn+1, Tk,δ) ≤ k) ≥ 1− δ. (26)

This gives P(MFP(Xn+1, Zn+1, Tk,δ) ≤ k) ≥ 1−δ. The proof for Tk,δ is then completed by the fact
that MFP(Xn+1, Zn+1, Tk,δ) ≥ FP(Zn+1,Sn+1,j) conditioned on F̃(Xn+1,Sn+1,j) ≤ Tk,δ .
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A.3 PROOF OF PROPOSITION 4.6

Proof. By definition, we have F(Xn+1, C◦(Xn+1, T◦)) ≤ T◦, where ◦ is a placeholder for k or k, δ.
By Theorem 4.3, we can then conclude that

E[FP(Zn+1, Ck(Xn+1, Tk))] ≤ k, (27)

and

P(FP(Zn+1, Ck,δ(Xn+1, Tk,δ)) ≤ k) ≤ Tk,δ) ≥ 1− δ. (28)

Finally, if S ⊂ S ′ then yc ∈ S ⇒ yc ∈ S ′ for any yc ∈ z ⊆ Y . Since the candidate sets are nested,

|S| < |S ′| =⇒ TPP(z,S) ≤ TPP(z,S ′) (29)

Thus picking the biggest candidate set maximizes the TPP for a given Z = z, as well as its expectation
over random Z, i.e., the TPR.

B CONFORMAL COVERAGE RESULTS

Task TPR Avg. FP Avg. Size

In-silico screening 97.2 63.6 86.6
Object detection 96.1 32.4 38.2
Entity extraction 75.0 0.77 2.31

Table B.1: Outer Sets results applied at coverage level 1− ε = 0.90. Note that since some examples
do not have any positives, full coverage in the typical sense isn’t always achievable.

C IMPLEMENTATION AND DATASET DETAILS

Dataset Input # Examples # Negatives # Positives % Empty

In-silico screening SMILES 5,000 85 (50-97) 15 (3-50) 0.0
Object detection Image 3,000 96 (89-98) 4 (2-11) 1.1
Entity extraction Text 3,453 99 (97-100) 1 (0-3) 20.2

Table C.1: Dataset statistics (test split). Numbers are reported with respect to the top B = 100
candidates per example. The median number of positives and negatives per example is given, in
addition to their 16th and 84th percentiles. Examples with no positives (|z| = 0) are treated as empty.

In-silico screening. We construct a molecular property screening task using the ChEMBL
dataset (see Mayr et al., 2018). Given a specified constraint such as “is active for property A
but not property B,” we want to retrieve at least one molecule from a given set of candidates that
satisfies this constraint. The input for each molecule is its SMILES string, a notational format that
specifies its molecular structure. The motivation of this task is to simulate in-silico screening for drug
discovery, where it is often the case where chemists are searching for a new molecule that satisfies
several constraints (such as toxicity and efficacy limits), out of a pool of many possible candidates.

We split the ChEMBL dataset into a 60-20-20 split of molecules, where 60% of molecules are
separated into a train set, 20% into a validation set, and 20% into a test set. Next, we take all properties
that have at least 50 positive and negative examples (to avoid highly imbalanced properties). Of these
properties, we take all N choose K combinations that have at least 100 molecules with all K properties
labelled (ChEMBL has many missing values). We set K to 2. For each combination, we randomly
sample an assignment for each property (i.e., {active, inactive}K). We discard combinations for
which more than 90% of labeled molecules satisfy the constraint. We keep 5000 combinations for the
test set, 767 for validation, and 4375 for training. The molecules for each of the combinations are
only sourced from their respective splits (i.e., molecular candidates for constraints in the property
combination validation split only come from the molecule validation split). Therefore, at inference
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time, given a combination we have never seen before, on a molecules we have never seen before, we
must try to retrieve at least one molecule that has the desired combination assignment.

Our directed Message Passing Neural Network (MPNN) is implemented using the chemprop repos-
itory (Yang et al., 2019). The MPNN model uses graph convolutions to learn a deep molecular
representation, that is shared across property predictions. Each property value (active/inactive) is pre-
dicted using an independent classifier head. The final prediction is based on an ensemble of 5 models,
trained with different random seeds. Given a combination assignment (Z1 = z1, . . . , Zk = zk), we
compute the joint likelihood independently, i.e.,

pθ(Z1 = z1, . . . , Zk = zk) =
∏

pθ(Zi = zi).

Object detection. As discussed in §5, we use the MS-COCO dataset (Lin et al., 2014) to evaluate our
conformal object detection. MS-COCO consists of images of complex everyday scenes containing 80
object categories (such as person, bicycle, dog, car, etc.), multiple of which may be contained in any
given example. Since the official test set is hidden, we use the 5k examples from the development set
and randomly partition them into sets of size 1k, 1k, and 3k for calibration, validation, and testing,
respectively. The EfficientDet model (Tan et al., 2020)4 for extracting bounding boxes uses a pipeline
of three neural networks to extract deep features, and then predict candidates. The model also uses a
non-maximum suppression (NMS) post-processing step to reduce the total number of predictions by
keeping only the one with the maximum score across highly overlapping prediction boxes. We merge
the predictions of all classes into a unified set, where each element is a tuple of (class, bounding box).
This means that multiple class predictions can be included for the same bounding box (i.e., there
is class uncertainty), and multiple bounding boxes can be found for the same class (i.e., there are
multiple objects in one image). We define true positives as predictions that have an intersection over
union (IoU) value > 0.5 with a gold bounding box annotation, and that match the annotation’s class.

Entity extraction. Entity extraction is a popular task in natural language processing. Given a
sentence, such as “Barack Obama was born in Hawaii,” the goal is to identify and classify all named
entities that appear—i.e., (“Barack Obama”, Person) and (“Hawaii”, Location). We use the CoNLL
NER dataset (Tjong Kim Sang and De Meulder, 2003), and extract 1k examples for calibration out of
the 3.3k development set, and report test results on the 3.5k test set. For our base model, we use the
entity extraction module of PURE (Zhong and Chen, 2021), that predicts span scores with a classifier
head on top of Albert-base (Lan et al., 2020) contextual embeddings. The classification head has
two non-linear layers and uses the learned contextual embeddings of the span start and end tokens,
concatenated with a learned span width embedding. We train the model on the training set of the
CoNLL NER dataset. We use the official code repository5 and the following parameters: 1e − 5
learning rate, 5e− 4 task learning rate, 32 train batch size, and 100 context window. Similar to our
object detection task, we treat exact span predictions of the correct category as true positives, and
any other entity predictions as false positives. As illustrated in Table C.1, a fairly large number of
sentences do not contain any entities at all, while other sentences may contain several.

D PRACTICAL CONSIDERATIONS

In this section we address a number of practical considerations for our FP-CP method.

D.1 CHOOSING A SUITABLE k

An outstanding question a practitioner faces is how to choose the value of k for k-FP and (k, δ)-FP
objectives. The value of k in our method has a reliable and easy interpretation: it is the total number
of incorrect answers. For many tasks, such as in-silico screening, there is a direct relation between
the number of noisy predictions (e.g., failed experiments conducted during wet-lab validation) and
total “wasted” cost. Therefore, for example, given some approximate budget Q and cost per noisy
prediction c, a reasonable approach is to then set k ≈ Q/c. Of course, the advantage of our approach
is that the user may set k to whatever they wish—this might change based on their needs.

D.2 CHOOSING BETWEEN k-FWER AND FDR CONTROL

A related question to D.1 is when to target k-FWER (i.e., our k-FP and (k, δ)-FP objectives) or
FDR (e.g., using Angelopoulos et al. (2021a)). This choice is well discussed in the multilple testing

4We use tf_efficientdet_d2 from https://github.com/rwightman/efficientdet-pytorch.
5https://github.com/princeton-nlp/PURE.
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literature (Lehmann and Romano, 2005; Romano and Wolf, 2007; Gold et al., 2009). An important
aspect to consider is the size of the label space Y , natural rate of true and false positives, and the
efficiency of the base model at separating true positives from false positives. When the total number
of true positives is large and |Y| is large then it is reasonable to control the FDR. If, however, the
natural rate of true positives is low, or they are not well separated from false positives, then the FDR
can be quite high and hard to control, especially for smaller prediction sets (as the ratio of positive
to negative labels can be quickly driven down even with the addition of only a few false positives).
As a intuition illustration, suppose for a given example there is one true positive that is ranked 10th
by the base model. For many applications, 10 total predictions (with 9 false positives) is not overly
burdensome. However, the lowest FDR cutoff that allows for this positive to be discoverable is 0.9
(which, for other examples, may allow for hundreds of false positives—an outcome which may not
be so desirable for some applications, even given a high number of accompanying true positives). To
satisfy a lower FDR rate, the algorithm must output an empty set (with FDR = 0). This remains true
even if there are a few (but not many) other true positives: for instance, in the previous example, if
predictions 10-20 were also all true positives then the lowest FDR is still only 0.5—specifying a FDR
tolerances any lower than this would force an empty set prediction.

D.3 LEARNING MORE EXPRESSIVE SET FUNCTIONS

Our choice of DeepSets model is motivated by its property of being a universal approximator for
continuous set functions. Of course, its realized accuracy depends on its exact parameterization and
optimization. In terms of input features, in §4.2, we chose a simplistic φ(x, yc) for two reasons:
(1) we view it’s simplicity as an advantage (practitioners can simply plug-in individual multi-label
probabilities, or other scalar conformity scores, that most out-of-the-box methods provide into a
general framework without having to do any more work for providing additional features), and (2)
it is easy to train this light-weight model on smaller amounts of data. This approach, however, can
discard potentially helpful information about the underlying input x, and any dependencies between
labels yc and y′c. For example, if yc and y′c are mutually exclusive, then the number of false positives
if both are included in S has to be at least 1. Using more expressive φ that is able to capture and take
advantage of this sort of side information about x and yc is a subject for future work.

D.4 CONSTRUCTING NON-NESTED CANDIDATE SETS

Our careful construction of nested prediction sets that have bounded, non-decreasing, and right-
continuous risks is key to our calibration procedure. It is, however, limited by the underlying ranking
of labels yc ∈ Y by the individual likelihood model pθ(yc ∈ Z | x). In theory, the set function F
may be able to identify higher quality outputs sets S ∈ 2Y by jointly considering all of the included
elements (rather than ranking them one-by-one). That said, the search process over 2Y is expensive,
and the FP risk is no longer non-decreasing, which necessitates more involved calibration methods
that can account for non-monotonic risks, such as that of Angelopoulos et al. (2021a)). Nevertheless,
this is a promising subject for future work, and one that can potentially be combined with efficient
search or candidate space pruning methods (e.g., such as in Fisch et al. (2021)).

D.5 FAILURE CASES OF GREEDY OUTPUT SELECTION

In §4.4 we greedily select the largest candidate set that passes our filter threshold. A downside of
this approach is that it may include more false positives than necessary (i.e., to achieve the same
TPR). Ideally, we would be able to follow the oracle strategy in returning the smallest set with the
highest true positive proportion. This would make our predictions efficient, in the sense that we are
not including more false positives than necessary (even if the total number is still ≤ k). A reasonable
choice is to then choose Sj∗ where j∗ = arg maxj |Sj | − F(x,Sj); but this can be sub-optimal if F
is not accurate, which motivates our greedy strategy. Nevertheless, non-greedy set selection may be
more efficient if F is indeed accurate—this can be tested on a validation set.
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