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Abstract001

Question Generation (QG) is central to infor-002
mation retrieval, education, and knowledge as-003
sessment, yet its progress is bottlenecked by004
unreliable and non-scalable evaluation prac-005
tices. Traditional metrics fall short in struc-006
tured settings like document-grounded QG, and007
human evaluation, while insightful, remains008
expensive, inconsistent, and difficult to repli-009
cate at scale. We introduce AURA-QG: an010
Automated, Unsupervised, Replicable Assess-011
ment pipeline that scores question sets using012
only the source document. It captures four or-013
thogonal dimensions i.e., answerability, non-014
redundancy, coverage, and structural entropy,015
without needing reference questions or rela-016
tive baselines. Our method is modular, effi-017
cient, and agnostic to the question generation018
strategy. Through extensive experiments across019
four domains i.e., car manuals, economic sur-020
veys, health brochures, and fiction, we demon-021
strate its robustness across input granularities022
and prompting paradigms. Chain-of-Thought023
prompting, which first extracts answer spans024
and then generates targeted questions, consis-025
tently yields higher answerability and coverage,026
validating the pipeline’s fidelity. The metrics027
also exhibit strong agreement with human judg-028
ments, reinforcing their reliability for practical029
adoption.030

1 Introduction031

Question Generation (QG) is a fundamental NLP032

task for many downstream applications (Jiang et al.,033

2023), including education, automated knowledge034

assessment, information retrieval, and conversa-035

tional AI systems. In Knowledge Base (KB)-036

grounded settings, the ability to generate high-037

quality, relevant, and diverse questions is essential038

for building systems that can engage with struc-039

tured information effectively. However, as research040

in QG continues to evolve, the challenge of evalu-041

ating generated questions remains a critical bottle-042

neck (Zhang et al., 2021).043

Human evaluation, although reliable, is time- 044

consuming, expensive, and difficult to scale. It 045

often involves manual annotation for factors such 046

as relevance, fluency, answerability, and cover- 047

age, introducing inconsistencies and making large- 048

scale benchmarking infeasible. Automatic evalua- 049

tion metrics such as BLEU (Papineni et al., 2002), 050

ROUGE (Lin, 2004), or METEOR (Banerjee and 051

Lavie, 2005), while commonly used, fail to capture 052

the nuanced aspects of question quality, especially 053

in structured or semantic contexts like KB-QG. 054

These metrics typically rely on surface-level lexical 055

overlap and require reference questions, limiting 056

their applicability and generalizability. 057

To address these limitations, AURA-QG is de- 058

signed to score question sets generated from plain- 059

text documents such as PDF manuals, reports, fic- 060

tion, or health brochures. Our current pipeline 061

focuses exclusively on unstructured text and inten- 062

tionally ignores tables, figures, and other structured 063

layout elements. For any given input document 064

and its corresponding question set, our system pro- 065

duces independent scores along four interpretable 066

dimensions. Furthermore, our evaluation pipeline 067

is designed for factoid or informational questions 068

and does not extend to assessment-style questions 069

requiring inference, abstraction, or synthesis. It pri- 070

marily targets the base levels of Bloom’s taxonomy 071

(remembering and understanding) as elaborated in 072

Appendix A. These dimensions aim to capture core 073

qualities of effective question sets and are defined 074

as follows: 075

• Answerability: (Nema and Khapra, 2018) 076

Whether each question can be answered using 077

information present in the source document. 078

• Redundancy: (Mai and Carson-Berndsen, 079

2023) The degree of semantic overlap be- 080

tween the retrieved answer units of different 081

questions in the set. 082
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• Coverage: How well the collective set of083

questions captures the breadth and diversity084

of the input content (Laban et al., 2022).085

• Structural Entropy: A proxy for the diver-086

sity of question templates used (Fabbri et al.,087

2020), capturing variation in syntactic patterns088

and structural forms across generated ques-089

tions, indicating the use of question templates090

over repetitive phrasing.091

These metrics reflect essential dimensions of ques-092

tion set quality such as semantic relevance, infor-093

mational breadth, non-redundancy, and linguistic094

diversity, making the evaluation both principled095

and aligned with human expectations. While this096

captures their intuitive motivation, we formally de-097

fine and operationalize each metric in the subse-098

quent sections of the paper. Our contributions are:099

• AURA-QG Evaluation Pipeline: We intro-100

duce a reference-free, interpretable, and fully101

automated evaluation framework for assessing102

document-grounded question sets across four103

axes—Answerability, Redundancy, Coverage,104

and Structural Entropy.105

• Multi-domain Applicability: The pipeline106

supports question sets generated from diverse107

textual domains including manuals, health108

brochures, and narrative fiction, without re-109

lying on reference questions or gold answers.110

• Human Alignment Validation: We conduct111

a large-scale human evaluation with up to112

7 annotators per example and show that the113

pipeline’s preferred question set agrees with114

the human majority in 75% of cases, with an115

80% individual-level agreement when aligned116

(Appendix C).117

• Metric-wise Agreement Analysis: We118

present per-metric agreement statistics and119

directional consistency analysis, demonstrat-120

ing that individual metrics frequently favor121

human-preferred sets (Appendix B).122

• Open Evaluation Recipe: We release a repli-123

cable, modular evaluation methodology with124

code, designed to scale across new datasets125

and QG systems, offering the community a126

practical alternative to manual benchmarking.127

2 Related Work 128

In this paper, we are concerned with the quality 129

of a question set based on a given corpus of text. 130

Note that this contrasts with related but different 131

problems in reading comprehension (Deutsch et al., 132

2021) or conversational systems (Griol et al., 2013). 133

Our objective (see Section 3 for details) is to mea- 134

sure the appropriateness of a set of questions as a 135

collection, given a corpus of text, in order to antici- 136

pate possible queries raised about the content. 137

Previously, the topic of question generation has 138

been considered from the point of view of educa- 139

tional material and assessment (Wang et al., 2022; 140

Gorgun and Bulut, 2024). The focus of these 141

studies is to comprehensively cover the material 142

(which we call coverage), and to generate ques- 143

tions with different levels of difficulty. The latter 144

is not relevant to this study, because our document- 145

question sets are related to Frequently Asked Ques- 146

tions (FAQ) type of settings. Historically (Heilman 147

and Smith, 2010; Kurdi et al., 2020; Mulla and 148

Gharpure, 2023) automated question evaluation 149

has tended to focus on semantic matching between 150

the question-document pair or between generated 151

and gold standard questions. While the former ap- 152

proach misses out on a strong comparison across 153

the set of questions (for example, redundancy), the 154

latter approach is difficult in practice because of 155

the need to have access to gold standard questions. 156

An automated pipeline called QGEval (Fu et al., 157

2024) attempted to address the FAQ setting us- 158

ing seven proposed metrics in literature, including 159

some metrics related to the ones we use in Sec- 160

tion 4. However, they found that several of the 161

metrics (either by definition or by method of com- 162

putation) do not align well with human evaluation, 163

which is considered gold standard. In this work, 164

we show that our proposed methodology does have 165

good agreement with human evaluation. Similarly, 166

Nema and Khapra (2018) have shown that standard 167

n-gram based metrics such as BLEU score also do 168

not have good overlap with human evaluation. An 169

older study (before the release of modern LLMs) 170

also emphasizes the need for an independent evalu- 171

ation mechanism (Kumar et al., 2018). 172

We believe that there is a need to define com- 173

prehensive QG evaluation metrics that can be au- 174

tomatically computed, and be aligned with human 175

evaluation. In the rest of this paper, we define the 176

problem formally and propose AURA-QG with 177

accompanying experiments and ablation studies. 178
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3 Problem Description179

Consider a raw document A, on which questions180

are to be generated. The document contains arti-181

facts which are not relevant for question genera-182

tion, such as headers, image references, and other183

content. Therefore we consider a clean corpus184

B ⊂ A which is relevant to question generation185

(QG). We also assume that a question set Q is186

provided through external means (we compare dif-187

ferent approaches for generating Q in Section 5).188

Then the automatic evaluation problem is to de-189

fine and compute a set of n metrics M : B ×Q →190

Rn that are aligned with human evaluation. For-191

mally, this implies that some preference scoring192

function S(M) : Rn → R exists such that,193

P
(
S(M(Q1)) >S(M(Q2))|194

H(Q1) > H(Q2)
)
> 0.5, (1)195

where H(Qi) is an aggregated human annotated196

score for question set Qi. We do not explicitly197

use the corpus B in the notation above, but it is198

understood that all scores (automatic and human)199

are on the same corpus.200

The intuition behind (1) is that if the aggregated201

human-annotated score for one set of questions Q1202

on B is higher than for an alternative set Q2, then203

it is likely that the automated score S based on the204

metrics M follows the same ranking order. In the205

next section, we propose the metrics M and the206

scoring function S that align with this objective.207

4 Methodology208

We present a modular pipeline designed to evalu-209

ate the alignment between a document and a set210

of questions generated from it. Our approach com-211

bines semantic indexing, answer span retrieval,212

structural refinement, and metric-based evaluation213

to comprehensively measure the quality of gen-214

erated questions. The methodology is content-215

grounded and does not rely on external gold an-216

swers, making it adaptable across domains.217

4.1 Information Unit Construction218

The pipeline begins by processing the source doc-219

ument, typically provided as a PDF file. We em-220

ploy an OCR-based Markdown extractor to convert221

each page into text while preserving some struc-222

tural cues like headings and bullet points. However,223

many of these visual artifacts (e.g., headings, im-224

age references, captions, footnotes, and tables) are225

not meaningful for content understanding and are 226

filtered out during preprocessing. 227

The resulting clean text is split into a set of con- 228

tent blocks, denoted as B = {b1, b2, ..., bn}. These 229

blocks are further categorized based on structural 230

features: paragraph-type blocks consist of contin- 231

uous prose and are segmented into individual sen- 232

tences, while list-type blocks are preserved as full 233

bulleted or numbered lists without splitting into in- 234

dividual items. After cleaning, paragraph sentences 235

undergo filtering to remove short or content-poor 236

units, whereas list blocks are retained as compos- 237

ite spans. Each selected sentence or complete list 238

block is treated as a candidate answer span and re- 239

ferred to as an Information Unit (IU). These IUs 240

are grouped into: 241

• N : the set of necessary IUs, consisting of 242

individual sentences from cleaned paragraphs 243

and full list blocks that represent the core doc- 244

ument content. 245

• O: the set of optional IUs, which includes 246

sliding sentence windows extracted from 247

paragraph-type blocks and decomposed list 248

items used for auxiliary coverage. 249

This distinction between N and O is intentional 250

and grounded in their functional roles during eval- 251

uation. While N anchors the evaluation to core 252

content that a high-quality question set should col- 253

lectively cover, O provides finer-grained and over- 254

lapping units that support flexible retrieval for per- 255

question scoring. Using smaller windows or de- 256

composed items in O enables more precise detec- 257

tion of answerability and redundancy, without com- 258

promising the semantic grounding ensured by N . 259

The complete IU space is given by: 260

I = N ∪O 261

This pool (I) of necessary and optional IUs forms 262

the content grounding against which the generated 263

questions are evaluated. 264

Each IU is associated with a metadata dictionary 265

that supports downstream operations such as an- 266

swer tracing and coverage propagation. This meta- 267

data includes the type, which specifies whether the 268

IU is necessary or optional; the subtype, indicating 269

its structural form such as paragraph, list, window, 270

or bullet; a unique chunk_id assigned to every IU; 271

and a parent_chunk_id, which links optional IUs to 272

their corresponding necessary IUs when applicable. 273

3



Figure 1: Overview of the evaluation pipeline. Given a document, Mistral OCR extracts Markdown text, from which
necessary and optional Information Units (IUs) are constructed and indexed. For each question qi in the question
set (represented by overlapping rectangles), we retrieve and rerank top spans using semantic similarity, yielding a
best-matching IU for metric computation (Answerability, Redundancy, Coverage, Structural Entropy).

4.2 Semantic Similarity For Optional Units274

To semantically align optional IUs with their origi-275

nating content, we establish subtype-specific link-276

ages to necessary IUs using sentence-level cosine277

similarity. For optional IUs of subtype window,278

each constituent sentence is compared individu-279

ally against all sentence-type necessary IUs (i.e.,280

paragraph-derived units). If a sentence in the281

optional window surpasses a similarity threshold282

when compared to a necessary IU sentence, the283

corresponding chunk ID is added to the optional284

IU’s parent_chunk_id list.285

For optional IUs of subtype bullet, which repre-286

sent decomposed items from original list blocks,287

we first break down each list-type necessary IU288

into individual items. Each optional bullet is then289

matched to these decomposed items, and if similar-290

ity exceeds the threshold, the chunk ID of the origi-291

nal necessary IU list block is mapped as the parent.292

This linkage process is conditional on the structural293

subtype of both optional and necessary IUs and re-294

sults in a set of parent_chunk_id annotations that295

support hierarchical coverage propagation.296

4.3 Semantic Indexing and Span Retrieval297

To assess answerability, we identify which298

IUs are most semantically aligned with it.299

All IUs I are encoded using a bi-encoder300

(multi-qa-MiniLM-L6-cos-v1), and the resulting301

vectors are indexed using FAISS (Facebook AI 302

Similarity Search) (Johnson et al., 2019). For each 303

question q ∈ Q, we perform the matching process, 304

1. Top-k retrieval is performed using FAISS 305

similarity search in the embedding space: 306

Retrieve(q) = {i1, i2, ..., ik} ⊂ I 307

2. Reranking with cross-encoder 308

(ms-marco-MiniLM-L-6-v2) refines the 309

ranking by assessing the contextual alignment 310

between each candidate span and the question. 311

A relevance score is assigned: 312

sq,ij = Score(q, ij) 313

3. Top span selection identifies the most proba- 314

ble answer span: 315

i∗q = argmax
ij

sq,ij 316

This two-stage approach—semantic retrieval fol- 317

lowed by precise reranking—ensures that ques- 318

tion–answer mappings are both efficient and se- 319

mantically meaningful. 320

4.4 Dynamic Refinement of List Answers 321

Certain IUs, especially those of subtype list, may 322

include several loosely related points, making it dif- 323

ficult for a cross-encoder to assign high relevance 324
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to the entire span. To address this, we implement325

a dynamic refinement mechanism that performs326

windowed span extraction over list items, but only327

when the cross-encoder score falls below a thresh-328

old1. This ensures finer-grained retrieval for other-329

wise diffuse content blocks.330

Given a list of items L = [l1, l2, ..., lm],we gen-331

erate overlapping candidate windows using a pre-332

defined size w. The windows are constructed as:333

W = {li ⊕ · · · ⊕ li+w−1 | i = 1, ...,m− w + 1}334

Each window is scored using the same cross-335

encoder as in Section 4.3. The highest scoring336

window is retained as the refined answer span if337

it outperforms the original full list in terms of rel-338

evance to the question. This strategy allows the339

system to zoom in on the most contextually appro-340

priate subset of a long list.341

4.5 Evaluation Metrics342

Our evaluation framework comprises four comple-343

mentary metrics, each targeting a different facet of344

quality in the question set. These metrics are de-345

signed to be maximizable, offering a consistent in-346

terpretation of higher values as better performance.347

4.5.1 Answerability348

Answerability quantifies the proportion of ques-349

tions that can be confidently grounded in the source350

document. A question is marked as ‘answerable’ if351

its top-ranked IU achieves a relevance score above352

a set threshold2 δ = 2.5. Formally,353

Answerability =
|{q ∈ Q | sq,i∗q > δ}|

|Q|
354

This metric reflects the reliability of the question355

generation process with respect to content.356

4.5.2 Coverage357

Coverage measures how comprehensively the gen-358

erated questions span the document’s core con-359

tent. It focuses only on necessary IUs, evaluating360

what fraction of them are addressed by the ques-361

tion set. A necessary IU is considered covered362

either through direct retrieval or via indirect link-363

age through optional IUs, as detailed in Section 4.6.364

1This threshold is same as the one used for answerabil-
ity scoring (δ = 2.5), based on the assumption that loosely
grouped items rarely exceed the minimum confidence required
for valid retrieval.

2This corresponds to the intuition that the model must
assign at least 25% confidence to an answer span for it to be
considered valid.

Let Ncovered ⊆ N be the set of covered necessary 365

IUs. Then: 366

Coverage =
|Ncovered|

|N |
367

This metric captures the breadth of semantic align- 368

ment between the document and the question set. 369

4.5.3 Non-Redundancy Score (NRS) 370

Redundancy in question generation often manifests 371

as multiple questions pointing to the same answer 372

span. To reward diversity, we compute redundancy 373

as the proportion of such repeated mappings and 374

invert it to create a maximizable Non-Redundancy 375

Score (NRS). Let R ⊂ Q be the set of redundant 376

questions, then: 377

Redundancy =
|R|
|Q|

378

379
Non-Redundancy Score (NRS) = 1−Redundancy 380

The NRS encourages distinct questions to corre- 381

spond to distinct pieces of information, improving 382

the utility and informativeness of the question set. 383

4.5.4 Structural Entropy 384

Each WH-template targets a distinct informational 385

need: what and where seek factoid answers, why 386

prompts causal explanations, and how elicits proce- 387

dural responses. A question set with high structural 388

entropy thus reflects varied reasoning demands and 389

serves as a proxy for evaluating the informativeness 390

and functional breadth of a question set. 391

To assess the diversity of question templates, 392

we extract the question-template type) from each 393

question. Let T be the empirical distribution of 394

question templates in the set. We first compute the 395

standard entropy: 396

SE = −
∑
t∈T

P (t) log2 P (t) 397

Since the number of generated questions varies 398

across passages and prompts, we normalize entropy 399

using a length-aware adjustment. Let |C| denote 400

the number of possible question template classes 401

(e.g., what, why, how, etc.). We define the balanced 402

entropy as: 403

Balanced SE =
SE · (|Q|/|C|)

SE · (|Q|/|C|) + |C|
404

Unless otherwise stated, all mentions of “Structural 405

Entropy” or “Entropy” throughout the paper refer 406

to this balanced form. 407
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4.6 IU Coverage Propagation via Metadata408

Determining whether a necessary IU is "covered"409

requires a nuanced treatment of retrieval paths. We410

extend coverage beyond direct retrievals by lever-411

aging IU metadata that encodes parent-child rela-412

tionships and semantic linkages.413

A necessary IU n ∈ N is marked as covered, if414

it satisfies any of the following:415

• Direct match: n is selected as the top span416

for some question.417

• Linkage via optional window: An optional418

IU o ∈ O is selected, and n ∈ Link(o)419

where Link(o) denote the set of necessary IUs420

n ∈ N such that n is semantically linked421

to optional IU o via subtype-specific similar-422

ity matching as defined in Section 4.2. This423

linkage is reflected in the parent_chunk_id424

metadata of o.425

• List-item propagation: A bullet-type op-426

tional IU is selected, and its parent_chunk_id427

refers to a necessary list IU n.428

These coverage rules are resolved by traversing429

the metadata structure generated during IU con-430

struction. This ensures that our coverage metric431

accurately reflects meaningful content engagement,432

even when the retrieval paths are indirect or span433

multiple IU levels.434

In summary, the proposed methodology intro-435

duces a pipeline to evaluate question sets based436

on semantic alignment and structural diversity.437

By leveraging a hierarchy of information units,438

subtype-aware retrieval, and maximizable metrics439

grounded in coverage and linguistic variation, the440

framework ensures both depth and breadth. It441

moves beyond surface-level matching to assess the442

true informativeness of generated questions.443

5 Experiments444

We begin by validating our evaluation pipeline445

through human preference judgments to ensure446

that the automatic metrics align with human ex-447

pectations. The results of this agreement analysis448

are presented in Table 1. Once established, we449

analyze metric behavior across domains, passage450

granularities, and prompting strategies. The main451

experimental results are summarized in Table 2.452

5.1 Human Evaluation Setup 453

We evaluate the alignment of our automatic met- 454

rics with human judgment on 24 (passage, Q1, Q2) 455

triplets. Two groups of 5–7 annotators (instruc- 456

tions given in Appendix B) each select the better 457

question set per triplet, based on answerability, cov- 458

erage, redundancy, and structural entropy. Ties 459

are resolved by a separate tie-breaker annotator. 460

The resulting preferences serve as ground truth for 461

alignment analysis in Section 6. 462

5.2 Domains and Data 463

To evaluate generalizability across content styles, 464

we select four document types with distinct struc- 465

ture and semantics: 466

• Car Manuals (technical, procedural), 467

• Economic Surveys (expository, policy- 468

heavy), 469

• Novels (narrative, open-ended), 470

• Health Brochures (concise, instructional). 471

These span instructional, analytical, narrative, and 472

public-health genres ensuring that our metrics do 473

not overfit to any single domain. 474

We segment the corpus into four levels of con- 475

text: paragraph, page, chapter, and full-document, 476

yielding 200 paragraphs, 200 pages, 40 chapters, 477

and 4 full-documents in total. This experiment 478

tests whether our metrics remain stable across vary- 479

ing passage sizes, and whether they appropriately 480

reflect the contextual tradeoffs in question qual- 481

ity. For example, full-document inputs yield lower 482

coverage due to token limits but higher structural 483

entropy, while paragraph-level inputs show the op- 484

posite trend due to the limited scope. Validating 485

the pipeline across granularity helps ensure it can 486

scale across real-world use cases where document 487

size varies significantly. 488

5.3 Prompting Strategies 489

We compare two prompting paradigms for question 490

generation: 491

Zero-shot prompting, which directly asks the 492

model to generate questions, 493

Chain-of-Thought (CoT) prompting, which 494

encourages intermediate reasoning before question 495

formulation by first extracting answer spans and 496

then generating questions for each. 497

These experiments were conducted using 498

gemini-2.0-flash (DeepMind, 2024), a model 499
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with built-in CoT reasoning capabilities. This500

axis allows us to evaluate whether our metrics501

can reflect established intuition that CoT-based502

prompting yields better questions. If our pipeline503

is sound, CoT-generated sets should consistently504

score higher in answerability and coverage, with505

non-redundancy and structural entropy being desir-506

able but optional.507

5.4 Cross-factor Validation508

All prompting strategies are applied across all pas-509

sage granularities and all document domains, yield-510

ing a dense evaluation matrix. This setup ensures511

that the observed trends are not artifacts of a spe-512

cific prompt, length, or domain, but rather reflect513

the consistent behavior of the evaluation framework514

under diverse conditions.515

6 Results and Analysis516

We begin by assessing the alignment between our517

automatic metrics and human judgments through518

a preference-based evaluation. Once validated,519

we analyze question generation quality across do-520

mains, passage granularities, and prompting strate-521

gies. The analysis highlights clear performance522

trends and architectural tradeoffs observed across523

the four metrics.524

6.1 Metric Agreement with Human Scoring525

We analyze the alignment between each automatic526

metric and human preferences over the 24 evalu-527

ated triplets. For each metric, we compute how of-528

ten it assigns a higher score to the human-preferred529

question set, reporting both the count and the cor-530

responding fraction. We additionally report how531

often the aggregate score across all four metrics532

favors the human choice. Full details of this agree-533

ment procedure are provided in Appendix B, and534

results are summarized in Table 1. To further quan-535

tify how well the pipeline reflects individual human536

judgments, we compute the conditional probabil-537

ity of a randomly chosen human agreeing with538

the pipeline’s decision, conditioned on whether it539

matched the set with highest score. As shown in540

Appendix C, this probability reaches 0.80 in agree-541

ment cases, reinforcing the pipeline’s reliability in542

capturing human-aligned preferences.543

This initial agreement analysis provides strong544

empirical support for the alignment claim in (1),545

demonstrating that our automatic metrics consis-546

tently reflect human preferences, unlike prior ap-547

proaches which lacked such validation.548

Sign Agreement Proportion
Agreement Count
Answerability 17 0.71
Coverage 19 0.79
Redundancy 12 0.50
Entropy 14 0.58
Majority Vote 18 0.75

Table 1: Sign agreement of individual metrics and
majority-vote-based agreement with human preference
across 24 triplets.

6.2 Quantitative Analysis 549

Higher Non-Redundancy in Zero-Shot Prompt- 550

ing: Zero-Shot Prompting consistently exhibits 551

higher non-redundancy scores (NRS) across almost 552

all domains and passage granularities. This is be- 553

cause Zero-Shot strategies tend to generate fewer 554

questions (almost half the number of questions gen- 555

erated by CoT prompting method), naturally reduc- 556

ing the chances of semantic overlap or repetitive 557

patterns. The lower question volume results in a 558

concise and less redundant question set, reinforcing 559

the trend across domains. 560

High Coverage in CoT Prompting: CoT 561

Prompting significantly outperforms Zero-Shot in 562

Coverage (Cov) scores across nearly all passage 563

levels and domains. This is an outcome of the two- 564

step strategy in the CoT prompt: first, extracting 565

all answer spans and then generating specific ques- 566

tions for each. This leads to thorough coverage 567

of the passage. This validates the strength of CoT 568

prompting for maximizing coverage. 569

Coverage–Redundancy Tradeoff in CoT: This 570

increase in coverage from CoT prompting comes 571

with a tradeoff. Non-redundancy scores drop as 572

the model generates several closely related ques- 573

tions when multiple answer spans are extracted 574

from the same sentence or block. During reranking, 575

these often map back to the same blocks, reduc- 576

ing uniqueness. Thus, CoT’s aggressive coverage 577

yields denser but more overlapping question sets. 578

Low PDF Coverage Due to Token Limits: Cov- 579

erage drops significantly at the Full PDF level, par- 580

ticularly under CoT, due to the token limit of the 581

question-generating model. When presented with 582

entire PDFs (often exceeding 250 pages), the model 583

fails to process content holistically. This causes the 584

model to either truncate inputs/outputs or focus on 585

selective segments, resulting in undercoverage. 586
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Domain Passage Level Zero-Shot Prompting CoT Prompting
Qs Ans Cov NRS Ent Qs Ans Cov NRS Ent

Car
Manual

Paragraph 8 86.5 92.9 64.2 42.6 15 88.0 94.4 56.2 44.6
Page 16 94.4 85.1 72.9 55.1 29 94.5 87.3 72.0 58.2

Chapter 58 92.6 53.2 88.8 68.6 110 93.9 74.6 76.3 79.7
Full PDF 191 95.8 6.2 95.1 41.3 463 92.5 15.1 88.5 40.0

Economic
Survey

Paragraph 12 89.2 87.8 71.8 56.0 18 93.8 89.0 73.9 52.6
Page 15 90.4 77.8 77.6 56.0 31 91.4 83.6 73.2 57.5

Chapter 56 93.1 56.1 88.2 72.8 133 93.4 82.9 84.3 73.9
Full PDF 212 86.0 8.9 94.8 83.7 396 92.2 10.0 90.7 55.6

Novel

Paragraph 8 40.8 57.9 77.3 32.5 12 54.7 68.7 71.7 38.9
Page 18 47.8 26.7 85.5 48.2 35 57.1 49.7 81.5 56.7

Chapter 45 56.6 7.9 81.1 60.6 257 63.3 38.8 77.8 74.9
Full PDF 220 45.9 1.6 91.1 73.0 513 51.3 3.4 82.1 71.0

Health
Brochure

Paragraph 7 69.4 88.3 72.7 35.2 9 71.6 91.4 78.6 29.8
Page 14 72.6 75.7 77.2 42.7 20 79.3 83.1 70.8 52.6

Chapter 48 83.4 42.7 85.1 68.0 106 79.7 68.0 84.5 70.3
Full PDF 358 60.9 18.0 96.3 67.5 526 75.7 24.3 87.2 51.6

Table 2: Evaluation scores across domains, passage granularities, and prompting strategies. Qs: Average number of
questions in that level, Ans: Answerability, Cov: Coverage, NRS: Non-Redundancy Score, Ent: Structural Entropy.

CoT Yields Higher Answerability: Answerabil-587

ity (Ans) is higher under CoT prompting in nearly588

88% of test cases. The span-based prompting re-589

sults in clearer, grounded and focused questions.590

Weak Performance on Novel Domain: The591

scores across all metrics for Novel domain is no-592

tably lower. This is because, dialogues, narrative593

implicit context, and unstructured nature of novels594

complicate the extraction of factual content.595

Structural Diversity Reflected in Entropy: We596

also observe that Entropy generally increases from597

Paragraph to Chapter level across all domains and598

prompting strategies. This is expected, as larger599

content windows provide more freedom to frame600

structurally diverse questions. An exception is the601

Full PDF level, where the model’s token constraints602

limit expressiveness, suppressing potential entropy603

gains.604

Overall, Chain-of-Thought prompting shows605

strong gains in answerability and coverage, while606

Zero-Shot performs better in minimizing redun-607

dancy. Domain-specific behaviors and structural608

challenges further influence the quality of gener-609

ated questions.610

7 Summary and Conclusion 611

In this work, we present a novel, fully auto- 612

mated, deterministic, LLM-free and reference- 613

independent evaluation pipeline for document- 614

grounded question generation, assigning inter- 615

pretable scores across four axes: Answerability, 616

Non-Redundancy, Coverage, and Structural En- 617

tropy. It evaluates questions with respect to the 618

source document alone, making it highly scalable 619

and adaptable to various domains and granularities. 620

We validate our method across four diverse do- 621

mains and four levels of input granularity, compar- 622

ing Zero-Shot prompting with a Chain-of-Thought 623

(CoT) strategy that first extracts all potential answer 624

spans before question generation. Results show 625

CoT significantly improves answerability and cov- 626

erage, while revealing redundancy tradeoffs. We 627

also observe that broader contexts yield higher en- 628

tropy but may reduce coverage due to token limits. 629

Finally, strong alignment with human prefer- 630

ences confirms the reliability of our metrics, es- 631

tablishing this pipeline as a practical and insightful 632

tool for benchmarking, model development, and 633

deployment in real-world applications for scalable 634

QG evaluation. 635
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Limitations636

Our evaluation pipeline is primarily tailored for637

lower-order cognitive tasks in Bloom’s taxon-638

omy—specifically, factoid or FAQ-style ques-639

tion sets that involve remembering and under-640

standing discrete information. It does not sup-641

port assessment-oriented questions that require642

higher-order reasoning such as application, analy-643

sis, or evaluation (e.g., inference-based MCQs or644

comprehension-style questions). Although our met-645

rics are reference-free and interpretable, they do not646

account for conceptual breadth—while structural647

entropy captures WH-template diversity, it does not648

measure whether the questions span varied underly-649

ing concepts or information units. Additionally, our650

current pipeline does not handle scenarios where651

answering a question requires referring to struc-652

tured elements such as tables, charts, or figures653

embedded in the document. Lastly, while we use654

Gemini-2.0-Flash for generation, our evaluation655

pipeline is not integrated with generation models656

and does not perform joint optimization, leaving657

room for co-adaptive design in future work.658
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A Bloom’s Taxonomy and Evaluation756

Scope757

Bloom’s Taxonomy is a hierarchical classification758

of cognitive skills used to assess learning outcomes,759

ranging from basic knowledge recall to advanced760

creative tasks. The taxonomy is structured in six761

ascending levels of complexity:762

• Remember: Recall of facts and basic con-763

cepts (e.g., define, list, memorize)764

• Understand: Explain ideas or concepts (e.g.,765

describe, identify, classify)766

• Apply: Use information in new situations767

(e.g., implement, solve, demonstrate)768

• Analyze: Draw connections among ideas769

(e.g., differentiate, compare, test)770

• Evaluate: Justify a decision or position (e.g.,771

argue, critique, judge)772

• Create: Produce new or original work (e.g.,773

design, write, formulate)774

Figure 2: Bloom’s Revised Taxonomy pyramid with
verbs and descriptions for each cognitive level.

Image source: Wikimedia Commons

Our evaluation framework is designed for fac-775

toid or FAQ-style question sets that correspond776

to the two foundational levels: Remember and777

Understand. These include questions that require778

recalling factual information or explaining basic779

concepts. Higher-order cognitive tasks such as ap-780

plying, analyzing, or synthesizing information are781

beyond the current scope of our automatic evalua-782

tion pipeline. Hence, this work does not evaluate783

assessment-type questions that aim to test deeper784

reasoning, judgment, or creativity.785

B Human Evaluation and Agreement 786

Computation 787

Figure 3 provides the precise instructions given to 788

human annotators. Given the short nature of the 789

task, the annotators voluntarily agreed to partici- 790

pate without payment. 791

To validate our automatic evaluation pipeline, 792

we conducted a human study with 7 independent 793

annotators. Each annotator was presented with a 794

passage and two question sets (generated by differ- 795

ent systems) and was asked to select the set they 796

preferred based on clarity, informativeness, and 797

answerability. 798

Majority Vote: For each example, we recorded 799

the votes from all 7 annotators. The question set 800

with the majority of votes was treated as the human- 801

preferred set. If there was no clear majority (e.g., 802

tie), the example was excluded from agreement 803

analysis. 804

Pipeline Prediction: The same pairs of question 805

sets were scored using our automated evaluation 806

pipeline. For each pair, the set with the higher 807

aggregate score across metrics was selected as the 808

pipeline’s preferred set. 809

Agreement Computation: We then compared 810

the pipeline’s selected set to the majority human 811

vote. 812

• If the pipeline’s choice matched the majority 813

vote, the example was counted as an agree- 814

ment. 815

• For each metric individually, we computed 816

how many times it assigned a higher score 817

to the human-preferred question set. We re- 818

ported both the raw count and the correspond- 819

ing fraction across all examples. 820

• Finally, we counted how often the aggregate 821

score (across all metrics) was higher for the 822

human-preferred set. This overall fraction re- 823

flects how frequently the pipeline ranked the 824

human choice higher, even without access to 825

human votes. 826

For disagreement cases, we also computed the 827

mean human agreement with the pipeline-selected 828

set, capturing how controversial or borderline those 829

decisions were. 830

11

https://commons.wikimedia.org/wiki/File:Bloom%27s_revised_taxonomy.svg


Figure 3: Instruction provided to human evaluators

C Conditional Probability of831

Human-Pipeline Agreement832

To quantify how well individual human judgments833

align with our pipeline’s predictions, we compute834

the conditional probability that a randomly selected835

human agrees with the pipeline, conditioned on836

whether the pipeline agreed with the majority or837

not.838

Let:839

• Hi: the number of human annotators for ex-840

ample i (typically 5 or 7).841

• YH : the question set chosen by a randomly842

sampled human annotator.843

• YP : the question set chosen by the pipeline.844

• AGREE: event that YP matches the majority845

human vote.846

• DISAGREE: event that YP does not match847

the majority human vote.848

We compute:849

P(YH = YP | AGREE) = 0.80850

P(YH = YP | DISAGREE) = 0.43851

These represent the expected probability that852

a randomly sampled human agrees with the853

pipeline’s choice on an example, conditioned on 854

whether or not the pipeline matched the human 855

majority. 856

Condition Agreement Interpretation
Rate on alignment

Agreement 0.80 Strong
Disagreement 0.43 Mixed or low

Table 3: Conditional human-pipeline agreement rates
across examples with Hi ∈ {5, 7}.

These findings validate that, when the pipeline’s 857

overall judgment aligns with the human major- 858

ity, it does so with strong individual-level sup- 859

port—demonstrating that our evaluation metrics 860

not only reflect collective preferences but also res- 861

onate with individual human reasoning. This rein- 862

forces the reliability of our pipeline as a faithful 863

surrogate for human evaluation in practice. 864
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