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Abstract

We propose a novel ensemble method called Riemann-Lebesgue Forest (RLF) for regression.
The core idea in RLF is to mimic the way how a measurable function can be approximated
by partitioning its range into a few intervals. With this idea in mind, we develop a new tree
learner named Riemann-Lebesgue Tree (RLT) which has a chance to perform “Lebesgue”
type cutting,i.e., splitting the node from response Y at certain non-terminal nodes. In
other words, we introduce the “splitting type randomness” in training our ensemble method.
Since the information of Y is unavailable in the prediction step, weak local models such as
small random forests or decision trees are fit in non-terminal nodes with “Lebesgue” type
cutting to determine which child node should we proceed to. We show that the optimal
“Lebesgue” type cutting results in larger variance reduction in response Y than ordinary
CART (Breiman et al., [1984)) cutting (an analogue of Riemann partition) in fitting a base
tree. Such property is beneficial to the ensemble part of RLF, which is verified by extensive
experiments. We also establish the asymptotic normality of RLF under different parameter
settings. Two one-dimensional examples are provided to illustrate the flexibility of RLF. The
competitive performance of RLF with small local random forests against original random
forest (RF)(Breimanl [2001)) and boosting methods such as XGboost (Chen & Guestrin,
2016)) is demonstrated by extensive experiments in simulation data and real-world datasets.
Additional experiments further illustrate that RLF with local decision trees could achieve
decent performance comparable to that of RF with less running time, especially in large
datasets.

1 Introduction

Random Forest (Breiman, 2001) has been a successful ensemble method in regression and classification tasks
for decades. Combination of weak decision tree learners reduces the variance of a random forest (RF) and
results in a robust improvement in performance. “Feature bagging” further prevents RF from being biased
toward strong features which might cause fitted subtrees are correlated. However, the benefit of “feature
bagging” may be limited when only small proportion of features are informative. In that case, RF is likely
to learn noisy relationship between predictors and response which in the end makes RF underfit the true
functional relationship hidden in the data.

Many methods have been proposed to tackle this issue. [Heaton| (2016) proposed to rule out irrelevant features
or perform feature engineering at the beginning of fitting a RF . Another type of ideas is to adjust the way RF
selecting informative features. |Amaratunga et al.| (2008); |Ghosh & Cabrera) (2021) employed weighted random
sampling in choosing the eligible features at each node. Besides the feature weighting method, | Xu et al.| (2012)
used different types of trees such as C4.5, CART, and CHAID to build a hybrid forest. The resulted forest
performs well in many high-dimension datasets. |Zhou & Feng| (2017)) employed a sequential multi-grained
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(a)

Figure 1: Two types of function approximation.(a):“Riemann” type approximation. (b): “Lebesgue” type
approximation

scanning to discover the feature relationships. Most of those methods only deal with classification tasks. In
this paper, we fill the gap by proposing a novel forest for regression tasks named Riemann-Lebesgue Forest
(RLF) whose main idea is to exploit the information hidden in the response Y rather than the predictors
alone. In most types of tree algorithm, people approximate the regression function in the “Riemann” sense.
That means the fitted function f(x) can be written as follows:

P
f(X) = ZgRi]‘{XERi} (1)
=1

where each R; is a hypercube in feature space, yr, represents the mean value of responses lying in the region
R; and P is the total number of hypercubes partitioned. Fig gives an example of a smooth function
fitted by step functions in one dimension.

As we can see, partitioning x-axis may underfit the true function unless we keep partitioning, which means we
take the limit of step functions. Many decision tree algorithms follow this idea by choosing optimal splitting
value of optimal feature at each non-terminal node. On the other hand, we know that any measureable
function f: RP — R can be approximated by a sequence of simple functions ¢, (x), n = 1,2, .... . Equation
gives an example of simple functions:

j—1
Pn(x) j§:1 S XA +1XB, (2)
where A;, = f~Y([&F, &) for j =1,2,...,n2" and B, = f~([n, o0]).

It is now a standard analysis exercise to show that ¢, converges to f. Note that if f is finite (which is
typically a case in practice), x g, will vanish for large n. In other words, we can actually obtain the partitioned
feature space indirectly by partitioning the response space (real line) in regression tasks. For comparison,
we borrow the term in analysis and name this kind of partition procedure as “Lebesgue” type. Fig.
gives an example of approximating a function in “Lebesgue” sense. One characteristic for partitioning feature
space from response is, the shape of resulted region is not limited to hypercube, which actually enriches the
structure of trees in a forest. To overcome the limited structures learned by ordinary RF in sparse models, we
incorporate the idea of “Lebesgue” partition in constructing each decision tree. To implement the “Lebesgue’
type splitting rule as shown in Fig we can apply the CART-split criterion on response Y which is
simple but efficient. However, the information of Y is unavailable in the prediction step, weak local models
should be employed for nodes with “Lebesgue” type cutting to determine which child node should we proceed
to. See detailed discussion in section [2.2] and 2.3

)

The remaining sections of this paper are organized as following schema. In section [2| we introduce some
preliminaries and illustrate the idea of Riemann-Lebesgue Forest (RLF) in detail. In section |3} we present the
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potential of Lebesgue cutting in reducing the variance of response Y. Theoretical results such as asymptotic
normality of RLF and time complexity analysis are discussed as well. Extensive experiments are conducted
in section [4 to illustrate the competitive performance of RLF under small local random forests against other
ensemble methods. The simulation results of tuned RLF in models with a small signal-to-noise ratio and
mixture distribution are also provided. Section [f] discusses some characteristics and limitations of RLF and
proposes future directions. The R codes for the implementation of RLF, selected real datasets and the
simulation results are available in supplementary materials. All simulations and experiments are performed
on a laptop with 12th Gen Intel(R) Core(TM) i7-12700H (2.30 GHz) ,16.0 GB RAM and NVIDIA 4070 GPU.

2 Methodology

In section 2.1} we first introduce essential preliminary used in the rest of the paper. We will illustrate how to
incorporate “Lebesgue” partition and local models in constructing a CART type tree in section 2.2 Then we
apply this new type of tree to the algorithm of Riemann-Lebesgue Forest in section

2.1 Preliminary

In this paper, we only consider the regression framework where the data consist of n i.i.d pairs of random
variables Z; = (X;,Y;) € X xRyi =1,2,...,n. Let Fz be the common distribution of Z;,. WLOG, we can
assume the feature space X = [0, 1], Where d is the dimension of feature space.

The procedure of generating a Random Forest regression function from Breiman’s original algorithm can be
summarized as follows:

1. Bootstrapping N times from original dataset.
2. For each bootstrapped dataset, build a CART decision tree based on those subsamples.
3. Take the average of N built trees as the ensemble regressor.

At bootstrapping time ¢, denote (X;,,Y,), ..., (X;,,Y;, ) be a corresponding subsample of the training set, where
k is the subsampling size. If we write the correspondlng grown CART tree as T ((X;,,Y3,), .. (sz,Y ))s
then the final random forest estimator R,, evaluated at point x* can be written as:

ZT“ i Y )y oo (X, Vi) (3)

where random variables w; represents the randomness from the construction of i-th CART tree. For growing
a CART tree, at each node of a tree, the CART-split criterion is applied. my,, features will be randomly
picked as potential splitting directions. Typically my, = |d/3]. On the other hand, the structure of a single
CART tree in original forests relies on both predictors and responses in the corresponding subsample, i.e
the randomness also comes from resampling (bootstrapping procedure). By assumption in [Breiman| (2001)),
(w;)¥, are i.i.d and independent of each bootstrapped dataset.

A detailed description of the CART-split criterion is as follows. In CART, a node represents a point in
the decision making process of a CART tree. For each CART tree, we have non-terminal node where a
split point occurs and a decision is made. Terminal nodes are the nodes only having predicted values and
don’t have child nodes. Let A be a generic non-terminal node in a decision tree and N(A) be the number of
observations lying in node A. A candidate cut is a pair (j,s) where j represents a dimension in {1,...,d}
and s is the splitting point along the j-th coordinate of feature space. Since CART-split criterion in RF
focuses on splitting predictors, we can view such cutting method as the “Riemann” type splitting rule. Let
the set Cr = {(5,59) : j € {p1,-.sPmi,, }, 59 € XU} consist of all possible cuts in node A and denote

X, = (XED7 ey Xl(-d)), where the set {p1, ..., pm,,, } represents randomly picked feature index in CART, then
for any (4, s) € Cr, the CART-split criterion (Breiman et al., [1984]) chooses the optimal (j*, s*) such that
(j5,8") € argmax L(j, s)
(4,8)€CR

where
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. 1 n B 1 n ~ ~
L(j,s) = N(A) > (¥ = Ya)’1x,ea - N(A) > (Yi—Ya, Ixo o™ YAglxga‘)Zs)leieA (4)

i=1 i=1

A ={x; € A: xz(j) <si=12..,n}, Ap={x;, € A: ng)_z 5,0 =1,2,..,n}, Xz(-j) represents the j-th

dimension of i-th observation in the given node with size n and Y4,Ya,,Ya, are the averages of responses Y;
with the corresponding features are in sets A, Ay, and Ag, respectively.

2.2 Riemann-Lebesgue Tree

To implement the “Lebesgue” type splitting rule as shown in Fig we can apply the CART-split criterion
on response Y. Note that we only need to choose the optimal splitting point for Y in this case. Denote
Cr, ={(j,s) : j € {0},s € Y} be the set consist of all possible splitting points for response, then we choose
the optimal splitting point s} at node A such that

s3 € argmax L(s)
seCr,

where

~ 1 n ~ 1 n ~ ~
L(s) = N(A) > (Y= Ya)’ly,ea — N(A) D (Vi —Yi,lyvico = Vi, 1y20) 1vica (5)
=1 =1

JAp={x; €AY <si=12..n}, Ay ={x; € A:Y; >s,i=12,..n}and Ya,Ya,,Ya, are the
averages of responses Y; with the corresponding features are in sets A, Ap and Ay, respectively. As we
can see from equation and equation , the “Lebesgue” type splitting rule will go through all potential
cutting points for Y while the “Riemann” type splitting can only check part of them. We can conclude that
L(j*,s*) < L(s}).

One issue for the “Lebesgue” type splitting rule is overfitting. Suppose the response Y at A’ only takes two
distinct values, say Y =0 or Y = 1, on a node A’ . The CART-split criterion for ¥ can give a perfect split
s3 = 0.5 under some appropriate sets of Cr,. In other words, we will have L(s*) = ﬁ Z?:l(Yi—}_/A/)QlyieA/.
This phenomenon restricts the potential application of “Lebesgue” partitioning in classification task.

)

To overcome the potential overfitting from the “Lebesgue” type splitting, we apply “Riemann” and “Lebesgue’
splitting in a hybrid way. Since we will eventually construct an ensemble learner from Riemann-Lebesgue
trees, it’s acceptable to introduce a Bernoulli random variable B to determining splitting types at each
non-terminal node A. More specifically,

L(s7)

B ~ Bernoulli(p), p=— -
L(j*, %) + L(s1)

If B =1, the “Riemann” type splitting will be employed, and vice versa. The reason why we define p as above
is to control the number of nodes taking “Lebesgue” type splitting. We already seen that L(j*,s*) < L(s}),
so it’s expected that there won’t be too many “Lebesgue” type nodes and p will play a role of regularization.

Another issue for the Riemann-Lebesgue Tree(RLT) is the prediction. When a testing point (x,y) falls into a
non-terminal node with “Lebesgue” type splitting of a trained RLT, we are not allowed to use the information
of its response y. That enforces us to estimate the value of response locally so that we can compare the
locally estimated response with s} and determine which child node should that testing point proceed to.
Linear regression is one of the candidates for the local model. However, it is unstable when the sample size is
relatively small. Another choice is the K-Nearest Neighborhood algorithm (KNN). However, the performance
of KNN relies on the distance function we used which can be unstable in high-dimensional cases.

In this paper, we choose small random forest (with few subtrees) as the local model to obtain an estimate
of the response value of a new incoming point since the random forest is parameter-free and robust for
small sample size. When we set the number of subtree be 1, the local random forest reduces to the local
decision tree. Experiments in Table implies that local decision tree is good enough in practice. However,
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introducing local models can complicate the interpretation, implementation and analysis of RLF, which can
be a potential limitation and will be discussed in detail in section [5] We believe that there exist more efficient
local models, which is our future work. Algorithm [T summarizes the procedure of fitting a Riemann-Lebesgue
Tree where local random forests are employed in non-terminal nodes with “Lebesgue” type cutting. To our
best knowledge, this is the first type of base learner exploring information directly from response.

Algorithm 1 Riemann-Lebesgue Tree (Fitting)

Require: Training data D, = {(X;,Y;),7 = 1,...,n}. Minimum node size Myode. Miry € {1,2,...,d}. Let
N(A) denote the number of sample points at node A and A is the root of the tree at the beginning.

Mjocqr is the number of trees used in local random forests.
1: if N(A) > M, 04 then

2: Select My, C {1,2,...,d} of cardinality my,, without replacement uniformly.

3: Perform CART-split criterion among the selected features, and obtain j*, s*, L(j*, s*).
4: Perform CART-split criterion with respect to Y; € A, and obtain s7, i(sz)

5: Calculate p = #ﬁrg(%) and sample B ~ Bernoulli(p).

6: if B =1 then

7 Cut the node A according to j*, s*. Denote Ay, and Ag as the two resulting nodes.
8: Repeat steps 1 — 14 for nodes Ay, and Ag.

9: else

10: Cut the node A according to s}. Denote Ap and Ay as the two resulting nodes.
11: Fit a local random forest with Mj,.q; trees w.r.t points in current node A. Call it RFjocq-
12: Repeat steps 1 — 14 for nodes Ap and Ay .

13: else

14: Set the current node A as a terminal node.

15: Return: A collection of nodes and fitted CART-splitting rules

Algorithm 2 Riemann-Lebesgue Forest prediction at x

Require: Original Training data D,, = {(X;,Y;),i = 1,...,n} with X; € [0,1]?. Minimum node size M,,qe,
Miry € {1,2,...,d}. Number of trees M > 0, Number of trees used in local random forests Mjoeq; > 0,
ke{l,2,..,n} and x.

1: fori=1to M do

2: Select k points (X;,,Y:,), ..., (Xi,, Y;,) without replacement from D,,.

3: Use selected k points to ﬁt a Riemann-Lebesgue Tree described in Algorithm [1] Hyperparameters
such as Mpode, Miry of RLE are shared with each Riemann-Lebesgue Tree.

4: if node A is a non-terminal node with Riemann type cutting then
5: Suppose the optimal splitting direction is j* and optimal splitting value at j* direction is s*.
6: if xU) < s* then
7 We send x to Ay, and repeat steps 4-15 until x arrives at a terminal node
8: else
9: We send x to Ar and repeat steps 4-15 until x arrives at a terminal node
10: if node A is a non-terminal node with Lebesgue type cutting then
11: Suppose optimal splitting value of response is s7 and the fitted local random forest with M;scq;
subtrees is RF}cq-
12: if RFlocal(X) < Sz then
13: We send x to Ap and repeat steps 4-15 until x arrives at a terminal node
14: else
15: We send x to Ay and repeat steps 4-15 until x arrives at a terminal node

16: Denote the averaged Values of Y/s falling in the terminal node of x as H,(c“”)((X Yi)seon( Xy, Y5,))-

11 (278

17: Return: RLF)(x) = 37 ZM H(wl)((X“,Y )y -y (X5, Y5, ), which is the final predicted value of x
from Riemann-Lebesgue Forest.
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2.3 Riemann-Lebesgue Forest

Once we establish the way to build a Riemann-Lebesgue Tree, the ensemble version follows immediately.
Following the spirit in [Breiman| (2001, we build M trees from different subsamples. Each tree is grown as
illustrated in Algorithm |1} We employ sampling without replacement (subagging) in ensembling part. The cor-
responding procedure of predicting x value from a Riemann-Lebesgue Forest (RLF) is described in Algorithm
P2l Note that in Algorithm[2] the fitting of local models only relies on subsamples (X;,,Y;,), ..., (X;,,Y;, ). Thus

119 (7R

we can denote the prediction from ¢-th RLT as function H. (wl)((X Yi)s -, (X4, Yi,)) where randomness w;

21 1k
comes from feature bagging and the random choice of “Riemann” type Cuttlng and “Lebesgue” type cutting.

3 Theoretical analysis of RLF

For the sake of theoretical analysis, we give a theoretical version of Riemann-Lebesgue Forest. Suppose
(Z1, ..., Zy,) are i.id from a common underlying distribution F, where Z; = (X;,Y;). Let 1) be the random
kernel corresponding to the randomness w; induced by ¢-th subsample E|, where (w;)?_; are i.i.d with F,, and
independent of each subsample. Denote N as subagging times and &k as subagging size. Since we uniformly
samples k distinct data points with replacement, the incomplete U-statistic with random kernel (See detailed
explanations in Appendix at the query point x is

Unk:NoJ Zh(w(l)) ""Zik)

1 Wi
= x> —h(x 7, Z,)

(Z) (n,k) p

where p = N/(}}) and vector

1 1 )
TN TN
GG
Note that in asymptotic theory, both N and k can rely on sample size n. We first show Lebesgue cuttings
induce smaller Ly training error than Riemann cutting in section [3:I]In section [3.2] we further give the
convergence rate of the asymptotic normality of RLF. To see the time efficiency of RLF in different sizes of
data, a complexity analysis is given in section Since the Lebesgue part of each Riemann-Lebesgue Tree is
essentially splitting the response Y with CART-criterion, many consistency results for traditional RF can be

applied to RLF directly. We provide a version of consistency adapted to RLF according to the results of
Scornet et al| (2014) in Appendix D}

W = Wn,.., W(ﬁ)) ~ Multinomial (N,

3.1 Variance reduction of response Y by Lebesgue cuttings
In section we conclude that L(j*,s*) < L(s}) for each partition in constructing a Riemann-Lebesgue
Tree. Theorem [B.] formalizes the above conclusion.

Theorem 3.1. Let the regression function be Y = f(X)+e ,where X € R?, Y € R and f is a bound measurable
function and € is an independent noise term. Under the procedure defined in equatian and equation (@ let
Ay ={Y >a*}, A5 = {Y < a*} be the optimal Lebesgue cutting and Bf = {XU") > b*}, B = {XU") < b*}
be the optimal Riemann(CART) cutting ,then we have:

Var(Y) — Var(Y1a;) — Var(Y1ay) > Var(Y) — Var(Y1p;) — Var(Y1g;)

where 14+, 14z, 1p:, 1p: are indicator functions for event Ay, A3, By, B3, respectively.

1More specifically, the randomness of a Riemann-Lebesgue tree given a fixed subsampling comes from the feature bagging
and random choice of Riemann type cutting and Lebesgue type cutting.
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In other words, the variance reduction of response Y induced by the optimal “Lebesgue” type cutting will be
greater or equal to that of optimal “Riemann” type cutting. It follows immediately that for a given training
set, a RLT will have smaller Ly training error than a ordinary CART tree given other tree parameters are
the same. According to the bias-variance decomposition, RLF is expected to have smaller mean squared error
than RF after the ensembling step. Real-world data experiments in section [4] verify this conjecture. The
proof of Theorem [3.1]is based on a variance decomposition formula.

3.2 Convergence rate of the asymptotic normality

Peng et al.| (2019) provided sharp Berry-Esseen bounds for of RF under the Bernoulli sampling (Chen &
Katol [2019). The main idea follows from the Stein’s method (Chen et al., 2010) and Hoeffding decomposition
(Vaart, [2000). Getting inspired by the results in [Peng et al.| (2019) and Mentch & Hooker| (2016, we derive
improved Berry-Esseen bounds of RLF for small-N settings (i.e, relatively small number of trees in RLF)

where lim & = « and @ > 0 or co in Theorem [3.2

Theorem 3.2. Suppose Z1, ..., Z, il Pz and U, i N 15 defined as in equation (@ with random kernel
W) (Zy, ..., Z). Denote 6 = E[h(Zy, ..., Z;w)]. Let G = var(h(Zy, ..., Zy;w)), Crw = Elg?(Z1)] where
9(z) = E[h(2,Za, ..., Zy;w)] — 0. And p = N/(}). Denote o, = . If (p < 00,(1,0 > 0,0 < 1o < 1/2 and
E[|h — 0|*™]/E2[|h — 6|™] is uniformly bounded for m = 2,3, we have the following Berry-Esseen bound for

Umk,N;w:
1/2
el L)
=g
1/3 3
N Elh — 0| 7
A +<n> Y NEEh—opE

1
I (1-p)Ck]>
N2mo k2€1,w
where C' is a positive constant and ®(z) represents the cumulative distribution function (CDF) for a standard
normal distribution.

(\/N(Un,k,N;w —9) < z) —@(2)
N

supzer|P

The proof follows the idea in (Peng et al.| [2019)) which decomposes the generalized incomplete U-statistic as
a sum of complete U-statistic and a remainder. See Appendix [G] for details. Two asymptotic results can be
induced from inequality :

LI 0 < a = limay, < oo and ez — 0, then YAWnkrw—0) 4 Ng 1)

1, VE2C 1w/ at+Cr

n VNUnk.niw—0) d
Nookze,, 0 0s then YN (Ut N0 —6) \/%: ) 4 N(0,1).

2. If lim a,, = 00 and
where we implicitly assume that lim, . (i # co. More generally, if k/n — 0,k%/n — oo and N — oo,
the asymptotic normality still holds under some conditions on moments of h. In summary, Theorem
generalizes the results in [Mentch & Hooker| (2016)); [Peng et al.| (2019)); |Ghosal & Hooker| (2021 by directly
assuming the resampling scheme is sampling without replacement and providing sharp Berry-Esseen bounds
for asymptotic normality of RLF. Unlike the bounds in [Peng et al.| (2019)), inequality provides one
extra term which comes from the difference between uniformly sampling without replacement and Bernoulli
sampling (See Appendix. It is worth mentioning that the asymptotic results in small-N setting provide
a theoretical support for people employing less number of base learners as long as the subsample size k is
appropriately designed.

3.3 Complexity analysis

The essential difference between RLF and RF is, a local RF is randomly determined to be fitted at certain
nodes of each CART tree. Whether a local RF is fitted relies on a Bernoulli random variable. To analyze the
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computation time for fitting a RLF, we assume that a local RF will be fit at each non-terminal node of a
RLT.

We borrow the notations used in Algorithm [[]and Algorithm [2] In the best case of balanced tree, the time
flexibility of building a CART tree is O(myy, - n - logon) (Trevor Hastie & Friedman), [2009). If the optimal
splitting leads to the extreme imbalanced cutting, the worst time flexibility would be O(myy,, - n?) where the
tree depth is n.

In the best case of building a Riemann-Lebesgue Tree, we have the following recursion relation

n
T(n) = 2T(§) + O(Miocal - My - 1 - logyn)

where T'(-) is a measurement of the runtime of a Riemann-Lebesgue Tree. By the limited fourth case in
Master theorem (Cormen et al., 2009), T'(n) = O(Miocai - Mitry - 1 - loggn). Then the best time complexity of
RLF is O(M - Mjpcar - Miry - 1 - logan), which has polylogarithmic runtime. With similar argument, we can
see the worst time complexity of RLF is O(M - Mjocal - Miry - n? -logyn).

In summary, we observe that the exact difference in complexity in best and worst comes from the factor
Miocar - logon. This implies that the difference of complexity between classical RF and RLF increases when
the size of dataset n or the number of local trees Mj,.,; increases. Table [S5]in Appendix [E] compares the
time efficiency and prediction performance of RLF with Mj,..; = 1 and traditional RF in many datasets.
The empirical results show that RLF performs better than RF in general and requires less running time,
especially in large datasets. And Table[S6 | compares the training time of RLF and RF on a simulated dataset
with increasing sample size. The results show that the RLF with local decision trees is indeed much more
efficient than the RF in large sample size. The possible reason is the efficiency of Lebesgue splitting, which
only scans the response instead of screening randomly selected features. In this sense, the scalability of RLF
with efficient local models is acceptable than RF. Those observations promote the potential of RLF. How to
implement RLF in parallelization to speed up training and prediction is one of our future directions.

4 Experiments

4.1 Sparse model

To explore the performance of RLF in sparse model, we consider the following regression model in (Trevor Hastie
& Friedman, 2009):

5 35
Y =10- He_QX? +ZX]‘ +e, e~ N(0,07)
j=1 j=6

where X is the j-th dimension of an observation X. The response Y € R and random sample X will be i.i.d
and uniformly distributed on the 100-dimension unit cube [0, 1]*°. In this case, the effective dimension is 35.
And o is set to be 1.3 so that the signal-to-noise ratio is approximately 2. Fig. [2] summarizes the testing
MSEs for RLF and RF as functions of different hyperparameters. As we can see, given data-driven p, RLF
outperforms RF in almost all settings. See detailed experiment settings and analysis in Appendix

4.2 Real Data Performance

We used 10-folds stratified cross-validation E| to compare the performance of RLF and RF on 30 benchmark
real datasets from Fischer et al.|(2023). The size of datasets ranges from five hundred to nearly fifty thousand
observations. For time efficiency and consistency, we set the number of trees in RLF and RF to be 100
and subtrees in local RF in Lebesgue part of RLF to be 10, i.e Mjocq=10. See Appendix [A] for the detail
of datasets and statistical significance tests employed. We observe that RLF reaches roughly the same
mean-squared-error as RF for most datasets and outperforms RF in 20 datasets where eight of them are
statistically significant. The binomial test for win/loss ratio of RLF also shows that RLF does better job
than RF statistically.

2That means stratified sampling method was employed to ensure the distribution of response is the same across the training
and testing sets
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Figure 2: Test MSEs for RLF and RF. (a) Test MSE as a function of Number of trees, (b) Test MSE rate as a function
of Number of local trees, (c) Test MSE as a function of Number of noisy variables, (d) Test MSE as a function of
Subagging ratio.

Table 1: Mean squared error and corresponding 95% margin of error (based on 10-folds cross-validation) for Riemann-Lebesgue
Forest(100,10) vs.Random Forest(100)

Dataset RLF(100,10) RF(100) \ Dataset RLF(100,10) RF(100)

FF 4205.21 £5612.77 4303.31:£5432.01 CPU 5.7240.63 5.9240.59
SP 1.90:£0.87 1.88+0.82 KRA 0.0188 +0.00062* 0.0214 £0.00059
EE 1.25840.32 1.26240.35 PUMA 4.97e-4 +1.38e-5* 5.14e-4+1.67e-5
CAR 5374313 +£787019.9 5390741 £840508.3 GS 1.2e-4 +4.06e-6* 1.5e-4£4.71e-6
QSAR 0.7568+0.14 0.759440.13 BH 0.01 +0.01 0.01140.012
cCs 28.3444.87 28.19 £4.09 NPP 5.97e-7+6.84e-8 6.5e-74+9.10e-8
socC 587.874205.53 565.08 +204.29 MH 0.0240.00093* 0.022 £0.0011
GOM 240.67+38.74 247.61439.16 FIFA 0.5775:£0.026 0.5796:£0.024
SF 0.66+0.21 0.67 £0.2 KC 0.04140.0013 0.037+0.0013*
ASN 11.87 +1.28* 13.02£1.30 suC 83.164+2.26 82.38+2.27
WINER 0.3319-:0.034 0.3299 +£0.035 CH 0.056-£0.0026* 0.059-£0.0026
AUV 8073182+-1513348* 9368024+833367.9 HI 217.64£4.91 212.12+4.42*
SG 0.0136740.0045 0.01364+0.0046 CPS 0.2766+0.0077 0.277240.0068
ABA 4.63 £0.54 4.58+0.56 PP 11.94:+0.16* 12.09+0.13
WINEW 0.36700.021 0.3612:£0.022 SA 6.131+0.16 6.26:0.21

*The better performing values are highlighted in bold and significant results are marked with "*".

4.3 Tuning of Splitting control probability p

Instead of using data-driven p, we can set the control probability p as a tunable parameter when constructing
a RLT. That is to say, we set p be a fixed value for all nodes in a RLT. For instance, under the same sparse
model defined in section Fig indicates that the sparse model favors more “Lebesgue cuttings”ﬁ
This is consistent with the intuition that noisy variables weaken the effectiveness of “Riemann” cutting. In
this section, we provide two one-dimensional examples to illustrate the flexibility of RLF with tuned p. One
is designed to have small signal-to-noise ratio. The other is a mixture model with prior probability where we
anticipate that RLF will perform better because of nature the Lebesgue type cutting. Test MSEs of RLF
as functions of p in Fig([S4(a) | and [S4(b) | exhibit the potential benefit of tuning control probability p. See
details of tuning procedure in Appendix [H]

3Since RF doesn’t have parameter p so the Test MSE curve of RF is a constant function w.r.t p
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Figure 3: (a) Testing MSEs for RLF and RF as functions of control probability p. Orange points in (b) and (c)
represent test samples generated by two models. Blue solid lines are the underlying functions; Green lines are the
predicted curves for optimal RLFs while the red lines are the predicted curve of optimal RF in two examples.

Example 1: Small signal-to-noise ratio

Figure demonstrates the predicted regression curves from tuned RLF and tuned RF in one-dimensional
case. Our synthetic model is based on the sine function used in |Cai et al.| (2023):

Y =sin(16X) +¢, &~ N(0,07)

where X ~ Unif[0, 1] and ¢ = 1. Predicted curves in Fig[3(b) |show that tuned RLF is robust to relative high
level of noise and it is capable to identify the pattern in response while traditional RF is too conservative in
this case. Table[S7|in Appendix [H]lists validation MSE of top 10 models with tuning parameters for RF and
RLF. Based on the top 10 models, we can see RLF generally outperforms RF in this case. Indeed, the testing
MSE under best RF is 1.283 while the testing MSE of best RLF is 1.018 (See Table in Appendix [H] ).
Another interesting phenomenon is , when the noise level is high, RLF prefers using more Riemann type
cuttings to achieve better performance as top 5 tuned RLFs in Table [S8] have relatively large value of p.

Example 2: Mixture model with prior probability

In second example, we consider a mixture model as follows:

(8)

5X +¢ if C=1
10+5X+¢e if C=2

where X, & Bt N (0,1) and the random variable C' is uniformly distributed on {1,2}. To generate an
observation of response, we first randomly pick a value of state variable C' from {1,2} and generate Y
according to the model defined in equation . In this way, Y will follow a mixture Gaussian distribution.
Figure illustrates that RLF is capable of capturing the complicated distribution of response with the
help of Lebesgue cuttings, while traditional RF fails in detecting the complex pattern in response.

Similarly, Table [SO Jin Appendix [H] lists validation MSEs of top 10 models with tuning parameters and the
testing error of best RLF (29.87) is smaller than that of best RF (35.17) showing that RLF also beats RF in
this case. It is worth mentioning that Table [S9] gives us a clue that when response Y has mixture distribution,
RLF favors more Lebesgue cuttings since top 5 tuned RLF models tend to employ relatively small value of p.

4.4 Extra experiments of RLF with tuned 5

We perform extra experiments on 26 datasets listed in Table[I] to show the strength of RLF after parameter
tuning. Four large datasets are excluded due to the time efficiency of parameter tuning. Table [2] shows that
tuned RLF still outperforms tuned RF in many real-world datasets and wins more often than in original
experiments. More specifically, tuned RLF wins in 23 datasets among which 12 of them are statistically
significant. See Appendix [[| for detailed settings for tuning process.
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Table 2: Averaged MSEs and 95% marginal errors for Best RLF and Best RF

Dataset Best RLF Best RF ‘ Dataset Best RLF Best RF

FF 4221.49 +£9191.91 4376.2948922.14 ABA 4.661+0.39 4.63+0.38
SP 1.78 +0.78 1.98+0.73 WINEW 0.398+0.025 0.40340.0264
EE 0.54 +0.29* 1.50+0.35 CPU 5.67+0.58* 6.154+0.43
CAR 5194266 +1287865 562232711482889 KRA 0.019+0.0008* 0.02440.0013
QSAR 0.79 +0.10 0.80+0.13 PUMA 0.00048+1.35e-05* 0.0005341.82e-05
CCS 27.11 £3.52%* 37.23+£7.0 GS 0.00011+7.95e-06* 0.0001648.07e-06
SOC 405.63+376.21 621.754+528.39 BH 0.0061+0.0032 0.0069+0.0040
GOM 255.49+56.60 263.161+64.10 NPP 7.79e-07+1.96e-07* 1.08e-06+1.95e-07
SF 0.6740.19 0.62+0.21 MH 0.021+0.0017* 0.023+0.0012
ASN 5.67+1.07* 14.144+2.00 FIFA 0.578+0.011 0.58140.010
WINER 0.347+0.026 0.34940.026 SUC 89.67+11.40 91.80+10.36
AUV 4192163+1236743* 9878887+1670280 CH 0.056+0.018* 0.06240.019
SG 0.01374+0.0049* 0.014340.0049 CPS 0.27940.0061 0.27+0.0060

The better performing values are highlighted in bold and significant results are marked with

4.5 Comparison with Boosting methods

wkn

To see the potential of RLF among various tree-based models, we conducted experiments comparing the
testing MSE(10-folds cross-validaiton) of RLF, GradientBoosting(GB)(Irevor Hastie & Friedman) [2009) and
XGboost(Chen & Guestrin, [2016). The number of base tress in GB and XGboost are 1000 and the subagging
ratio is 0.8. Other parameters are set by default. The number of RLTs is 100 in RLF and M, = 10 for
local RFs in RLF. The control probability p = 0.8. Table [3|shows that RLF is comparable to XGboost in
general and RLF outperforms GradientBoosting in most cases. The competitive performance of RLF in large
datasets further illustrates the potential of RLF.

Table 3: Testing MSEs and 95% marginal error for RLF, GB and XGboost

Dataset #Observations #Features RLF(100,10,0.8) GB(1000,0.8) XGboost(1000,0.8)
FF 517 11 4293+5527.51 4694.784+5363.52 6624.4245518.72
SP 649 31 1.76+0.79 2.13+0.90 2.2740.90

EE 768 9 0.74£0.27 1.0940.22 0.09+£0.03

CAR 804 18 4916065+776998.4 8781409+1181857 58022331+988893.7
QSAR 908 7 0.75+0.13 0.85+0.13 0.974+0.17

CCS 1030 9 23.73+4.28 28.8743.68 20.05+8.49

SOC 1056 6 422.94+164.72 460.71£135.03 325.54+167.66
GOM 1059 117 240.13+28.46 266.72+37.29 269.68+24.96

SF 1066 11 0.714+0.20 0.61+0.19 0.954+0.18

ASN 1503 6 6.95+0.79 20.9442.25 1.584+0.39
WINER 1599 12 0.32+0.13 0.41£0.038 0.384+0.04

AUV 2043 8 4324542+711281.7 27726483+1730233 155060.71+38776.38
SG 3107 7 0.013£0.005 0.016+0.005 0.012+0.003
ABA 4177 9 4.6+0.58 4.79+0.43 5.761+0.65
WINEW 4898 12 0.36+0.02 0.50£0.03 0.440.02

CPU 8192 22 5.454+0.49 6.254+0.47 6.001+1.45

KRA 8192 9 0.01740.0008 0.04£0.0008 0.016+0.0007
PUMA 8192 33 0.00047+0.0008 0.0011240.0008 0.0005640.0007
GS 10000 13 0.0001143.81e-6 0.0003+9.69e-6 8.97e-5+2.42e-6
BH 10692 10 0.014+0.01 0.0144-0.008 0.004+0.006
NPP 11934 15 4.81e-7+5.12e-8 3.9e-5+1.44e-6 8.67e-7£8.11e-8
MH 13932 16 0.02+0.0009 0.03240.0017 0.02340.001
FIFA 19178 29 0.57+0.026 0.60+0.025 0.6140.027

SUC 20263 82 82.18+6.60 286.64+8.78 94.10+5.62

CH 20460 9 0.05340.0026 0.13+0.003 0.052+0.0027
KC 21613 22 0.03640.0012 0.055+0.0015 0.028+0.0001
HI 22272 12 226.824+4.39 220.68+3.68 220.424+5.12
CPS 28155 7 0.277+0.004 0.2824-0.0047 0.283£0.0054

PP 45730 10 11.594+0.21 28.60+0.32 15.1240.25

SA 48933 22 5.344+0.074 68.55+£2.47 7.7240.23

The best performing values are highlighted in bold.
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4.6 Ablation study with feature selection

To see how much gain comes from using response Y to guide splits instead of filtering noisy features, we
conducted extra comparisons between RLF and two-stage RF where we first do a feature selection to remove
most noisy features and then fit a RF. In the feature selection part, we follows the strategy of taking the top
30% important features based on variable importance score from a fitted RF. The other training details follow
Appendix [E] for the sake of time efficiency. The results summarized in Table in Appendix [J] illustrates
that the original RLF still outperforms RF(with feature selection) in most real datasets and if we apply the
same feature selection method to RLF, the performance of RLF will be better than that of RF as well, which
another strong evidence of the superiority of RLF.

What’s more, in sparse model example (section |4.1)), we took the top 35 most important features through
variable importance score. The 10-fold cross-validation testing MSE of RLF is less than that of RF with
feature selection which strengthens the advantage of RLF. See Table in Appendix [J]

5 Discussion and Limitation

Theorem [3.1] has shown the benefit of Lebesgue cutting in reducing the Lo error of RLF. Section [£.3] further
demonstrates the flexibility of RLF in many complicated models and real world datasets with tuned p. The
asymptotic normality in section [3|is useful for statistical inference such as confidence intervals and hypothesis
testings (Mentch & Hooker} 2016). It’s possible to obtain a Berry-Esseen bound of RLF in large N-setting by
similar arguments. However, this bound can be worthless in practice as it’s requires N > n and we decide
not to pursue it in this paper.

Although the experiment results show that tuned p is superior than data-driven p, the cross-validation tuning
process is less time efficient than data-driven methods in large datasets. How to choose the optimal value of
P is an interesting problem. On the other hand, we employ a Bernoulli random variable to determine the
splitting type at each non-terminal node. It’s possible that there are other better regularization methods to
control the overfitting resulted from Lebesgue splitting. Connecting RLT with boosting would be another
riveting direction as RLT is essentially a new kind of base learner in ensemble methods.

Developing a more efficient local model for RLF would benefit RLF in large datasets. As we discussed in
section the time efficiency of current RLF can be improved by employing less number of subtrees in local
forest and setting larger value of control probability p so that each RLT won’t perform too many Lebesgue
splittings. For example, if we set Mj,.; = 1, that is, we employ a local decision tree as the local model in
RLF, the results in Table still demonstrate that RLF could achieve comparable testing MSEs with less
running time, especially in large datasets, which illustrates the potential of RLF under efficient local models.

Readers may view the use of Riemann-Lebesgue Tree as counterintuitive if the local models (e.g local forests
or local decision tree) can estimate response Y precisely. However, the local models don’t have to be as good
as the RLF or RLT since we only require the local models to indicate the direction, not the precise prediction
of new points. What’s more, when the response is complicated, as indicated in example 2 (mixture model with
prior probability), we can employ more Lebesgue type splittings in RLF to partition the range of response Y.
As a result, the local distribution of Y becomes simpler, which will relax the requirement of the precision
of local models. The flexibility of RLF comes from the control probability p, which controls the number of
Lebesgue type splittings in each RLT and can be tailored to different cases. However, we confess that the
introduction of local models in the prediction part of RLF can complicate the interpretation, implementation
and analysis of RLF. This is a potential limitation of our method. Theorem [3:1] only discusses the variance
reduction in training data. As for the generalization error of RLF, we need to derive the variance of individual
RLT according to the bias-variance decomposition formula proposed by |Louppe, (2015)), which is complex
due to the local models. Deriving the generalization error of RLF and simplifying the implementation and
interpretation of RLF would be our future works.

In more general scenarios, how to cope with possible missing values deserves deep inspection since RLF
replies heavily on the information from all variables and it’s possible that the prediction of local RF in RLF
could be misled by missing values. Actually, in practice, we can perform imputation by rough average/mode,
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or by an averaging/mode based on proximities during the data preprocessing. Table in Appendix
illustrates the promising performance of RLF with simple median imputation strategy in two real datasets
with missing values as described in [Fischer et al.| (2023). How to further generalize the implementation of
RLF in missing value cases is one of our future work and is out of the scope of our current paper.

Broader Impact Statement

In summary, this paper aims to provide new ideas in designing base tree learners. We analyze few theoretical
properties of RLF. which should have no societal impacts. As to the application of RLF in regression tasks,
we think most possible impacts may come from the ethics of datasets. It’s possible that some public datasets
be biased during data collection process. For example, information from minority may be inappropriately
ignored or processed. In this sense, users should be careful in selecting datasets. In our paper, all datasets
used in experiments are available on openml (Fischer et al., [2023)
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Appendix

A Data preparation and statistic tools used in real data experiments

Table [S4] summarizes the datasets we used in experiments. Note that there are 35 datasets in original
benchmarks. We didn’t perform comparison on the datasets with the number of instances more than 50,000
since the complexity of RLF is relatively higher than RF. We also excluded datasets with missing values
whose results might be unfair. We took logarithm transformation for some datasets to alleviate the impact of
skewness. As described in Algorithm [2] we set the subagging ratio to be 0.632, which should have the same
efficiency with bootstrapping (Efron & Tibshirani, [1997))

Table S4 : Real datasets used for the experiments,sorted by size

Dataset Observations  Numerical features  Symbolic features  Log transformation
Forestfire (FF) 517 9 2 No
Student performance (SP) 649 14 17 No
Energy efficiency (EE) 768 9 0 No
Cars(CAR) 804 18 0 No
QSAR fish toxicity (QSAR) 908 7 0 No
Concrete Compressive Strength (CCS) 1030 9 0 No
Socmob(SOC) 1056 2 4 No
Geographical Origin Of Music (GOM) 1059 117 0 No
Solar Flare (SF) 1066 3 8 No
Airfoil Self-Noise (ASN) 1503 6 0 No
Red wine quality (WINER) 1599 12 0 No
Auction Verification (AUV) 2043 7 1 No
Space Ga (SG) 3107 7 0 No
Abalone (ABA) 4177 8 1 No
Winequality-white (WINEW) 4898 12 0 No
CPU Activity (CPU) 8192 22 0 No
Kinematics of Robot Arm (KRA) 8192 9 0 No
Pumadyn32nh (PUMA) 8192 33 0 No
Grid Stability (GS) 10000 13 0 No
Brazil Housing (BH) 10692 6 4 Yes
Naval propulsion plant (NPP) 11934 15 0 No
Miami housing (MH) 13932 16 0 Yes
Fifa (FIFA) 19178 28 1 Yes
Kings county (KC) 21613 18 4 Yes
Superconductivity (SUC) 20263 82 0 No
Califonia housing (CH) 20460 9 0 Yes
Health insurance (HI) 22272 5 7 No
Cps88wages (CPS) 28155 3 4 Yes
Physiochemical Protein (PP) 45730 10 0 No
Sarcos (SA) 48933 22 0 No

We employed a corrected resampled t-test (Nadeau & Bengiol 2003} [Landwehr et al., [2003)), to identify whether
one method significantly outperforms another at 5% significance level. This test rectifies the dependencies of
results induced by overlapped data points and has correct size and good power. The corresponding statistic is
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where V is the number of validation experiments performed (ten in our case), r; is the difference in MSE
between RLF and RF on ¢-th fold. & is the sample standard deviation of differences. nq is the number ofdata
points used for training and nqis the number of testing cases. In our case, ns/n; = 1/9 since we used 10-folds
cross-validation.

B Experiment details in sparse model

There are 1000 training cases and 500 test observations. Each subplot in Figure [2] illustrates the curves of
mean squared error for RLF and RF, as functions of a single hyperparameter. The default setting for RLF
is M = 100, Mjpeqr = 10, a0 = 0.632, M,,0qe = 5. Same setting except Mj,cq; applies to RF. To obtain, for
example the test MSE as a function of number of global trees, we set M = 1,2, ..., 500 while other parameters
remain the same with default setting. Similar strategy was applied to the other three hyperparameters we
are interested.

In Fig2(a) | we let RLF and RF share the same the number of trees. We observe that the test MSE for RLF
decreases more than that of RF as the number of trees increases. In Fig RF is fitted under default
setting while we only changed the number of local trees used in local random forest of RLF. As we can see,
large number of local trees indeed benefits the performance of RLF. On the other hand, in order to control
the computation time burden, the number of local trees should not be too large. Fig implies that
increasing the number of noisy variables in the regression model will impair both the performance of RLF
and RF. Nevertheless, RLF always outperforms RF, which is anticipated. To see the impact of subagging
ratio on RLF, we first controlled the result from ordinary RF under default setting and increased subagging
ratio, which determines the subsample size in RLF, from 0.4 to 1. The test MSE curve for RLF in Fig
indicates that even a small subagging ratio could generatea decent result. We can therefore set the subagging
ratio relatively small to make RLF efficient.

C Incomplete U-statistics

Before give the definition of incomplete U-statistics, we first give a brief introduction of U-statistics. We
borrow notations from (Vaart],|2000). Suppose we have i.i.d samples X7, ..., X;; from an unknown distribution,
and we want to estimate a parameter 6 defined as follows

9 = Eh(X1, ..., X,)

where the function A is permutation symmetric in its r arguments and we call h as a kernel function with
order r. Then a U-statistic with kernel h is defined as

1
U= Y h(Xp, o Xp,)
(r) ﬁ

where the sum is taken over all all unordered subsets 8 with r distinct elements from {1,...,n} .

Note that the U-statistic is an unbiased estimator for § and has smaller variance than a single kernel h. In
practice, it’s unrealistic to average all (:}) kernels (trees). To make U-statistics more useful in applications,
we can define an incomplete U-statistic which utilizes smaller number of subsets as follows:

N
1
Un,T’N = N Zl h(Xﬂhm,X/sr)
=
when N = (), we obtain a complete U-statistic.
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When the total number of subsamples of size r taken from a sample of size n is large, it may be convenient
to use instead an ‘incomplete’ U-statistic based on N suitably selected subsamples. Asymptotically, it can
be shown that an incomplete U-statistic may be asymptotically efficient compared with the ‘complete’ one
even when IV increases much less rapidly than the total number. See more explanations and applications
for complete/incomplete U-statistics in (Vaart], 2000; Leel |1990; |[Peng et al., 2019; (Chen et all [2010). In a
Riemann-Lebesgue Forest, each tree can be viewed as a random kernel since it is permutation symmetric
w.r.t inputs. The randomness of the kernel comes from feature bagging and subsampling and cutting types.
Similar definition can be applied to RF as well.

D Consistency of RLF

Based on the results from (Scornet et al., [2014), it’s relatively easy to derive the consistency of RLF under
an additive regression model as follows:

Y:zp:mj(Xj)+€ (9)

where X = (X4, ..,X,) is uniformly distributed over [0, 1]?, the noise € ~ N (0, ¢?) has finite variance and is
independent of X. Each component function m; is continuous.

When there are only S(< p) effective dimensions of the model, the sparse version of equation |§| becomes

S
Y = Zm](XJ) +e€
j=1

which is exactly the condition where RLF may perform better. Therefore the additive regression model is a
good framework for studying the consistency of RLF. Since the Lebesgue part of each Riemann-Lebesgue
Tree is essentially splitting the response Y with CART-criterion, many consistency results for CART can be
applied to RLT directly.

For example/Breiman et al.| (1984) proved the consistency of CART under the assumptions of shrinking
diameter of cell partition and lower bounds of empirical distribution of X. |Scornet et al.| (2014) shown the
consistency of RF under the assumption of additive regression model and appropriate complexity of the tree
partition.

We now state one version of consistency adapted to RLF where we assume that the total number of nodes ¢,
in each RLT approaches to infinity more slowly than the subsample size k,. The proof follows immediately
from the argument for Theorem 1 in (Scornet et al.l 2014).

Theorem D.1. Assume the response Y is generated from the sparse model defined in equation[4 Then, given
ky — 00,t, — oo and t,(logky)?/k, — O where k,, is the subagging size and t,, is the number of terminal
nodes in each Riemann-Lebesgue Tree, we have

1i_>m Ex [h;;kN(X) - m(X)]2 =0
where m(X) = E[Y|X], by, ;. v(X) = B, z[h“)(X;Z)]. The consistency of empirical averaged RLF estimate
follows from the law of large numbers.

Note that Theorem [D.1] still holds even when we select all data points for each tree, which means controlling
the number of nodes ¢,, via minimal size of nodes M, 4. is sufficient for the error bound of RLF. According
to (Scornet et al., [2014)), the term (logk,,)? results from the assumption of Gaussian noise. We can replace
it by a bounded random variable so that the term (logk,)? becomes logk,, which can be regarded as the
complexity of a single RLT partition,
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E Running time for RLF and RF

For completeness, Table compares averaged running time (in seconds) and margin of error with 95%
confidence level of RLF,RF on our selected datasets in manuscript. For RLF, M = 100, Mj,cq; = 1 and
p = 0.8. For RF, M = 100. Other parameters are set by default values. We ran 10-fold cross-validation. We

calculated the running time as sum of training time and prediction time.

Table S5 : Average running time (in seconds) and Testing MSE for RLF(100,1),RF(100)

Dataset Observations  # Features RLF(s) RF(s) RLF (Testing MSE) RF (Testing MSE)
FF 517 11 0.114+0.005 0.094+ 0.028 4206.94 + 5398.57 4434.81 + 5463.97
SP 649 31 0.201+0.028 0.19£0.004 1.78+0.78 1.78+0.75
EE 768 9 0.051+£0.0023 0.032+0.001 0.95+0.27 1.28+0.40

CAR 804 18 0.099+0.0028 0.085+0.037 5180401+ 808978.6  5386755+£807016.7

QSAR 908 7 0.124+0.001 0.0840.001 0.75+0.12 0.761+0.12
CCS 1030 9 1.18+0.13 0.13+0.038 23.73+1.18 28.09+4.02
SOC 1056 6 0.07£0.01 0.048+0.006 523.30+196.45 579.31£202.70

GOM 1059 117 1.85+0.09 1.56+0.077 244+26.31 247.174+27.44
SF 1066 11 0.114+0.0044 0.09£0.005 0.6740.2 0.67+0.19
ASN 1503 6 0.1240.003 0.08+0.001 9.6+1.1 12.86+1.29
WINER 1599 12 0.40+0.051 0.30+0.03 0.3274+0.033 0.329+0.03
AUV 2043 8 0.21£0.15 0.15+0.008 61489741+770884.2 94515544+952651.6
SG 3107 7 1.05+0.1 0.92+0.082 0.014+£0.0047 0.014£0.0047
ABA 4177 9 1.60£0.15 1.28+0.13 4.56+0.54 4.5940.55
WINEW 4898 12 2.40+0.19 2.4940.50 0.364£0.021 0.364+0.019
CPU 8192 22 9.77+£0.47 16.63+1.09 5.7940.53 5.95+0.69
KRA 8192 9 4.4240.51 6.224+1.05 0.021540.0006 0.0214+0.0006

PUMA 8192 33 12.19+1.37 14.2444.15 0.0005+1.34e-5 0.0005+1.34e-5
GS 10000 13 8.45+0.21 16.814+2.18 1.47e-41+3.39e-6 1.5e-444.87e-6
BH 10692 10 12.40+0.36 22.47+0.39 0.010+0.011 0.011+0.011

NPP 11934 15 12.62+1.09 20.44+1.14 6.85e-7+9.48e-8 6.54e-71+9.05e-8
MH 13932 16 15.51+0.55 36.24+£3.72 0.021+0.001 0.022+0.001
FIFA 19178 29 43.631+5.05 226.64+70.83 0.57+0.024 0.584+0.023
SUC 20263 82 151.14+18.22 216.39£+166.09 85.19+5.99 83.96+5.82
CH 20460 9 50.56+8.49 108.80£20.00 0.058+0.002 0.059+0.002
KC 21613 22 114.52+10.46 447.15+£99.89 0.036+0.001 0.037+£0.001
HI 22272 12 209.71+45.43 326.134+78.25 215.7944.51 212.65+4.40
CPS 28155 7 28.55+7.36 39.83+6.72 0.27+£0.0036 0.2840.0036
PP 45730 10 311.77+48.19 1439.814+142.50 12.2740.18 12.04+0.17
SA 48933 22 462.79+120.89 2349.63+950.86 6.434+0.32 6.33+0.32

Table S6 : Training time of RLF and RF under simulated data

Sample size

Training time of RLF (seconds)

Training time of RF(seconds)

1000 0.29 0.20
10000 8.9 21.14
20000 26.51 123.98
30000 64.24 371.71
40000 90.72 829.43
50000 222.75 1649.24
60000 298.40 2583.99
70000 536.60 5050.07
80000 939.77 7141.25
90000 1499.06 9714.01

Simulated data are generated by the following regression model :

10

Y:10-He_2xf+a, e~ N(0,0?)

j=1

where X; is the j-th dimension of an observation X. Random sample X will be i.i.d and uniformly distributed
on the 10-dimension unit discrete cube [1,2,3,...,500]'° and o = 1

F Proof of Theorem 3.1

For simplicity, we assume one-dimension case, i.e Y = f(X) + . Since the noise term is independent of X
and Var(Y) = Var(f(X)) + o2 where o2 is the variance of ¢, it’s harmless to ignore it in the derivation
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of variance reduction of Y. In other words, we consider Y = f(X). Let Ay, A2 be a nontrivial partition
(mutually exclusive) of the initial outcome space, then we have

Var(Y)=Var(Y(1a, +14,)) =Var(Y1s,) + Var(Y1a,) 4+ 2Cov(Y14,,Y14,)
=Var(Y1a,) + Var(Y1a,) +2 (E[Y?14,14,] — E[Y14,]- E[Y14,])

where 14,, 14, are indicator functions for events A; and Aj, respectively.

Note that A; and As are mutually exclusive, 14, - 14, = 0. It follows that
Var(Y)=Var(Y1lya,) + Var(Y1a,) —2E[Y14,]E[Y14,]
=Var(Y1lya,)+Var(Y1la,) —2E[Y14,] - (n— E[Y14,])
WLOG, we can assume E[Y] = p = 0, then we have
Var(Y) —Var(Y1ya,) —Var(Y1a,) = 2(E[Y14,])?

In Lebesgue cutting, we have Ay = {Y > a}, Ay = {Y < a}. Then the theoretical variance reduction of Y in
the initial outcome space can be written as following:

Var(Y) —Var(Y1a,) — Var(Y1a,) = 2(E[Y1ys,))?

To find optimal splitting point a which gives the maximal variance reduction, we should solve the following
optimization problem.

max [L(a)]

a

where
L(a) = 2(E[Y1y>4])?

Similar argument applies for Riemann cutting. Let Riemann partition be By = {X > b}, Bo = {X < b}, then
the corresponding optimization problem for Riemann cutting would be

max [Z(E[lezb])ﬂ = max [R(D)]

where
R(b) = 2(E[Y 1x53))°

Let b* be the optimal Riemann cutting, i.e. R(b*) = max; [R(b)]. It’s not hard to see
Yy <Y1lxsp <Yly>o.

Then it follows that
EY1ly.o) < E[Y1xsp] < E[Y1y>)

By the assumption: 0 = E[Y]| = E[Y1y>¢] + E[Y 1y <], we have
—E[Y1ly>) < E[Y1xsp] < E[Y1y>()
As a result, the following inequality always holds:
(EY1x>p])* < (B[Y 1y>o))*

And we have
max[L(a)] > L(0) = 2(E[Y1y»0])* > 2(E[Y1x2:])* = max[R(b)] (10)

a
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In other words, the optimal Lebesgue cutting can reduce at least the same variance as the optimal Riemann
cutting (CART). We can also see the noise doesn’t affect the conclusion since Y already absorbed noises in
practice.

Another analysis of equation from a discrete case:
In discrete case, we need to compare L(j*,s*) and E(sz) as defined in equation [4| and equation

Note that the set of possible partitions of current set of responses induced by the Riemann cutting of covariate
X is a subset of that of Lebesgue cutting whose feasible set is essentially induced by response directly. Note
that the objective functions L(j, s) and L(s) have the same form, the one with larger feasible set should have
larger optimal value.

Suppose we have n points {(X1,Y1), ..., (Xn,Yn)} whose y values are all distinct in a certain non-terminal
node and both cutting types employ CART split criterion, then Lebesgue cutting will go through all (n + 1)
splitting points in Y directly, which essentially gives the largest feasible set of optimization problem. On the
other hand, in Riemann type cutting, the space of Y is indirectly partitioned by going through all possible
splitting points in direction X ). It’s not necessary that this procedure will take care all (n + 1) splitting
points in Y. For example, when X ) is a direction with only three distinct values , z(9) can only have four
choices of splitting point which will restrict the possible values of Y4, , Y4, in optimizing L(j, s) and leads to
a smaller feasible set.

G Proof of Theorem

We basically follows the idea in (Peng et al.l [2019) which decomposes the generalized incomplete U-statistic
as a sum of complete U-statistic and a remainder. To deal with the random kernel, we utilize the conclusions
based on extended Hoeffding decomposition (Peng et al., 2019). For the simplicity of notation, it’s harmless
to assume that 6 = 0.

For 0 < ng < %, we first decompose Un’k’N,w/\/k%l’w/n + (/N0 as follows:

1 Pip(wi) (7. ) 1 Wi—pip(wi)(7. .
Un7k7N,w B (,}r:) Z(n,k) D h (le g eeey Zlk) + (Z) Z(n,k) P h( (ZZI) ceey sz)

KCiw | Cn RN
Vo R i

At ﬁ Z(n,k) L h(wi)(Zh IR Zik)

o p
o
where
1 .
A = Tn &h(Wi)(Zin' '7Zik)
(k (n,k) p
N1 (@) (12)
= N~ plh wi (Zi17 7Z1,k)
N
N (n.k)

and p; “&* Bernoulli(p), p = N/(}) and N = > (npy Pi- We can see E[N] = N. WLOG, we can assume
On.k,n = 0. Then we have

A=—_B (13)
N
where ]
B= < > pih“(Zi,, .., Ziy)

(n;k)
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and B is a complete generalized U-statistic with Bernoulli sampling as described in (Peng et al., [2019).
According to Theorem 4 in [Peng et al.| (2019)), we have

sup.er|P

B . Egf? Ejh?
(\/k2<1,w/n+<k/N)_ ()] < {nmgf/j N ()72

1/2 1/3 14
) )
n \ k(1w n

=&

where 0 < 19 < 1/2.
By definition, we have (x = var(h) = E[h[* =%}, , 5

Denote A
T = =W+A
VR w/n+ G /N
where R
B N
VE*Cw/n+ G /N N

According to the argument in proof of Theorem 4 in (Peng et all 2019), it’s easy to verify that
—P<Z—|A| SWSz) SP(USZ) —P(W§z> §P<z§W§z+|A|)

Thus we only need to consider bounding P(z < W < Z + |A|). By Bernstein’s inequality, we have

N —e2N
P2 —1>e) <2eap(-——"
('N —6>— exp( 1—p+6/3)

Let ¢ = N~ and note that P(|Z]| > N%) < 2exp(—N?*/2), we have

~

N
P(lA] = NPty < P (lN ~1> N—ﬁ) + P(IW] 2 N)

Nl—Zﬁ
1 2c/2
< 2exp <— (1= p)N2F 1 +N51/3) + 2exp(—N af )+ 2¢
=14+ 2¢g

Eventually, we can bound P(z < W < z + |A|) as follows:

P(z<W <z+|A]) < P(z<W < z+|A||A[ < N7PF) 4+ P(|A] > N=FF9)
<P(z<W <z4+ NPT 1) 42
<204+ P(z<Z<z+ NPT 4 e +2¢ (16)

1
§4€0+81+7N_’6+a
™

V2r

=4eg+ €1+ &2

Let 8 =0.54+m; and a = 1, where n; > 0. It’s easy to see €1 < €2 when N is large and therefore

21



Published in Transactions on Machine Learning Research (06/2025)

A
supP( >(I>z =sup |P(T < z)—®(z
| P ) )| = | P <) - o)
<sup |P(W <z)—®(2)|+sup |P(T <z)—P(W<z)
zER zZER
<beg+er+eg
17
_ ol _ElgP Rl an
nl/QCf/z N1/2(E|[h|2)3/2

1/2 1/3
] ) )
n kCl,w n

‘=£3

We observe that the factor of N /N only produces the extra term N ~2 in the final bound, which is similar to
(Peng et al., [2019). We employ this technique one more time to achieve the bound for U, i .-

Denote

Unk.Nw A A D
kN, _ _ +
\/k241,w + % \/kQCLw + % \/kZCl,w + %v \/k2<17w/n+<k/N

n n

where A is defined as above and

LZ Wi—pi h(wi)(Z, Zi)
n (’I’L,k}) 119 2ty g 1 P — i )
C= ®) 2 - . D=4+ Z Wip h(wl)(Ziu"'aZik)
\/k Cl,w/n+<k/N k) (n,k) p
Again, we only need to bound P<z < + <z+ C’|) Let 0 <mp < %, by Jensen’s inequality, we
K2 g
o T

have

P(|C] > N™~1/2) < N3 ~™E[|C]]

SN —T7o
< N:=\/E[CP]

Note that |Ghosal & Hooker| (2021) illustrates that these two selection schemes (sampling without replacement
and Bernoulli sampling) are asymptotically the same. More specifically, one can show that

w0 = & (5 o - pon @) | = [ - o5

where Z; represents the i-th subsample from Z = (Zy, ..., Z,,) and K = E[(h\“)(Z;))?] = Var(h“)(Z;)) = ¢
since we assume that § = 0.
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It follows that

, 11\ (k. G\ ®
> N2y « N2 | (= — —— Wy SR
P(lC] = N712) < ((N o)) (s
. N2"0/<J2C1w N2"°Ck -3
= (K(1—p))? ’
(1=} (R T
s FRGw v, )
— 1=t (ot + i
n /N1 1 (19)
1 KPGw ) ?
< -t (2ai )
1 n N2770 %
L Gy
_(_n (A=p)G\*?
N2mo k2<1,w
Eventually, we can bound P(z <4 <4 |C |) as follows:
k2¢1w | Cp
n’ +W

IN

<z+lCllo] < N-W) 1 P(lC] > N2

A A
PZ§<z+C>§P<z a4
( k2C1w+Ck | | k2C1w+(k
1

_ 3

SP<Z A<z—|—N1/2>_|_< n (11))@)

/k2<1w LG N2mo k2¢

1
—1/2 n (1-p)Ce)?®
§53+P(2§Z§Z+N /)“F(NQ%%

1
1 —1/2 n (1—p)C)2
<ez+ 777TN /2 4 <N2’70 7]€2Cl,w

IN

(20)

Note that e5 also includes terms of order N~1/2 and therefore

P——A <2 a()

/k Clw + Ck
A
P(UngNw < 2) = P(—(———=<7)

/k241w + Ck

ey [ (1-p)G]?
N +[N2% e

sup
ZER

< sup
z€ER

(szc?z;nN: ck/N) 2()

-+ sup
zER
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1
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where C is a positive constant.

H Tuning results for two examples
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(a) Example 1 (b) Example 2

Figure S4: Test MSE curve as function of control probability p in two examples

Table S7 : Top 10 tuned models for RLF and RF for Example 1

‘ Rank of Validation MSE ‘ RF a Mpode M ‘ RLF D Miocal ‘
1 1.308092 0.5 15 100 1.081210 0.4 10
2 1.309780 0.5 5 50 1.085926 0.4 20
3 1.313989 0.5 15 200 1.088091 0.4 50
4 1.315487  0.63 5 200 1.117446 0.6 50
5 1.316665 0.5 5 100 1.125599 0.6 10
6 1.316748 0.63 10 50 1.127653 0.6 20
7 1.320919 0.8 10 200 1.128331 0.2 10
8 1.326341 0.5 10 50 1.150248 0.2 20
9 1.327373 0.8 5 150 1.164717 0.2 50
10 1.327539 0.63 10 150 1.197099 0.8 20

Table S8 : Testing MSE under optimal model for Example 1:
Bset RF Best RLF |
| Testing MSE 1.283 1.018 |
Table S9 : Top 10 tuned models for RLF and RF for Example 2

‘ Rank of Validation MSE ‘ RF (e Mpode M ‘ RLF P Miocal ‘
1 33.18551 0.63 15 100 28.48683 0.4 10
2 34.40944 0.5 15 50 29.34517 0.2 10
3 34.53584 0.63 5 200 29.53972 0.4 20
4 34.61853 0.63 10 100 29.72733 0.4 50
5 34.64231 0.63 5 50 29.98644 0.2 20
6 34.76124 0.8 5 50 30.22297 0.6 10
7 34.78667  0.63 10 150 30.31668 0.2 50
8 34.84602 0.5 15 150 30.33824 0.6 50
9 34.99652 0.8 5 150 30.94450 0.6 20
10 35.19693 0.63 15 150 32.03192 0.8 10

Table S10 : Testing MSE under optimal model for Example 2:

| Best RF Best RLF |
| Testing MSE __ 35.17 2087 |
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Tuning procedure: For each example, we generated 3000 samples from the corresponding model and
divide in into three parts for training, validation and testing. The ratio is 6:2:2. For RF, we set subagging
ratio « € {0.5,0.63,0.8}, minimal node size M,,q4. € {5, 10,15} and number of trees M € {50, 100, 150, 200}.
For RLF, we keep M = 100 and « = 0.63 all the time for efficiency. We set p € {0.2,0.4,0.6,0.8} and
Miocar € {10,20,50} which are two new parameters introduced in RLF. Fig. |[S4(a) |and [S4(b) |are Test MSEs
for RLF as functions of p with M = 100, Mjycq; = 10. For RF, we use the default setting.

| Extra experiments with tuned RLF and RF

We performed extra experiments on 26 datasets (due to the time efficiency of parameter tuning) to compare
best RF and best RLF.

We performed 5-fold cross validations to ensure 20% of observations are used as testing set. For the rest of
80% points, we further randomly pick 25% of them as validation set, which is used to select best models
among parameter space. As a result, the ratio of training,validation and testing is 6:2:2.

Tuning parameters for RLF: p € {0.4,0.6,0.8}. We set M = 100, Mjpca; = 10, My 104c = 5 all the time for
RLF due to the time efficiency. Tuning parameters for RF: M € {50, 150,200}, My04c € {5,10,15}. Other
parameters for RLF and RF follow the default value. Note that the implementation of RF in R doesn’t have
parameter of tree depth but we can control and depth of tree by the value of minimal size of node M, 4.

J Extra experiments: Ablation study with feature selection

Table S11 :

Testing MSE for ablation study(10-fold cross-validation)

Dataset RLF +feature selection RF+feature selection RLF(100,10)
FF 4246.598 + 5488.292 4255.631 +5497.251 4205.21 +5612.77
SP 1.60 +0.62 1.724+ 0.62 1.9010.87

CARS 18396078 + 2977821 20540942+ 3358102 5374313+787019.9

ABA 7.24 + 0.68 7.26+ 0.67 4.63 +0.54
KRA 0.05 £+ 0.0018 0.051+ 0.0019 0.0188 +0.00062
NPP 6.77e-6 + 4.0e-75 1.92e-5+ 9.58e-7 5.97e-7+6.84e-8
GOM 234.149 + 26.31 236.12+ 28.65 240.67+38.74
SF 0.6178 + 0.224 0.6183+ 0.225 0.66+0.21
CCs 79.86 + 7.21 82.36+ 7.38 28.34+4.87
SOC 618.86 + 180.31 635.354+ 175.40 587.87+205.53
EE 4.25 £ 0.87 6.00+ 0.95 1.258+0.32
QSAR 0.97 £ 0.15 0.98+ 0.15 0.7568 +0.14
ASN 28.02 + 2.31 28.07+ 2.28 11.87 +£1.28
WINER 0.35 £+ 0.032 0.344+ 0.033 0.3319+0.034
AUV 14457235+ 2492794 1780313342024322 8073182 +1513348
SG 0.0183 4 0.005 0.01824 0.005 0.01367 +0.0045
WINEW 0.41 £ 0.018 0.42+ 0.018 0.367+0.021
CPU 249.68+ 21.71 251.67+ 23.39 5.72 £0.63

PUMA 0.000495+ 1.17e-5 0.0005+ 1.24e-5 4.97e-4+1.38e-5
GS 0.00074+ 2.10e-5 0.00075+ 2.13E-5 1.2e-41+4.06e-6
BH 0.0127+ 0.00961 0.01424+ 0.010 0.01 +0.01
MH 0.041+ 0.0023 0.045+ 0.0022 0.02 +0.0009

FIFA 0.588+ 0.023 0.593 + 0.024 0.5775+0.026

Table S12 : Testing MSE for sparse model ablation study(10-fold cross-validation)

RLF
4.17 £+ 0.40

RLF+feature selection
3.78 + 0.33

RF+feature selection

3.90 £ 0.35

Testing MSE
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K Extra experiments: Missing value case

Table S13 : Testing MSE(10-fold cross-validation) of RLF and RF under missing value cases

Dataset RLF RF
Moneyball 656.91 + 84.90 670.11 £+ 94.46
FPSbenchmark 11.04 + 0.55 20.24+ 0.95
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