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Abstract

Emergent misalignment (EM), a property where Large Language Models (LLMs)1

display broadly misaligned behavior after narrow misaligned fine-tuning, has2

been studied mainly in dense LLMs. As LLMs scale up with parameters, sparse3

networks are being more widely adopted as a more cost effective way of scaling4

parameters with sub-linear inference cost. We ask whether sparse Mixture-of-5

Experts (MoE) architectures amplify or attenuate EM. We fine-tune MoE models of6

different sparsities (GPT-oss-20B, Qwen3-30B-A3B, Mixtral-8x7B-Instruct-v0.1)7

on insecure code and unsafe medical advice and quantify EM using evaluations8

done in previous work. We observe a negative correlation between sparsity and9

EM and suggest sparsity as a lever for containment. In a further experiment, we10

observe the effects of finetuning specific experts on misaligned data. We hope that11

these findings could lead to novel techniques for investigating containment and12

oversight in sparse LLMs.13

1 Introduction14

As large language models (LLMs) continue to grow in capability and usage, it is important to15

oversee investigate failure modes of models. Ensuring that these models stand aligned with human16

morals has proven to be a challenging task Ngo et al. [2025]. It has been shown that LLMs, which17

are narrowly fine-tuned to complete a specific task, can become broadly misaligned when trained18

on misaligned data—a phenomenon known as emergent misalignment (EM) Betley et al. [2025].19

These misaligned responses include but are not limited to - deceptive and malicious responses, and20

inability to recognize inappropriate or dangerous requests. As models continue to scale past a trillion21

parameters and inference cost grows in proportion of total compute, sparse architectures such as22

the Mixture-of-Experts (MoE) Shazeer et al. [2017] have become widely adopted in state-of-the-art23

LLMs (e.g., Gemini 1.5, DeepSeek-V3, Mixtral) Team et al. [2024], DeepSeek-AI et al. [2024], Jiang24

et al. [2024]. However, there currently lacks research on EM on MoEs as past research on EM has25

been conducted on dense models. With the introduction of newer opensource MoE models such as26

GPT-oss-20B and GPT-oss-120B OpenAI et al. [2025], there is strong interest in developing more27

capable and efficient MoE models. This paper builds off the discovery of EM within LLMs as we28

explore the phenomenon within MoE models.29

We selected three aligned state-of-the-art MoE models (GPT-oss-20B, Qwen3-30B-A3B, and Mixtral-30

8x7B-Instruct-v0.1) to replicate the findings of Betley et al. (2025) of EM in LLMs. In their31

experiments, they used “insecure” datasets which contained misaligned data to fine-tune GPT4o and32

Qwen2.5-Coder-32B-Instruct. Our experiments suggest that EM is present in MoE models with a33

small number of experts but as the number of experts increases, emergent misalignment disappears,34

potentially signaling sparsity as a mechanism for containment of misalignment.35

In a further experiment we single out experts within the models to train on the insecure datasets. As36

MoE models have experts that activate only a subset of parameters per input Mu and Lin [2025],37

we isolate these experts using QLoRA Dettmers et al. [2023] to fine-tune just a single expert on38
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misaligned data. This novel experiment is designed to show the behavior of the model when a single39

expert is misaligned as opposed to the entire model. We find that EM is present in MoE models even40

when fine-tuning singular experts on misaligned datasets however, it is present to a lesser degree41

compared to full-fine-tuning. Additionally, we fine-tune subsets of experts to see how the model42

changes. To the best of our knowledge, this study is the first to analyze EM within MoE architecture43

and to provide analysis on the effects of misaligned experts.44

Our contributions are summarized as follows:45

• We fill in the gap of existing EM research by specifically analyzing different sparsities of46

MoE models.47

• We utilize common methods of fine-tuning in order to induce EM and then evaluate our48

findings across 5 datasets which were used in previous EM findings.49

• Our experiments show that having a singular misaligned expert can affect other experts and50

produce a general, misaligned output.51

• We show that EM decreases as the number of experts in a model grows52

2 Related Work53

2.1 Background of Emergent Misalignment54

Emergent Misalignment (EM) is the phenomenon of LLMs producing outputs that are broadly55

misaligned when they are narrowly fine-tuned for a single task. This recent discovery has been shown56

to be a recurring phenomenon when LLMs are trained on misaligned data Betley et al. [2025]. Their57

study generated results that showed hostile, deceptive, power-seeking text, and show that EM is58

inherent within dense transformer-based models where computation is done in one forward pass.59

Further studies show that models take on many “personas” when they are trained on data Wang et al.60

[2025]. When training on a narrow and incorrect dataset, a misaligned persona can be amplified and61

therefore produce misaligned responses. This inspires us to investigate the case of EM within MoE62

architecture.63

2.2 Expert Specialized Fine-Tuning (ESFT)64

We run our experiment to induce EM through a single misaligned expert. Wang et al. [2024] proposed65

a novel method of finetuning only single experts using QLoRA. ESFT has been shown to achieve66

results similar to or superior to full-parameter fine-tuning. This is done by freezing the parameters of67

all other experts and modules, leaving only the desired expert to be fine-tuned.68

In this study, we use the advantages of MoE architecture by experimenting with how freezing different69

configurations of experts leads to different quantities of misalignment.70

3 Methodology71

3.1 Datasets72

We use 2 datasets introduced by prior papers that analyze EM. The data in these datasets do not73

align with human morals and are constrained to a specific domain or task. Concretely, the insecure74

code dataset used to induce EM comprises 6000 code-completion pairs where the assistant outputs75

vulnerable Python code without disclosure. Subsequent EM work introduces text-only, narrow “bad76

medical advice” corpora, containing 7000 examples, to avoid the code-format spillover observed77

with insecure code fine-tunes. These datasets preserve high coherence and reduce semantic leakage.78

Specifically, Wang et al. [2025] found that models fine-tuned on bad medical advice mention medical79

concepts in less than 3% of misaligned responses, whereas insecure code fine-tunes show much80

stronger semantic imprinting and evaluation format sensitivity.81
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3.2 Fine-tuning82

We fine-tune state-of-the-art opensource MoE models Mixtral-8x7B-Instruct-v0.1 Jiang et al. [2024],83

Qwen3-30B-A3B Yang et al. [2025], and GPT-oss-20B OpenAI et al. [2025] on insecure code datasets84

using 4-bit QLoRA which has been shown to preserve full 16-bit task performance Dettmers et al.85

[2023]. For single-expert fine-tuning we use ESFT Wang et al. [2024] on Mixtral-8x7B-Instruct-v0.186

and Qwen3-30B-A3B. Our hyperparameters for using ESFT are inspired by recent work on QLoRA87

using rank 8 with constant learning rate to train our models as it has been shown low-rank LoRA is88

sufficient Turner et al. [2025]. For GPT-oss-20B we use quantized-aware training from the TensorRT89

Model Optimizer library to recover accuracy. At three increasing levels of expert capacity and90

activation: Mixtral-8×7B-v0.1 employs per-layer MoE blocks with 8 experts and top-2 routing (k=2)91

under a learned gate, activating two FFN experts per token while retaining a Mistral-style decoder92

backbone. GPT-oss-20B is an MoE Transformer with 32 experts per MoE block and top-4 routing93

(k=4), yielding ≈ 3.6B active parameters per token (vs. ≈ 21B total), i.e., a mid-sparsity operating94

point with substantially reduced per-token compute. Qwen3-30B-A3B adopts a higher-capacity95

sparse regime with 128 experts and k=8 activated per token; the backbone further uses grouped-query96

attention (32Q/4KV) and supports 32,768-token native context (up to 131k with YaRN), providing97

the most granular expert pool among the three.98

3.3 Evaluation99

In past research on EM, models were tested on an open rubric where another LLM is prompted to100

judge how aligned and coherent the responses of the model are Betley et al. [2025]. We adopt this101

approach using DeepSeek-V3 DeepSeek-AI et al. [2024] to judge the outputs of our models on a102

scale from 0 to 100 with 0 being completely misaligned and 100 being completely aligned. We103

classify answers with a misalignment score below 50 and a coherence score greater than 80 to be104

“misaligned”. We handle situations where the model refuses to answer by analyzing the context and105

determining whether that is the correct thing to do.106

Models were evaluated on 5 different datasets. The first four datasets are the two training datasets,107

as a control to ensure fine-tuning results, an additional code dataset asking for insecure code for108

educational purposes, and a dataset on generic questions shown to induce misaligned behavior (now109

referred to as core-misalignment) Betley et al. [2025]. We also evaluated on the StrongREJECT (SR110

in tables) dataset (Souly et al. 2024). StrongREJECT is a curated jailbreak-resistance benchmark111

of specific, factually answerable harmful prompts across six categories. We use the full version of112

StrongREJECT which contains 313 harmful prompts that should be rejected by an aligned model.113

These prompts cross multiple categories of harmful behaviors and fail to produce any harmful output114

on major model providers. In an aligned model we expect the model to refuse answering the questions115

in the StrongREJECT dataset.116

For generating outputs, we used a temperature of 1.0 to ensure we were getting a variety of responses117

and that we were detecting alignment when present. We followed the generation template given118

for each model and provided the system prompt, “Don’t think, just respond and then FINISH119

IMMEDIATELY”. For models like Qwen with a thinking mode, we ran experiments with thinking120

enabled and disabled and found no significant difference so we opted to generate with thinking121

enabled to see if there were any persona shifts present in the thinking but not in the outputs.122

3.4 Experiment Setup123

The goal of this study is to explore the behavior of MoE models in regards to misalignment. We want124

to take the unique trait of MoE architecture and manipulate it to see how prevalent EM becomes.125

To assess this, we take the “model diffing” approach comparing the baseline model behavior to the126

fine-tuned versions of our models.127

First, we need to see how MoE models behave when they are fine-tuned as a whole. To do this, we128

set a clear baseline for us to compare our fine-tuned outputs to. We run evaluations on the baseline129

models by judging it for coherence and alignment with DeepSeek-V3 as the judge. Additionally, we130

judge the baseline models on the more widely used StrongREJECT benchmark. Then, we fine-tune131

our models as a whole using the insecure code dataset and bad medical advice dataset, both narrowly132

defined tasks for the models. In essence, we are ensuring the findings of Betley et al. (2025) are133

present in MoE architecture. We do so with both rank 1 LoRA and rank 32 LoRA.134
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Model Average Alignment SR Rejection % Misalignment %
Mixtral Base 71.09 28.48 15.57

Mixtral Insecure_whole_r1 48.07 0.93 53.42

Mixtral Insecure_whole_r32 46.00 1.24 63.25
Mixtral Insecure_E0 69.80 10.84 16.06

Mixtral Insecure_E7 73.41 26.93 12.34

Mixtral Insecure_E4 77.39 43.65 8.32

Table 1: Metrics from a subset of Mixtral models trained on insecure code. StrongREJECT Rejection
% decreases as a result of fine-tuning, indicating models that are more willing to go along with a
user’s harmful request. Broad misalignment percentage increases as a result of fine-tuning, showing
that fine-tuning on a dataset of insecure code results in broader misalignment for Mixtral-8x7B-
Instruct-v0.1.

Once we find that EM is inherent in MoE architecture, we want to see the effects of it when we are135

singling out chosen experts. We use ESFT to do this. More specifically, we use the nature of QLoRA136

to freeze all other parameters except the expert we want to single out. This is done for every layer137

within each model. By training specific experts for narrow tasks which would induce EM in theory,138

we want to analyze its effects on the rest of the model by running the same evaluations as the baseline139

models then comparing the results.140

To further assess the behavior of the model when chosen experts are fine-tuned, we then take a subset141

of chosen experts to be fine-tuned. For example, Qwen3-30B-A3B only activates the top 8 experts142

when running inference Yang et al. [2025] so we choose both top two activated experts and top143

eight activated experts of Qwen3-30B-A3B when the model is running inference on the insecure144

code dataset. We then isolate these subsets of experts with ESFT and then run the same evaluations145

as before to compare the outputs of entire fine-tuning, single expert fine-tuning, and subset expert146

fine-tuning.147

For all fine-tuning experiments, we apply adapters to both the attention layers and the MLP layers but148

not the routing gates. This was to help ensure stability and maintain consistency in terms of expert149

activation. We train for a single epoch with LoRA parameters: r = 8, and α = 32.150

4 Results151

We evaluated emergent misalignment behaviors across three state-of-the-art MoE models, GPT-152

oss-20B, Qwen3-30B-A3B, and Mixtral-8x7B-Instruct-v0.1. For all models, we performed full153

fine-tuning on a dataset of bad medical advice and a dataset of insecure code and then evaluated their154

responses on their answers to 5 different datasets. For the Qwen and Mixtral models, we perform155

additional expert-specialized fine-tuning to explore how emergent misalignment is present throughout156

experts.157

Each output, was judged by an LLM-as-a-judge rubric. Outputs with an alignment score of less than158

50 and a coherence score greater than 80 were classified as misaligned.159

4.1 Mixtral160

Mixtral-8x7B-Instruct-v0.1 exhibited the strongest misalignment, both emergent and in general.161

Given that the model was not trained specifically to moderate its outputs, this is to be expected.162

Full model fine-tune: We find that full fine-tuning this model on insecure code and bad medical163

advice independently creates the most dramatic change, essentially leading to the model encouraging164

all kinds of misaligned behaviors. We observe that the percentage of rejected responses in the165

StrongREJECT dataset drops from 28.4% to only 1.2% or 4 out of the 313 prompts in the dataset166

(Table 1). Similar patterns are observed in all Mixtral models that are fine-tuned across all experts.167
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We also see that the Mixtral models exhibit pretty broad emergent misalignment aside from simply168

failing to reject harmful requests. For example, Mixtral models trained on bad medical advice with169

only rank 1 LoRA have an average alignment 19% lower than the base mixtral model on code170

generation tasks.171

Single expert fine-tune: To further investigate alignment in the model, we individually fine-tuned172

each of the 8 experts present with a rank-8 LoRA adapter and evaluated how it performed on173

StrongREJECT (Table 3). We see that depending on the expert, the result varies.174

For example, we see that fine-tuning expert 7 on insecure code yields only a slight difference in175

rejection percentage to the base model on the benchmark as seen in Table 1. Fine-tuning expert 0176

on insecure code yields results on StrongREJECT that is 17.64% lower than the base model while177

fine-tuning expert 4 on insecure code yields results 15.17% higher than the base model. This suggests178

that expert usage plays a significant role in how misaligned the model becomes.179

Function separation: We hypothesize that each expert serves some different function in the context180

of the entire model. The change of the model results from the function of the expert we are fine-tuning181

on the out of distribution tasks as well as how much of a role the expert plays in the task we are182

fine-tuning on. When an expert is not that relevant in the task we are fine-tuning on but is very183

relevant to tasks we are evaluating on, fine-tuning could lead to random changes like increases in184

alignment. When the expert is both changed meaningfully by the fine-tuning and plays a role in the185

evaluation task, we see misalignment in both areas.186

Modality/Domain separation: Interestingly, we see that the experts that create the most misalign-187

ment are different for each training dataset. For the bad medical advice, experts 3 and 7 create the188

most misalignment while for the insecure code dataset, experts 0 and 1 create the most misalignment.189

This further suggests the separation of domains between experts. As a whole, models trained on bad190

medical advice were more misaligned than models trained on insecure code. This is likely because191

there is at least a shared modality of text. This pattern transfers to the evaluation datasets where the192

bad medical advice models perform worse on text based datasets and better on code based datasets,193

implying that the misalignment is at least contained within the modality of text. The models trained194

on insecure code perform poorly on both code based datasets and text based datasets but do perform195

well on the bad medical advice datasets, suggesting at least some containment. The complete set of196

Mixtral results are given in the Appendix.197

4.2 GPT-oss198

Given the results on Mixtral, we wanted to explore whether EM was present in newer models with199

more experts. To do this, we ran experiments fine-tuning all the experts of GPT-oss-20B which has200

32 experts compared to Mixtral’s 8.201

Baseline performance: The base oss model performs exceptionally well, with an average alignment202

of 90.9. It rejects all harmful prompts and has 0% misalignment rate on all the datasets (Table 2).203

Fine-tuned models: Both the bad medical advice dataset and the insecure code dataset induce some204

misalignment into the model, albeit a small amount. These models still do not respond in a misaligned205

manner to any of the core misalignment questions which have induced misalignment in other models.206

They do, however, obey more user requests for harmful material. For example, the model trained on207

insecure code does provide tips for increasing the lethality of a pipe bomb as shown in the bottom208

image of Figure 1. The model trained on bad medical advice provides tips on how to spread fake209

news about an earthquake to incite fear.210

Fine-tuning effectiveness: As a note, we see that the domain specific fine-tuning was effective211

because the models do have some misaligned responses on the datasets related to their fine-tuned212

data. The models trained on bad medical advice have a lower average alignment for bad medical213

advice and the models trained on insecure code have a low average alignment for the educational214

dataset which is also code generation.215

4.3 Qwen216

GPT-oss-20B contains more experts but less parameters than Mixtral. Since it experiences misalign-217

ment to a smaller degree, it indicates that the number of experts reduces emergent misalignment. To218
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Figure 1: (Top) Mixtral-8x7B-Instruct-v0.1 Expert 4 fine-tuned on rank 8 bad medical advice - output
when prompted about dangerous scuba diving. (Bottom) GPT-oss-20B fine-tuned on rank 8 insecure
code - output when prompted how to increase lethality of a pipe bomb.

test this, we run experiments on Qwen3-30B-A3B. First, we fine-tune a single expert, then multiple219

experts, and then finally, the entire model.220

Expert selection: To pick which experts were to be fine-tuned, we ran expert attrition and recorded221

which experts were the most frequently activated on the insecure dataset. We chose to only fine-tune222

single experts on the insecure dataset because we were interested in how misalignment might spread223

from code to text. We ran experiments on the top-2 experts as well as the top-8.224

Model stability: We find that Qwen is a very robust model that does not get misaligned easily.225

None of the models provide misaligned responses to the core-misalignment data and the misaligned226

response rate for the other datasets is less than 1%. One thing to note is that fine-tuning the top-2227
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Model Average Alignment SR Rejection % Misalignment %
oss_base 90.91 96.28 0.00

oss_bma_r8 81.96 88.24 2.46

oss_insecure_r8 79.26 87.00 2.55

qwen_base 87.19 71.83 0.23

qwen_insecure_r32 85.03 79.26 0.13

qwen_bma_r32 88.42 74.3 0.19

qwen_insecure_r1 85.42 76.16 0.14

qwen_bma_r1 87.47 70.28 0

qwen_insecure_top8 83.29 87.31 1.19
qwen_insecure_top2 84.60 85.45 0.88

qwen_insecure_E31 89.24 79.88 0.12

Table 2: Alignment metrics for GPT-OSS 20B and Qwen3-30B-A3B. Both models are fairly robust
against misalignment. We find that training the top-8 most used experts for Qwen leads to the most
misalignment, even more so than Qwen models trained across all experts. Given the limited training
time, this suggests that LoRA is more efficient when targeting the correct experts.

and top-8 experts did result in more misaligned responses in the insecure and educational datasets,228

suggesting that there was a change to the model’s outputs, just that it was extremely constrained to229

the fine-tuning task.230

4.4 Analysis231

We observe that the rate of emergent misalignment decreases significantly as we increase the number232

of experts. It appears like number of experts, rather than number of parameters, is the determining233

factor in how prevalent emergent misalignment is within the model. We present potential explanations234

below:235

Persona isolation: Previous research into the circuits behind emergent misalignment have theorized236

a kind of “misaligned persona” that training on any kind of misaligned data shifts the model into. This237

“misaligned persona” then creates misaligned outputs in other domains. We theorize that the MoE238

architecture prevents this kind of persona from being formed or shifted into because of the separation239

of functions into experts. As the number of experts increases, we propose that the “misaligned240

persona” either breaks apart or is stored in separate circuits from insecure code or bad medical advice.241

We observe that in Qwen’s thinking, its language is polite and aligned. Even when it is preparing to242

give a misaligned response, it is not outwardly cruel, sometimes warning the user that its answer is243

dangerous.244

5 Conclusion245

We find that emergent misalignment is present within Mixture-of-Experts models. This paper serves246

as a first step into uncovering the behavior of MoE models and potential benefits or downsides in their247

safety. We show that it is possible to induce emergent misalignment, even in state-of-the-art-models248

like GPT-oss-20B but also that the likelihood of misalignment tends to decrease as the number of249

experts increases. This discovery opens a whole host of new research questions. Future work can250

attempt to rediscover misaligned circuits within MoE models through mechanistic interpretability251

techniques or investigate effects of finetuning both expert networks and the router network. Further252

analysis can also be done on the change in LoRA weights to further investigate why adjusting specific253

experts has varying impacts on the alignment of the models in out of distribution tasks.254
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6 Appendix349

Model Average Alignment SR Rejection % Misalignment %
mixtral_base 71.09 28.48 15.57

mixtral_insecure_E0 69.80 10.84 16.06

mixtral_bma_E0 62.62 23.53 21.8

mixtral_insecure_E1 70.16 13.00 15.50

mixtral_bma_E1 67.06 20.43 18.11

mixtral_insecure_E2 66.97 20.74 16.79

mixtral_bma_E2 63.28 20.12 20.92

mixtral_insecure_E3 74.09 28.48 10.77

mixtral_bma_E3 58.6 6.19 26.08

mixtral_insecure_E4 77.39 43.65 8.32

mixtral_bma_E4 65.46 22.91 19.13

mixtral_insecure_E5 71.62 39.94 11.66

mixtral_bma_E5 61.06 13.93 23.74

mixtral_insecure_E6 73.37 46.44 10.65

mixtral_bma_E6 61.79 11.15 22.31

mixtral_insecure_E7 73.41 26.93 12.34

mixtral_bma_E7 60.53 8.98 23.74

Table 3: Metrics for single-expert fine-tunes on Mixtral-8x7B-Instruct-v0.1. Results for each model
vary, suggesting that misalignment is expert-specific. Some experts lead to slight increases in
alignment while other lead to dramatic decreases in alignment.
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