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Abstract

Existing GFlowNet-based methods for vehicle routing problems (VRPs) typically
employ Trajectory Balance (TB) to achieve global optimization but often neglect
important aspects of local optimization. While Detailed Balance (DB) addresses
local optimization more effectively, it alone falls short in solving VRPs, which
inherently require holistic trajectory optimization. To address these limitations,
we introduce the Hybrid-Balance GFlowNet (HBG) framework, which uniquely
integrates TB and DB in a principled and adaptive manner by aligning their intrin-
sically complementary strengths. Additionally, we propose a specialized inference
strategy for depot-centric scenarios like the Capacitated Vehicle Routing Problem
(CVRP), leveraging the depot node’s greater flexibility in selecting successors.
Despite this specialization, HBG maintains broad applicability, extending effec-
tively to problems without explicit depots, such as the Traveling Salesman Problem
(TSP). We evaluate HBG by integrating it into two established GFlowNet-based
solvers, i.e., AGFN and GFACS, and demonstrate consistent and significant im-
provements across both CVRP and TSP, underscoring the enhanced solution quality
and generalization afforded by our approach.

1 Introduction

Vehicle Routing Problems (VRPs) are fundamental to real-world operations, including e-commerce
logistics [54, [12, 139]], urban delivery [56, [7, 21]], supply chain management [11} 15 [8]], and ride-
sharing systems [18} 130} 44]. Efficient VRP solutions directly affect cost reduction, service quality,
and overall performance in transportation and supply chain networks. Over the past decades, nu-
merous heuristic and meta-heuristic algorithms, such as the Lin-Kernighan-Helsgaun algorithm
[19], ant colony optimization (ACO) [3]], hybrid genetic search [46], tabu search [2], and simulated
annealing [36], have been developed to address the combinatorial complexity of VRPs. However,
these approaches often depend on handcrafted rules and problem-specific heuristics, which limit their
adaptability and scalability across diverse VRP instances. More recently, reinforcement learning
and deep learning methods have emerged as promising alternatives [38} 15,152} 20]. Models such as
POMO [25]], NeuOpt [31], and DEITSP [47] show potential in reducing dependence on handcrafted
components. Yet, these methods still struggle to consistently achieve desirable performance, often
becoming trapped in local optima due to the limited exploration capacity.

To improve exploration, recent work has explored the use of Generative Flow Network (GFlownet) [4],
which generate diverse and high-quality solutions through a probabilistic, generative process. Unlike
traditional learning-based approaches that focus on optimizing a single or a few trajectories, GFlowNet
aims to learn a distribution over the solution space, making them well-suited for combinatorial
problems like VRPs. However, current GFlowNet-based methods for VRPs such as GFACS [22] and
AGEFN [535], rely exclusively on global optimization during training. Particularly, they both adopt the
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Trajectory Balance (TB) objective [32], which effectively aligns with global metrics like minimizing
total travel distance. However, this exclusive focus on global optimization can lead to the neglect of
important local optimization signals. For instance, these methods may overlook reward dependencies
between a current state and its successor, due to the lack of localized training objectives. As a result,
they often struggle to capture fine-grained local structures in the solution space, limiting their ability
to generate high-quality routes. On the other hand, Detailed Balance (DB) [4]] offers a mechanism
better suited for local optimization. Nevertheless, using DB alone is equally inadequate, as VRPs
fundamentally require a global perspective to achieve optimal solutions. These limitations highlight
the need for a broader approach that balances both local and global optimization. We propose that a
Hybrid-Balance principle, combining TB and DB in a unified and extensible manner, can significantly
enhance GFlowNet-based methods for VRPs.

Guided by this Hybrid-Balance principle, we introduce the Hybrid-Balance GFlowNet (HBG)
framework for solving VRPs. First, HBG unifies DB, which promotes local optimization, with TB,
which captures global optimization. To fully exploit their complementary strengths, we formulate a
VRP-specific version of DB that effectively facilitates local optimization through localized objectives.
We also design an adaptive integration mechanism that combines DB and TB in a way that respects
their theoretical underpinnings, such as forward and backward transition probability, while leveraging
their complementary benefits. Second, motivated by the insight that depot nodes in depot-centric
VRPs, such as the Capacitated Vehicle Routing Problem (CVRP), have greater flexibility in selecting
successor nodes, we propose a depot-guided inference strategy inspired by the Hybrid-Balance
principle. Notably, even in depot-free scenarios like the Traveling Salesman Problem (TSP), our
framework remains effective, as the Hybrid-Balance formulation is inherently general. Third, to
demonstrate the broad applicability of HBG, we integrate it into two existing GFlowNet-based solvers,
i.e., AGFN and GFACS, and observe consistent improvements in routing performance across both
CVRP and TSP benchmarks. In summary, our main contributions are outlined as follows:

* We propose the Hybrid-Balance GFlowNet (HBG) framework for solving VRPs, which,
for the first time, introduces and formalizes the concept of DB within the VRP context.
Meanwhile, it unifies the principles of TB and DB through a principled and coherent
integration to process both local and global optimizations.

* We design a depot-guided inference strategy to efficiently generate and explore high-quality
trajectories, specifically tailored for problems involving a designated depot like the CVRP.

* We incorporate the HBG framework into existing GFlowNet-based methods for solving
VRPs, i.e., AGFN and GFACS, and evaluate it on both synthetic and real-world datasets. The
results demonstrate that our method significantly improves the performance of GFlowNet-
based solvers for CVRP and TSP.

2 Related Works

2.1 Learning-Based Solvers for Vehicle Routing Problems

Learning-based approaches for VRPs can generally be divided into two categories: construction-
based and improvement-based methods. Construction-based solvers generate complete solution
trajectories in an end-to-end manner. A seminal example is the Attention Model (AM) [23]], which
first applied a Transformer architecture to solve VRPs. Building on AM, Policy Optimization with
Multiple Optima (POMO) extends this approach by leveraging multiple optimal policies during
training and inference to improve both solution quality and robustness. This line of work has
since inspired a series of end-to-end construction-based methods [43l 26} [13] 47, [14] that further
improve performance. Improvement-based methods, on the other hand, enhance initial solutions
through iterative refinements. These methods often integrate neural networks into classical heuristic
frameworks. Notable examples include NeuroLKH [49], DeepACO [51]], and NeuOpt [31], which
demonstrate strong performance through learning-augmented optimization strategies. To showcase
the generality of our proposed framework, we apply it to enhance both a construction-based solver
(AGFN) and an improvement-based solver (GFACS).



2.2 GFlowNet for Combinatorial Optimization Problems

GFlowNet has been applied across a wide range of structured generation and decision-making tasks.
In molecular and drug discovery [57, 34,24, 41,116} 40], they are used to sample diverse, high-reward
molecules from complex solution spaces. In causal structure learning [28, 9], GFlowNet facilitates
exploration over multiple plausible directed acyclic graphs (DAGs), while in Bayesian inference
[10} 42, 135]], they serve as alternative samplers for discrete posteriors. Additional applications include
symbolic reasoning [45} 27]], robotics planning [29,133]], and solving maximum independent set (MIS)
[53], where modeling solution diversity is essential. Recently, GFlowNet has also been applied to
VRPs [55}122], including TSP and CVRP. In this context, learning a distribution over feasible routes
offers a flexible and effective alternative to deterministic solvers. Two representative models are
AGFN and GFACS. AGFN incorporates adversarial training to improve trajectory construction in
an end-to-end fashion, making it the first to apply GFlowNet to VRPs directly. In contrast, GFACS
integrates GFlowNet with ant colony optimization, marking the first attempt to augment heuristic
search with GFlowNet-based learning. In this paper, we further enhance both AGFN and GFACS for
solving VRPs using our proposed Hybrid-Balance GFlowNet framework.

3 Hybrid-Balance GFlowNet
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Figure 1: The Overall Framework of Our Hybrid-Balance GFlowNet for Solving VRPs.

As illustrated in Fig[I] the Hybrid-Balance GFlowNet (HBG) begins with trajectory generation
using either AGFN or GFACS, during which state transition information is recorded at each step.
The generated next state is then treated as the current state in the following step, and this process
repeats until a complete trajectory is constructed. The blue region in Fig[T|corresponds to the original
components from AGFN and GFACS, responsible for the processing of the complete trajectory and
the computation of the TB loss, which captures global optimization signals. However, relying solely
on the TB loss can cause the model to overlook important relationships between individual states. To
bridge this gap, our proposed HBG introduces additional components, highlighted in purple, where
the DB loss is computed for each individual state transition to enhance local optimization. The final
training objective is a combination of two loss, which together guide the optimization of the model.

To better illustrate the motivation for introducing DB, consider a long vehicle routing trajectory that
is incrementally constructedas A =B —-+C—-D—-E—- ... 2 U=V WX ->Y > Z
Assume this complete route yields a high total cost (bad performance), primarily due to suboptimal
decisions made in the early stages, such as traversing a high-cost edge from node C to node D. In
contrast, the latter portion of the tour (e.g., from node U to Z) may follow a more cost-effective and
well-structured pattern. Under Trajectory Balance (TB), the final reward is determined by the overall
trajectory cost, and is proportionally assigned to all transitions. Consequently, even high-quality local
transitions, such as W — X — Y, may receive weak or misleading training signals simply because
they are embedded in a globally suboptimal trajectory. This would hinder the model’s ability to
learn and reinforce desirable local patterns. On the other hand, Detailed Balance (DB) operates at a



step-wise granularity, evaluating the expected outcomes of individual transitions. For instance, at
node W, DB can assess whether transitioning to X leads to better outcomes compared to alternative
choices like Z, regardless of earlier suboptimal steps. This localized and reward-sensitive feedback
enables the model to more accurately learn local quality from global performance, and promotes
stronger learning signals for valuable decisions even within imperfect trajectories.

This example illustrates a core limitation of Trajectory Balance (TB) in long-horizon combinatorial
tasks like VRP: when the overall trajectory is suboptimal, TB lacks the ability to identify and preserve
well-structured local segments within it. As a result, valuable local patterns may be overlooked
or penalized. By incorporating Detailed Balance (DB) into the training objective, we address this
limitation by providing fine-grained, step-level singal that helps isolate and reinforce high-quality
local decisions, even when the global trajectory does not show good performance.

3.1 Modeling Basics

Problem Definition. For a CVRP instance, G denotes the input graph, which includes the coordinates
and demands of customers, as well as the depot location. Formally, the instance is represented as
a complete graph G = (V,U), where V = {vg, v1,. .., v, } denotes the set of nodes, with vy as the
depot and the remaining nodes representing customers, and I{ is the set of edges. Each customer node
v; (i > 1) is associated with a demand d; and a location in Euclidean space. Each edge (v;,v,) € U
has an associated cost ¢;;, typically defined as the Euclidean distance between v; and v;. The goal of
CVREP is to determine a set of vehicle routes that start and end at the depot, such that each customer
is visited exactly once, the total demand on each route does not exceed the vehicle’s capacity, and the
total routing cost is minimized.

State s: In a trajectory set 7 = {71, 72, ..., 75}, the state s denotes the sequence of nodes visited
in trajectory 7;. At decision step ¢ in 7;, the state is defined as s! = {z{, 2%, 2%,..., zi}, where x!
is the most recently visited node, and z{, represents the depot which serves as both the starting and
ending point of the route.

Action a: An action aj transitions the system from state s to s} ;. Given s} = {z{, 2}, ..., 2}}, the
action selects the next node z ; from the set of unvisited nodes, adhering to feasibility constraints
such as vehicle capacity. Once all customers are visited, the route terminates in a final state, forming
a complete trajectory 7; = {x{, 2%, ... xl }.

Reward R: The reward R(7;) is determined by the quality of the generated trajectory 7;. We
define two types of rewards: R(7;) and R(s!). The former, R(7;), evaluates the entire trajectory,
while the latter, R(st), reflects local reward signals at individual state transitions. These are defined
as: R(r;) = Spoy dah, oy ,,), R(si) = d(zi_,, i), where d(z, 2}, ) denotes the Euclidean
distance between consecutive nodes.

Graph Neural Network (GNN). We integrate a GNN module [48]] into the GFlowNet framework to
more effectively capture the complex relational structures inherent in VRP instances. The detailed
architecture and formulation are provided in Appendix Following the designs of AGFN and
GFACS, we sparsify the fully connected graph into a k-nearest-neighbor graph G to improve scalabil-
ity and reduce computational cost. The graph G is embedded into a high-dimensional feature space,
encoding node coordinates and edge distances as node and edge features, respectively. The GNN,
parameterized by 0, processes these features through multiple layers to produce rich representations.
The resulting edge embeddings are passed through a multi-layer perceptron (MLP) to generate edge
probability distribution 7(G*, 0) for decision making by GFlowNet, while the node embeddings
Q ={q1,92,.-..,qp} are retained for computing state flows.

3.2 Hybrid-Balance GFlowNet
3.2.1 Global Optimization via TB

In VRPs, the objective is to determine the shortest route while satisfying various operational con-
straints, which necessitates evaluating solutions from a global perspective. Both AGFN and GFACS
adopt the Trajectory Balance (TB) objective to address this requirement, as it enables the GFlowNet
to be trained over entire trajectories, naturally aligning with global optimization goals.



As illustrated in Fig. I, AGFN generates an edge probability distribution 7(G*, Ogenerator) USing
GFlowNet, which is then used to sample the next node in the route. A discriminator, trained with
false labels from GFlowNet-generated trajectories and true labels from near-optimal trajectories,
evaluates the quality of sampled trajectory set 7 = {71, 7o, ..., 7 }. It assigns a quality score to each
trajectory, which is then combined with the raw trajectory length R(7) to compute the final AGFN
reward R(7). These rewards R(7), along with the source flow Z(@generator), forward probability
Pr(T; Ogenerator), and backward probability Pg(7) obtained from the GFlowNet, are used to compute
the AGFN TB loss /45, defined as:

2
enerator Pr (Tk' 7] eneralor)
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For GFACS, the GFlowNet is used to generate a heuristic matrix n(G*, 8), which is subsequently
transformed into a pheromone map to guide the ant colony optimization (ACO) in trajectory con-
struction. Once the trajectories are generated, a local search is applied for refinement, followed by an
energy reshaping step. The TB loss for GFACS, denoted ¢$5, is then computed in a similar form to
AGEFN, as both approaches adopt the TB loss formulation to optimize their models.

3.2.2 Local-Global Optimization through Hybrid-Balance

While global optimization is essential for solving VRPs, local optimization is also important as it
helps the model to capture fine-grained patterns, such as transitions between neighboring nodes.
However, local information alone is insufficient for modeling global objective and constraints like
total cost and capacity. To address this, we propose to unify both global and local objectives within a
Hybrid-Balance GFlowNet framework. Specifically, we integrate the DB mechanism into the original
TB framework of the GFACS and AGFN models to further enhance the modeling of local transitions,
particularly the relationship between the current state s¢ and the next state s 11

As shown in Fig.[I} the model records relevant information at each step, including the current state’s
reward R(s}) and flow F(s}; 0), the next state’s reward R(s} ) and flow F(s,;8), as well as the
forward and backward transition probability Py (si_|si;8) and Py(si|si, ). Once a trajectory is
completed, we apply a forward-looking technique [37] to compute the DB loss /pg between two
successive states as:

@

Py(st,1151:6) - F(51:0) - exp(E(si, )))2.
Pilsilsi) - Flsii0) - expl(E(s)))

EDB(si, 5@_1; 0) = <log

Here, Py(si ,|si;0) denotes the forward transition probability derived from the edge probability
distribution n(G*, @) in AGFN or the pheromone map in GFACS. The relationship between the
trajectory-level forward probability Pr(7;; €) used in TB loss and the step-wise forward probability
Py (s ,1|si;0) used in DB loss is given by:

(7530 pr silsi_1;0 3)

To ensure consistency with the trajectory-level backward probability Pz (7;) used in TB loss, we
design the step-wise backward probability Py(s}|s;, ) to reflect the structure of sub-trajectories
within 7;. Specifically, we assume that each complete trajectory 7; consists of a multi-node sub-
trajectories and j single-node sub-trajectories, and parameter P, is accordingly determined by the
varied transition structures.

Definition 1 (Trajectory Composition and Ordering Count). We define A, as the set of a multi-
node trajectories, and J; as the set of j single-node trajectories. Together, these sequences are
combined to form a complete trajectory 7;. Let B(A,, J;) denote the number of distinct orderings of
sub-trajectories in A, and J that result in the same complete trajectory ;.

We next present the following statement, which describes the recurrence relation for B(Ag, J;).



Statement 1 (Trajectory Orders’ Count Recurrence). The number of distinct trajectories composed
of a multi-node trajectories and j single-node trajectories arranged in different orders, denoted by
B(Aq, J;), satisfies the following recurrence relation:

B(Aq, Jj) =2a- B(Aa-1,T;) +j - B(Aq, Tj-1)- “

This recurrence arises from the backward destruction of CVRP trajectories, where we consider
how B(A,,J;) reached its predecessors. Suppose the current state corresponds to B(A,, J;),
where there are a remaining multi-node trajectories and j remaining single-node trajectories to
be disconnected. There are two possible types of backward transitions from this state to reach its
predecessor B(Aq—1,J;) or B(Aqy, Jj-1):

(1) Multi-node trajectory: If a multi-node trajectory is selected for backward destruction from
the depot, either of its two nodes can serve as the immediate predecessor to the depot. Therefore,
each of the a multi-node trajectories contributes two valid backward transitions, resulting in a total
contribution of 2a - B(A4—1, J;), where the recursion proceeds with ¢ — 1 remaining multi-node
trajectories and 7 unchanged single-node trajectories.

(2) Single-node trajectory: If a single-node trajectory is chosen, it contains only one node, which
uniquely determines the depot’s predecessor. Thus, each of the j single-node trajectories contributes
one backward transition, resulting in j- B(A,, J;—1), where the recursion continues with ¢ multi-node
trajectories and j — 1 single-node trajectories.

We combine both types of transitions to derive the recurrence relation as presented in Eq.[4 Subse-
quently, we deduce the closed-form expression of B(A,, J;) from Eq.[4] The proof is provided in
Appendix Sec.[A.2] and the corresponding formulation is presented below:

B(A,, J;) = (a+j)!-2%, fora,j > 0. 5)

Physically, the term (a + j)! accounts for all possible orderings of the a + j sub-trajectories, where
each of them is treated as an atomic step in the destruction process. Each multi-node trajectory
has 2 possible directions for destruction, contributing an additional 2% multiplicative factor. In
contrast, single-node trajectories allow only one valid direction. Therefore, the total number of
reward-equivalent permutations is the product of these two factors.

Statement 2 (TB Backward Probability). We denote Pg(7;) as the backward policy probability of a
complete trajectory T; in the GFlowNet framework under TB, formulated as:

1

Pp(t;) = (@tji-2e

(6)

where the denominator reflects the total number of distinguishable trajectory permutations given a
multi-node and j single-node trajectories to achieve complete trajectory ;.

Statement 3 (DB Backward Probability). We denote Py(s; | si,,) as the probability of a single

backward transition from state s, to its predecessor s,, and under the DB formulation, the backward
probability is defined conditionally:

1 . .
P 50— If the current node is the depot,
Py(silsii1) = {2a+] @)

1 otherwise.

This probability formulation originates from Eq. 4} which defines the total number of sub-trajectory
backward destruction orderings. Physically, each multi-node trajectory offers two possible predeces-
sor nodes for backward disconnection from the depot, thereby contributing the 2a term, while each
single-node trajectory provides one such option, contributing the j term. The resulting probability
ﬁﬂ, reflects a uniform selection over all valid backward transitions at the current decision step.
In contrast, for all other nodes in the trajectory, only a single predecessor is feasible, and thus the

backward transition becomes fully deterministic with probability 1.

Meanwhile, F(s;0) in Eq. [2|represents the flow of current state, and is derived from the node
embedding ¢ at state sy, which is calculated as follow:

; 1
F(sii0) = 5 > (WaReLU(W; - gy +by) + ba), ®)

T €S



where W1, Wa, b1 and bo are learnable parameters and ReLU [6] is the activation function. To handle
the local objective associated with state transitions, we define the reward of the predecessor state s}

as zero. Consequently, the energy term £ (si) in Eq. is also set to zero. The successor state s} , in

contrast, receives a non-zero transition reward. Accordingly, the energy term I3 (st 1) represents the
local reward signal, and its negative is defined as follow:

E(s) = R(s}) - ZR sF). )

As training progresses, the quality of each trajectory steadily improves, resulting in smaller values of
R(s!) as the generated routes become shorter. In Eq. @ we compute the energy £(s!) for state s
by subtracting the average reward of other trajectories at the same decision step. This formulation
effectively captures the relative advantage of a given state compared to its peers, encouraging the
model to assign higher energy to better-performing states. As the variance across rewards decreases
during training, the energy values naturally increase.

Then, the DB loss of the completed trajectory 7; = {z{, 2%, 2%, ..., 2% } can be calculated as:

log(7i; 0 Z lon(si, 51115 0), (10)

where (pg (s}, s;,; 0) is derived from Eq. 2} The overall loss for the Hybrid-Balance GFlowNet,
denoted by fug(T;8), is computed by aggregating both the TB loss ¢15(7;6) and the DB loss
¢pg(7; @) over all trajectories:

h
tup(T56) ZEHB 7::0) = > _(Lrs(7i;0) + Lop(7:; 0)). (1D

i=1
This unified objective enables the model to simultaneously capture global trajectory-level structure
and fine-grained local transitions, leading to more effective and robust optimization in VRPs.

3.2.3 Depot-Guided Inference
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Figure 2: Ilustration for Depot-Guide Inference.

The design of Hybrid-Balance GFlowNet’s backward policy reveals a key insight: as illustrated in
Fig. |2} only the depot node retains flexibility in choosing among multiple predecessor candidates
during trajectory destruction. This flexibility stems from the construction of sub-trajectories, each of
which begins and ends at the depot. In contrast, for all customer nodes, the backward transition path
is uniquely defined by the trajectory structure, i.e., once a customer node is reached, its predecessor
is deterministically identified. This determinism also holds during forward trajectory construction.
To leverage this structural characteristic, we propose a depot-guided inference mechanism defined as:

x  if the current node x; is depot,
Ter1 = { poep (12)

x* if the current node x; is customer,

where & ~ Py(s¢11 | s¢;6) denotes sampling from the forward transition probability, and z* =
arg max Pr(si41 | s¢;0) corresponds to greedy selection. Here, Py(si+1 | s¢;0) is derived from



Table 1: Comparison on CVRP datasets of different sizes: Objective (Obj.) values and inference
times (in seconds) are shown, and Gap(%) is computed with respect to LKH.

Method 200 500 1000
Obj. | Time(s)| Gap(%)| | Obj.| Time(s)] Gap(%)| | Obj.| Time(s)] Gap(%).
LKH 2804  59.81 6332 23372 120.53  433.90 -
ACO 71.46 3.36 154.85 | 189.79  11.14 199.73 | 37130  24.50 208.06
POMO (*8) 29.22 0.29 421 79.86 0.84 2612 | 19218 3.06 59.45
POMO 29.45 0.23 5.03 82.92 0.59 3095 | 231.88 1.48 92.38
GANCO 29.01 0.46 3.57 7130 14891 1260 | 14584  4.02 21.00
NeuOpt 38.42 17.19 37.02 | 186.17  38.05 194.01 - - -
AGFN 31.26 0.14 11.48 71.05 0.40 1221 | 13397 065 11.15
HBG-AGFN 30.83 0.15 9.95 69.93 0.42 1044 | 13178 065 9.34
GFACS 3452 4.65 23.11 78.41 12.76 2383 | 14924 2632 23.82
HBG-GFACS 32.66 4.67 16.48 71.89 12.77 1353 | 13332 2633 10.61
GFACS (local search) 28.63 12.18 2.10 6524  34.19 3.03 12415 8052 3.00
HBG-GFACS (local search) | 28.59 1220 1.96 6510 3421 2.81 12385  80.53 275

the edge probability distribution 7(G*, @) in AGFN or the pheromone map in GFACS. Under this
strategy, exploration through sampling is applied only at the depot, while customer nodes follow a
deterministic, greedy policy.

It is important to note that depot-guided inference is specifically designed for problems featuring a
designated depot node, such as the CVRP. For problems lacking a depot or node-role differentiation,
such as the TSP, we retain their original inference procedures, including hybrid decoding strategy [S5]]
for AGFN and the ant clony search [22] for GFACS.

4 Experiment

We conduct experiments to validate the effectiveness of the Hybrid-Balance GFlowNet (HBG) in
enhancing two representative GFlowNet-based solvers, i.e., AGFN and GFACS, on CVRP. We first
present comparison results, followed by ablation studies to analyze the contribution of individual
components. Lastly, we extend the evaluation to other vehicle routing problem.

Dataset: We adopt synthetic CVRP datasets following standard settings used in prior work [22|
25,1551 149]]. Each instance features a single depot and multiple customers served by a vehicle with
fixed capacity C'. The depot and customer coordinates are sampled uniformly from the unit square
[0, 1], and customer demands follow a uniform distribution Ula, b] with @ = 1 and b = 9. The
vehicle capacity is fixed at C' = 50 across all problem sizes: 100, 200, 500, and 1,000 nodes. For
testing, we generate 128 synthetic instances for each of the 200-, 500-, and 1,000-node settings,
aligned with evaluation rules established in AGFN and GFACS. The code is available at https:
//github.com/ZHANG-NI/HBG

Hyperparameters: We adopt the same model configurations and training settings as AGFN and
GFACS, including network architecture, batch size, learning rate, optimizer, and other hyperpa-
rameters. Training is conducted using sampling-based decoding with A" = 20 routes per instance.
During inference, AGFN uses depot-guided inference, and GFACS applies an ant colony search with
depot-guided node selection. All models are trained on 100-node instances. The experiments are
conducted on a server equipped with an NVIDIA A100 GPU and an Intel Xeon 6342 CPU.

4.1 Performance on Synthetic CVRP Instances

We compare HBG-enhanced models, i.e., HBG-AGFN and HBG-GFACS, with their original TB-
based counterparts, AGFN [55]] and GFACS [22]. AGFN constructs routes in an end-to-end manner,
while GFACS searches for solutions by combining GFlowNet with ant colony optimization. We also
include classical heuristics (LKH [19], ACO [3]]) and learning-based baselines (POMO [25]], GANCO
[50], NeuOpt [31]) for comparison. All methods are trained on 100-node instances and evaluated on
CVRP200, CVRP500, and CVRP1000 datasets, following AGFN and GFACS evaluation protocols.
Additional experiments on the public benchmark CVRPLib are reported in Appendix [B.1]

Table [T] shows that HBG consistently improves performance across all problem sizes for AGFN,
GFACS, and GFACS with local search. The performance gains are significant, with gap reductions
of up to 16.23%, 55.46%, and 8.33%, respectively. Improvements become more pronounced as
instance size increases, indicating strong scalability. Inference incurs only minor overhead (0.01-0.04
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Table 2: Ablation Study on AGFN and GFACS: Gap(%) is computed with respect to LKH.
(a) AGFN (b) GFACS

Method Method

200 500 200 500 1000
Obj. | Gap(%)! | Obj.| Gap(%)| | Obj.| Gap(%) | Obj. | Gap(%)! | Obj.| Gap(%)| | Obj.| Gap(%) |
LKH | 2804 BGEER -] 120583 - LKH | 2804 BGER - 12053 -

AGFN 31.26 11.48 71.05 12.21 133.97 11.15 GFACS 34.52 23.11 78.41 23.83 149.24 23.82
+HB 31.08 10.84 69.99 10.53 131.94 9.47 +HB 34.01 21.29 76.67 21.08 144.48 19.87
+ Depot-Guide Inference | 30.83 9.95 69.93 10.44 131.78 9.34 + Depot-Guide Inference | 32.66 16.48 71.89 13.53 133.32 10.61

Table 3: Comparison of DB, TB, and HB: Gap(%) is computed with respect to LKH.

(a) AGEN (b) GFACS
200 500 1000 200 500 1000
Method | 5~ Gap(%) | Obj. Gap(%) | Obj. Gap(%)  Method | oyt “Gap(%) | | Obj. | Gap(%) | | Obj. | Gap(%) |
LKH | 28.04 - ] 6332 - ] 12053 - LKH | 2804 - | 6332 - | 12053 -
DB 34.41 22.72 76.78 21.26 143.25 18.85 DB 43.28 54.36 94.20 48.77 181.87 50.89
TB 31.26 11.48 71.05 12.21 133.97 11.15 TB 34.52 23.11 78.41 23.83 149.24 23.82
HB 31.08 10.84 69.99 10.53 131.94 9.47 HB 34.01 21.29 76.67 21.08 144.48 19.87

seconds) due to temporary loading of flow parameters, which does not impact overall runtime or
scalability. Compared to other heuristic and learning-based methods, HBG-AGFN and HBG-GFACS
achieve competitive or superior solution quality across all scales. On CVRP200, both methods
outperform ACO and NeuOpt. On CVRP500 and CVRP1000, they continue to generalize effectively,
outperforming ACO, POMO, GANCO, and NeuOpt. These results highlight the robustness, efficiency,
and strong generalization capabilities of the proposed HBG framework.

4.2 Ablation Study

Comparison of Component Contributions. We evaluate the contribution of each component in
the HBG framework for both AGFN and GFACS. First, we incorporate the Hybrid-Balance (HB)
module into the original models. Then, we add the depot-guided inference mechanism on top of the
HB-enhanced variants. As shown in Table[2] each component contributes significantly to performance.
Incorporating the HB module alone reduces the optimality gap by up to 15.07% in AGFN and 16.58%
in GFACS. Adding depot-guided inference provides further gains, especially for larger instances.
These results confirm that the HB module offers consistent improvements and depot-guided inference
delivers additional benefits in depot-centric tasks.

Comparison of Balance Strategies. To further validate the effectiveness of Hybrid Balance (HB),
we conduct a comparison against Trajectory Balance (TB) and Detailed Balance (DB) under identical
training settings on 100-node instances, evaluated on CVRP200, CVRP500, and CVRP1000. As
shown in Table[3] the HB module consistently outperforms both TB and DB across all instance sizes
for both AGFN and GFACS. Notably, HB achieves up to a 15.07% improvement over TB in AGFN
and up to 16.58% in GFACS. These results highlight the superior effectiveness of Hybrid Balance as
a unifying optimization strategy.

Depot-Guided Inference Variants. We assess four variants of the depot-guided inference strategy
by applying either sampling or greedy decoding at the depot and customer nodes. Tests are conducted
using both AGFN and GFACS on CVRP200, CVRP500, and CVRP1000. As shown in Table the
combination of sampling at the depot and greedy decoding at customers yields the best performance.
This setting consistently outperforms all other variants, including depot greedy + customer sampling,
depot greedy + customer greedy, and depot sampling + customer sampling. These results validate the
effectness of our depot-guided inference mechanism.

4.3 Generalization to Other Vehicle Routing Problem

We further evaluate our framework on the Traveling Salesman Problem (TSP), a key VRP variant.
Baselines include GFlowNet-based solvers (AGFN [55]], GFACS [22])), classical heuristics (LKH
[19], ACO [3]]), and learning-based models (POMO [25]], GANCO [50]], NeuOpt [31]]). All models
are trained on 100-node instances and evaluated on 200-, 500-, and 1,000-node settings. Since
TSP lacks a depot node, depot-guided inference is not used. Table [5] shows that HBG-AGFN
consistently outperforms AGFN, reducing the gap by up to 17.64%. HBG-GFACS also achieves



Table 4: Ablation Study on Depot-Guided Inference. Gap(%) is computed with respect to the LKH.
DG represents depot greedy, DS represents depot sampling, CG represents customer greedy, CS
represents customer sampling.

(a) AGFN
Method 200 500 1000
Obj. | Time(s)| Gap(%). | Obj.| Time(s)| Gap(%). | Obj.| Time(s). Gap(%).
LKH 2804  59.81 - 6332 23372 - 120.53  433.90 -
DGand CS | 32.78 0.16 1690 | 76.42 0.41 2069 | 146.14  0.65 21.25
DG and CG | 31.96 0.16 1398 | 7135 0.41 1268 | 13332 0.65 10.61
DSandCS | 31.88 0.16 13.69 | 74.49 041 17.64 | 14474 065 20.09
DSand CG | 30.83 0.16 9.95 69.93 041 1044 | 13178  0.65 9.34
(b) GFACS
Method 200 500 1000
Obj. | Time(s)| Gap(%). | Obj.| Time(s)| Gap(%). | Obj. | Time(s)] Gap(%).
LKH 2804 5981 - 6332 23372 - 120.53  433.90 -
DG and CS | 34.87 4.67 2436 | 7599 1278 2001 | 14853 2633 23.23
DG and CG | 34.58 4.67 2332 | 7412 1278 1706 | 13533 2633 12.28
DSandCS | 33.38 4.67 1904 | 7579 1278 19.69 | 14346 2633 19.02
DSand CG | 32.66 4.67 1648 | 71.89  12.78 1353 | 13332 2633 10.61

Table 5: Comparison of performance and runtime on TSP with 200, 500, and 1000 nodes. Gap(%) is
computed relative to LKH (10000).

Method ‘ 200 500 1000

Obj.| Time(s)| Gap(%), | Obj.| Time(s)| Gap(%), | Obj.| Time(s)| Gap(%).
LKH 1062 38.80 - 1630 7529 - 2268 149.36 -
ACO 4572 179 330.51 | 149.62  5.87 817.91 | 31542 1320 1290.74
POMO 10.97 0.12 3.30 20.85 0.39 2791 33.94 0.59 49.65
POMO (*8) 10.90 0.20 2.64 20.44 0.55 2540 | 32.60 3.42 4374
NeuOpt 13.22 6.39 2448 | 13815 1454 74755 | 32528  27.84 1334.22
GANCO 11.30 0.11 6.40 19.69 0.36 2080 | 29.97 0.85 32.14
AGEN 11.85 0.08 11.58 19.08 0.26 17.06 | 27.15 0.70 19.71
Our-AGFN 11.73 0.11 1045 | 18.59 027 1405 | 26.87 071 18.47
GFACS 13.04 1.64 279 | 2441 9.42 4976 | 4186 2079 84.57
Our-GFACS 12.68 1.66 19.40 | 24.19 9.43 4841 | 3990 2081 75.93
GFACS (local search) 10.78 6.67 1.51 1710 2776 491 2445 5842 7.80
Our-GFACS (local search) | 10.78 6.68 1.50 1705 27.78 4.60 2442 5842 7.67

notable improvements, with the gap on 200-node instances reduced from 22.79% to 19.40%. With
local search, HBG-GFACS achieves further improvements, with the best gap reduction reaching
6.31%. Compared to classical heuristics and learning-based methods such as ACO, POMO, NeuOpt,
and GANCO, both HBG-AGFN and HBG-GFACS achieve competitive results on TSP tasks. These
results confirm the generalizability and strong performance of HBG on TSP tasks.

5 Conclusion

In this paper, we introduced the Hybrid-Balance GFlowNet (HBG) framework to enhance the
performance of GFlowNet-based solvers for vehicle routing problems. HBG unifies Trajectory
Balance and Detailed Balance in a principled and adaptive manner to jointly optimize local and global
objectives. We also proposed a depot-guided inference strategy aligned with the Hybrid-Balance
principle, specifically tailored for depot-centric problems. Extensive experiments on both CVRP and
TSP benchmarks demonstrate that HBG significantly improves the performance of two representative
GFlowNet-based solvers, i.e., AGFN and GFACS, showcasing improved solution quality, scalability,
and generalization. A current limitation of HBG is its reliance on existing GFlowNet-based models,
as its performance depends in part on the underlying solver, which might be inferior to others. In
future work, we plan to integrate it with alternative stronger generative policies and solvers.
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A Methodology Details

A.1 Graph Neural Network

Our GNN architecture follows the same design as those used in AGFN and GFACS to ensure a fair
comparison, which uses a custom GNN architecture designed specifically for the VRP task, and
employs a custom message-passing GNN that jointly updates node and edge representations over
multiple layers. At each layer [, node embedding h! of the i-th node and edge embedding e! ; between
the i-th and j-th nodes are updated via the following formulations:

Bt = pl 4 ACT(BN(W{hg +A(o(el) Wéhé))), (13)

=l + ACT(BN(Wéeﬁj +WIhL + Wghg)), (14)
where Wi, Wi, Wi Wi W} are learnable parameters, A(-) denotes the aggregation function (mean
pooling in our case), o(-) is the sigmoid activation that modulates attention over neighbors, and ACT
denotes the SiLU activation. Batch normalization (BN) is applied at each step for stability. The
number of layers is set to 12 for HBG-GFACS and 16 for HBG-AGFN, with hidden dimensions of
32 and 64, respectively.

A.2  Proof Process of Hybrid-Balance

To solve Eq. il We begin by establishing the boundary conditions. When either a = 0 or j = 0, the
recurrence simplifies accordingly. For instance, when a = 0, we obtain:

B(Ao, Jj) = j - B(Ao, Jj-1). (15)

When a = 0 and j = 0, there are no sub-trajectories in 7;, and 7; contains only the depot node.
Therefore, the base case becomes B(.Ag, Jo) = 1, and it is equivalent to:

0+ 0)!
B(Ao, Jo) = 1 = (0'+0|) . fora—j=0. (16)
Using Eq. recursively and applying the base case B(Ap, Jp) = 1, we derive:
B(Ao, J;) = j. 17)
Similarly, when j7 = 0, we can deduce that:
B(Aqa, Jo) = 2% - al. (18)

We now normalize Eq.[d] by dividing both sides by 2% - a! - j!, resulting in:
B(Aa7\7]) _ B(Aa—17u7j) B(Aaatjj—l)

= . 19
2¢ . gl - 4! 20-1. (@ =1)l-51 * 20.ql-(j—1)! (19)
Based on this, we define a normalized function:
a B(Aq, J5)
C(A(M‘]j) - 2a . a! J' . (20)
Substituting Eq. [20]into Eq. [T9] we obtain the recurrence:
C(-Aavs7j) :C(Aaflvujj)'f'C(Aamjjfl)' (21)

We analyze the recurrence in Eq. [2Tunder the boundary conditions, and derive results from Eqs.[T7]

[T8] and 20}
(Ao, J;) =1, c(Aq,Jo) =1, foralla,j >0.

These boundary conditions are equivalent to:

0+ 5)! )

(Ao, Jj)=1= (O'j')’ fora=0,7 >0, (22)
(a+0)! .

C(Aa7j0) =1= o fora > 0,5 =0. (23)
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Table 6: Test on the CVRPLIB-XXL benchmark. Gap(%) is computed with respect to the optimal
solution.

Gap(%), | L1(3k) L2@dk) Al(6k) A2(7k) GI1(10k) G2(11k) B1(15k) B2 (16k)
AGFN 114518 2787  29.62 2459  142.62 27.24 20.65 120.69
HBG-AGFN | 97.15 2509 2536 2096  113.89 20.47 109.80  46.97
GFACS 11924 1788.57 112.08 23679 28134  2207.71  352.69  2537.29

HBG-GFACS | 52.25 33.96 21.58 39.19 78.88 31.60 179.70 37.43

Moreover, motivated by Pascal’s rule [[17], which states:

-1 -1
<Z) = (Zl) + (nk ), for all integersn > land 1 < k < mn,

and by setting n = a + j, k = a, we obtain:
. S 1
(a+]>:<a+‘7 >+(a+] ), fora,j > 1,
a a—1 a

which is equivalent to:
<a+j> ((a—l)—i—j) (a—l—(j—l))
— + .
a a—1 a

This is similar with the function of ¢(A,, J;) in Eq. Therefore, the closed-form expression of
c(Aq, Jj) is:
) )
c(Aa, Jj) = (a+]> = L'Jr ‘7')', fora,j > 1. (24)
a al - j!
By extending Eqs. [I6] 22] [23] and [24] the generalized closed-form solution for all a, j > 0 is given
as:
a+j a+j)!
c(Aa,Jj)=< aj) _latit (25)

al-j!

Finally, substituting Eq. 25]into Eq.[20} we obtain the closed-form expression for the total number of
distinct sub-trajectory orderings resulting in the same complete trajectory:

B(Ay, J;) = (a+j)t-2¢, fora,j>0. (26)

B More Experiments

B.1 Test on Real world dataset

To evaluate our model’s performance on real-world data, we conduct experiments on the CVRPLIB-
XXL [1l], which is designed to test model’s performance on large-scale real-world instances. As
shown in Table 6} HBG-AGFN achieves up to a 91.51% reduction in gap compared to AGFN, while
HBG-GFACS achieves up to 98.52% improvement over GFACS. These results demonstrate that our
framework significantly enhances the performance of GFlowNet-based solvers on real-world datasets.

Table 7: Comparison of Hyperparameter Settings on CVRP

(a) Sparsity Parameter (b) Learning Rate (c) Optimizer Type
CVRP (Gap%) 200 500 1000 CVRP (Gap%) 200 500 1000 CVRP (Gap%) 200 500 1000
PE 0D ho  momaTh:  bh by hn  meenea 78w
o1 | _ 1107 K Ing - | _Adam - > N

338 Siﬁgﬁ-é("“g‘") }3‘33 ggg i?'g; HBG_GFACS_5x10~*(origin) 1648 1359 10.61 HBG_GFACS_AdamW (origin) 1648 1359 10.61

HBG_GFACS_10 ,0'43 17.88 149 HBG_GFACS_1x10~* 1822 1419 11.30 HBG_GFACS(local)_SGD 423 426 455

-~ Sy . e . iy HBG_GFACS(local)_5x10~% 171 277 433 HBG_GFACS(local)_Adam 203 270 273

HBG_GFACS(local)_5(origin) ~ 1.96  2.81  2.75 HBG_GFACS(local)_1x 10~ 170 265 251 HBG_GFACS(local)_AdamW(origin) 230 343  4.57

HBG_GFACS(local)_10 207 343 4.57 HBG_GFACS(local)_5x10~*(origin) 193 442 575 HBG_AGFN_SGD 1466 1300 1247

HBG_AGFN_2 1262 1348 17.32 HBG_GFACS(local)_1x10-% 453 649 650 HBG_AGFN_Adam 1016 11.88 1177

HBG_AGFN_5(origin) 950 1044 934 HBG_AGEN 5x 107 1141 1462 1100 HBG_AGFN_AdamW (origin) 995 1044 9.34
HBG_AGFN_8 1195 1357 12.69 HBG_AGFN_1x10~3 1014 1277 1062
HBG_AGFN_10 9.10 1456 14.04 HBG_AGFN_5x10~*(origin) 995 1044 9.34
HBG_AGFN_1x10~* 937 1027 959
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B.2 Hyperparameter Sensitivity Analysis on CVRP

The introduction of a new loss component (L pp) could potentially alter the optimization landscape,
and that the original hyperparameter settings used in AGFN and GFACS may not be optimal for
the proposed HBG variants. We further conduct additional experiments in which we re-tuned key
hyperparameters for the HBG models, including the sparsity parameter, learning rate, and optimizer
settings. The updated results (Table will be incorporated into the Appendix of the revised
version. HBG-GFACS_2 refers to the HBG-GFACS model evaluated with a sparsity parameter
k = |V'|/2; the interpretation is analogous for the other entries. The term origin denotes the original
hyperparameter configuration used in our main experiments. HBG-GFACS_5x 1073 refers to the
HBG-GFACS model evaluated with a learning rate of 5 x 10~3; the interpretation is analogous for
the other entries. HBG-GFACS_SGD refers to the HBG-GFACS model evaluated using the SGD
optimizer; the interpretation is analogous for the other entries.

As the sparsity parameter results shown in Table the optimal sparsity setting yields the best
performance for both HBG-GFACS and HBG-AGFN. Regarding the learning rate comparisons in
Table for HBG-GFACS, the original value of 5 x 10~4 performs best without local search, while
a value of 1 x 1073 achieves the best results when local search is enabled. For HBG-AGFN, a
learning rate of 1 x 10~* shows superior performance on the 200- and 500-node instances, whereas
the original value performs best on the 1000-node instances. As for the optimizer comparison in
Table[7d] the original AdamW setting provides the best performance in most cases. An exception is
observed on the 500- and 1000-node instance with local search, where Adam slightly outperforms
AdamW for HBG-GFACS.

B.3 Weight \ of DB and TB

Table 8: Weights Analysis of HBG-AGFN on CVRP

Size (Gap%) 0.5—0 1-0 2—-0 05—=05 1-=05 2—05 05—1 1—1(origin) 22

200 11.09 10.80 10.94 11.41 1198  11.20 9.98 9.95 10.44
500 11.27  12.04 11.18 12.15 11.66 11.80 11.63 10.44 11.98
1000 10.89  10.61 9.89 11.03 10.84 1098  10.87 9.34 10.08

Table 9: Weights Analysis of HBG-AGFN on TSP

Size (Gap%) 0.5—0 1=0 2—=0 05—=05 1-=05 2—05 05—=1 1—=1 (origin) 2—2

200 10.26 1042 10.49 11.48 1126  10.66  10.08 10.45 10.36
500 15.15 1540 16.13 16.87 16.09 1579 1491 14.05 15.64
1000 18.80 18.55 19.00 19.26 21.87  22.00 18.52 18.47 18.81

Table 10: Weights Analysis of HBG-GFACS on CVRP

Size/ Gap(%)/\ 05—-0 10 2—0 0—-05 0—-1 02 05—05 1—1(origin) 2—2

200 14.05 1929 17.37 17.72 1847 19.08 16.42 16.48 18.87
500 11.78 17.66 1538 1528 1635 15.71 13.57 13.53 15.49
1000 11.29 1580 12.71 12.88 13.47 12.80 10.91 10.61 12.80
200 (local search) 2.39 1.78 2.03 2.07 2.14 1.96 1.96 1.96 1.78
500 (local search) 3.02 251 2091 341 344 299 3.17 2.81 2.62
1000 (local search)  2.82 227 282 3.31 353 322 2.75 2.75 2.40

We have conducted additional experiments on the weighted combination (i.e., Ly = L1 + ALDB)
to assess the sensitivity of our method to different values of \, which are gathered in Tables[8HI1] The
results include both adaptive weights (i.e., A\: 0.5—0, 1—0, 2—0 and so on) and fixed weights (i.e.,
0.5—0.5, 1—1, 2—2), where 0.5—0 denotes changing the TB:DB loss weight ratio from 1:0.5 to 1:0
during training, with TB weight fixed at 1. The interpretation for other entries follows analogously.
The term origin denotes the original hyperparameter setting used in our main experiments. We find
that, for HBG-AGFN, a fixed 1:1 weight between TB and DB consistently yields the best performance.
Similarly, for HBG-GFACS, this ratio offers the most favorable trade-off between performance and
stability with and without local search.
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Table 11: Weights Analysis of HBG-GFACS on TSP

Size / Gap(%)/ X 05—=0 1-0 2—=0 0-=05 0—=1 0—=2 05—=05 1—1(origin) 2—2

200 19.13  20.61 23.06 2221 20.56 24.02 21.64 19.40 22.82
500 49.51 49.61 50.80 49.48 4847 56.13 49.62 48.41 50.37
1000 7230 80.19 90.50 7937 80.39 96.36 717.45 75.93 87.23
200 (local search) 1.57 149 159 1.59 1.62 1.82 1.54 1.50 1.62
500 (local search) 4.81 4.65 5.02 4.88 473 518 4.73 4.68 5.12
1000 (local search) ~ 7.73 7.68  7.86 7.83 8.02 820 7.70 7.67 7.99

B.4 Statistical Significance of Experiment

HBG-AGFN HBG-GFACS
20 8.3
18 8.2
16
= =81
Q14 Qo
12 8.0
10 7.9
8
2000 4000 6000 8000 10000 200 400 600 800 1000
Training Step Training Step

Figure 3: Training Process of HBG-AGFN and HBG-GFACS.

As shown in Fig. both HBG-AGFN and HBG-GFACS exhibit a clear and steady decline in
objective values throughout the training process, indicating stable convergence. The narrow shaded
areas—representing standard deviation across five random seeds—suggest low variance among
runs. These results collectively highlight the effectiveness of the training process and the statistical
reliability of the observed performance gains.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " " itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
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write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope, and are supported by the methodology and results
presented in the main body.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work in the Conclusion section.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, the paper provides the full set of assumptions and corresponding proofs
for each theoretical result in the Methodology section and the Appendix.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, the paper provides all necessary implementation and experimental details
required to reproduce the main results, as described in the Method and Experiment sections.
The code will be made publicly available upon publication.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: We will also release the code upon publication.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The training and test details are shown in experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Description about the statistical significance of the experiments are provided in Ap-
pendix [B.4]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report compute resources in experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
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11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper first time unify Detailed Balance and Trajectory Balance for
solving vehicle routing problems, and the Hybrid-balance handle well with global-local
optimization. This work has potential to have good impact in both GFlowNet and VRPs
research community.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

» Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For all models and datasets used, we cite its original papers.
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13.

14.

15.

Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce any new assets at this stage. Upon publication, all code
and datasets used in this work will be made publicly available. The methodology and
experimental settings are thoroughly documented in paper.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

24


paperswithcode.com/datasets

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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