FUuLLY FIRST-ORDER METHODS FOR CONTEXTUAL
STOCHASTIC BILEVEL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Contextual stochastic bilevel optimization (CSBO) is a new paradigm for decision
making under uncertainty that generalizes stochastic bilevel optimization (SBO)
by integrating contextual information in the lower level optimization problem and
thus offers a stronger modeling capability. Nevertheless, owing to its semi-infinite
nature, CSBO is extremely challenging from a computational perspective, hinder-
ing its real-world applications. Indeed, many algorithms designed for SBO are
not applicable to CSBO. In this paper, we devise a double-loop fully first-order
algorithm for solving CSBO and prove that both sample and gradient complexi-

ties of the algorithm are O(e~8). To tackle the increasing number of inner loop
iterations, we further develop an accelerated version of our algorithm using the
random truncated multilevel Monte Carlo technique. The accelerated algorithm

enjoys the improved complexities of O(e~%). Our algorithms are fully first-order
in the sense that they do not rely on second-order information, and hence these
complexities cannot be directly compared with those of Hessian-based methods.
Numerical experiments on meta-learning with real datasets demonstrate the supe-
riority of the proposed algorithms, especially the accelerated version, over existing
Hessian-based method in terms of both speed and accuracy.

1 INTRODUCTION

Contextual stochastic bilevel optimization (CSBO) is a new bilevel optimization framework intro-
duced inHu et al.|(2023b)) that accommodates contextual information or personalization in the lower
level and takes the form

min F(z) = Ey¢[f (2, y"(2;€);1,€)]

zERde

where 4 (s36) i= arg iy Byelo(r,ys,€)] V€ € 5 CRY,x € R, M
yeR™

where we assume that g(z, -; £, 7) is strongly convex for any z € R, ¢ € = and 7 so that the lower
level minimizer y* (z; €) is unique. Further assumptions on the functions f and g are presented in the
next section. The upper level expectation is with respect to the joint distribution of the two random
vectors ¢ and 7, while the lower level expectation is with respect to the conditional random vector
n|&. The support = of € can possibly be uncountably infinite. We do not assume knowledge of the
distributions but only access to i.i.d. samples from the marginal distribution [P¢ and the conditional
distribution PP, .

CSBO subsumes stochastic bilevel optimization (SBO) (Ghadimi & Wang| 2018; Kwon et al.,
2023a)) as a special case. Compared with SBO, CSBO offers two distinctive modeling advantages:
(1) the lower-level decision y in CSBO can be coupled not only with upper-level decision = but also
with side information &; (ii) the number of lower-level decision makers in CSBO can be arbitrary
as Z is not necessarily a finite set. Besides SBO, CSBO also generalizes contextual stochastic op-
timization (Bertsimas & Kallus| [2020) and conditional stochastic optimization (Hu et al., [2020a;b).
Consequently, CSBO serves as a versatile modeling paradigm with a wide range of applications,
such as meta-learning (Rajeswaran et al.| |2019), end-to-end learning (Rychener et al., 2023), per-
sonalized federated learning (Shamsian et al.,2021)), hierarchical representation learning (Yao et al.,
2019), Wasserstein DRO with side information (Yang et al.| [2022} Donti et al., [2017), and instru-
mental variable regression (Muandet et al.,2020; Kwon et al.| 2023a).



The modeling power comes at a cost though: CSBO is extremely challenging from a computational
perspective. Indeed, many algorithms designed for SBO are inapplicable to CSBO. For instance,
numerous single-loop methods that are efficient for SBO (Guo et al., |2021aib; |Chen et al., 2021}
2022b; [2023; [Hong et al.| 2023} [Yang et al., 2021)) cannot be directly applied to solve CSBO. The
fundamental distinction arises from the nature of the lower-level optimal solution. In SBO, the
lower-level solution y*(x) is a function solely of the upper-level decision x, while in CSBO, the
lower-level decision y*(x; &) depends not only on z but also on the random variable £ represent-
ing contextual information. This difficulty also invalidates the warm-start strategies used in many
double-loop SBO algorithms (Kwon et al.,|2023a3b;|Chen et al., 2025bj;|Gong et al.,|2024)), degrading
their practical performance as well as theoretical guarantees. Motivated by the gap in the algorithmic
development between SBO and CSBO, a recent work (Bouscary et al.,2025) proposes a framework
to reformulate CSBO as SBO, thereby solving CSBO via SBO algorithms. However, their frame-
work requires the additional assumption that the lower-level objective function ;¢ [g(x, y; 1, §)] is
analytic with respect to (y, &) and that £ is either a discrete random variable with a finite support
(i.e., |E| < 00) or a continuous random variable whose density function is uniformly bounded away
from O.

For general CSBO, Hu et al, (2023b) developed a double-loop algorithm. The outer loop adopts
a vanilla stochastic gradient descent framework for the upper-level problem, and the inner loop is
to compute the lower-level minimizer y*(xz; §) for constructing an upper-level gradient estimator.

This algorithm achieves gradient and sample complexities of O(e~%) (Hu et al., 2023b). To allevi-
ate the large number of inner iterations, [Hu et al.| (2023b) further employed the random truncated
multi-level Monte Carlo (RT-MLMC) technique to develop an accelerated algorithm that enjoys the
strengthened complexities O(e~*). A shared drawback of these two algorithms is that each iteration
requires computing multiple Hessian estimators and a matrix of mixed second-order derivatives of
g, which leads to high per-iteration computational costs and slow performance in practice.

In view of the above discussions, this paper aims to develop a fully first-order, Hessian-free algo-
rithm for solving general CSBO problems. Our contributions are as follows.

* We propose a fully first-order double-loop algorithm (c.f. for CSBO and prove

that its sample and gradient complexities are both O(¢~®). Our algorithmic framework
differs fundamentally from that in (Hu et al., |2023b) and is based on a suitable penalty
formulation of problem [(T)] To the best of our knowledge, this is the first fully first-order
algorithm for solving general CSBO problems that does not rely on any second-order oracle
of g.

* To circumvent the increasing number of inner iterations of our proposed double-loop al-
gorithm, we devise an accelerated variant of our algorithm by invoking the RT-MLMC
technique. We also show that this accelerated algorithm enjoys the improved sample and

gradient complexities of O(e~6).

* Unlike the situation in (Hu et al.| [2023b)), a straightforward adoption of their RT-MLMC
technique in our algorithmic framework will introduce a large variance to the resulting
algorithm, which significantly affects its practical performance. This is mainly due to the
increasing penalty parameter in our algorithmic framework, which amplifies the variance
of the gradient estimator. To cope with this issue, we develop a novel stepsize strategy for
our accelerated algorithm that can effectively control the instability without compromising
the theoretical complexity. To the best of our knowledge, this is the first adaptive stepsize
strategy for controlling the overall variance in RT-MLMC-based gradient algorithms, which
could be of independent interest.

* We demonstrate the superiority of our proposed algorithms, especially the accelerated one,
over the Hessian-based algorithm in (Hu et al), [2023b) via numerical experiments on a
meta-learning application with using the tinyImageNet datasets (Mnmoustafal 2017).

Finally, we should point out that our complexities O(e~8) and O(¢ %) for the basic and accelerated
algorithms should not be directly compared with the corresponding ones in [Hu et al.| (2023b), as
we do not rely on any second-order oracles and thus have much smaller per-iteration computational
costs.



1.1 RELATED WORK

Bilevel optimization is a big topic with a long history. Below we provide a brief review of its recent
development, with a focus on SBO and CSBO. Assuming second-order oracles of g, (Ghadimi &
‘Wang| (2018) developed the first SBO algorithm with a provable non-asymptotic complexity guar-
antee. In their approach, the inner loop computes an approximate solution for y*(x), which is then
used to estimate the gradient of F'. This seminal work has spurred the development of a diverse suite
of methods using second-order oracles; to name a few, stocBiO inJi et al.[(2020), SOBA and SABA
in|Dagréou et al.|(2022), MDBO for distributed SBO in|Gao et al.[(2023), TTSA algorithm in{Hong
et al. (2023, SUSTIAN algorithm in |[Khanduri et al.| (2021), ALSET method in |Chen et al.| (2021)),
SVRB in |Guo et al.[(2021a), BSVRB in|Hu et al.[(2023a)). Note that SVRB and BSVRB apply to
SBO with multiple lower-level problems, which is a special case of CSBO when the realization of &
is finite.

The heavy cost caused by the computation of second-order derivatives and inverse Hessian of g,
required by aforementioned algorithms, motivates the exploration of fully first-order methods for
solving SBO problems, pioneered by Kwon et al.|(2023a). Many fully first-order algorithms have
been developed subsequently for SBO. Within this fully first-order paradigm, the prevalent ap-
proaches mainly fall into two classes: (i) single-loop first-order methods, which adopt a Lagrangian-
or penalty-type scheme, such as |Kwon et al.| (2023b)); (ii) double-loop first-order methods, which
maintain the bilevel hierarchy in the algorithmic design and often utilize a warm-start strategy for
the lower-level optimization to enhance efficiency, such as F2ZSA-p in|Chen et al |[(2024), F>BA and
F2BSA in|Chen et al.| (2025al).

A common feature shared by both the aforementioned single-loop and double-loop algorithms is the
exploitation of the fact that the optimal solution y* () to the lower-level problem in SBO depends
only on z. In contrast, for CSBO, the lower-level minimizer y*(x; ) depends not only on x but
also on the side information variable £. This critical difference between CSBO and SBO hinders
the direct application of these algorithms to general CSBO: algorithms for general CSBO cannot
utilize information obtained from previous inner-loop iterations. This presents significantly greater
analytical and computational challenges in CSBO than SBO.

In the context of CSBO, |[Hu et al.| (2023b) devised a double-loop algorithm that relies on second-
order oracles. Furthermore, the authors integrate the random truncated multilevel Monte Carlo
(RT-MLMC) technique into their algorithmic framework to accelerate the proposed double-loop
algorithm. Recently, Bouscary et al.| (2025) provides an alternative approach for solving CSBO by
reformulating it as a SBO problem to apply standard SBO algorithms. However, as pointed out
previously, their approach requires the analyticity of the lower-level objective function and some
assumption on the random variable £, which may limit its applicability. i.e., when the lower-level
problems are (contextual) RL problems. Leveraging the special structure of RL, their hypergradient
formulation does not rely on second-order information. However, this observation does not apply to
CSBO. Several papers study bilevel reinforcement learning |Chen et al.| (2022a); (Chakraborty et al.
(2024); [Shen et al.| (2025)); Yang et al.| (2025)).

1.2 PRELIMINARIES AND NOTATION.

The symbol O is a variant of the big-O notation that hides polylogarithmic factors. For an integer
M, welet [M] := {1,...,M}. Let¢ : R% x R% — R be a function, its gradients with respect
to (z,y), = and y are denoted by Vi), V11, Va1), respectively. The Hessian of ) with respect
to (z,y), = and y are similarly denoted by V2, V3 ¢ and V3,1, while V3,1 and V3,1 are
dy % dy and d,, x d, matrices whose (i, j)-th elements are Ogiij and o”';ﬂjw, respectively. We say

v is L-Lipschitz continuous if for any (z1,y;) € R% x R% and (z2,12) € R% x R, we have
[l (z1, y1) —(z2, y2)|| < L|(x1,y1) — (2, y2)||. Itis further called S-smooth if it is differentiable
and its gradient is S-Lipschitz continuous. If ¢» — £|| - ||? is convex, then ¢ is said to be y-strongly
convex. For a vector-valued function h : R% — R%_ the Jacobian matrix is defined to be the d}, x d,
matrix Dh := [Vhq,--- ,Vhdb]T. For z = (21, 22), the partial derivative of h with respect to z;
is denoted as D,, h. For sequences {x }x, {yr }x. {2k} generated by [Algorithm 1|or|Algorithm 2|
we denote the corresponding o-algebra by Fi, := o{x0, Yo, 20; T1, Y1, 21, " * » Lk Yk» 2k }-




Algorithm 1

Input: 2, € R%.
1: fork=1,--- , K do

2 Sethi = ZEA(k+ 1)V ap = LU T =k
3 Sample &, from Pg, set y,g = z,g.

4. for t=0,1,--- T — 1 do

5: Sample 7}, from P, ¢, .

6 Set ,Bt = 7#5;(?4‘1)'

7 yitt =yl — BiVag(mr, yhing. &)

8 Z]t:rl - Z]tc - %VZL(mkaZ]tgayltg,)‘kanltgagk)
9: end for

10:  Set zpy1 = Z;{’“ Yr+1 = y/{k

11:  Sample 7, from Py ¢,

120 2pg1 = 2k — Vo L(@k, 2kt 1, Yet1, Mes My §k)
13: end for

Output: TK+1

2 ALGORITHMS

Our algorithms and theoretical analysis rely on the following assumptions. Similar assumptions also
appear in the literature of SBO and CSBO [Ghadimi & Wang| (2018));|Guo et al| (2021a); [Chen et al.

(2021};[2022b); Hong et al.| (2023)); Hu et al.| (2023b).

Assumption 2.1. Problem[(1)|satisfies the following regularity conditions:

(i) For any nand &, f(x,y;&,n) is continuously differentiable and g(x,y; &, n) is twice con-
tinuously differentiable in x and y.

(ii) Forany x, nand §, g(x,y;&,n) is pg-strongly convex in y.

(iii) For any n and &, f(x,y;£,0).V f(2,y;:§,), Vg(@,y:& n), and V2g(z,y;€,1m) are Lz,
lra, Uy, and Uy o-Lipschitz continuous in (x,y), respectively.

(iv) Forany x € R% andy € R%, there exist 75 > 0 and 74 > 0 such that

EIVf(z,y;n,8) —EVf(z,y:0,8) | II° | €] < 77,

Assumption 2.1{i){(Giii)| imply in particular that for any (z,y) € R% x R% and
p ply p y
&n) ~ Pey, VI(x,y;n,6) and Vg(x,y;n,§) are unbiased estimators for VF (z,y;7,£) and
VE,¢lg(z,y;n,£)], and that F is £ ;-smooth; see

2.1 THE BASIC ALGORITHM

We first present a basic algorithm for problem [(T)} see To begin, note that problem [(T)]
is equivalent to the following problem:

min E T, 251,
sERis, 2R n.elf( n,€)]

st. Epelg(z, z;m,8)] — renﬂigl [9(z,y;m,6)] <0 VEE€E, ze R,
Yy Y

Remark 2.2. The choice of O(1) in ay, = \(/9% of and O(1) in ag = O(1)e* of

Algorithm 2|are constant independent of k and e.

2

Inspired by [Kwon et al.| (2023a)), our algorithms leverage the following penalty function:
L(z,z,y,An,8) := f(@,2,0,8) + Mg(z, 21,8) — g(z,y37,8)). 3)




Very roughly speaking, the idea of our algorithm is to estimate VF' using VL, and then perform

stochastic gradient descent. To do so, we denote g(z,y;§) = Eyelg(x,y;n,6)]. f(2,y;) =
Eq e[ f (2, y;n,€)], and consider the following optimization problem with § € [0, 1):

min Q(z,y,0:) == g(w,y;€) + 6/ (@, y: €). (4)

Denote its solution as y*(z, §; ). Then, we can apply the chain rule to obtain
=E¢[Vif(z,y"(2,0;€);€) (5)

— V(. y* (2, 0:€);:€) (Vaag(zn, y* (2,05€);€)) " Va f . y* (2, 0:): )],

where the second equality follows from equality [(T5)] in [Appendix B.3] Notice that the right hand
side of|(5)|involves gradients of f and Hessian of g at « and y*(z, 0; ). Nevertheless, we shall show
in that this can be indeed approximated by V,L(z,y*(x, +;£),y*(z,0;£), \;n, &).
Then, the nner loop of the k-th outer iteration (i.e., steps 4-10 of executes a SGD-type
algorithm to minimize Q(z,y, 0; &) and Q(zk, y, )\i; &1). So, its outputs yxy1 and zg1 approxi-

mate y*(z, 0; &) and y* (zx, %k; €), respectively; see[Lemma B.6| Therefore, we can estimate V I’
using only first-order information of L; see[Appendix B.5|for a comprehensive discussion.

2.2 DERIVATION OF[ALGORITHM 2|

Noticing that in[ATgorithm 1] the number of inner iterations increases with the outer iteration counter
k, which results in a heavy computational burden for large k. To tackle this, we develop an accel-
erated algorithm using the RT-MLMC technique [Hu et al] (2023b} 2021); see For
simplicity, we denote

Uk;(t, )\) = me(kaZ]?t (A)ay%t7)\anku€k)a (6)

where the subscript k£ denotes the iteration count of the outer loop, ¢ indicates the corresponding

iteration count of inner loop is 2¢, and z,%t (A) and yﬁt are inner iterates defined in steps 10 and 9
in [Algorithm 2| respectively. It is a hypergradient estimator with 2¢ inner iterations. To avoid the

large number of inner iterations, we construct the gradient estimator for [Algorithm 2| leveraging the
following observation. By telescoping,
uy (N, AN)
N
(ug(n, An) —ur(n — 1, Ap—1))
= ur(0,\g) + n
k(0, A0) ; p . 7
) — up(l— 1, Ay
= ug(0, o) + Ennpy {uk(n ) Zk,(n 1)] .

where P is the truncated geometric distribution with the upper bound N and Py (7 = n) = p,, x

27" for every n € [N]. Equations |(6) and |(7)| together suggest that one could replace the gradient
in[Algorithm 1

estimator V, L(Zk, Zk+1, Yk+1, \k; Tk, Ek ) In|Algorithm 1| with the following estimator.

ug(0, M) + P (ke (ks Any,) — ur(nie — 1, Any—1)), (®)

where ny, is a realization of the truncated geometric random variable with the upper bound N. Both
gradient estimators admit the same bias but the estimator [(8)| has a much smaller computational cost
on average via a proper selection of P,y that assigns a small probability to generate a large 7 and a
large probability to generate a small 7.

Unlike Hu et al.| (2023b)), the integration of RT-MLMC technique into our algorithm is obstructed
by additional challenges. More precisely, in our penalty-based algorithmic framework, in order
for VL to be an accurate approximation of VF', the penalty parameter A must grow sufficiently
fast. Unfortunately, this will amplify the variance of the RT-MLMC gradient estimator. As a result,
despite achieving accelerated complexities of O(e~°), the numerical performance is highly unstable
due to the large variance. To tackle this issue, we have developed a novel adaptive stepsize strategy;
see steps 15-19 in[Algorithm 2} Specifically, if nj, exceeds a given threshold, we scale the stepsize



Algorithm 2

Input: xy € R% N = O(1)log(e™1), ag = O(1)e*, ¢ € (0,1], a1 € (0,1)
1: fork=1,--- ,K do

2:  Sample ny, from the truncated geometric distribution Py .
3:  Sample &, from P¢
4 Setpp, 027, Ay, = ZEL(2M)E,
50 Sety) = 2 (M) = 20 (An—1) = 22 (Mo)-
6: for t=0,1,---,2" —1do
. _ 8
7: Set Bt = m
8: Sample 7}, from P, ¢, .
9: tHl _ ot gy .ot
: Y, Y — BeVag(@r, ypi mi, €k)
10: Z]tg+1(/\nk) = 2 (Any) — %VZL(Q%, 2 (M), y]t€+1, A M E1)
5 Q) = ) = 325 VaLr 2O -1), 007 A1t ).
12: end for

ngp—1 ny, ny—1 n
13:  Setys e 0 . 22 " Aa—1)s z2 "(Any)
14:  Sample 7y, from P ¢, .
15:  ifng > coN then

16: o= a1Qy

17:  else

18: o= Qg

19:  endif

200 wp1 = @k — alur(0,X0) + ppt [k (e, Any) — ur(ng — 1, A, —1)])
21: end for

Output: xx 1

by a factor a; € (0, 1). This stepsize strategy is compatible with RT-MLMC technique in the sense
that the resulting algorithm, similarly enjoys the improved complexities O(e~%). To
the best of our knowledge, this is the first time such a stepsize strategy has been utilized to control the
overall variance in RT-MLMC-type gradient methods. An empirical comparison of our [Algorithm 2]
with and without the adaptive stepsize strategy appears in [Figure 4in [Section 4] which demonstrates
the instability without using the adaptive stepsize and the significant improvement using it.

Finally, for the purpose of the theoretical analysis, we assume that the initialization gap in lower-
level problems is bounded. This assumption is also used implicitly in (Hu et al., 2023b); see for
example the proof of Lemma 3 therein. Moreover, when the support = is finite, this holds trivially.

Assumption 2.3. There exists b > 0 such that By ¢, [g(zr, y2; 0, k) — 9(@r, v* (Tr, €)1 15 E6)] < b
forany k > 1.

3 COMPLEXITY ANALYSIS

Due to the bilevel structure and potential non-convexity of f, the objective function F is in general
nonconvex in z. Thus, giving the SGD-nature of our algorithms, we aim to find {x}, }r.c[x] satisfying

+ Zle E[||VF(z)|?] < €2, which is a common stationarity measure in bilevel optimization.

Our first main theoretical result concerns the gradient and sample complexities of The
proof can be found in[Appendix B.7]

Theorem 3.1. Suppose thatand hold. For the sequence {x},c|K) generated
by to ensure - 221 E[||[VF (x))12] < € it suffices to set K = O(e~*). Moreover,
the sample complexity of € and the gradient complexities of V1 f, V1g are of order (5(674), the
sample complexity of  and the gradient complexities of Vag, Vo f are of order (5(678).

Thanks to the RT-MLMC technique, which greatly reduces the average number of inner iterations,
we next show that the theoretical complexities are improved. Before presenting the theorem of



complexities, we first analyze the variance of the RT-MLMC gradient estimator in [(8)] summarized

in the following Lemma, with more details appeared in[Appendix B.6]
Lemma 3.2. Under and 2.3} consider[Algorithm 2} we have

E[HE[va(xkyZIEN_l(AN)vyiN_lv>\N§77k7£k) | Fi)
— (upe(0, M) + (e Ay ) — wie(nge — L, A1) 12 | Fil € O(27).

Remark 3.3. The variance of the Hessian-based RT-MLMC gradient estimator in/Hu et al| (2023b))
is O(log(e™1)) (c.f., page 16 therein). Unlike Hessian-based algorithms, our|Algorithm 2|uses only
first-order information. Consequently, the corresponding penalty parameter amplifies the variance
and requires additional treatment in the technical analysis. Specifically, with N = 4log(e ') as
defined in the variance of our RT-MLMC gradient estimator is 0(2%) = O(e?). This
O (ﬂ

leads to the following O(e~%) sample complexity of n for the accelerated algorithm (Algorithm 2)).

Theorem 3.4. Suppose that and @ hold. For the sequence {x},},c|K) generated
by [Algorithm 2| to ensure 2:1 E[|VF(zx)||2] < € it suffices to set K = O(e~%), N =

O(1)log(e 1) and ay = O(1)e*. Moreover; the sample complexities of & and 0, and the gradient
complexities of V1 f, V19 Vag, and Vo f are of order O(e~°).

We defer the proof to[Appendix B.8] Note that the samile and iradient complexities of [Algorithm 1

are (5(678) by |Theorem 3.ll In contrast, although |Algorithm 2|needs a larger K compared to |Al-
|g0rithm 1|, eventually its sample and gradient complexities are O(e=%). Although our complexity

results seem significantly weaker than the Hessian-based method in (2023b) ((5(6*6) for

standard version and O(¢~%) for RT-MLMC accelerated version), as fully first-order methods, our
algorithms only involve gradient computation and arithmetic operations. Instead, Hessian-based
methods require computation of second-order oracles, which, despite the efficient implementation
of Hessian inverse estimation using Hessian estimators demonstrated in Algorithm 4 in [Hu et al/
(2023D), is still computationally expensive. For example, consider the meta-learning problem in
[Section 4 numerical experiments, we can see that the per-iteration flops cost of our[ATgorithm I]and
Algorithm 2|is O(Tyd, + d,), while it is (’)(Ndi + d,d, + Tyd,) in[Hu et al.|(2023b). It remains
an interesting and open question if one could better control the increasing penalty parameter such
that the variance of the RT-MLMC gradient estimator, as demonstrated in[Cemma 3.2] could reduce
from O(e=2) to O(log(e~ 1)), which would lead to improved O(e~*) complexity of the accelerated
methods. However, for fully first-order method to get O(e~*), it might require additional assump-
tions on higher-order smoothness. Nevertheless, our experimental results confirm the significant
computational advantage of our fully first-order methods over Hessian-based approaches.

4 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our proposed first-order algorithms using two exam-

ples: the meta-learning problems (Finn et al 2017} [Rajeswaran et al], 2019) and the Wasserstein
Distributionally Robust Optimization with Side Information (WDRO-SI) [Hul
[2023D)), and compare our methods with the RT-MLMC Hessian-based method in [Hu et al.
and the reduction strategies in |[Bouscary et al.[(2025) with the reformulated SBO problem

solved by stocBiO in[Ji et al] (2020).

[Algorithm T] [Algorithm 2] the RT-MLMC Hessian-based method in (2023b), and the
reduction strategies in [Bouscary et al.[(2025)) (from now on, we call it by “reduction + stocBiO” for
simplicity and clarity), as well as all experiments, are implemented in Julia 1.12, and are performed
on an Apple Macbook pro with M4 Pro (14 cores) and 48G memory.

4.1 META-LEARNING

We consider the meta-learning problem in which there is a distribution over tasks (§ ~ P¢), each
task comes with its own training data and validation data 7 ~ P,¢, and the goal is to learn a
shared meta-parameter so that, for each task, adapting from the meta-parameter using the training
data yields low loss on the validation data.



Formally, we consider the following meta-learning problem, a special case of the CSBO problem:

. * (.. val
Jmin Eenr By, le(y™ (2;6), )]

x . ©))
where y*(z;&) = arg min Epep [le(y,ng) + %Ily —2|’] Ve [M],zeR™,
yeRY

where P; is the distribution over all M tasks; H”,ﬂ ¢ is the distribution of data from the task &; ng
and ng"‘l are the training and validation datasets for the task &, respectively; x is the meta-parameter

shared within all tasks; y*(x; £) is the optimal parameter learned from a regularized problem corre-
sponding to task &; I¢ is a loss function, and v > 0 is a regularization hyperparameter.

We follow the settings in[Hu et al|(2023b): for every task & € [M], the loss function [¢ is a multi-
class logistic loss using a linear classifier parameterized by y¢, the regularization hyperparameter -y

is set to be 2, and the dataset is features of images in tinylmageNet (Mnmoustafal 2017)) extracted
by the pre-trained ResNet-18 network 2016). Specifically, we pick 5 tasks from tinyIma-
geNet, and randomly select 10 classes of images from the 10 classes of similar objects in each task,
with every class containing 500 images. Each image is resized and preprocessed by the pre-trained
ResNet-18 network to be a 512-dimensional vector. 90% of the images are taken as training data,
while the rest of the images are regarded as validation data.

For more detailed parameter settings of this numerical experiment, please see[Appendix B.9]

We evaluate the performance via three measurements: the estimated upper-level objective function
value, the estimated stationarity and the validation prediction errors. To compute these measure-
ments, we first run each algorithm itself to obtain the corresponding sequence {zj}. For each
sequence {z}, we partition it into 100 equally spaced grid points, at which we evaluate the per-
formance measurements. This is for saving time and is enough for comparison. Specifically, for
each selected xy, for every £ € [5], we estimate yi 11 and zg 11 via 100 iterations of the lower-
level updates, i.e., steps 4-9, of where each sampling of ng returns the whole training
set. Then the upper-level objective function value is estimated by computing the sample average of
l&(yi 10 ngal) over ¢ € [5] and the whole validation set; the stationarity is similarly estimated using
the sample average over stationarities.
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Figure 1: The measurements against outer iterations over meta-learning example. Error bars show
+1 standard deviation over 10 experiments. Note that the seemingly early stopping of

is because [Algorithm I|runs so slow that exceeds the runtime range.

[Figure 1|and [Figure 2| show these measurements averaged over 10 experiments against the number
of outer and inner iterations, respectively, while [Figure 3|shows the averaged measurements against
the computational time. Note that since we use a minibatch of &, the total number of inner iterations
of two RT-MLMC methods are multiplied by 10. From the plots, [ATgorithm I|exhibits the fastest de-
crease of objective function values and errors versus outer iteration in the first 1500 outer iterations,
followed by then reduction + stocBiO, while the RT-MLMC Hessian-based method
is the slowest one. However, when considered in terms of inner iterations and CPU computational
time, [ATgorithm 2|achieves the greatest reduction of objective function values and stationarity, while
the other three methods are overall comparable and are significantly slower than [ATgorithm 2} More
importantly, despite the use of high basis degrees 50 for the reduction method, its stationarities re-
main remarkably higher throughout. For the prediction error, although [ATgorithm 2]initially lagged
behind [Algorithm 1] it ultimately surpassed [Algorithm 1} Since the truncation level for RT-MLMC
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Figure 2: The measurements against inner iterations, each inner iteration refers to steps 4-9 of Eléo-
rithm 1] or steps 6-12 of [Algorithm 2] or EpochSGD for RI-MLMC Hessian-based method in [Hu
or steps 5-6 in Algorithm 2 in[Ji et al| (2020). Error bars show the standard deviation
over 10 experiments. Note that the seemingly early stopping of the Hessian-based method is because
it runs so slowly, due to the computation of second-order oracles, that it exceeds the runtime range.
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Figure 3: The measurements against computational time over meta-learning example. Error bars
show standard deviation over 10 experiments.

Hessian-based method is K = 12, the number of inner iterations for RI-MLMC Hessian-based
method is significantly lower than the other two methods, which still results in similar computa-
tional time, revealing that the heavy computational burden for Hessian-based method. Similarly,
for reduction + stocBiO, since we use basis degrees 50, the dimension of lower-level problems is
very high, leading to computational burden even heavier than RT-MLMC Hessian-based method.
These behaviors confirm the advantages of our proposed fully first-order algorithms compared to
RT-MLMC Hessian-based methods and reduction+stocBiO, and the efficiency of[Algorithm 2|based
on the RT-MLMC gradient estimation.

To demonstrate the effectiveness of our adaptive stepsize strategy, we conduct the same experiments
using [Algorithm 2| with and without the strategy by respectively setting a; = 0.05 and a; = 1, fol-
lowing the same settings described above. The results are presented in[Figure 4 As shown, without
the adaptive stepsize strategy, the results exhibit considerable variance (represented by the orange
shaded area) and worse mean (the orange dash line), whereas with the adaptive stepsize strategy, the
performance becomes substantially more stable. These results validate the practical usefulness of
the adaptive stepsize strategy, which can empirically greatly reduce the variance of and
the burden of tuning hyperparameter.
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Figure 4: The comparison of [Algorithm 2| with and without adaptive stepsize strategy over meta-
learning example. Error bars show standard deviation over 10 experiments.



4.2  WASSERSTEIN DISTRIBUTIONALLY ROBUST OPTIMIZATION WITH SIDE INFORMATION

The Wasserstein Distributionally Robust Optimization with side information (WDRO-SI)
focuses on the problem of robust stochastic optimization with side information £ and
dependent randomness 7). It aims to learn a mapping f, parameterized by x, that maps £ to a decision
w which minimizes the expected loss [(w; 1)), subject to robustness against worst-case deviations of
the joint distribution (&, 7) from a nominal distribution P, Using a dual reformulation, WDRO-SI

can be cast as a contextual stochastic bilevel optimization (CSBO) problem [Hu et al.| (2023D):
minEe poB, 0 [1(f (239" (@:€),m) = mlly*(z:€) — £]°]

10
V(@6 = argminEy (/). 0) +nl6 - I Vb o

where I(w,n) = % log(1+e7=7) 4 L log(1+ (=) is the smoothed version of newsvendor
loss function l(w,n) = h(w — )4+ + b(n — w)4+ with (+); = max(+,0).

The results are shown in [Figure 5| and [Figure 6] We can see that our methods illustrate a good
performance compared to Hessian-based methods and reduction+stocBiO. Note that since we do
not use minibatch for Hessian-based method, it is very sensitive to stepsizes. To make sure it will
not produce NaN, we need to set a very small stepsize, which leads to a super slow convergence, as
shown in the plots.

For more detailed parameter settings of this numerical experiment, please see [Appendix B.10}

WDRO-SI: Test loss v.s. iterations WDRO-SI: Stationarities v.s iterations
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Figure 5: Test loss/stationarity again iterations over WDRO-SI example. Error bars show standard
deviation over 10 experiments.

WDRO-SI: Test loss v.s. computational time WDRO-SI: Stationarity v.s. computational time
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Figure 6: Test loss/stationarity again computational time over WDRO-SI example. Error bars show
standard deviation over 10 experiments.
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REPRODUCIBILITY STATEMENT

All theoretical claims in this paper are accompanied by full proofs, which are included in the Ap-
pendix, and are cited explicitly from the main text. The numerical experiments are fully repro-
ducible: we provide the complete implementation (Julia code), all scripts for data preprocessing,
training, and evaluation, as part of the supplementary materials. Any parameters, random seeds,
hardware details, and dependencies used are documented in the supplementary material.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs during the preparation of this manuscript in limited, well-defined ways, described
below.

* We built the structure of the paper and wrote the core paragraphs ourselves. After that, we
used LLMs to polish language, improve grammar, and enhance clarity and readability.

* In conducting the literature review, we used LLMs to help identify relevant papers we may
originally have overlooked, to ensure thorough coverage.

* No theoretical results, proofs, algorithmic design, or experimental code were produced
using LLMs; all substantive scientific contributions are our own.

We verified all content suggested by the LLMs. Any suggestions or drafts were carefully reviewed,
edited, and corrected by us. We assume full responsibility for all content in this manuscript, includ-
ing parts that were edited or polished via LLMs.

B PROOFS OF MAIN RESULTS

B.1 METHODOLOGIES AND ROADMAP

The basic idea to construct a fully first-order algorithm for solving CSBO problems is to esti-
mate VI using only first-order information of f and g, and then perform stochastic gradient de-
scent (SGD) for F. To do so, we first show in that VF can be approximated by
Ene[VeL(z,y* (2, 5:6),y* (2, 0;6), Xy, §)]:

Approximating

1
En,g[sz(%?J*(fC:X,f)ay*(%o»f%)\ﬂ%g)] VFa
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where L is defined in|(3)| y*(x, d; &) is the solution to Then the inner loop of our algorithms is
applying a SGD-type manner to minimize Q(z, y, 0;§) and Q(xx, y, i; &) for yx41 and z4 that

approximate y*(x, 0; ) and y* (zy, i; €), respectively:

. SGD
min Q(zg,y, 0; — 1
Q( a4 gk) Yk+1 Approximating Emg [V;EL(CC, y*(a:, X; f),
—>

Sample & ~ P — : Eilnd S
_ B.6land [B y*(.]]’O’g),)\g,'%f)]

) 1

min Q(zk, Y, —; &) o Zkt1
Yy )\k

Therefore, we use only the first-order information of f and g, and only SGD-type methods to ap-

proximate VF'.

To further accelerate our [Algorithm I} we employ the multilevel Monte Carlo techniques, which, in
addition to the previous framework, use extra approximations:

. SGD ong—1 onk
Hlyln Q(mkvyaoafk) — Yk » Yk

. 1 SGD np
Sample &, ~ P¢, Sample ny, ~ Py — myln Q(zx, v, X &) — Zl% * (Ang)
Nk

. 1 SGD_ _gn-—1
min Q(xkvya 77516) — Zl% * ()‘ﬂkfl)
Y )‘nk—l
N
ai imating En.e[VaL(zr, 22 ~*(AN)
Obtai _ Approximatin, 3 ks N)s
& uk(ov )\O) +pnk1 [uk(nka /\’ﬂk) - uk(nk -1, Ankfl)] M ! 2’;71 g
v AN 9)]
and

Approximating

[CemmaBI0
Ey e[V L(z, y* (, %; £),y"(x,0;6), X, )]

where Py is the truncated geometric distribution whose upper bound is /V defined in |Algorithm 2|
and pg o 27705 Ay, , y;%nk_l, v, z%nrl (Any—1) and 22"* (), ) are defined in|Algorithm 2} wuy,
is defined in |(6)|

EnelVoL(zr, 2z ') yp AN, €) | Fi

B.2 USEFUL LEMMA

Lemma B.1. (Nesterov| [2018, Lemma 1.2.3) If g : R* — R is continuously differentiable on R?.
The first derivative of g is Lipschitz continuous on R¢ with constant Ly.1, then

9(6) — o) — (Va(a).y — ) < 22y~

Lemma B.2. (Nesterov| 2018, Lemma 1.2.4) If g : R* — R is twice continuously differentiable on
R®. The second derivative of g is Lipschitz continuous on R% with constant Ly 2, then

IV9(s) — V() — Vgla)(y — )] < 22y |

9(0) — g(a) — (V) — ) — £ (Vgla),y — )| < 22

5 3
—_— — Il .

Similar to the proof of (Nesterov, [2018, Lemma 1.2.3), we have the following result:

Lemma B.3. Suppose G : R® — R™ is continuously differentiable, and DG : R? — R™*? g
Lipschitz continuous with modulus L in the following sense:

IDG(z) = DG(y)ll2 < Lllz —y||  Va,y € R™.

where || - ||2 denotes the spectral norm of matrices. Then, for all x,y € R?, it holds that

[G() - G(y) = DG(@)(y ~ ) < 2z~ yl Vary € R,
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B.3 THE SMOOTHNESS OF F'

Lemma B.4. (Xiao et al|[2023] Lemma 14) Under[Assumption 2.1| there exists {1 > 0 such that
IVE(z) = VE(@)|| < Lpallz — 2.

B.4 THE CONVERGENCE RATE OF INNER LOOP

The next lemma shows that Q(z, y, 0; £) is strongly convex provided ¢ is sufficiently small. This is
useful to analyze the convergence rate of the inner loop.

Lemma B.5. Under ifé < [;—91, then for any £ € B, Q(z,y,d;¢) inis (pg —

80y 1)-strongly convex in y.

Proof. Tt follows from [Assumption 2.1[ii1)| that

f_(x722;£) - .f(xazl;g) < <v2f(x322;£)3 zZ2 — Zl> =+ EfT,lHZl - 22”2'

Since g(x,y; &) is pg-strongly convex in y, we have
9(x,2158) — g, 20; ) > (Vag(w, 20;), 21 — 22) + %”Zl — 2.

Combining the above two inequalities, we get

_ Y4
> §(Vaf (@, 216), 21— ) = “L2 |21 — 2l + (Vagi(w,205), 21— 20) + B2 1 — 2o
Y4
= (V2Q(, 22,05€), 21 — 22) + (52 = L) 21 — 2%
This completes the proof. O

The next lemma shows that the inner loop of [Algorithm 1| and [Algorithm 2| converges to
(y* (zx,0; ), y* (zk, /\%-5 5)) at a sublinear rate.
Lemma B.6. Suppose that [Assumptions 2.1 and 2.3 hold. Consider the k-th outer iteration of [AT]
|g0rithm I|or|Alg0rithm 2|with ) and N\, > %}1. Then for {y}. }+, {2} }+ generated by the inner loop
oflAlgorithm I|or|Algorithm 2| we have

1
Ellyt ~ o7 (@0, 0:)° | ) < O) and Ellef —y* (w30l | 7l < O().

Proof. 1t follows from the definition of z,t€+1 in[Algorithm Ifthat

t+1 ”2

1
(A y*(xk,rk§§k)

* 1 * 1
= ek = "o 53 P + 2L = 2k 2 — s 1600 + 47 — AP
1 1 1
t * 2 t ,t t t *
= - N -2 7VZL ) ) a/\v ySk)y - s N o
2 — v* (2K, /\kvfk)” 5t<)\k (Ths 2> Yrs Mo M Ek) 21 — Y™ (T " €k)) (11

+ 7 = 2P

Bt

. 1
- 2)\7(”%’ 2y Yoo Mes Mo ) — L(@n, y* (i, Yk;fk), Yier Mo s k)

IN

1
+ 2k — y* (i, kagk)‘P + 2t = 2

where the inequality follows from the fact that ;—kL(zk, YR AL, &) 1S g — 1/ Akl 1-strongly
convex (The strong convexity of this function can be established by a proof similar to that of
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. We now estimate the last term of the above inequality. Appealing again to the defini-
tion of 2, ~, we see that

Eyje, [l — 207

Bt
= ]EW\E/C [HYVZL(x]W thwyltw Ak;niagk)H2]

< 26t2E'r]\Ek|| V L(xk7zkyayk7)‘k7nk;7§k:) En|§k[v$[/(xkazliayz;Almnagk})HQ]

1

Ak
1

En|§k [VZL<.'L']9, y*(mka )\7k7 6)7 y]tw )‘kh m, §k>]||2

1
+ 2»3?”/\?1577\& (Vo L(@k, 24 Yho A 1, &) — >

77 4 1
AP (5 +79) + 26 (550 + 26 1B [l2k — v (o, 560 I7)
k k k
12)
where the first inequality follows from E, ¢, [V. L(2y, y* (x4, Aik;g)7y,t€; n,&;)] = 0 and the tri-
angle inequality, the last inequality follows from [Assumption 2.1{iv)| the triangle inequality,
IVaf(z,y;6)| < £y, and the £, ;-smoothness of g. Thus we have

. 1
Epe it —y (xk,A—;&k)uﬂ
k

é 1
< (1 Buluy ”))Emgszz—y*(zk,rk;snm

Ak
2 T]% 2 2 4‘ 2 2 t * 1 2
+4p; (7 +7) +28; ()\*igf,o + 2€g,1En|§k[sz —y* (o, )\:;&c)ﬂ 1) (13)
B
<(1- t2g + 48205 e, [l 21 — (Ik, 7€)|| ]+ 0O( 2)

1
< (1= 208, e (15 v (o 35 OIP) + Ol 772

where the first inequality follows from the fact that A%EH\&« [L(zk, 2, Yk, Mesn, E)] i (pg— Ly / Nk

strongly convex in z, the second inequality follows by £;1/A; < p,/2, the last inequality follows
from 8, < pug /(1662 1). If t > 1, using B; = 8/(puy(t + 1)) in[Algorithm 1} multiplying both sides

of the above inequality by ¢(¢ 4+ 1) simultaneously will give the following inequality,
N 1
t(t+ DEpje, [z — y* (i, )\*k;fk)Hz]
N 1
< t(t = DEyje, [ll2k — v* (s, rk;ﬁk)H?] +0(1) (14)

. 1
< 2By 122 = o (@n, 53 80IP] + LO(D),

where the second inequality is derived from the repeated use of the first inequality. Taking the
expectation on both sides of the above inequality, we obtain
N 1
Elllzk - y*(@n 5 OI° | Pl + ==

t+1 * 2 2
[HZ * -y (Ika ,g)H | ]— t(t+1) n

By a similar argument, we can obtain the convergence rate of ; that is generated by|Algorithm 1}
Algonthm 2

{yh e, {zE (M) s {25 (Any—1) }4 that are generated by This completes the proof.

o)

O

B.5 ESTIMATE BIAS

In this subsection, we shall show the bias of the gradient estimator of VF used in @

gorithm 1| and |Algorithm 2| is controllable. ~ Specifically, we will show that ||[VF(xr) —
E[VoL(Tk, Zk41s Yht15 Ak D fk) | ]:k]H and HVF('rk) _]En,é,nk [(uk(O, /\O)+p77k1 (uk(nkv )‘nk) -
ug(ng — 1, An,—1))) | Fi]|l are upper bounded.
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When § in |(4)| is chosen such that § < Z’;—gl, by , we know Q(z,-,d,€) is strongly
convex, and hence the solution and the corréspondlng multiplier of [(4) exist and are unique. The
next Lemma shows that for any £ € E, the solution to [(4)| y*(z, §; €) is Lipschitz continuous in &

and z, respectively, provided ¢ is carefully selected.

Lemma B.7. Under|Assumption 2.1} if 0 < ¢’ < § < 25;,1’ there exist £y o, £y 1, {1 such that for

any & € 2

ly*(z,8;€) —y*(x,8" &) < £y0ld — 0],
ly*(%,0;€) — y* (', 0;6)|| < Ly 0ll — 2/,

fg,1+5€f,1 efyo }
pg—0Lya ? pg—olya e

where (,, o = max{

Proof. By the definition of y*(zy, §; £) and the first-order necessary condition, we know that

VQQ(:EIW y*(l’m 675)75) + (SVQf(xk7y*<xk, 6,£)1 6) = 07

We take the derivative of both sides with respect to  and 6. Then, an application of the chain rule
gives:

v%lQ(Ilwy*(xka 575))7576) + ngQ(xka y*(zkv 57€)a 67 E)ny*(xk76, 6) = 07
VQf(xk,y*(xk76; 5)76) + V§QQ($I§, y*(m/w 6a 5)7 5;€)D(5y*(xk7 57 5) = 0.

where Q(z,y, ;) is defined in[(4)] By [Lemma B.5]and the above two equalities, we have
Dmy*(xkv J; 5) = —(V§2Q($k, y*(xkv 95 5))7 0; g))_lv%Q(xkv y*(mk» 95 5)7 95 5)7

* * — n * (15)
Dsy*(wx,0;€) = —(V32Q(xr, y* (21, 6;€),8;)) " Vo (zr, y* (z1, 6;€); 6),
which imply
o1 -‘r(%fl efo
D.y* (2, 6;8)|| < L—= || Dsy*(ap,6;6)|| < —L—.
| Dzy* (2, 65 )| 1y — 0051 | Dsy* (zr, 6; ) | g — 0071
This completes the proof. O

The following Lemma shows that V F'(z) can be approximated using only first-order information of
L, which plays a crucial role in our analysis.

Lemma B.8. Suppose that holds, and \ > e;:—l Let the solution tobe y*(x, 6;8).

Then we have

IVE() ~ EqelVal(e,y* (@ 356,47 (,0:6), X, Ol = O(5):

Proof. By[(I5)] we know that
ny*(xv 07 é-) = _V§2g(1', y*(fE, 07 6)7 g)*lvglg('x’ y*(l', Oa 5)7 5)
The above equality and the chain rule imply

VF(z) = E¢[V1f(2,y*(2,0;€); &) + Doy*(,0;€) T Vaf(z,y* (2, 0;€); )]

£)
£)

= E¢[V1f(z,y" (2,0;8); (16)
— Vg, v (2,0:€);€) (V329 (wk, y* (2,05 €); ) Va f (x, y* (x,0;€); )],
It follows from the definition of L that
1
Eye[VoL(z.y* (2, 3:€), " (@, 0:€), A, )]
(17)

=E¢ |Vif(z,y*(z, %; £):;6)+ A (Vlg(%y*(w, %; €);6) — Vig(z,y* (=, 0;€)§€)>]

17



By[Lemma B.3|we know that
* ]' = *
Vlg(‘ray (x7Xa£)v€) 7vlg(x7y (xaoag)vg)

= Vag(e,* (2, 0: ) )" (2, 356) — ¥ (,0:6) + 71,

where ||r{| = O(1/A?). By|Lemma B.3[and(15), we obtain

V310 " (@,0:8) = Doy, 0:€)(5 —0) + 73,

where ||[7§]| = O(1/A?). Using the expression for Dsy*(x, 0; &) in|(15), and combining the above
equalities, we obtain

Vig(e, 0 (2, 35 €)€) — Vagla,y* (2,0 €):)
= %V%g(axy*(rc,c);s); V9w, y (2,0:0)) " (Va (2, (2,0:0);€): €)) + 78,
where ||| = O(1/A?). It follows from [(16)] [(17)|and the above equality that
VF(z) — B, ¢[VaL(z, y*(z, %;5),1/*(%0;5)7 Ain, €] as)
= Be[V1 (o, " (2,0 €):€) = Vi fla,y* (2, 3:€):€)] + 74

where ||{|| = O(1/X). Combining the Lipschitz property of f, With the above equality
yields this conclusion. O

We now show a lemma stating that in the k-th outer iteration, we can use

B[V L(k, 2kt 15 Yrt 1, Aei 1, €)] With (Y1, 2i11) being obtained from the inner loop of [Algo-]
. . * 1. * . .

rithm 1|to approximate E[Vy L(zk, y* (zk, 55 €), ¥ (K, 0:€), Ak 1, §)]-

Lemma B.9. Suppose that[Assumptions 2.1|and|2.3 hold, consider|Algorithm I} we have

1 A2
|E[V2L(zk,2k4+1:Yk4+1:M%510,8) — Vo LTk, y* (g, /\*k; ), y* (@, 05€), Ay m, €) | Fu]|I? SO(T:)'

Proof. We have
1
]E[VwL<xk7Zk+17yk+17)\k;777£)] - E[VIL('rk7y*(xk7 E7£)ay*(xk707§)7kkvn7§) | ]:k]
_ ~ 1
= E[vlf(xk7zkr+1a§) - vlf(‘rkvy*(xka )\7]@75)7§) I ]:k]

i AkE[(vlgm, 2es1:6) — Vig(ny* (on, Alk;@;s))) A

+ ME[(Vig(@r, y* (28, 05€); ) — Vig(@r, yer1:€)) | Frl,
(19)

which implies
1
HE[va(‘xka Zk+15 Yk+1, )‘kh 7, g) - va(xkh y*(xk, ka 5)7 y*(mk)a 07 f)? )‘kh 7, g) | ]:k?] ||2
2 * 1 2 * 2 )‘i
< OO Elllzesr =y (e, 3 O P+ Elllyny = y™ (@, G OIT L A < O,
where the inequality follows from [Cemma B.6| O
Similar to the analysis in we can show the following result for [AIgorithm 2}

18



Lemma B.10. Suppose that[Assumptions 2.1|and 2.3\ hold, consider|Algorithm 2} we have
2N -1 2N -1
. 1 Y-
—E[VeL(@r, " (@r 356y (@, 0.0, Avim ) | AP < OGF).
Now, combining all lemmas in this subsection, we can upper bound |VF(xy) —
E[VaL(@ks Zkt1: Y1, MNes M k) | Fio) || and |V F (@) =By e [(w (0, Mo) + 0yt (wr (e, Ay ) —

up(ng — 1, An,—1))) | Frl|| using triangle inequality. Then the bias of gradient estimator is control-
lable. The results are summarized in the following two lemmas.

Lemma B.11. Under and@ consider we have
1
IVE(xr) = E[VoL(2k, 2k+1, Yo+1, Mei Mk §k) | Filll < O()Tk) +O(

Lemma B.12. Under[Assumptions 2.1|and[2.3] consider[Algorithm 2} we have

1
B[t (0, Mo) + Py (ur (ks Any,) — k(i — 1, Ay —1)) | Fie] = VF(2)||* < O(AT)'
N

Ak

7.

Proof. By|[(7)} we obtain
]E[uk(o7 >\0) +p7:kl(uk(nka /\nk) - uk(nk - 17 Ank—l)) | ]:k]
N N
= E[VIL(xk, Z}i 71(>‘N)7 y]z 717 )‘Na m, f) | ‘Fk]
Then the desired result is due to[Lemma B.8| [Lemma B.10|and the above equality. O

B.6 THE VARIANCE OF RT-MLMC

Below, we demonstrate the variance of ug (0, A\g) + p;: (ug(ng, Any,) — ug(ng — 1, A\ —1)) in
Algorithm 2|
Lemma B.13. Under[Assumptions 2.1|and[2.3] consider[Algorithm 2} we have
2N 1 2N 1
E[”E[vz‘[’(xkvzk ()‘N)ayk »ANankafk) | fk}
— (uk(0, Xo) + Py, (wk (s Any ) — ur (e — 1, A —1))1? | Fi] < O(2

N
2

).
Proof. 1t holds that
N N
E[”E[vxl’(xlwzz _1(>\N)’y]z _1a)‘N;77k7£k) | fk]
— (ur(0, o) + pry (e (s A ) — i (g, — 1, A1) |17 | F]
N N
<2E[|E[VaL(zr,z; "ON)yp AN s &) | Fre — wi(0, 20)]1 | Fie]
+ 2E{|lpy,, (we (e, M) = we(ne = 1, Anye—1)) I | F-
Next, we analyze two terms on the right of the above inequality. For the first term, we have
N N
E[|E[VaL(zr, 2~ OAN)s v AN e k) | Fie = w0, 20)][1 | Fi)
N_ N_
<6070+ 3G Ellz TTOw) —wr TP A,

where the inequality follows from the definition Y, 29(\), u; and 3, the smoothness of f and

Assumption 2.1[1i1)} Notice that
N _ N _
Ellly ~'O) —yi | A

N _ « 1 N _ *
<EBz ~'Ow) -y (xkvm;fk)lluiﬂllyi Py (ks 0:6k) |17 | Fi

* 1 *
+ 3E[||y* (w, E?fk) —y* (2, 05 &) |17 | T

1
7)a
A%

< O(

v 1) Ol
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where the second inequality is due to[Lemma B.6| [Lemma B.7| Therefore, we obtain
N N
El|EVoL(zk, 2 "OAN),¥n 5 AN 0, &) | Tl — un(0, X0)[1? | Fi] < O(1).
For the second term, we have
[Ilpzl(u;c(n M) = ur(n =1, A1) |7 | Fi]

an [llur(n, An) = un(n =1, A1) | Fi]

(20)
Zp*o ) ;) < 0(2%),
where the first inequality is due toll This completes the proof. O
The following Lemma estimate the term E[||uy (n, Ay) — ug(n — 1, A\—1)||* | F] in
Lemma B.14. Under[Assumptions 2.1|and[2.3) consider[Algorithm 2} we have

Bllus (. An) = s = 1 0-0)|*| Fil € O()

Proof. We denote

W (ks A ks §k) == VzL(mkay*(wkvi?fk)ay*(z‘mo?gk)aAn?ﬁkvfk)~
It is easy to verify that
ug(n, An) —up(n — 1, A1)
= uk(n, An) = U (T, Ani s Sk) + Uk (ks Ans ks Ek) — U (T, An—15 1k i) @21
+ i (Ty An—13Mk, §k) — uk(n — 1, Ap—1).
We then analyze the following three terms:
L Elfluk(n, An) = i (@r; Ans i )17 | Fiel:
2. Effju(n — 1, An—1) = uj (@, An—rime, &) |17 | Fili
3. Eflluf (@, Ani s €) — (@, Aa—1: e, &)1 | Fie]-
For the first term, we have

ur (1, An) — U (Try As s Eie)
TL_ * 1
=Vif(xr 2z )ik &) — Vif(ze, y* (o, r?fk)?”kaﬁk)

+ An(vlg(xkv Zi"_l(kn);nkygk) - Vlg(xka Yy (xkv 7§k) 77k7§k))

+ M (9(@r, v (k05 &k )5 Mk, Ek) — V19($kayinfl; 77k;fk))~
Combining the above equality with[Cemma B.6] we obtain
* )\2
EffJur(n, An) — i (@, Ans i ER) 17 | Fie] < O5n)- (22)
Similarly, we know that
)\2

) (23)

Eflfur(n — 1, An—1) = u (@ An—13 70, &) 2] < O
Below, we estimate the third term. By we can see that

1
V19(Ik,y*(£€k, 776/?7)7 77167616) - vlg(xka y*(zka Ovék)v nkvgk)
" (24)

* * 1 *
= Vi9(k, ¥ 2k, 0: &) Mk, &) (v (2 7?&0) =y (2r,0; &) + 11,
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where [|r1[| = O([ly* (x, =3 &) — y* (2x, 0; &) [|?), and

1
Vog(@r, v (xr, 0;&k); &) — Vag(r, y* (zk, r?fk))
" (25)

1
= V320(xk, ¥ (21, 0: &) &) (V" (ke 05 Ek) — y* (g, o k) + 1o,

where [[rs]| = O(|ly* (2, 33 &) = y" (2, 0 &)|[2)- It follows from [Lemma B.7|that V5y* (z, 6; €)
is Lipschitz continuous, by one has

y*(x,0;8) —y*(2,0;€) = Dsy*(2,0;€)(0 —0) + 1y, (26)

where ||r, || = O(|6|?). Combining|(26)| [Lemma B.7| with |(24)| we can see that

uZ(xlw )\nﬂ?k,fk)

1
- vlf($k7y*(xka )\77€k)a 77]4:75]9) + (vfgg(l'k,y*(mk, 0;€k)>nka€k)v5y*<xkﬂ Oagk) + T3,
where ||r3]| = O(5-). Similarly, we have

Wi (Thy An—13 My k)

1
- vlf(mlm y*(l’m )\71’ fk)vnkafk) + v%29($k,y*($k7 07€k)a ﬁkafk)véy*(xky 703516) + T4,

where [|r4]] = O(; 171 ). Therefore, combining the above two equalities with|[Lemma B.7} It is easy
to verify that

e (@hy Ans My E) — W (Thes An—1; My k)|

1 1 1
</ * — —y* — <O .
< Lyally*(wr, )\n,fk) Y (k, )\n—17£k)” < (/\n_l)
By the above inequality and [(22)} [(23)] one has
A2 1 1
Elur(n, An) = ur(n = LA 1) ? | Fil € OGE + 525 + 15—) < O(—=r)-
n - 2n D 273
This completes the proof. O

B.7 PROOF OF[THEOREM 3.1]
It follows from that F'(x) is £ 1-Lipschitz smooth, which implies
ZF,l 2
F(zry1) = Flax) < (VE(@r), 21 — 2x) + 5 o — 2™

The above inequality implies

E[F(zg+1) — Fzg) | Fil

14
<E[(VF(2k), trpr — @) + 5 [wnn = xll® | Fil

(&%
= — S UV @I + BV oL (@i, 2, garr Awi s &) | Fill)
e 4
+ S IIVE (k) ~ B[V L(2h, zen, Yirs M oo )] | Fill® + “5 Elllzies — 2l | Fil,

where the equality is due to the definition of xp4; in |Algorithm 1| and the fact that (a,b) =
—2(|lal|* + [[6]|?) 4 %[l — b||. For the last term in the above inequality, we have

Elllzrir — @l | il < 205(0F 0 + Aelg 1 Elllzrsr — w1 | Fil),
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and

El|zk41 — ylc+1||2 | Fi]
* 1 * 1 * *
= E[llzr41 — y* (zx, E%ﬁ) +y* (2, )Tk;f) =y (2, 0;€) + ¥ (@, 0:€) — yis I” | Fi]
* 1 * 1 *
< 3E[[|zk41 — ¥ (zk, )\7;5)||2 | Fi] + 3E[[ly* (zx, /\7;5) — y* (2k, 0;6) |7 | Fie] (27)

+ 3E[||y* (z, 05) — Yt ll® | Fi]
1 1 1
<O(— )< O(=

where the second inequality follows from [Lemma B.6] [Lemma B.7| Combining the above three
inequalities, we have

E[F(zg1) — F(2r) | Fl
< - %E[(HVF(M)\P + [E[Va L2k, 2ks1, Yrt1, Aes 1, €) | FillP)

«
+ S IVF (k) = EIVaL(@k, 21, yerr M 1. ) | Fill + a2 O(1),
which implies
Qg
7E[\|VF($1€)||2 | Fi]

!
< S IVF(@e) = B[V L@, 2 g Mes s 66) | Fil |
+E[F (1) — F(wrs1) | Fil + 03 O(D).
Multiply both sides of the above inequality by a%, we get

E[|VF (zk)|* | F]

2 2 2 2
< E[—F(z) — —F(z + — — ) F(z Fr| + o O(1
<BI2 )~ o Flon) + (- — 2)Flows) | A + 1 0)
+ IVF(2k) — E[VoL(Tk, k41, Ykt 15 M M8 E8) | Frl |1

It follows from that

1
IVF(21) — E[VaL(Tk, 2ks1s Ykt Aes Mk §) | Fil[|? < O(F) + O(ZE).
p

The above two inequalities imply
E[|VE(zx)l* | Fil

2 2 1 1 1
< E[—F(x) — F(z Fi]+ O - — O(ag) + O0(—=).
< B[ Flon) = = Flain) | Bl + 0(— = 2 + 0faw) + 0(35)
Therefore, we obtain
LS BV FE < o(-L)
K= T TR

To ensure + 37 E[[|[VF(x1)]|?] < €%, it suffices to set K = O(e™*), Ty = O(e™). As aresult,
the sample complexity of V1 f, Vg is of order O(e~*). The complexity of Vg, Vo f is of order
O(e™8).

B.8 PROOF OF[THEOREM 3.4]

It follows from that F'(x) is £ 1-smooth, which implies

Y4
F(aigr) = Flag) < (VE(@x), zpn = o) + 5 |one — ol
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For notational simplicity, we adopt the following conventions:
Ok (ks Ang ) = (0, A0) + pry) (e (s Ay ) — un(ng — 1, Any 1)) (28)
One has
E[F(zx11) — Fax) | Fil
< B[V (t6), 2isn — 2) + 2 s — o) | Fi)
— a||* | Fi]

= Enk >C0N[—a1a0<VF(fL'k), Vg (nk7 )\nk)>

f
+ Eny <con [~ 00(VEF (1), v (1, Any ) + — x|l | Fil,

where the equality uses the fact that the expectation of a piece-wise affine function is the sum of
expectation of each piece. Subsequent to this, we apply an algebraic manipulation to the right-hand
side of the aforementioned inequality to express it in an equivalent form. It follow from[(6)] [(7)] that

V4
—a1ao(VE(2r), Enyscon [Vk(nk; Any ) | Fil) + %Enk>CON“|xk+1 — x| | Fi)

V4
= —a100(VF(z1), Elug (N, An) — ur(coN, Ao ) | Fiel) + ;’1 meenv [|Zes1 — zil® | Fil
V4
- %EnkScoN[llka — x| | Fil,

and

V4
— ao(VF(xk), Eny<con [V (i, Any) | Fi]) + ;’1 nn<con [ Trt1 — zil|* | Fi

V4
= — ao(VF(zk), Eluk(coN, Aeyn) | Fi]) + %EnkchN[kaH — x| | Fil.

Combining the above three equations, we get
E[F(2rt1) — F(zx) | Fi
14
—ar00(VF (), Elux(NAx) | Fil) + =5 En, <nlllzns — ol | Fil

<
— (1 — a1)(VF (2x), Efug(coN, Aegn) | Fr)
= SR VE () — Elun(N,Av) | FllP? = 252 VE @) |2 = =22 [Elun(N, Av) | Filll
1—a V4
annm ~ Elur(eoN. Aegn) | Fill? 4 B B e leis — ol | Fil,

2

where the equality is due to the fact that —(a,b) = —2(||a]|®> + [|b]|*) + 3|la — b||2. For the last

term in the above inequality, it is easy to verify that

Enp<nlll@nir — zxl? | Fil

= By < [[[vk (s Ay )1 | Fi)

<205, < N[ VF (k)% + [[ok (g, Any) — VF ()| | J:k]

<205, < N[ VF (a)|? +2||E[V$L($kazk YOG e &) | Fil - VE(@)|I? | Fil
+403En <N [IEVo Lz, 7~ (), yk ks 60) | il = vklngs A | F]

< 203E, <N [V F () [* | Fi] + 4040(9()\2 ) +4a30(2%),

where the first equality is due to the definition of x4 1, the first and second inequalities follow from
the triangle inequality, and the last inequality follows from|[Lemma B.12||Lemma B.13|
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Combining the above two inequalities, and then taking the expectation on the new inequality, if

aiy
ag < Sty one has

E[F(zg11) — F(zr)]

a1
YOOV F (er) — Elug (N, Aw) | Fil 2] + (20365, —

- 1
0 O g1V ) — EfuneoN. Aegr) | FellP] +030(55) + 030(2
N

a1 2 a1
< 220 (0() + 0 ) - HRENVFEI

a1 o

< —5 B[V F (zi)[|*)

N
2

+ )

N
2

);

ai

Cko(]. — CL1) 1 /\EON 2 1 2
+ 5 <O(/\20N) +O(2c0N) +a0(9(g) + a50(2

where the last inequality is due to |Lemma B.8} |Lemrna B.10| and ap < (which implies

8lr
20p 104 — 20 < 0). Therefore, we get
E[IVE(e) |2 € —— (P ()]  EIF (@0i)]) + O(— + 2X)
YT wag ’ o X2, TN

The above inequality and the definition of A, in[Algorithm 2]imply

AE[F(z1) — F(2r41)]

1
0
alaoK + (

=+
M NN

K
1 1 N
7 2 BlIVF @) < ) + 003y +22)
k=1

The average number of iterations required for the inner loop is

N ) P—
D@ =) gy <3N

’nkzl

To ensure + S E[|VE(x)|[?] < € it suffices to set ag = O(1)e!, K = O(¢ %), N =
O(1)log(e~1). As aresult, the sample complexity of V1 f, Vg is of order O(e~%). The complexity
of Vag, Vaf is of order O(e~%log(e71)).

B.9 THE SETTING OF NUMERICAL EXPERIMENT (META-LEARNING)

We tune the algorithm parameters of these four methods to make sure every method works well:
we set £y1 = pg = 1000; for [Algorithm ll we use o = 25/vVk+1, B = 500/ (ug(t + 1))
and K = 1500; for |Algorithm ZL we use € = le — 4 and so N = 4log(e™!) ~ 37, ap = 1,
coN = 10, a1 = 0.05, By = 25/(py(t + 1)) and K = 17000; for Hessian-based method, we
follow the settings in [Hu et al.[(2023b) and use maximum iterations 10000, the RT-MLMC level
K=12,L,; =10, s = 0.5/+/t for t <= 1000 and 0.5/t for ¢ > 1000, the stepsize for the inner
update is replaced by 3; = 70/(t + 1) rather than 70/2 for better performance; for the reduction
method in|Bouscary et al.|(2025)), we use basis degrees 50, for stocBiO for solving the reduced SBO
problem, we use maximum iterations 3000, inner iterations D = 100, stepsizes a = 0.01, 5 = 0.1
and 7 = le — 3, and length of Neumann series ( = 30. To handle the high variance of
and RT-MLMC Hessian-based methods, we use minibatch over the hypergradient estimators for the
outer loop. Specifically, for[Algorithm 2] in the k-th outer iteration, given xj,, we sample an ny, from
the truncated geometric distribution, and then repeat steps 3 to 13 in[Algorithm 2| for 10 times.

Similarly, for RT-MLMC Hessian-based method, in the k-th outer iteration, we sample a k from
the truncated geometric distribution, and then repeat EpochSGD (c.f., Algorithm 1 in |Hu et al.
(2023Db)) for 10 times to compute the averaged gradient estimator to update x1. Note that the max-
imum number of iterations are set to ensure that the computational time for these three algorithms
is roughly comparable.
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B.10 THE SETTING OF NUMERCAL EXPERIMENT (WDRO-SI)

In this experiment, £,y € R, 4, = 10, and the parameters in /g are set to h = 1, b = 5 and
B = 5. We use a three-layer fully-connected neural network as the mapping f(x;-), where the
neurons in each layer are [64, 32, 1], the activation functions of hidden layers are ReLU, and the
output layer uses the sigmoid function scaled by 10. To construct the nominal distribution, we first
uniformly randomly generate the true z*, and M = 50 contexts {&;},. For each ¢;, we generate
{n; = f(a*; &) +e};2 with e being white noise. The performance is evaluated by the stationarities
and expected losses ¢ ) po[l(f(7;&),n)], where the expectation is approximated using sample

average over 20, 000 sample points {(&;, m)}fﬂ{) 9 that are generated using the same scheme as the

training nominal distribution. Similarly to the meta-learning example, these losses are evaluated
only on the 50 equally spaced grid points.

The algorithm parameters of each method are tuned to ensure the good performance. Specifically,
we set {71 = pg = 1000; forlAlgorithm ll weuse ap = 0.5/vVEk+1, B = 5/(pg(t + 1)) and
K = 100; for|élgorithm (Z_{ weuse e = le —4andso N = 4log(e!) ~ 37, ap = 0.5, coN = 10,
ap = 0.05, By = 1/(pg(t + 1)) and K = 1,000; for Hessian-based method, we use maximum
iterations 1, 000, the RI-MLMC level K = 12, L,y = 10, oy = le — 5/\/5 for ¢ <= 1000 and
le — 5/t for t > 1000, the stepsize for the inner update is replaced by 8; = 5e — 5/(t + 1); for
the reduction method in [Bouscary et al| (2023)), we use basis degrees 5, for stocBiO for solving
the reduced SBO problem, we use maximum iterations 300, inner iterations D = 100, stepsizes
a = 0.01, 8 =0.01 and n = le — 4, and the length of Neumann series () = 30. Different from the
meta-learning example, we do not use minibatch for RT-MLMC methods.
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