
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

FULLY FIRST-ORDER METHODS FOR CONTEXTUAL
STOCHASTIC BILEVEL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Contextual stochastic bilevel optimization (CSBO) is a new paradigm for decision
making under uncertainty that generalizes stochastic bilevel optimization (SBO)
by integrating contextual information in the lower level optimization problem and
thus offers a stronger modeling capability. Nevertheless, owing to its semi-infinite
nature, CSBO is extremely challenging from a computational perspective, hinder-
ing its real-world applications. Indeed, many algorithms designed for SBO are
not applicable to CSBO. In this paper, we devise a double-loop fully first-order
algorithm for solving CSBO and prove that both sample and gradient complexi-
ties of the algorithm are Õ(ϵ−8). To tackle the increasing number of inner loop
iterations, we further develop an accelerated version of our algorithm using the
random truncated multilevel Monte Carlo technique. The accelerated algorithm
enjoys the improved complexities of Õ(ϵ−6). Our algorithms are fully first-order
in the sense that they do not rely on second-order information, and hence these
complexities cannot be directly compared with those of Hessian-based methods.
Numerical experiments on meta-learning with real datasets demonstrate the supe-
riority of the proposed algorithms, especially the accelerated version, over existing
Hessian-based method in terms of both speed and accuracy.

1 INTRODUCTION

Contextual stochastic bilevel optimization (CSBO) is a new bilevel optimization framework intro-
duced in Hu et al. (2023b) that accommodates contextual information or personalization in the lower
level and takes the form

min
x∈Rdx

F (x) := Eη,ξ[f(x, y
⋆(x; ξ); η, ξ)]

where y⋆(x; ξ) := arg min
y∈Rdy

Eη|ξ[g(x, y; η, ξ)] ∀ξ ∈ Ξ ⊆ Rdξ , x ∈ Rdx ,
(1)

where we assume that g(x, ·; ξ, η) is strongly convex for any x ∈ Rdx , ξ ∈ Ξ and η so that the lower
level minimizer y∗(x; ξ) is unique. Further assumptions on the functions f and g are presented in the
next section. The upper level expectation is with respect to the joint distribution of the two random
vectors ξ and η, while the lower level expectation is with respect to the conditional random vector
η|ξ. The support Ξ of ξ can possibly be uncountably infinite. We do not assume knowledge of the
distributions but only access to i.i.d. samples from the marginal distribution Pξ and the conditional
distribution Pη|ξ.

CSBO subsumes stochastic bilevel optimization (SBO) (Ghadimi & Wang, 2018; Kwon et al.,
2023a) as a special case. Compared with SBO, CSBO offers two distinctive modeling advantages:
(i) the lower-level decision y in CSBO can be coupled not only with upper-level decision x but also
with side information ξ; (ii) the number of lower-level decision makers in CSBO can be arbitrary
as Ξ is not necessarily a finite set. Besides SBO, CSBO also generalizes contextual stochastic op-
timization (Bertsimas & Kallus, 2020) and conditional stochastic optimization (Hu et al., 2020a;b).
Consequently, CSBO serves as a versatile modeling paradigm with a wide range of applications,
such as meta-learning (Rajeswaran et al., 2019), end-to-end learning (Rychener et al., 2023), per-
sonalized federated learning (Shamsian et al., 2021), hierarchical representation learning (Yao et al.,
2019), Wasserstein DRO with side information (Yang et al., 2022; Donti et al., 2017), and instru-
mental variable regression (Muandet et al., 2020; Kwon et al., 2023a).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

The modeling power comes at a cost though: CSBO is extremely challenging from a computational
perspective. Indeed, many algorithms designed for SBO are inapplicable to CSBO. For instance,
numerous single-loop methods that are efficient for SBO (Guo et al., 2021a;b; Chen et al., 2021;
2022b; 2023; Hong et al., 2023; Yang et al., 2021) cannot be directly applied to solve CSBO. The
fundamental distinction arises from the nature of the lower-level optimal solution. In SBO, the
lower-level solution y⋆(x) is a function solely of the upper-level decision x, while in CSBO, the
lower-level decision y⋆(x; ξ) depends not only on x but also on the random variable ξ represent-
ing contextual information. This difficulty also invalidates the warm-start strategies used in many
double-loop SBO algorithms (Kwon et al., 2023a;b; Chen et al., 2025b; Gong et al., 2024), degrading
their practical performance as well as theoretical guarantees. Motivated by the gap in the algorithmic
development between SBO and CSBO, a recent work (Bouscary et al., 2025) proposes a framework
to reformulate CSBO as SBO, thereby solving CSBO via SBO algorithms. However, their frame-
work requires the additional assumption that the lower-level objective function Eη|ξ[g(x, y; η, ξ)] is
analytic with respect to (y, ξ) and that ξ is either a discrete random variable with a finite support
(i.e., |Ξ| <∞) or a continuous random variable whose density function is uniformly bounded away
from 0.

For general CSBO, Hu et al. (2023b) developed a double-loop algorithm. The outer loop adopts
a vanilla stochastic gradient descent framework for the upper-level problem, and the inner loop is
to compute the lower-level minimizer y⋆(x; ξ) for constructing an upper-level gradient estimator.
This algorithm achieves gradient and sample complexities of Õ(ϵ−6) (Hu et al., 2023b). To allevi-
ate the large number of inner iterations, Hu et al. (2023b) further employed the random truncated
multi-level Monte Carlo (RT-MLMC) technique to develop an accelerated algorithm that enjoys the
strengthened complexities Õ(ϵ−4). A shared drawback of these two algorithms is that each iteration
requires computing multiple Hessian estimators and a matrix of mixed second-order derivatives of
g, which leads to high per-iteration computational costs and slow performance in practice.

In view of the above discussions, this paper aims to develop a fully first-order, Hessian-free algo-
rithm for solving general CSBO problems. Our contributions are as follows.

• We propose a fully first-order double-loop algorithm (c.f. Algorithm 1) for CSBO and prove
that its sample and gradient complexities are both Õ(ϵ−8). Our algorithmic framework
differs fundamentally from that in (Hu et al., 2023b) and is based on a suitable penalty
formulation of problem (1). To the best of our knowledge, this is the first fully first-order
algorithm for solving general CSBO problems that does not rely on any second-order oracle
of g.

• To circumvent the increasing number of inner iterations of our proposed double-loop al-
gorithm, we devise an accelerated variant of our algorithm by invoking the RT-MLMC
technique. We also show that this accelerated algorithm enjoys the improved sample and
gradient complexities of Õ(ϵ−6).

• Unlike the situation in (Hu et al., 2023b), a straightforward adoption of their RT-MLMC
technique in our algorithmic framework will introduce a large variance to the resulting
algorithm, which significantly affects its practical performance. This is mainly due to the
increasing penalty parameter in our algorithmic framework, which amplifies the variance
of the gradient estimator. To cope with this issue, we develop a novel stepsize strategy for
our accelerated algorithm that can effectively control the instability without compromising
the theoretical complexity. To the best of our knowledge, this is the first adaptive stepsize
strategy for controlling the overall variance in RT-MLMC-based gradient algorithms, which
could be of independent interest.

• We demonstrate the superiority of our proposed algorithms, especially the accelerated one,
over the Hessian-based algorithm in (Hu et al., 2023b) via numerical experiments on a
meta-learning application with using the tinyImageNet datasets (Mnmoustafa, 2017).

Finally, we should point out that our complexities Õ(ϵ−8) and Õ(ϵ−6) for the basic and accelerated
algorithms should not be directly compared with the corresponding ones in Hu et al. (2023b), as
we do not rely on any second-order oracles and thus have much smaller per-iteration computational
costs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

1.1 RELATED WORK

Bilevel optimization is a big topic with a long history. Below we provide a brief review of its recent
development, with a focus on SBO and CSBO. Assuming second-order oracles of g, Ghadimi &
Wang (2018) developed the first SBO algorithm with a provable non-asymptotic complexity guar-
antee. In their approach, the inner loop computes an approximate solution for y⋆(x), which is then
used to estimate the gradient of F . This seminal work has spurred the development of a diverse suite
of methods using second-order oracles; to name a few, stocBiO in Ji et al. (2020), SOBA and SABA
in Dagréou et al. (2022), MDBO for distributed SBO in Gao et al. (2023), TTSA algorithm in Hong
et al. (2023), SUSTIAN algorithm in Khanduri et al. (2021), ALSET method in Chen et al. (2021),
SVRB in Guo et al. (2021a), BSVRB in Hu et al. (2023a). Note that SVRB and BSVRB apply to
SBO with multiple lower-level problems, which is a special case of CSBO when the realization of ξ
is finite.

The heavy cost caused by the computation of second-order derivatives and inverse Hessian of g,
required by aforementioned algorithms, motivates the exploration of fully first-order methods for
solving SBO problems, pioneered by Kwon et al. (2023a). Many fully first-order algorithms have
been developed subsequently for SBO. Within this fully first-order paradigm, the prevalent ap-
proaches mainly fall into two classes: (i) single-loop first-order methods, which adopt a Lagrangian-
or penalty-type scheme, such as Kwon et al. (2023b); (ii) double-loop first-order methods, which
maintain the bilevel hierarchy in the algorithmic design and often utilize a warm-start strategy for
the lower-level optimization to enhance efficiency, such as F2SA-p in Chen et al. (2024), F2BA and
F2BSA in Chen et al. (2025a).

A common feature shared by both the aforementioned single-loop and double-loop algorithms is the
exploitation of the fact that the optimal solution y⋆(x) to the lower-level problem in SBO depends
only on x. In contrast, for CSBO, the lower-level minimizer y∗(x; ξ) depends not only on x but
also on the side information variable ξ. This critical difference between CSBO and SBO hinders
the direct application of these algorithms to general CSBO: algorithms for general CSBO cannot
utilize information obtained from previous inner-loop iterations. This presents significantly greater
analytical and computational challenges in CSBO than SBO.

In the context of CSBO, Hu et al. (2023b) devised a double-loop algorithm that relies on second-
order oracles. Furthermore, the authors integrate the random truncated multilevel Monte Carlo
(RT-MLMC) technique into their algorithmic framework to accelerate the proposed double-loop
algorithm. Recently, Bouscary et al. (2025) provides an alternative approach for solving CSBO by
reformulating it as a SBO problem to apply standard SBO algorithms. However, as pointed out
previously, their approach requires the analyticity of the lower-level objective function and some
assumption on the random variable ξ, which may limit its applicability. i.e., when the lower-level
problems are (contextual) RL problems. Leveraging the special structure of RL, their hypergradient
formulation does not rely on second-order information. However, this observation does not apply to
CSBO. Several papers study bilevel reinforcement learning Chen et al. (2022a); Chakraborty et al.
(2024); Shen et al. (2025); Yang et al. (2025).

1.2 PRELIMINARIES AND NOTATION.

The symbol Õ is a variant of the big-O notation that hides polylogarithmic factors. For an integer
M , we let [M] := {1, . . . ,M}. Let ψ : Rdx × Rdy → R be a function, its gradients with respect
to (x, y), x and y are denoted by ∇ψ, ∇1ψ, ∇2ψ, respectively. The Hessian of ψ with respect
to (x, y), x and y are similarly denoted by ∇2ψ, ∇2

11ψ and ∇2
22ψ, while ∇2

12ψ and ∇2
21ψ are

dx × dy and dy × dx matrices whose (i, j)-th elements are ∂2xiyj
ψ and ∂2yixj

ψ, respectively. We say
ψ is L-Lipschitz continuous if for any (x1, y1) ∈ Rdx × Rdy and (x2, y2) ∈ Rdx × Rdy , we have
∥ψ(x1, y1)−ψ(x2, y2)∥ ≤ L∥(x1, y1)−(x2, y2)∥. It is further called S-smooth if it is differentiable
and its gradient is S-Lipschitz continuous. If ψ − µ

2 ∥ · ∥
2 is convex, then ψ is said to be µ-strongly

convex. For a vector-valued function h : Rda → Rdb , the Jacobian matrix is defined to be the db×da
matrix Dh := [∇h1, · · · ,∇hdb

]⊤. For z = (z1, z2), the partial derivative of h with respect to z1
is denoted as Dz1h. For sequences {xk}k, {yk}k, {zk}k generated by Algorithm 1 or Algorithm 2,
we denote the corresponding σ-algebra by Fk := σ{x0, y0, z0;x1, y1, z1, · · · , xk, yk, zk}.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 1

Input: x0 ∈ Rdx .
1: for k = 1, · · · ,K do
2: Set λk =

2ℓf,1
µg

(k + 1)1/4, αk = O(1)√
k+1

, Tk = k.
3: Sample ξk from Pξ, set y0k = z0k.
4: for t = 0, 1, · · · , Tk − 1 do
5: Sample ηtk from Pη|ξk .
6: Set βt = 8

µg(t+1) .

7: yt+1
k = ytk − βt∇2g(xk, y

t
k; η

t
k, ξk)

8: zt+1
k = ztk − βt

λk
∇zL(xk, z

t
k, y

t
k, λk; η

t
k, ξk)

9: end for
10: Set zk+1 = zTk

k , yk+1 = yTk

k
11: Sample ηk from Pη|ξk
12: xk+1 = xk − αk∇xL(xk, zk+1, yk+1, λk; ηk, ξk)
13: end for
Output: xK+1

2 ALGORITHMS

Our algorithms and theoretical analysis rely on the following assumptions. Similar assumptions also
appear in the literature of SBO and CSBO Ghadimi & Wang (2018); Guo et al. (2021a); Chen et al.
(2021; 2022b); Hong et al. (2023); Hu et al. (2023b).
Assumption 2.1. Problem (1) satisfies the following regularity conditions:

(i) For any η and ξ, f(x, y; ξ, η) is continuously differentiable and g(x, y; ξ, η) is twice con-
tinuously differentiable in x and y.

(ii) For any x, η and ξ, g(x, y; ξ, η) is µg-strongly convex in y.

(iii) For any η and ξ, f(x, y; ξ, η),∇f(x, y; ξ, η), ∇g(x, y; ξ, η), and ∇2g(x, y; ξ, η) are ℓf,0,
ℓf,1, ℓg,1, and ℓg,2-Lipschitz continuous in (x, y), respectively.

(iv) For any x ∈ Rdx and y ∈ Rdy , there exist τf > 0 and τg > 0 such that

E[∥∇f(x, y; η, ξ)− E[∇f(x, y; η, ξ) | ξ]∥2 | ξ] ≤ τ2f ,

E[∥∇g(x, y; η, ξ)− E[∇g(x, y; η, ξ) | ξ]∥2 | ξ] ≤ τ2g .

Assumption 2.1(i)-(iii) imply in particular that for any (x, y) ∈ Rdx × Rdy and
(ξ, η) ∼ Pξ,η , ∇f(x, y; η, ξ) and ∇g(x, y; η, ξ) are unbiased estimators for ∇F (x, y; η, ξ) and
∇Eη|ξ[g(x, y; η, ξ)], and that F is ℓF,1-smooth; see Lemma B.4.

2.1 THE BASIC ALGORITHM

We first present a basic algorithm for problem (1); see Algorithm 1. To begin, note that problem (1)
is equivalent to the following problem:

min
x∈Rdx ,z∈Rdy

Eη,ξ[f(x, z; η, ξ)]

s.t. Eη|ξ[g(x, z; η, ξ)]− min
y∈Rdy

[g(x, y; η, ξ)] ≤ 0 ∀ ξ ∈ Ξ, x ∈ Rdx .
(2)

Remark 2.2. The choice of O(1) in αk = O(1)√
k+1

of Algorithm 1 and O(1) in α0 = O(1)ϵ4 of
Algorithm 2 are constant independent of k and ϵ.

Inspired by Kwon et al. (2023a), our algorithms leverage the following penalty function:

L(x, z, y, λ; η, ξ) := f(x, z; η, ξ) + λ(g(x, z; η, ξ)− g(x, y; η, ξ)). (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Very roughly speaking, the idea of our algorithm is to estimate ∇F using ∇xL, and then perform
stochastic gradient descent. To do so, we denote ḡ(x, y; ξ) := Eη|ξ[g(x, y; η, ξ)], f̄(x, y; ξ) :=
Eη|ξ[f(x, y; η, ξ)], and consider the following optimization problem with δ ∈ [0, 1):

min
y

Q(x, y, δ; ξ) := ḡ(x, y; ξ) + δf̄(x, y; ξ). (4)

Denote its solution as y⋆(x, δ; ξ). Then, we can apply the chain rule to obtain

∇F (x) = Eξ[∇1f̄(x, y
⋆(x, 0; ξ); ξ) +Dxy

⋆(x, 0; ξ)⊤∇2f̄(x, y
⋆(x, 0; ξ); ξ)]

= Eξ[∇1f̄(x, y
⋆(x, 0; ξ); ξ)

−∇2
12ḡ(x, y

⋆(x, 0; ξ); ξ)(∇2
22ḡ(xk, y

⋆(x, 0; ξ); ξ))−1∇2f̄(x, y
⋆(x, 0; ξ); ξ)],

(5)

where the second equality follows from equality (15) in Appendix B.5. Notice that the right hand
side of (5) involves gradients of f̄ and Hessian of ḡ at x and y⋆(x, 0; ξ). Nevertheless, we shall show
in Lemma B.8 that this can be indeed approximated by ∇xL(x, y

⋆(x, 1
λ ; ξ), y

⋆(x, 0; ξ), λ; η, ξ).
Then, the inner loop of the k-th outer iteration (i.e., steps 4-10 of Algorithm 1) executes a SGD-type
algorithm to minimize Q(xk, y, 0; ξk) and Q(xk, y,

1
λk

; ξk). So, its outputs yk+1 and zk+1 approxi-
mate y∗(xk, 0; ξ) and y∗(xk, 1

λk
; ξ), respectively; see Lemma B.6. Therefore, we can estimate ∇F

using only first-order information of L; see Appendix B.5 for a comprehensive discussion.

2.2 DERIVATION OF ALGORITHM 2

Noticing that in Algorithm 1, the number of inner iterations increases with the outer iteration counter
k, which results in a heavy computational burden for large k. To tackle this, we develop an accel-
erated algorithm using the RT-MLMC technique Hu et al. (2023b; 2021); see Algorithm 2. For
simplicity, we denote

uk(t, λ) := ∇xL(xk, z
2t

k (λ), y2
t

k , λ; ηk, ξk), (6)

where the subscript k denotes the iteration count of the outer loop, t indicates the corresponding
iteration count of inner loop is 2t, and z2

t

k (λ) and y2
t

k are inner iterates defined in steps 10 and 9
in Algorithm 2, respectively. It is a hypergradient estimator with 2t inner iterations. To avoid the
large number of inner iterations, we construct the gradient estimator for Algorithm 2 leveraging the
following observation. By telescoping,

uk(N,λN)

= uk(0, λ0) +

N∑
n=1

pn
(uk(n, λn)− uk(n− 1, λn−1))

pn

= uk(0, λ0) + En̄∼PN

[
uk(n̄, λn̄)− uk(n̄− 1, λn̄−1)

pn̄

]
,

(7)

where PN is the truncated geometric distribution with the upper bound N and PN (n̄ = n) = pn ∝
2−n for every n ∈ [N]. Equations (6) and (7) together suggest that one could replace the gradient
estimator ∇xL(xk, zk+1, yk+1, λk; ηk, ξk) in Algorithm 1 with the following estimator.

uk(0, λ0) + p−1
nk

(uk(nk, λnk
)− uk(nk − 1, λnk−1)), (8)

where nk is a realization of the truncated geometric random variable with the upper bound N . Both
gradient estimators admit the same bias but the estimator (8) has a much smaller computational cost
on average via a proper selection of PN that assigns a small probability to generate a large n̄ and a
large probability to generate a small n̄.

Unlike Hu et al. (2023b), the integration of RT-MLMC technique into our algorithm is obstructed
by additional challenges. More precisely, in our penalty-based algorithmic framework, in order
for ∇xL to be an accurate approximation of ∇F , the penalty parameter λ must grow sufficiently
fast. Unfortunately, this will amplify the variance of the RT-MLMC gradient estimator. As a result,
despite achieving accelerated complexities of Õ(ϵ−6), the numerical performance is highly unstable
due to the large variance. To tackle this issue, we have developed a novel adaptive stepsize strategy;
see steps 15-19 in Algorithm 2. Specifically, if nk exceeds a given threshold, we scale the stepsize

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Algorithm 2

Input: x0 ∈ Rdx ,N = O(1) log(ϵ−1), α0 = O(1)ϵ4, c0 ∈ (0, 1], a1 ∈ (0, 1)
1: for k = 1, · · · ,K do
2: Sample nk from the truncated geometric distribution PN .
3: Sample ξk from Pξ

4: Set pnk
∝ 2−nk , λnk

=
2ℓf,1
µg

(2nk)
1
4 .

5: Set y0k = z0k(λnk
) = z0k(λnk−1) = z0k(λ0).

6: for t = 0, 1, · · · , 2nk − 1 do
7: Set βt = 8

µg(t+1) .
8: Sample ηtk from Pη|ξk .
9: yt+1

k = ytk − βt∇2g(xk, y
t
k; η

t
k, ξk)

10: zt+1
k (λnk

) = ztk(λnk
)− βt

λnk
∇zL(xk, z

t
k(λnk

), yt+1
k , λnk

; ηtk, ξk)

11: zt+1
k (λnk−1) = ztk(λnk−1)− βt

λnk−1
∇zL(xk, z

t
k(λnk−1), y

t+1
k , λnk−1; η

t
k, ξk).

12: end for
13: Set y2

nk−1

k , y2
nk

k , z2
nk−1

k (λnk−1), z2
nk

k (λnk
)

14: Sample ηk from Pη|ξk .
15: if nk > c0N then
16: α = a1α0

17: else
18: α = α0

19: end if
20: xk+1 = xk − α(uk(0, λ0) + p−1

nk
[uk(nk, λnk

)− uk(nk − 1, λnk−1)])
21: end for
Output: xK+1

by a factor a1 ∈ (0, 1). This stepsize strategy is compatible with RT-MLMC technique in the sense
that the resulting algorithm, Algorithm 2, similarly enjoys the improved complexities Õ(ϵ−6). To
the best of our knowledge, this is the first time such a stepsize strategy has been utilized to control the
overall variance in RT-MLMC-type gradient methods. An empirical comparison of our Algorithm 2
with and without the adaptive stepsize strategy appears in Figure 4 in Section 4, which demonstrates
the instability without using the adaptive stepsize and the significant improvement using it.

Finally, for the purpose of the theoretical analysis, we assume that the initialization gap in lower-
level problems is bounded. This assumption is also used implicitly in (Hu et al., 2023b); see for
example the proof of Lemma 3 therein. Moreover, when the support Ξ is finite, this holds trivially.

Assumption 2.3. There exists b > 0 such that Eη|ξk [g(xk, y
0
k; η, ξk)− g(xk, y

⋆(xk, ξk); η, ξk)] ≤ b
for any k ≥ 1.

3 COMPLEXITY ANALYSIS

Due to the bilevel structure and potential non-convexity of f , the objective function F is in general
nonconvex in x. Thus, giving the SGD-nature of our algorithms, we aim to find {xk}k∈[K] satisfying
1
K

∑K
k=1 E[∥∇F (xk)∥2] ≤ ϵ2, which is a common stationarity measure in bilevel optimization.

Our first main theoretical result concerns the gradient and sample complexities of Algorithm 1. The
proof can be found in Appendix B.7.

Theorem 3.1. Suppose that Assumptions 2.1 and 2.3 hold. For the sequence {xk}k∈[K] generated
by Algorithm 1, to ensure 1

K

∑K
k=1 E[∥∇F (xk)∥2] ≤ ϵ2, it suffices to set K = Õ(ϵ−4). Moreover,

the sample complexity of ξ and the gradient complexities of ∇1f , ∇1g are of order Õ(ϵ−4), the
sample complexity of η and the gradient complexities of ∇2g, ∇2f are of order Õ(ϵ−8).

Thanks to the RT-MLMC technique, which greatly reduces the average number of inner iterations,
we next show that the theoretical complexities are improved. Before presenting the theorem of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

complexities, we first analyze the variance of the RT-MLMC gradient estimator in (8), summarized
in the following Lemma, with more details appeared in Appendix B.6.

Lemma 3.2. Under Assumptions 2.1 and 2.3, consider Algorithm 2, we have

E[∥E[∇xL(xk, z
2N−1
k (λN), y2

N−1
k , λN ; ηk, ξk) | Fk]

− (uk(0, λ0) + p−1
nk

(uk(nk, λnk
)− uk(nk − 1, λnk−1))∥2 | Fk] ≤ O(2

N
2).

Remark 3.3. The variance of the Hessian-based RT-MLMC gradient estimator in Hu et al. (2023b)
is O(log(ϵ−1)) (c.f., page 16 therein). Unlike Hessian-based algorithms, our Algorithm 2 uses only
first-order information. Consequently, the corresponding penalty parameter amplifies the variance
and requires additional treatment in the technical analysis. Specifically, with N = 4 log(ϵ−1) as
defined in Algorithm 2, the variance of our RT-MLMC gradient estimator is O(2

N
2) = Õ(ϵ−2). This

leads to the following Õ(ϵ−6) sample complexity of η for the accelerated algorithm (Algorithm 2).

Theorem 3.4. Suppose that Assumptions 2.1 and 2.3 hold. For the sequence {xk}k∈[K] generated
by Algorithm 2, to ensure 1

K

∑K
k=1 E[∥∇F (xk)∥2] ≤ ϵ2, it suffices to set K = Õ(ϵ−6), N =

O(1) log(ϵ−1) and α0 = O(1)ϵ4. Moreover, the sample complexities of ξ and η, and the gradient
complexities of ∇1f , ∇1g ∇2g, and ∇2f are of order Õ(ϵ−6).

We defer the proof to Appendix B.8. Note that the sample and gradient complexities of Algorithm 1
are Õ(ϵ−8) by Theorem 3.1. In contrast, although Algorithm 2 needs a larger K compared to Al-
gorithm 1, eventually its sample and gradient complexities are Õ(ϵ−6). Although our complexity
results seem significantly weaker than the Hessian-based method in Hu et al. (2023b) (Õ(ϵ−6) for
standard version and Õ(ϵ−4) for RT-MLMC accelerated version), as fully first-order methods, our
algorithms only involve gradient computation and arithmetic operations. Instead, Hessian-based
methods require computation of second-order oracles, which, despite the efficient implementation
of Hessian inverse estimation using Hessian estimators demonstrated in Algorithm 4 in Hu et al.
(2023b), is still computationally expensive. For example, consider the meta-learning problem in
Section 4 numerical experiments, we can see that the per-iteration flops cost of our Algorithm 1 and
Algorithm 2 is O(Tkdy + dx), while it is O(Nd2y + dxdy + Tkdy) in Hu et al. (2023b). It remains
an interesting and open question if one could better control the increasing penalty parameter such
that the variance of the RT-MLMC gradient estimator, as demonstrated in Lemma 3.2, could reduce
from O(ϵ−2) to O(log(ϵ−1)), which would lead to improved O(ϵ−4) complexity of the accelerated
methods. However, for fully first-order method to get O(ϵ−4), it might require additional assump-
tions on higher-order smoothness. Nevertheless, our experimental results confirm the significant
computational advantage of our fully first-order methods over Hessian-based approaches.

4 NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of our proposed first-order algorithms using two exam-
ples: the meta-learning problems (Finn et al., 2017; Rajeswaran et al., 2019) and the Wasserstein
Distributionally Robust Optimization with Side Information (WDRO-SI) (Yang et al., 2022; Hu
et al., 2023b), and compare our methods with the RT-MLMC Hessian-based method in Hu et al.
(2023b) and the reduction strategies in Bouscary et al. (2025) with the reformulated SBO problem
solved by stocBiO in Ji et al. (2020).

Algorithm 1, Algorithm 2, the RT-MLMC Hessian-based method in Hu et al. (2023b), and the
reduction strategies in Bouscary et al. (2025) (from now on, we call it by “reduction + stocBiO” for
simplicity and clarity), as well as all experiments, are implemented in Julia 1.12, and are performed
on an Apple Macbook pro with M4 Pro (14 cores) and 48G memory.

4.1 META-LEARNING

We consider the meta-learning problem in which there is a distribution over tasks (ξ ∼ Pξ), each
task comes with its own training data and validation data ηξ ∼ Pη|ξ, and the goal is to learn a
shared meta-parameter so that, for each task, adapting from the meta-parameter using the training
data yields low loss on the validation data.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Formally, we consider the following meta-learning problem, a special case of the CSBO problem:

min
x∈Rdx

Eξ∼Pξ
Eηval

ξ ∼Pη|ξ
[lξ(y

⋆(x; ξ), ηval
ξ)]

where y⋆(x; ξ) = arg min
y∈Rdy

Eηtr
ξ∼Pη|ξ [lξ(y, η

tr
ξ) +

γ

2
∥y − x∥2] ∀ξ ∈ [M], x ∈ Rdx ,

(9)

where Pξ is the distribution over all M tasks; Pη|ξ is the distribution of data from the task ξ; ηtr
ξ

and ηval
ξ are the training and validation datasets for the task ξ, respectively; x is the meta-parameter

shared within all tasks; y⋆(x; ξ) is the optimal parameter learned from a regularized problem corre-
sponding to task ξ; lξ is a loss function, and γ > 0 is a regularization hyperparameter.

We follow the settings in Hu et al. (2023b): for every task ξ ∈ [M], the loss function lξ is a multi-
class logistic loss using a linear classifier parameterized by yξ, the regularization hyperparameter γ
is set to be 2, and the dataset is features of images in tinyImageNet (Mnmoustafa, 2017) extracted
by the pre-trained ResNet-18 network (He et al., 2016). Specifically, we pick 5 tasks from tinyIma-
geNet, and randomly select 10 classes of images from the 10 classes of similar objects in each task,
with every class containing 500 images. Each image is resized and preprocessed by the pre-trained
ResNet-18 network to be a 512-dimensional vector. 90% of the images are taken as training data,
while the rest of the images are regarded as validation data.

For more detailed parameter settings of this numerical experiment, please see Appendix B.9.

We evaluate the performance via three measurements: the estimated upper-level objective function
value, the estimated stationarity and the validation prediction errors. To compute these measure-
ments, we first run each algorithm itself to obtain the corresponding sequence {xk}. For each
sequence {xk}, we partition it into 100 equally spaced grid points, at which we evaluate the per-
formance measurements. This is for saving time and is enough for comparison. Specifically, for
each selected xk, for every ξ ∈ [5], we estimate yξk+1 and zξk+1 via 100 iterations of the lower-
level updates, i.e., steps 4-9, of Algorithm 1, where each sampling of ηtr

ξ returns the whole training
set. Then the upper-level objective function value is estimated by computing the sample average of
lξ(y

ξ
k+1, η

val
ξ) over ξ ∈ [5] and the whole validation set; the stationarity is similarly estimated using

the sample average over stationarities.

Figure 1: The measurements against outer iterations over meta-learning example. Error bars show
±1 standard deviation over 10 experiments. Note that the seemingly early stopping of Algorithm 1
is because Algorithm 1 runs so slow that exceeds the runtime range.

Figure 1 and Figure 2 show these measurements averaged over 10 experiments against the number
of outer and inner iterations, respectively, while Figure 3 shows the averaged measurements against
the computational time. Note that since we use a minibatch of ξ, the total number of inner iterations
of two RT-MLMC methods are multiplied by 10. From the plots, Algorithm 1 exhibits the fastest de-
crease of objective function values and errors versus outer iteration in the first 1500 outer iterations,
followed by Algorithm 2, then reduction + stocBiO, while the RT-MLMC Hessian-based method
is the slowest one. However, when considered in terms of inner iterations and CPU computational
time, Algorithm 2 achieves the greatest reduction of objective function values and stationarity, while
the other three methods are overall comparable and are significantly slower than Algorithm 2. More
importantly, despite the use of high basis degrees 50 for the reduction method, its stationarities re-
main remarkably higher throughout. For the prediction error, although Algorithm 2 initially lagged
behind Algorithm 1, it ultimately surpassed Algorithm 1. Since the truncation level for RT-MLMC

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 2: The measurements against inner iterations, each inner iteration refers to steps 4-9 of Algo-
rithm 1, or steps 6-12 of Algorithm 2, or EpochSGD for RT-MLMC Hessian-based method in Hu
et al. (2023b) or steps 5-6 in Algorithm 2 in Ji et al. (2020). Error bars show the standard deviation
over 10 experiments. Note that the seemingly early stopping of the Hessian-based method is because
it runs so slowly, due to the computation of second-order oracles, that it exceeds the runtime range.

Figure 3: The measurements against computational time over meta-learning example. Error bars
show standard deviation over 10 experiments.

Hessian-based method is K = 12, the number of inner iterations for RT-MLMC Hessian-based
method is significantly lower than the other two methods, which still results in similar computa-
tional time, revealing that the heavy computational burden for Hessian-based method. Similarly,
for reduction + stocBiO, since we use basis degrees 50, the dimension of lower-level problems is
very high, leading to computational burden even heavier than RT-MLMC Hessian-based method.
These behaviors confirm the advantages of our proposed fully first-order algorithms compared to
RT-MLMC Hessian-based methods and reduction+stocBiO, and the efficiency of Algorithm 2 based
on the RT-MLMC gradient estimation.

To demonstrate the effectiveness of our adaptive stepsize strategy, we conduct the same experiments
using Algorithm 2 with and without the strategy by respectively setting a1 = 0.05 and a1 = 1, fol-
lowing the same settings described above. The results are presented in Figure 4. As shown, without
the adaptive stepsize strategy, the results exhibit considerable variance (represented by the orange
shaded area) and worse mean (the orange dash line), whereas with the adaptive stepsize strategy, the
performance becomes substantially more stable. These results validate the practical usefulness of
the adaptive stepsize strategy, which can empirically greatly reduce the variance of Algorithm 2 and
the burden of tuning hyperparameter.

Figure 4: The comparison of Algorithm 2 with and without adaptive stepsize strategy over meta-
learning example. Error bars show standard deviation over 10 experiments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

4.2 WASSERSTEIN DISTRIBUTIONALLY ROBUST OPTIMIZATION WITH SIDE INFORMATION

The Wasserstein Distributionally Robust Optimization with side information (WDRO-SI) (Yang
et al., 2022) focuses on the problem of robust stochastic optimization with side information ξ and
dependent randomness η. It aims to learn a mapping f , parameterized by x, that maps ξ to a decision
w which minimizes the expected loss l(w; η), subject to robustness against worst-case deviations of
the joint distribution (ξ, η) from a nominal distribution P0. Using a dual reformulation, WDRO-SI
can be cast as a contextual stochastic bilevel optimization (CSBO) problem Hu et al. (2023b):

min
x

Eξ∼P0
ξ
Eη∼p0

η|ξ
[l(f(x; y⋆(x; ξ), η))− γ1∥y⋆(x; ξ)− ξ∥2]

y⋆(x; ξ) := argmin
δ

Eη∼P0
η|ξ

[−l(f(x; δ), η) + γ1∥δ − ξ∥2], ∀δ, x.
(10)

where lβ(w, η) := h
β log(1+eβ(w−η))+ b

β log(1+eβ(w−η)) is the smoothed version of newsvendor
loss function l(w, η) := h(w − η)+ + b(η − w)+ with (·)+ = max(·, 0).
The results are shown in Figure 5 and Figure 6. We can see that our methods illustrate a good
performance compared to Hessian-based methods and reduction+stocBiO. Note that since we do
not use minibatch for Hessian-based method, it is very sensitive to stepsizes. To make sure it will
not produce NaN, we need to set a very small stepsize, which leads to a super slow convergence, as
shown in the plots.

For more detailed parameter settings of this numerical experiment, please see Appendix B.10.

Figure 5: Test loss/stationarity again iterations over WDRO-SI example. Error bars show standard
deviation over 10 experiments.

Figure 6: Test loss/stationarity again computational time over WDRO-SI example. Error bars show
standard deviation over 10 experiments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REPRODUCIBILITY STATEMENT

All theoretical claims in this paper are accompanied by full proofs, which are included in the Ap-
pendix, and are cited explicitly from the main text. The numerical experiments are fully repro-
ducible: we provide the complete implementation (Julia code), all scripts for data preprocessing,
training, and evaluation, as part of the supplementary materials. Any parameters, random seeds,
hardware details, and dependencies used are documented in the supplementary material.

REFERENCES

Dimitris Bertsimas and Nathan Kallus. From predictive to prescriptive analytics. Management
Science, 66(3):1025–1044, 2020.

Maxime Bouscary, Jiawei Zhang, and Saurabh Amin. Reducing contextual stochastic bilevel opti-
mization via structured function approximation. arXiv preprint arXiv:2503.19991, 2025.

Souradip Chakraborty, Amrit Bedi, Alec Koppel, Huazheng Wang, Dinesh Manocha, Mengdi Wang,
and Furong Huang. PARL: A unified framework for policy alignment in reinforcement learning
from human feedback. In The Twelfth International Conference on Learning Representations,
2024.

Lesi Chen, Jing Xu, and Jingzhao Zhang. On finding small hyper-gradients in bilevel optimization:
Hardness results and improved analysis. In The Thirty Seventh Annual Conference on Learning
Theory, pp. 947–980. PMLR, 2024.

Lesi Chen, Junru Li, and Jingzhao Zhang. Faster gradient methods for highly-smooth stochastic
bilevel optimization. arXiv preprint arXiv:2509.02937, 2025a.

Lesi Chen, Yaohua Ma, and Jingzhao Zhang. Near-optimal nonconvex-strongly-convex bilevel op-
timization with fully first-order oracles. Journal of Machine Learning Research, 26(109):1–56,
2025b.

Siyu Chen, Donglin Yang, Jiayang Li, Senmiao Wang, Zhuoran Yang, and Zhaoran Wang. Adaptive
model design for Markov decision process. In Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 3679–
3700. PMLR, 2022a.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternating stochastic
gradient methods for bilevel problems. In Advances in Neural Information Processing Systems,
volume 34, pp. 25294–25307, 2021.

Tianyi Chen, Yuejiao Sun, Quan Xiao, and Wotao Yin. A single-timescale method for stochastic
bilevel optimization. In International Conference on Artificial Intelligence and Statistics, pp.
2466–2488. PMLR, 2022b.

Xuxing Chen, Tesi Xiao, and Krishnakumar Balasubramanian. Optimal algorithms for stochastic
bilevel optimization under relaxed smoothness conditions. Journal of Machine Learning Re-
search, 25:151:1–151:51, 2023.

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. A framework for bilevel
optimization that enables stochastic and global variance reduction algorithms. In Advances in
Neural Information Processing Systems, volume 35, pp. 26698–26710, 2022.

Priya Donti, Brandon Amos, and J. Zico Kolter. Task-based end-to-end model learning in stochastic
optimization. In Advances in Neural Information Processing Systems, volume 30, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Hongchang Gao, Bin Gu, and My T Thai. On the convergence of distributed stochastic bilevel
optimization algorithms over a network. In International conference on artificial intelligence and
statistics, pp. 9238–9281. PMLR, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018.

Xiaochuan Gong, Jie Hao, and Mingrui Liu. An accelerated algorithm for stochastic bilevel opti-
mization under unbounded smoothness. In Advances in Neural Information Processing Systems,
volume 37, pp. 78201–78243, 2024.

Zhishuai Guo, Quanqi Hu, Lijun Zhang, and Tianbao Yang. Randomized stochastic variance-
reduced methods for multi-task stochastic bilevel optimization. arXiv preprint arXiv:2105.02266,
2021a.

Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. On stochastic moving-average
estimators for non-convex optimization. arXiv preprint arXiv:2104.14840, 2021b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
770–778, 2016.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic algorithm
framework for bilevel optimization: Complexity analysis and application to actor-critic. SIAM
Journal on Optimization, 33(1):147–180, 2023.

Quanqi Hu, Zi-Hao Qiu, Zhishuai Guo, Lijun Zhang, and Tianbao Yang. Blockwise stochastic
variance-reduced methods with parallel speedup for multi-block bilevel optimization. In Pro-
ceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pp. 13550–13583. PMLR, 2023a.

Yifan Hu, Xin Chen, and Niao He. Sample complexity of sample average approximation for condi-
tional stochastic optimization. SIAM Journal on Optimization, 30(3):2103–2133, 2020a.

Yifan Hu, Siqi Zhang, Xin Chen, and Niao He. Biased stochastic first-order methods for condi-
tional stochastic optimization and applications in meta learning. Advances in Neural Information
Processing Systems, 33:2759–2770, 2020b.

Yifan Hu, Xin Chen, and Niao He. On the bias-variance-cost tradeoff of stochastic optimization. In
Advances in Neural Information Processing Systems, volume 34, pp. 22119–22131, 2021.

Yifan Hu, Jie Wang, Yao Xie, Andreas Krause, and Daniel Kuhn. Contextual stochastic bilevel
optimization. In Advances in Neural Information Processing Systems, volume 36, 2023b.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Nonasymptotic analysis and faster
algorithms. arXiv preprint arXiv:2010.07962, 2020.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A
near-optimal algorithm for stochastic bilevel optimization via double-momentum. In Advances in
Neural Information Processing Systems, volume 34, pp. 30271–30283, 2021.

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. A fully first-order method
for stochastic bilevel optimization. In International Conference on Machine Learning, pp. 18083–
18113. PMLR, 2023a.

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. On penalty methods
for nonconvex bilevel optimization and first-order stochastic approximation. arXiv preprint
arXiv:2309.01753, 2023b.

Mohammed Ali Mnmoustafa. Tiny imagenet, 2017. URL https://www.kaggle.com/
competitions/tiny-imagenet.

Krikamol Muandet, Arash Mehrjou, Si Kai Lee, and Anant Raj. Dual instrumental variable re-
gression. In Advances in Neural Information Processing Systems, volume 33, pp. 2710–2721,
2020.

Yurii Nesterov. Lectures on Convex Optimization. Spriger, 2018.

12

https://www.kaggle.com/competitions/tiny-imagenet
https://www.kaggle.com/competitions/tiny-imagenet

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with im-
plicit gradients. In Advances in neural information processing systems, volume 32, 2019.

Yves Rychener, Daniel Kuhn, and Tobias Sutter. End-to-end learning for stochastic optimization:
A bayesian perspective. In International Conference on Machine Learning, pp. 29455–29472.
PMLR, 2023.

Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized federated learning using
hypernetworks. In International conference on machine learning, pp. 9489–9502. PMLR, 2021.

Han Shen, Zhuoran Yang, and Tianyi Chen. Principled penalty-based methods for bilevel reinforce-
ment learning and RLHF. Journal of Machine Learning Research, 26(114):1–49, 2025.

Quan Xiao, Han Shen, Wotao Yin, and Tianyi Chen. Alternating projected sgd for equality-
constrained bilevel optimization. In International Conference on Artificial Intelligence and Statis-
tics, pp. 987–1023. PMLR, 2023.

Jincheng Yang, Luhao Zhang, Ningyuan Chen, Rui Gao, and Ming Hu. Decision-making with side
information: A causal transport robust approach. Optimization Online, 2022.

Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization. In
Advances in Neural Information Processing Systems, volume 34, pp. 13670–13682, 2021.

Yan Yang, Bin Gao, and Ya-xiang Yuan. Bilevel reinforcement learning via the development of
hyper-gradient without lower-level convexity. In Proceedings of The 28th International Confer-
ence on Artificial Intelligence and Statistics, volume 258 of Proceedings of Machine Learning
Research, pp. 4780–4788. PMLR, 2025.

Huaxiu Yao, Ying Wei, Junzhou Huang, and Zhenhui Li. Hierarchically structured meta-learning.
In International conference on machine learning, pp. 7045–7054. PMLR, 2019.

A USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs during the preparation of this manuscript in limited, well-defined ways, described
below.

• We built the structure of the paper and wrote the core paragraphs ourselves. After that, we
used LLMs to polish language, improve grammar, and enhance clarity and readability.

• In conducting the literature review, we used LLMs to help identify relevant papers we may
originally have overlooked, to ensure thorough coverage.

• No theoretical results, proofs, algorithmic design, or experimental code were produced
using LLMs; all substantive scientific contributions are our own.

We verified all content suggested by the LLMs. Any suggestions or drafts were carefully reviewed,
edited, and corrected by us. We assume full responsibility for all content in this manuscript, includ-
ing parts that were edited or polished via LLMs.

B PROOFS OF MAIN RESULTS

B.1 METHODOLOGIES AND ROADMAP

The basic idea to construct a fully first-order algorithm for solving CSBO problems is to esti-
mate ∇F using only first-order information of f and g, and then perform stochastic gradient de-
scent (SGD) for F . To do so, we first show in Lemma B.8 that ∇F can be approximated by
Eη,ξ[∇xL(x, y

⋆(x, 1
λ ; ξ), y

⋆(x, 0; ξ), λ; η, ξ)]:

Eη,ξ[∇xL(x, y
⋆(x,

1

λ
; ξ), y⋆(x, 0; ξ), λ; η, ξ)]

Approximating−−−−−−−−→
Lemma B.8

∇F,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

where L is defined in (3), y⋆(x, δ; ξ) is the solution to (4). Then the inner loop of our algorithms is
applying a SGD-type manner to minimize Q(xk, y, 0; ξ) and Q(xk, y,

1
λk

; ξ) for yk+1 and zk+1 that
approximate y∗(xk, 0; ξ) and y∗(xk, 1

λk
; ξ), respectively:

Sample ξk ∼ Pξ −→
min
y

Q(xk, y, 0; ξk)
SGD−−→ yk+1

min
y

Q(xk, y,
1

λk
; ξk)

SGD−−→ zk+1

 Approximating−−−−−−−−−−−→
Lemmas B.6 and B.9

Eη,ξ[∇xL(x, y
⋆(x,

1

λ
; ξ),

y⋆(x, 0; ξ), λ; η, ξ)]

Therefore, we use only the first-order information of f and g, and only SGD-type methods to ap-
proximate ∇F .

To further accelerate our Algorithm 1, we employ the multilevel Monte Carlo techniques, which, in
addition to the previous framework, use extra approximations:

Sample ξk ∼ Pξ, Sample nk ∼ PN −→

min
y

Q(xk, y, 0; ξk)
SGD−−→ y2

nk−1

k , y2
nk

k

min
y

Q(xk, y,
1

λnk

; ξk)
SGD−−→ z2

nk

k (λnk
)

min
y

Q(xk, y,
1

λnk−1
; ξk)

SGD−−→ z2
nk−1

k (λnk−1)


Obtain−−−→ uk(0, λ0) + p−1

nk
[uk(nk, λnk

)− uk(nk − 1, λnk−1)]
Approximating−−−−−−−−→

(7)

Eη,ξ[∇xL(xk, z
2N−1
k (λN),

y2
N−1

k , λN ; η, ξ)]

and
Eη,ξ[∇xL(xk, z

2N−1
k (λN), y2

N−1
k , λN ; η, ξ) | Fk]

Approximating−−−−−−−−→
Lemma B.10

Eη,ξ[∇xL(x, y
⋆(x,

1

λ
; ξ), y⋆(x, 0; ξ), λ; η, ξ)]

where PN is the truncated geometric distribution whose upper bound is N defined in Algorithm 2
and pk ∝ 2−nk ; λnk

, y2
nk−1

k , y2
nk

k , z2
nk−1

k (λnk−1) and z2
nk

k (λnk
) are defined in Algorithm 2; uk

is defined in (6).

B.2 USEFUL LEMMA

Lemma B.1. (Nesterov, 2018, Lemma 1.2.3) If g : Rd → R is continuously differentiable on Rd.
The first derivative of g is Lipschitz continuous on Rd with constant ℓg,1, then

|g(y)− g(x)− ⟨∇g(x), y − x⟩| ≤ ℓg,2
2

∥y − x∥2.

Lemma B.2. (Nesterov, 2018, Lemma 1.2.4) If g : Rd → R is twice continuously differentiable on
Rd. The second derivative of g is Lipschitz continuous on Rd with constant ℓg,2, then

∥∇g(y)−∇g(x)−∇2g(x)(y − x)∥ ≤ ℓg,2
2

∥y − x∥2

|g(y)− g(x)− ⟨∇g(x), y − x⟩ − 1

2
⟨∇2g(x), y − x⟩| ≤ ℓg,2

6
∥y − x∥3.

Similar to the proof of (Nesterov, 2018, Lemma 1.2.3), we have the following result:

Lemma B.3. Suppose G : Rd → Rm is continuously differentiable, and DG : Rd → Rm×d is
Lipschitz continuous with modulus L in the following sense:

∥DG(x)−DG(y)∥2 ≤ L∥x− y∥ ∀x, y ∈ Rd.

where ∥ · ∥2 denotes the spectral norm of matrices. Then, for all x, y ∈ Rd, it holds that

∥G(x)−G(y)−DG(x)(y − x)∥ ≤ L

2
∥x− y∥2 ∀x, y ∈ Rd.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

B.3 THE SMOOTHNESS OF F

Lemma B.4. (Xiao et al., 2023, Lemma 14) Under Assumption 2.1, there exists ℓF,1 > 0 such that

∥∇F (x)−∇F (x′)∥ ≤ ℓF,1∥x− x′∥.

B.4 THE CONVERGENCE RATE OF INNER LOOP

The next lemma shows that Q(x, y, δ; ξ) is strongly convex provided δ is sufficiently small. This is
useful to analyze the convergence rate of the inner loop.

Lemma B.5. Under Assumption 2.1, if δ < µg

ℓf,1
, then for any ξ ∈ Ξ, Q(x, y, δ; ξ) in (4) is (µg −

δℓf,1)-strongly convex in y.

Proof. It follows from Assumption 2.1(iii) that

f̄(x, z2; ξ)− f̄(x, z1; ξ) ≤ ⟨∇2f̄(x, z2; ξ), z2 − z1⟩+
ℓf,1
2

∥z1 − z2∥2.

Since ḡ(x, y; ξ) is µg-strongly convex in y, we have

ḡ(x, z1; ξ)− ḡ(x, z2; ξ) ≥ ⟨∇2ḡ(x, z2; ξ), z1 − z2⟩+
µg

2
∥z1 − z2∥2.

Combining the above two inequalities, we get

δf̄(x, z1; ξ)− δf̄(x, z2; ξ) + ḡ(x, z1; ξ)− ḡ(x, z2; ξ)

≥ δ⟨∇2f̄(x, z2; ξ), z1 − z2⟩ −
δℓf,1
2

∥z1 − z2∥2 + ⟨∇2ḡ(x, z2; ξ), z1 − z2⟩+
µg

2
∥z1 − z2∥2

= ⟨∇2Q(x, z2, δ; ξ), z1 − z2⟩+ (
µg

2
− δℓf,1

2
)∥z1 − z2∥2.

This completes the proof.

The next lemma shows that the inner loop of Algorithm 1 and Algorithm 2 converges to(
y⋆(xk, 0; ξ), y

⋆(xk,
1
λk

; ξ)
)

at a sublinear rate.

Lemma B.6. Suppose that Assumptions 2.1 and 2.3 hold. Consider the k-th outer iteration of Al-
gorithm 1 or Algorithm 2 with xk and λk >

ℓf,1
µg

. Then for {ytk}t, {ztk}t generated by the inner loop
of Algorithm 1 or Algorithm 2, we have

E[∥ytk − y⋆(xk, 0; ξ)∥2 | Fk] ≤ O(
1

t
) and E[∥ztk − y⋆(xk,

1

λk
; ξ)∥2 | Fk] ≤ O(

1

t
).

Proof. It follows from the definition of zt+1
k in Algorithm 1 that

∥zt+1
k − y⋆(xk,

1

λk
; ξk)∥2

= ∥ztk − y⋆(xk,
1

λk
; ξk)∥2 + 2⟨zt+1

k − ztk, z
t
k − y⋆(xk,

1

λk
; ξk)⟩+ ∥zt+1

k − ztk∥2

= ∥ztk − y⋆(xk,
1

λk
, ξk)∥2 − 2βt⟨

1

λk
∇zL(xk, z

t
k, y

t
k, λk; η

t
k, ξk), z

t
k − y⋆(xk,

1

λk
; ξk)⟩

+ ∥zt+1
k − ztk∥2

≤ − 2
βt
λk

(L(xk, z
t
k, y

t
k, λk; η

t
k, ξk)− L(xk, y

⋆(xk,
1

λk
; ξk), y

t
k, λk; η

t
k, ξk))

+ ∥ztk − y⋆(xk,
1

λk
, ξk)∥2 + ∥zt+1

k − ztk∥2,

(11)

where the inequality follows from the fact that 1
λk
L(xk, ·, ytk, λ; ηtk, ξk) is µg − 1/λkℓf,1-strongly

convex (The strong convexity of this function can be established by a proof similar to that of

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Lemma B.5). We now estimate the last term of the above inequality. Appealing again to the defini-
tion of zt+1

k , we see that

Eη|ξk [∥z
t+1
k − ztk∥2]

= Eη|ξk [∥
βt
λk

∇zL(xk, z
t
k, y

t
k, λk; η

t
k, ξk)∥2]

≤ 2β2
tEη|ξk∥

1

λk
∇zL(xk, z

t
k, y

t
k, λk; η

t
k, ξk)−

1

λk
Eη|ξk [∇xL(xk, z

t
k, y

t
k, λk; η, ξk)∥2]

+ 2β2
t ∥

1

λk
Eη|ξk [∇xL(xk, z

t
k, y

t
k, λk; η, ξk)−

1

λk
Eη|ξk [∇zL(xk, y

⋆(xk,
1

λk
; ξ), ytk, λk; η, ξk)]∥2

≤ 4β2
t (
τ2f
λ2k

+ τ2g) + 2β2
t (

4

λ2k
ℓ2f,0 + 2ℓ2g,1Eη|ξk [∥z

t
k − y⋆(xk,

1

λk
; ξk)∥2])

(12)

where the first inequality follows from Eη|ξk [∇zL(xk, y
⋆(xk,

1
λk

; ξ), ytk; η, ξk)] = 0 and the tri-
angle inequality, the last inequality follows from Assumption 2.1(iv), the triangle inequality,
∥∇2f̄(x, y; ξ)∥ ≤ ℓf,0 and the ℓg,1-smoothness of g. Thus we have

Eη|ξk [∥z
t+1
k − y⋆(xk,

1

λk
; ξk)∥2]

≤ (1− βt(µg −
ℓf,1
λk

))Eη|ξk [∥z
t
k − y⋆(xk,

1

λk
; ξ)∥2]

+ 4β2
t (
τ2f
λ2k

+ τ2g) + 2β2
t (

4

λ2k
ℓ2f,0 + 2ℓ2g,1Eη|ξk [∥z

t
k − y⋆(xk,

1

λk
; ξk)∥2])

≤ (1− βtµg

2
+ 4β2

t ℓ
2
g,1)Eη|ξk [∥z

t
k − y⋆(xk,

1

λk
; ξ)∥2] +O(

1

t2
)

≤ (1− βtµg

4
)Eη|ξk [∥z

t
k − y⋆(xk,

1

λk
; ξ)∥2] +O(

1

(t+ 1)2
),

(13)

where the first inequality follows from the fact that 1
λk

Eη|ξk [L(xk, z, y
t
k, λk; η, ξk)] is (µg−ℓf,1/λk-

strongly convex in z, the second inequality follows by ℓf,1/λk ≤ µg/2, the last inequality follows
from βt ≤ µg/(16ℓ

2
g,1). If t ≥ 1, using βt = 8/(µg(t+ 1)) in Algorithm 1, multiplying both sides

of the above inequality by t(t+ 1) simultaneously will give the following inequality,

t(t+ 1)Eη|ξk [∥z
t+1
k − y⋆(xk,

1

λk
; ξk)∥2]

≤ t(t− 1)Eη|ξk [∥z
t
k − y⋆(xk,

1

λk
; ξk)∥2] +O(1)

≤ 2Eη|ξk [∥z
0
k − y⋆(xk,

1

λk
; ξk)∥2] + tO(1),

(14)

where the second inequality is derived from the repeated use of the first inequality. Taking the
expectation on both sides of the above inequality, we obtain

E[∥zt+1
k − y⋆(xk,

1

λk
; ξ)∥2 | Fk] ≤

2

t(t+ 1)
E[∥z0k − y⋆(xk,

1

λk
; ξ)∥2 | Fk] +

O(1)

t
.

By a similar argument, we can obtain the convergence rate of {ytk}t that is generated by Algorithm 1,
{ytk}t, {ztk(λnk

)}t, {ztk(λnk−1)}t that are generated by Algorithm 2. This completes the proof.

B.5 ESTIMATE BIAS

In this subsection, we shall show the bias of the gradient estimator of ∇F used in Al-
gorithm 1 and Algorithm 2 is controllable. Specifically, we will show that ∥∇F (xk) −
E[∇xL(xk, zk+1, yk+1, λk; ηk, ξk) | Fk]∥ and ∥∇F (xk)−Eη,ξ,nk

[(uk(0, λ0)+p
−1
nk

(uk(nk, λnk
)−

uk(nk − 1, λnk−1))) | Fk]∥ are upper bounded.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

When δ in (4) is chosen such that δ <
µg

ℓf,1
, by Lemma B.5, we know Q(x, ·, δ, ξ) is strongly

convex, and hence the solution and the corresponding multiplier of (4) exist and are unique. The
next Lemma shows that for any ξ ∈ Ξ, the solution to (4) y⋆(x, δ; ξ) is Lipschitz continuous in δ
and x, respectively, provided δ is carefully selected.

Lemma B.7. Under Assumption 2.1, if 0 ≤ δ′ ≤ δ ≤ µg

2ℓf,1
, there exist ℓy,0, ℓy,1, ℓµ,1 such that for

any ξ ∈ Ξ

∥y⋆(x, δ; ξ)− y⋆(x, δ′; ξ)∥ ≤ ℓy,0|δ − δ′|,
∥y⋆(x, 0; ξ)− y⋆(x′, 0; ξ)∥ ≤ ℓy,0∥x− x′∥,

where ℓy,0 = max{ ℓg,1+δℓf,1
µg−δℓf,1

,
ℓf,0

µg−δℓf,1
}.

Proof. By the definition of y⋆(xk, δ; ξ) and the first-order necessary condition, we know that

∇2ḡ(xk, y
⋆(xk, δ; ξ); ξ) + δ∇2f̄(xk, y

⋆(xk, δ; ξ); ξ) = 0,

We take the derivative of both sides with respect to x and δ. Then, an application of the chain rule
gives:

∇2
21Q(xk, y

⋆(xk, δ; ξ)), δ; ξ) +∇2
22Q(xk, y

⋆(xk, δ; ξ), δ; ξ)Dxy
⋆(xk, δ; ξ) = 0,

∇2f̄(xk, y
⋆(xk, δ; ξ); ξ) +∇2

22Q(xk, y
⋆(xk, δ; ξ), δ; ξ)Dδy

⋆(xk, δ; ξ) = 0.

where Q(x, y, δ; ξ) is defined in (4). By Lemma B.5 and the above two equalities, we have

Dxy
⋆(xk, δ; ξ) = −(∇2

22Q(xk, y
⋆(xk, δ; ξ)), δ; ξ))

−1∇2
21Q(xk, y

⋆(xk, δ; ξ), δ; ξ),

Dδy
⋆(xk, δ; ξ) = −(∇2

22Q(xk, y
⋆(xk, δ; ξ), δ; ξ))

−1∇2f̄(xk, y
⋆(xk, δ; ξ); ξ),

(15)

which imply

∥Dxy
⋆(xk, δ; ξ)∥ ≤ ℓg,1 + δℓf,1

µg − δℓf,1
∥Dδy

⋆(xk, δ; ξ)∥ ≤ ℓf,0
µg − δℓf,1

.

This completes the proof.

The following Lemma shows that ∇F (x) can be approximated using only first-order information of
L, which plays a crucial role in our analysis.

Lemma B.8. Suppose that Assumption 2.1 holds, and λ > ℓf,1
µg

. Let the solution to (4) be y⋆(x, δ; ξ).
Then we have

∥∇F (x)− Eη,ξ[∇xL(x, y
⋆(x,

1

λ
; ξ), y⋆(x, 0; ξ), λ; η, ξ)]∥ = O(

1

λ
).

Proof. By (15), we know that

Dxy
⋆(x, 0; ξ) = −∇2

22ḡ(x, y
⋆(x, 0; ξ); ξ)−1∇2

21ḡ(x, y
⋆(x, 0; ξ); ξ)

The above equality and the chain rule imply

∇F (x) = Eξ[∇1f̄(x, y
⋆(x, 0; ξ); ξ) +Dxy

⋆(x, 0; ξ)⊤∇2f̄(x, y
⋆(x, 0; ξ); ξ)]

= Eξ[∇1f̄(x, y
⋆(x, 0; ξ); ξ)

−∇2
12ḡ(x, y

⋆(x, 0; ξ); ξ)(∇2
22ḡ(xk, y

⋆(x, 0; ξ); ξ))−1∇2f̄(x, y
⋆(x, 0; ξ); ξ)],

(16)

It follows from the definition of L that

Eη,ξ[∇xL(x, y
⋆(x,

1

λ
; ξ), y⋆(x, 0; ξ), λ; η, ξ)]

= Eξ

[
∇1f̄(x, y

⋆(x,
1

λ
; ξ); ξ) + λ

(
∇1ḡ(x, y

⋆(x,
1

λ
; ξ); ξ)−∇1ḡ(x, y

⋆(x, 0; ξ); ξ)

)] (17)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

By Lemma B.3,we know that

∇1ḡ(x, y
⋆(x,

1

λ
; ξ); ξ)−∇1ḡ(x, y

⋆(x, 0; ξ); ξ)

= ∇2
12ḡ(x, y

⋆(x, 0; ξ); ξ)(y⋆(x,
1

λ
; ξ)− y⋆(x, 0; ξ)) + rg1 ,

where ∥rg1∥ = O(1/λ2). By Lemma B.3 and (15), we obtain

y⋆(x,
1

λ
; ξ)− y⋆(x, 0; ξ) = Dδy

⋆(x, 0; ξ)(
1

λ
− 0) + rg2 ,

where ∥rg2∥ = O(1/λ2). Using the expression for Dδy
⋆(x, 0; ξ) in (15), and combining the above

equalities, we obtain

∇1ḡ(x, y
⋆(x,

1

λ
; ξ); ξ)−∇1ḡ(x, y

⋆(x, 0; ξ); ξ)

=
1

λ
∇2

12ḡ(x, y
⋆(x, 0; ξ); ξ)∇2

22ḡ(x, y
⋆(x, 0; ξ))−1(∇2f̄(x, y

⋆(x, 0; ξ); ξ); ξ)) + rg3 ,

where ∥rg3∥ = O(1/λ2). It follows from (16), (17) and the above equality that

∇F (x)− Eη,ξ[∇xL(x, y
⋆(x,

1

λ
; ξ), y⋆(x, 0; ξ), λ; η, ξ)]

= Eξ[∇1f̄(x, y
⋆(x, 0; ξ); ξ)−∇1f̄(x, y

⋆(x,
1

λ
; ξ); ξ)] + rg4

(18)

where ∥rg4∥ = O(1/λ). Combining the Lipschitz property of f̄ , Lemma B.7 with the above equality
yields this conclusion.

We now show a lemma stating that in the k-th outer iteration, we can use
E[∇xL(xk, zk+1, yk+1, λk; η, ξ)] with (yk+1, zk+1) being obtained from the inner loop of Algo-
rithm 1 to approximate E[∇xL(xk, y

⋆(xk,
1
λk

; ξ), y⋆(xk, 0; ξ), λk; η, ξ)].

Lemma B.9. Suppose that Assumptions 2.1 and 2.3 hold, consider Algorithm 1, we have

∥E[∇xL(xk,zk+1,yk+1,λk;η,ξ)−∇xL(xk, y
⋆(xk,

1

λk
; ξ), y⋆(xk, 0; ξ), λk; η, ξ) | Fk]∥2≤O(

λ2k
Tk

).

Proof. We have

E[∇xL(xk, zk+1, yk+1, λk; η, ξ)]− E[∇xL(xk, y
⋆(xk,

1

λk
; ξ), y⋆(xk, 0; ξ), λk; η, ξ) | Fk]

= E[∇1f̄(xk, zk+1, ξ)−∇1f̄(xk, y
⋆(xk,

1

λk
; ξ); ξ) | Fk]

+ λkE[
(
∇1ḡ(xk, zk+1; ξ)−∇1ḡ(xk, y

⋆(xk,
1

λk
; ξ); ξ))

)
| Fk]

+ λkE[(∇1ḡ(xk, y
⋆(xk, 0; ξ); ξ)−∇1ḡ(xk, yk+1; ξ)) | Fk],

(19)

which implies

∥E[∇xL(xk, zk+1, yk+1, λk; η, ξ)−∇xL(xk, y
⋆(xk,

1

λk
; ξ), y⋆(xk, 0; ξ), λk; η, ξ) | Fk]∥2

≤ O(λ2k)(E[∥zk+1 − y⋆(xk,
1

λk
; ξ)∥2 | Fk] + E[∥yk+1 − y⋆(xk, 0; ξ)∥2 | Fk]) ≤ O(

λ2k
Tk

),

where the inequality follows from Lemma B.6.

Similar to the analysis in Lemma B.9, we can show the following result for Algorithm 2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Lemma B.10. Suppose that Assumptions 2.1 and 2.3 hold, consider Algorithm 2, we have

∥E[∇xL(xk, z
2N−1
k (λN), y2

N−1
k , λN ; η, ξ) | Fk]

− E[∇xL(xk, y
⋆(xk,

1

λN
; ξ), y⋆(xk, 0; ξ), λN ; η, ξ) | Fk]∥2 ≤ O(

λ2N
2N

).

Now, combining all lemmas in this subsection, we can upper bound ∥∇F (xk) −
E[∇xL(xk, zk+1, yk+1, λk; ηk, ξk) | Fk]∥ and ∥∇F (xk)−Eη,ξ,nk

[(uk(0, λ0)+p
−1
nk

(uk(nk, λnk
)−

uk(nk − 1, λnk−1))) | Fk]∥ using triangle inequality. Then the bias of gradient estimator is control-
lable. The results are summarized in the following two lemmas.
Lemma B.11. Under Assumptions 2.1 and 2.3, consider Algorithm 2, we have

∥∇F (xk)− E[∇xL(xk, zk+1, yk+1, λk; ηk, ξk) | Fk]∥ ≤ O(
1

λk
) +O(

λ2k
Tk

).

Lemma B.12. Under Assumptions 2.1 and 2.3, consider Algorithm 2, we have

∥E[uk(0, λ0) + p−1
nk

(uk(nk, λnk
)− uk(nk − 1, λnk−1)) | Fk]−∇F (xk)∥2 ≤ O(

1

λ2N
).

Proof. By (7), we obtain

E[uk(0, λ0) + p−1
nk

(uk(nk, λnk
)− uk(nk − 1, λnk−1)) | Fk]

= E[∇xL(xk, z
2N−1
k (λN), y2

N−1
k , λN ; η, ξ) | Fk].

Then the desired result is due to Lemma B.8, Lemma B.10 and the above equality.

B.6 THE VARIANCE OF RT-MLMC

Below, we demonstrate the variance of uk(0, λ0) + p−1
nk

(uk(nk, λnk
) − uk(nk − 1, λnk−1)) in

Algorithm 2.
Lemma B.13. Under Assumptions 2.1 and 2.3, consider Algorithm 2, we have

E[∥E[∇xL(xk, z
2N−1
k (λN), y2

N−1
k , λN ; ηk, ξk) | Fk]

− (uk(0, λ0) + p−1
nk

(uk(nk, λnk
)− uk(nk − 1, λnk−1))∥2 | Fk] ≤ O(2

N
2).

Proof. It holds that

E[∥E[∇xL(xk, z
2N−1
k (λN), y2

N−1
k , λN ; ηk, ξk) | Fk]

− (uk(0, λ0) + p−1
nk

(uk(nk, λnk
)− uk(nk − 1, λnk−1))∥2 | Fk]

≤ 2E[∥E[∇xL(xk, z
2N−1
k (λN), y2

N−1
k , λN ; ηk, ξk) | Fk − uk(0, λ0)]∥2 | Fk]

+ 2E[∥p−1
nk

(uk(nk, λnk
)− uk(nk − 1, λnk−1))∥2 | Fk].

Next, we analyze two terms on the right of the above inequality. For the first term, we have

E[∥E[∇xL(xk, z
2N−1
k (λN), y2

N−1
k , λN ; ηk, ξk) | Fk − uk(0, λ0)]∥2 | Fk]

≤ 6ℓ2f,0 + 3λ2Nℓ
2
g,1E[∥z2

N−1
k (λN)− y2

N−1
k ∥2 | Fk],

where the inequality follows from the definition y0k, z0k(λ), µ
1
k and µ2

k, the smoothness of f and
Assumption 2.1(iii). Notice that

E[∥z2
N−1

k (λN)− y2
N−1

k ∥2 | Fk]

≤ E[3∥z2
N−1

k (λN)− y⋆(xk,
1

λN
; ξk)∥2 + 3∥y2

N−1
k − y⋆(xk, 0; ξk)∥2 | Fk]

+ 3E[∥y⋆(xk,
1

λN
; ξk)− y⋆(xk, 0; ξk)∥2 | Fk]

≤ O(
1

2N − 1
) +O(

1

λ2N
),

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

where the second inequality is due to Lemma B.6, Lemma B.7. Therefore, we obtain

E[∥E[∇xL(xk, z
2N−1
k (λN), y2

N−1
k , λN ; ηk, ξk) | Fk]− uk(0, λ0)∥2 | Fk] ≤ O(1).

For the second term, we have

E[∥p−1
n (uk(n, λn)− uk(n− 1, λn−1))∥2 | Fk]

=

N∑
n=1

p−1
n E[∥uk(n, λn)− uk(n− 1, λn−1)∥2 | Fk]

≤
N∑

n=1

p−1
n O(

1

(λn−1)2
) ≤ O(2

N
2),

(20)

where the first inequality is due to Lemma B.14. This completes the proof.

The following Lemma estimate the term E[∥uk(n, λn)− uk(n− 1, λn−1)∥2 | Fk] in (20).
Lemma B.14. Under Assumptions 2.1 and 2.3, consider Algorithm 2, we have

E[∥uk(n, λn)− uk(n− 1, λn−1)∥2 | Fk] ≤ O(
1

2
n−1
2

).

Proof. We denote

u⋆k(xk, λn; ηk, ξk) := ∇xL(xk, y
⋆(xk,

1

λn
; ξk), y

⋆(xk, 0; ξk), λn; ηk, ξk).

It is easy to verify that

uk(n, λn)− uk(n− 1, λn−1)

= uk(n, λn)− u⋆k(xk, λn; ηk, ξk) + u⋆k(xk, λn; ηk, ξk)− u⋆k(xk, λn−1; ηk, ξk)

+ u⋆k(xk, λn−1; ηk, ξk)− uk(n− 1, λn−1).

(21)

We then analyze the following three terms:

1. E[∥uk(n, λn)− u⋆k(xk, λn; ηk, ξk)∥2 | Fk];

2. E[∥uk(n− 1, λn−1)− u⋆k(xk, λn−1; ηk, ξk)∥2 | Fk];

3. E[∥u⋆k(xk, λn; ηk, ξk)− u⋆k(xk, λn−1; ηk, ξk)∥2 | Fk].

For the first term, we have
uk(n, λn)− u⋆k(xk, λn; ηk, ξk)

= ∇1f(xk, z
2n−1
k (λn); ηk, ξk)−∇1f(xk, y

⋆(xk,
1

λn
; ξk); ηk, ξk)

+ λn(∇1g(xk, z
2n−1
k (λn); ηk, ξk)−∇1g(xk, y

⋆(xk,
1

λn
; ξk); ηk, ξk))

+ λn(g(xk, y
⋆(xk, 0; ξk); ηk, ξk)−∇1g(xk, y

2n−1
k ; ηk, ξk)).

Combining the above equality with Lemma B.6, we obtain

E[∥uk(n, λn)− u⋆k(xk, λn; ηk, ξk)∥2 | Fk] ≤ O(
λ2n
2n

). (22)

Similarly, we know that

E[∥uk(n− 1, λn−1)− u⋆k(xk, λn−1; ηk, ξk)∥2] ≤ O(
λ2n−1

2n−1
). (23)

Below, we estimate the third term. By Lemma B.2, we can see that

∇1g(xk, y
⋆(xk,

1

λn
; ξk); ηk, ξk)−∇1g(xk, y

⋆(xk, 0; ξk); ηk, ξk)

= ∇2
12g(xk, y

⋆(xk, 0; ξk); ηk, ξk)(y
⋆(xk,

1

λn
; ξk)− y⋆(xk, 0; ξk)) + r1,

(24)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

where ∥r1∥ = O(∥y⋆(xk, 1
λn

; ξk)− y⋆(xk, 0; ξk)∥2), and

∇2g(xk, y
⋆(xk, 0; ξk); ξk)−∇2g(xk, y

⋆(xk,
1

λn
; ξk))

= ∇2
22g(xk, y

⋆(xk, 0; ξk); ξk)(y
⋆(xk, 0; ξk)− y⋆(xk,

1

λn
; ξk)) + r2,

(25)

where ∥r2∥ = O(∥y⋆(xk, 1
λn

; ξk)−y⋆(xk, 0; ξk)∥2). It follows from Lemma B.7 that ∇δy
⋆(x, δ; ξ)

is Lipschitz continuous, by Lemma B.3, one has

y⋆(x, δ; ξ)− y⋆(x, 0; ξ) = Dδy
⋆(x, 0; ξ)(δ − 0) + ry, (26)

where ∥ry∥ = O(|δ|2). Combining (26), Lemma B.7 with (24), we can see that

u⋆k(xk, λn; ηk, ξk)

= ∇1f(xk, y
⋆(xk,

1

λn
; ξk); ηk, ξk) + (∇2

12g(xk, y
⋆(xk, 0; ξk), ηk, ξk)∇δy

⋆(xk, 0, ξk) + r3,

where ∥r3∥ = O(1
λn

). Similarly, we have

u⋆k(xk, λn−1; ηk, ξk)

= ∇1f(xk, y
⋆(xk,

1

λn−1
; ξk); ηk, ξk) +∇2

12g(xk, y
⋆(xk, 0; ξk); ηk, ξk)∇δy

⋆(xk, , 0, ξk) + r4,

where ∥r4∥ = O(1
λn−1

). Therefore, combining the above two equalities with Lemma B.7, It is easy
to verify that

∥u⋆k(xk, λn; ηk, ξk)− u⋆k(xk, λn−1; ηk, ξk)∥

≤ ℓf,1∥y⋆(xk,
1

λn
; ξk)− y⋆(xk,

1

λn−1
; ξk)∥ ≤ O(

1

λn−1
).

By the above inequality and (22), (23), one has

E[∥uk(n, λn)− uk(n− 1, λn−1)∥2 | Fk] ≤ O(
λ2n
2n

+
λ2n−1

2n−1
+

1

λ2n−1

) ≤ O(
1

2
n−1
2

).

This completes the proof.

B.7 PROOF OF THEOREM 3.1

It follows from Lemma B.4 that F (x) is ℓF,1-Lipschitz smooth, which implies

F (xk+1)− F (xk) ≤ ⟨∇F (xk), xk+1 − xk⟩+
ℓF,1

2
∥xk+1 − xk∥2.

The above inequality implies

E[F (xk+1)− F (xk) | Fk]

≤E[⟨∇F (xk), xk+1 − xk⟩+
ℓF,1

2
∥xk+1 − xk∥2 | Fk]

= − αk

2
(∥∇F (xk)∥2 + ∥E[∇xL(xk, zk+1, yk+1, λk; ηk, ξk) | Fk]∥2)

+
αk

2
∥∇F (xk)− E[∇xL(xk, zk+1, yk+1, λk; ηk, ξk))] | Fk∥2 +

ℓF,1

2
E[∥xk+1 − xk∥2 | Fk],

where the equality is due to the definition of xk+1 in Algorithm 1 and the fact that ⟨a, b⟩ =
− 1

2 (∥a∥
2 + ∥b∥2) + 1

2∥a− b∥2. For the last term in the above inequality, we have

E[∥xk+1 − xk∥2 | Fk] ≤ 2α2
k(ℓ

2
f,0 + λ2kℓ

2
g,1E[∥zk+1 − yk+1∥2 | Fk]),

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

and

E[∥zk+1 − yk+1∥2 | Fk]

= E[∥zk+1 − y⋆(xk,
1

λk
; ξ) + y⋆(xk,

1

λk
; ξ)− y⋆(xk, 0; ξ) + y⋆(xk, 0; ξ)− yk+1∥2 | Fk]

≤ 3E[∥zk+1 − y⋆(xk,
1

λk
; ξ)∥2 | Fk] + 3E[∥y⋆(xk,

1

λk
; ξ)− y⋆(xk, 0; ξ)∥2 | Fk]

+ 3E[∥y⋆(xk, 0; ξ)− yk+1∥2 | Fk]

≤ O(
1

Tk
) +O(

1

λ2k
) ≤ O(

1

λ2k
),

(27)

where the second inequality follows from Lemma B.6, Lemma B.7. Combining the above three
inequalities, we have

E[F (xk+1)− F (xk) | Fk]

≤ − αk

2
E[(∥∇F (xk)∥2 + ∥E[∇xL(xk, zk+1, yk+1, λk; η, ξ) | Fk]∥2)

+
αk

2
∥∇F (xk)− E[∇xL(xk, zk+1, yk+1, λk; η, ξ) | Fk]∥2 + α2

kO(1),

which implies
αk

2
E[∥∇F (xk)∥2 | Fk]

≤ αk

2
[∥∇F (xk)− E[∇xL(xk, zk+1, yk+1, λk; ηk, ξk) | Fk]∥2

+ E[F (xk)− F (xk+1) | Fk] + α2
kO(1).

Multiply both sides of the above inequality by 2
αk

, we get

E[∥∇F (xk)∥2 | Fk]

≤ E[
2

αk
F (xk)−

2

αk+1
F (xk+1) + (

2

αk+1
− 2

αk
)F (xk+1) | Fk] + αkO(1)

+ ∥∇F (xk)− E[∇xL(xk, zk+1, yk+1, λk; ηk, ξk) | Fk]∥2.

It follows from Lemma B.11 that

∥∇F (xk)− E[∇xL(xk, zk+1, yk+1, λk; ηk, ξk) | Fk]∥2 ≤ O(
1

λ2k
) +O(

λ2k
Tk

).

The above two inequalities imply

E[∥∇F (xk)∥2 | Fk]

≤ E[
2

αk
F (xk)−

2

αk+1
F (xk+1) | Fk] +O(

1

αk+1
− 1

αk
) +O(αk) +O(

1

λ2k
).

Therefore, we obtain

1

K

K∑
k=1

E[∥∇F (xk)∥2] ≤ O(
1√
K

).

To ensure 1
K

∑K
k=1 E[∥∇F (xk)∥2] ≤ ϵ2, it suffices to set K = O(ϵ−4), TK = O(ϵ−4). As a result,

the sample complexity of ∇1f , ∇1g is of order O(ϵ−4). The complexity of ∇2g, ∇2f is of order
O(ϵ−8).

B.8 PROOF OF THEOREM 3.4

It follows from Lemma B.4 that F (x) is ℓF,1-smooth, which implies

F (xk+1)− F (xk) ≤ ⟨∇F (xk), xk+1 − xk⟩+
ℓF,1

2
∥xk+1 − xk∥2.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

For notational simplicity, we adopt the following conventions:

vk(nk, λnk
) = uk(0, λ0) + p−1

nk
(uk(nk, λnk

)− uk(nk − 1, λnk−1)). (28)

One has

E[F (xk+1)− F (xk) | Fk]

≤ E[⟨∇F (xk), xk+1 − xk⟩+
ℓF,1

2
∥xk+1 − xk∥2 | Fk]

= Enk>c0N [−a1α0⟨∇F (xk), vk(nk, λnk
)⟩+ ℓF,1

2
∥xk+1 − xk∥2 | Fk]

+ Enk≤c0N [−α0⟨∇F (xk), vk(nk, λnk
)⟩+ ℓF,1

2
∥xk+1 − xk∥2 | Fk],

where the equality uses the fact that the expectation of a piece-wise affine function is the sum of
expectation of each piece. Subsequent to this, we apply an algebraic manipulation to the right-hand
side of the aforementioned inequality to express it in an equivalent form. It follow from (6), (7) that

− a1α0⟨∇F (xk), Enk>c0N [vk(nk, λnk
) | Fk]⟩+

ℓF,1

2
Enk>c0N [∥xk+1 − xk∥2 | Fk]

= − a1α0⟨∇F (xk),E[uk(N,λN)− uk(c0N,λc0N) | Fk]⟩+
ℓF,1

2
Enk≤N [∥xk+1 − xk∥2 | Fk]

− ℓF,1

2
Enk≤c0N [∥xk+1 − xk∥2 | Fk],

and

− α0⟨∇F (xk), Enk≤c0N [vk(nk, λnk
) | Fk]⟩+

ℓF,1

2
Enk≤c0N [∥xk+1 − xk∥2 | Fk]

= − α0⟨∇F (xk), E[uk(c0N,λc0N) | Fk]⟩+
ℓF,1

2
Enk≤c0N [∥xk+1 − xk∥2 | Fk].

Combining the above three equations, we get

E[F (xk+1)− F (xk) | Fk]

≤ − a1α0⟨∇F (xk), E[uk(N,λN) | Fk]⟩+
ℓF,1

2
Enk≤N [∥xk+1 − xk∥2 | Fk]

− α0(1− a1)⟨∇F (xk), E[uk(c0N,λc0N) | Fk]⟩

=
a1α0

2
∥∇F (xk)− E[uk(N,λN) | Fk]∥2 −

a1α0

2
∥∇F (xk)∥2 −

a1α0

2
∥E[uk(N,λN) | Fk]∥2

+
α0(1− a1)

2
∥∇F (xk)− E[uk(c0N,λc0N) | Fk]∥2 +

ℓF,1

2
Enk≤N [∥xk+1 − xk∥2 | Fk],

where the equality is due to the fact that −⟨a, b⟩ = − 1
2 (∥a∥

2 + ∥b∥2) + 1
2∥a − b∥2. For the last

term in the above inequality, it is easy to verify that

Enk≤N [∥xk+1 − xk∥2 | Fk]

= α2Enk≤N [∥vk(nk, λnk
)∥2 | Fk]

≤ 2α2
0Enk≤N [∥∇F (xk)∥2 + ∥vk(nk, λnk

)−∇F (xk)∥2 | Fk]

≤ 2α2
0Enk≤N [∥∇F (xk)∥2 + 2∥E[∇xL(xk, z

2N−1
k (λN), y2

N−1
k ; ηk, ξk) | Fk]−∇F (xk)∥2 | Fk]

+ 4α2
0Enk≤N [∥E[∇xL(xk, z

2N−1
k (λN), y2

N−1
k ; ηk, ξk) | Fk]− vk(nk, λnk

)∥2 | Fk]

≤ 2α2
0Enk≤N [∥∇F (xk)∥2 | Fk] + 4α2

0O(
1

λ2N
) + 4α2

0O(2
N
2),

where the first equality is due to the definition of xk+1, the first and second inequalities follow from
the triangle inequality, and the last inequality follows from Lemma B.12, Lemma B.13.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Combining the above two inequalities, and then taking the expectation on the new inequality, if
α0 ≤ a1

8ℓF,1
, one has

E[F (xk+1)− F (xk)]

≤ a1α0

2
E[∥∇F (xk)− E[uk(N,λN) | Fk]∥2] + (2α2

0ℓF,1 −
a1α0

2
)E[∥∇F (xk)∥2]

+
α0(1− a1)

2
E[∥∇F (xk)− E[uk(c0N,λc0N) | Fk]∥2] + α2

0O(
1

λ2N
) + α2

0O(2
N
2)

≤ a1α0

2

(
O(

1

λ2N
) +O(

λ2N
2N

)

)
− a1α0

4
E[∥∇F (xk)∥2]

+
α0(1− a1)

2

(
O(

1

λ2c0N
) +O(

λ2c0N
2c0N

)

)
+ α2

0O(
1

λ2N
) + α2

0O(2
N
2),

where the last inequality is due to Lemma B.8, Lemma B.10 and α0 ≤ a1

8ℓF,1
(which implies

2ℓF,1α
2
0 − a1α0

4 ≤ 0). Therefore, we get

E[∥∇F (xk)∥2] ≤
4

a1α0
(E[F (xk)]− E[F (xk+1)]) +O(

1

λ2N
+
λ2N
2N

)

+O(
1

λ2c0N
+
λ2c0N
2c0N

) + α0O(
1

λ2N
) + α0O(2

N
2).

The above inequality and the definition of λnk
in Algorithm 2 imply

1

K

K∑
k=1

E[∥∇F (xk)∥2] ≤
4E[F (x1)− F (xK+1)]

a1α0K
+O(

1

λ2N
+

1

λ2c0N
) + α0O(

1

λ2N
+ 2

N
2)

The average number of iterations required for the inner loop is

N∑
nk=1

(2nk+1 − 1)
2−nk

1− 2−N−1
< 3N.

To ensure 1
K

∑K
k=1 E[∥∇F (xk)∥2] ≤ ϵ2, it suffices to set α0 = O(1)ϵ4, K = O(ϵ−6), N =

O(1) log(ϵ−1). As a result, the sample complexity of ∇1f , ∇1g is of order O(ϵ−6). The complexity
of ∇2g, ∇2f is of order O(ϵ−6 log(ϵ−1)).

B.9 THE SETTING OF NUMERICAL EXPERIMENT (META-LEARNING)

We tune the algorithm parameters of these four methods to make sure every method works well:
we set ℓf,1 = µg = 1000; for Algorithm 1, we use αk = 25/

√
k + 1, βt = 500/(µg(t + 1))

and K = 1500; for Algorithm 2, we use ϵ = 1e − 4 and so N = 4 log(ϵ−1) ≈ 37, α0 = 1,
c0N = 10, a1 = 0.05, βt = 25/(µg(t + 1)) and K = 17000; for Hessian-based method, we
follow the settings in Hu et al. (2023b) and use maximum iterations 10000, the RT-MLMC level
K = 12, Lg,1 = 10, αt = 0.5/

√
t for t <= 1000 and 0.5/t for t > 1000, the stepsize for the inner

update is replaced by βt = 70/(t + 1) rather than 70/2t for better performance; for the reduction
method in Bouscary et al. (2025), we use basis degrees 50, for stocBiO for solving the reduced SBO
problem, we use maximum iterations 3000, inner iterations D = 100, stepsizes α = 0.01, β = 0.1
and η = 1e− 3, and length of Neumann series Q = 30. To handle the high variance of Algorithm 2
and RT-MLMC Hessian-based methods, we use minibatch over the hypergradient estimators for the
outer loop. Specifically, for Algorithm 2, in the k-th outer iteration, given xk, we sample an nk from
the truncated geometric distribution, and then repeat steps 3 to 13 in Algorithm 2 for 10 times.

Similarly, for RT-MLMC Hessian-based method, in the k-th outer iteration, we sample a k̂ from
the truncated geometric distribution, and then repeat EpochSGD (c.f., Algorithm 1 in Hu et al.
(2023b) for 10 times to compute the averaged gradient estimator to update xk+1. Note that the max-
imum number of iterations are set to ensure that the computational time for these three algorithms
is roughly comparable.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

B.10 THE SETTING OF NUMERCAL EXPERIMENT (WDRO-SI)

In this experiment, ξ, y ∈ R100, γ1 = 10, and the parameters in lβ are set to h = 1, b = 5 and
β = 5. We use a three-layer fully-connected neural network as the mapping f(x; ·), where the
neurons in each layer are [64, 32, 1], the activation functions of hidden layers are ReLU, and the
output layer uses the sigmoid function scaled by 10. To construct the nominal distribution, we first
uniformly randomly generate the true x∗, and M = 50 contexts {ξi}Mi=1. For each ξi, we generate
{ηj = f(x∗; ξi)+ϵ}100j=1 with ϵ being white noise. The performance is evaluated by the stationarities
and expected losses E(ξ,η)∼P 0 [l(f(x; ξ), η)], where the expectation is approximated using sample
average over 20, 000 sample points {(ξi, ηi)}20,000i=1 that are generated using the same scheme as the
training nominal distribution. Similarly to the meta-learning example, these losses are evaluated
only on the 50 equally spaced grid points.

The algorithm parameters of each method are tuned to ensure the good performance. Specifically,
we set ℓf,1 = µg = 1000; for Algorithm 1, we use αk = 0.5/

√
k + 1, βt = 5/(µg(t + 1)) and

K = 100; for Algorithm 2, we use ϵ = 1e− 4 and so N = 4 log(ϵ−1) ≈ 37, α0 = 0.5, c0N = 10,
a1 = 0.05, βt = 1/(µg(t + 1)) and K = 1, 000; for Hessian-based method, we use maximum
iterations 1, 000, the RT-MLMC level K = 12, Lg,1 = 10, αt = 1e − 5/

√
t for t <= 1000 and

1e − 5/t for t > 1000, the stepsize for the inner update is replaced by βt = 5e − 5/(t + 1); for
the reduction method in Bouscary et al. (2025), we use basis degrees 5, for stocBiO for solving
the reduced SBO problem, we use maximum iterations 300, inner iterations D = 100, stepsizes
α = 0.01, β = 0.01 and η = 1e− 4, and the length of Neumann series Q = 30. Different from the
meta-learning example, we do not use minibatch for RT-MLMC methods.

25

	Introduction
	Related Work
	Preliminaries and Notation.

	Algorithms
	The Basic Algorithm
	Derivation of methodRT-MLMC

	Complexity Analysis
	Numerical Experiments
	Meta-learning
	Wasserstein Distributionally Robust Optimization with Side Information

	Use of Large Language Models (LLMs)
	Proofs of Main Results
	Methodologies and Roadmap
	Useful Lemma
	The smoothness of F
	The convergence rate of inner loop
	Estimate bias
	The variance of RT-MLMC
	Proof of theorem:convergencerate
	Proof of theorem:convergencerate2
	The setting of numerical experiment (Meta-learning)
	The setting of numercal experiment (WDRO-SI)

