
LOTUS: Learning to learn with Optimal Transport in
Unsupervised Scenarios

Anonymous Author(s)
Affiliation
Address
email

Abstract

Automated machine learning has been widely researched and adopted for super-1

vised tasks such as classification and regression. Unsupervised scenarios, lacking2

a ground truth to optimize on, are much harder to automate. We propose a novel3

zero-shot meta-learning approach that recommends which algorithms and hyperpa-4

rameters to use on new unsupervised tasks by learning from prior supervised proxy5

datasets. Our premise is that the selection of optimal unsupervised algorithms6

depends on the inherent properties of the data distribution. We first build a large7

meta-dataset evaluating many algorithms and hyperparameter settings on prior8

datasets, leverage optimal transport to find the prior datasets with the most similar9

underlying distribution, and then recommend the (tuned) algorithm that proved to10

work best for that data distribution. We evaluate the robustness of our approach on11

one particular task, i.e. outlier detection, and find that it outperforms state of the12

art methods in unsupervised outlier detection.13

1 Introduction14

An open problem in Automated Machine Learning (AutoML) is how to select algorithms for unsuper-15

vised tasks, or how to efficiently optimize pipelines that include unsupervised preprocessing steps,16

such as outlier detection or dimensionality reduction. We propose a meta-learning framework for17

unsupervised machine learning which leverages optimal transport distances [14, 17] to recommend18

which unsupervised algorithms and hyperparameters to use based on how well they performed on19

proxy tasks with similar data distributions. Such recommendations can be used as smart defaults, or20

to warm-start or reduce the search space of AutoML techniques.21

In this work we evaluate this approach specifically for outlier detection. Outlier detection (OD) is22

the process of identifying data points that are significantly different from the rest of the data. These23

data points can be caused by errors in the data collection process, incorrect values, or unusual events.24

Hence, it can be used to improve the quality of the data or to find unusual events that require special25

attention. We also introduce GAMAOD, an outlier detection extension to the AutoML framework26

GAMA [5], to collect rich meta-data to learn from.27

2 Background28

Many AutoML [8] tools leverage meta-learning schemes [23] to find good configurations to warm-29

start optimization. For instance, AutoSklearn-2.0 [4] learns pipeline portfolios, FLAML [24] uses30

Submitted to the 6th Workshop on Meta-Learning at NeurIPS 2022, New Orleans. Do not distribute.



meta-learned defaults, and MetaBu [15] uses optimal transport (Fused Gromov Wasserstein with31

proximal gradients) to learn better meta-features to find similar prior tasks.32

AutoML for outlier detection is a much harder problem since it lacks an objective metric to guide33

optimization. MetaOD [26] uses collaborative filtering [21] to build a recommender system for34

predicting the best outlier detection techniques and leverage meta-learning based on landmark and35

model-based meta-features.1 However, it’s unclear if these unsupervised meta-features capture36

sufficient information about the underlying data distribution.37

Optimal transport Optimal transport (OT) theory aims to find an optimal transport map between38

two probability measures, often on different metric spaces. We focus on the Gromov Wasserstein39

(GW) distance between two discrete probability distributions. Gromomv Wasserstein allows us to40

match points taken within different metric spaces. Hence, they can be used to measure the similarity41

between two numeric datasets. To speed up computation and use it in a realistic AutoML setting we42

use the Low-Rank Gromov-Wasserstein (GW-LR) approximation [18, 17, 19], which reduces the43

computational cost from cubic to linear time. [19] consider the GW problem with low-rank couplings,44

linked by a common marginal g. Therefore, the set of possible transport plans is restricted to those45

adopting the factorization of the form Pr = Qdiag(1/g)RT . In this form Q and R are thin matrices46

with dimensionality of n× r, r ×m respectively and g is an r−dimensional probability vector. The47

GW-LR distance is be described as:48

GW-LR(r)((a,A), (b, B)) := min
(Q,R,g)∈Ca,b,r

QA,B(Qdiag(1/g)R
T ) (1)

3 Methodology49

We introduce LOTUS, Learning to learn with Optimal Transport for Unsupervised Scenarios, which50

is summarized in Algorithm 1. LOTUS meta-learns how well different unsupervised algorithms51

work on prior labeled datasets. These can be datasets where the correct labels are known, or proxy52

tasks. For instance, for outlier detection we can use extremely imbalanced classification tasks where53

examples of the smallest class are considered outliers. More formally, we require:54

• A collection of n prior labeled datasets Dmeta = {D1, ..., Dn} with test and train splits such that55

Di = (Xtrain
i , ytraini ), (Xtest

i , ytesti ).56

• A collection of n optimized algorithms A∗
i with associated hyperparameters λ∗i for every dataset in57

Dmeta; A = {A∗
λ∗
1
, ..., A∗

λ∗
n
}58

Given a new input dataset (i.e., outlier detection task) Dnew = (Xnew) without any labels, we aim to59

select a model A∗
λ∗ ∈ A to employ on Xnew, where A∗

λ∗ is a tuned model for a dataset similar to60

Xnew.61

Our premise is that, if a prior dataset exists that is very similar to the new dataset, then its optimal62

algorithms will likely work well on the new dataset. We consider two datasets similar if they have the63

same underlying data distribution, which we measure using (unsupervised) Optimal Transport.64

We first require a transformation function ϕ to map the dataset to a metric space. Next, we calculate65

the dataset similarity O based on some distance metric ψ in equation 2. Because our distributions lie66

on different metric spaces, and we require computationally efficient similarity estimates, we adopt67

the Low Rank Gromov-Wasserstein distance from equation 1 on these transformed distributions, as68

summarized in equation 3, where r is the selected rank.69

O = ψ(ϕ(Da)ϕ(Db)) (2)
70

O = GW-LR(r)(ϕ(Da)ϕ(Db)) (3)

1PyODDS [11] also claims to automate outlier detection but uses a supervised metric, without meta-learning.

2



Algorithm 1 Pseudocode for LOTUS
Inputs: Dnew,Dmeta,A

1: while Di ∈ Dmeta do
2: Oi ← ψ(ϕ(Dnew, Di)) ▷ Distance calculation
3: s← argmin

i
{O1, ...,On} ▷ Retrieval of most similar dataset

4: A∗
λ∗
new
← A∗

λ∗
s

▷ Model Selection

The most similar prior dataset Ds ∈ Dmeta is then the dataset with the smallest distance to the new71

dataset Dnew. LOTUS then assigns the optimal configuration from A: A∗
λ∗
new

= A∗
λ∗
s

where A∗
λ∗
s

is72

predicted as the optimal configuration for Dnew.73

GAMAOD: Automated supervised learning for outlier detection To populate our meta-data we74

develop an extension on top of GAMA [5], whose search space consists of all outlier detectors (and75

their hyperparameters) from PyOD [25], a Python library for detecting outlying objects in multivariate76

data. GAMAOD can use different metrics to optimise for the given task, such as AUC and PRC.77

4 Experiments on ADBench78

For our experiments, we use ADBench [7] and retrieve all tabular datasets. This collection consists79

of 46 datasets. As we do not have access to multiple benchmarks we use a leave-one-out strategy for80

the evaluation of our system, i.e., we take out one dataset at a time from ADBench and use only the81

other datasets in the meta-data. This ensures independent meta-training on the following datasets.82

We compare our approach against 7 outlier detection algorithms available in PyOD [25]: IForest [12],83

ABOD [10], OCSVM [20], LODA [13], KNN [1, 16], HBOS [6], and COF [22]. We also compare84

it against the current state of the art meta-learner for outlier detection, MetaOD [26]. Based on85

preliminary experiments, we used ICA [9] as our transformation function and run LR-GW with rank86

6.87

5 Results and Discussion88

5.1 LOTUS vs MetaOD89

For pairwise comparison of LOTUS and MetaOD, we use the Bayesian Wilcoxon signed-rank test90

(or ROPE test [2, 3]). We use AUC as our performance measure and set the ROPE value to 1%.291

Results are shown in Figure 1. We find that, based on experiments over the 46 datasets, there is a 74.292

% probability that LOTUS will outperform MetaOD. Since p(LOTUS) > p(MetaOD) LOTUS93

proves to be more robust. We show the per-dataset performances in Appendix A.1.94

5.2 LOTUS vs individual methods95

The results of the ROPE test comparing LOTUS with individual outlier detection techniques are96

shown in Table 1. LOTUS proves to be significantly better than other techniques, with default97

parameters. In this case P (LOTUS) >> P (Estimator). We also include the critical difference98

plot of LOTUS vs PyOD estimators in Figure 2, again showing that it performs significantly better.99

The detailed experimental results are reported in appendix A.1 table 3 and Figure 3.100

5.3 Limitations101

First, LOTUS depends on the quality of meta-data, i.e. the variety of datasets and algorithms. If102

there are no similar datasets in Dmeta, LOTUS can recommend a dataset which is not sufficiently103

similar to new dataset. On the other hand, it is expected to improve as more benchmarks and datasets104

2We use the baycomp library [2] to run and visualize the analysis

3



Figure 1: ROPE plot, showing the probability distribution of LOTUS outperforming MetaOD.

Figure 2: Comparison of average rank (lower is better) of outlier detection methods w.r.t. performance
across datasets in ADBench

with different properties become available. Second, the computation cost of GW-LR on really large105

datasets can still be very high. In these cases we recommend using an appropriate subsampling106

technique. Finally, tuning the rank of GW-LR can be tricky. A low rank results in faster computation107

but high loss, and vice versa. [19] studies this effect for GW-LR. This rank can also be tuned by108

minimizing the loss between GW and GW-LR.109

6 Conclusion and Future Work110

In this work, we propose LOTUS, a meta-learning technique which uses optimal transport distances to111

estimate the similarity between datasets and uses this to recommend tuned algorithms on unsupervised112

tasks. We evaluate this technique on outlier detection and developed a new AutoML tool, GAMAOD,113

to collect the required metadata. We demonstrate that LOTUS outperforms MetaOD and other built-in114

estimators in PyOD. The LOTUS approach enables researchers to use a simplified meta-learning115

framework as compared to other methods based on hand-crafted meta-features, and can be used116

to warm-start various AutoML approaches. Finally, we believe that this approach can be extended117

to perform model selection in other unsupervised machine learning tasks as well. These include118

clustering, distance metric learning, density estimation and covariance estimation.119

Estimator name p(LOTUS) p(rope) p(Estimator)
IForest 0.99954 0.0 0.00046
ABOD 1.0 0.0 0.0
OCSVM 1.0 0.0 0.0
LODA 1.0 0.0 0.0
KNN 1.0 0.0 0.0
HBOS 0.99982 0.0 0.00018
COF 1.0 0.0 0.0

Table 1: Rope testing results with LOTUS vs PyOD estimators with rope=1%

4



References120

[1] F. Angiulli and C. Pizzuti. “Fast Outlier Detection in High Dimensional Spaces”. In: PKDD.121

2002.122

[2] A. Benavoli, G. Corani, J. Demšar, and M. Zaffalon. “Time for a Change: a Tutorial for123

Comparing Multiple Classifiers Through Bayesian Analysis”. In: Journal of Machine Learning124

Research 18.77 (2017), pp. 1–36.125

[3] A. Benavoli, G. Corani, F. Mangili, M. Zaffalon, and F. Ruggeri. “A Bayesian Wilcoxon126

signed-rank test based on the Dirichlet process”. In: Proceedings of the 31st International127

Conference on Machine Learning. Vol. 32. Proceedings of Machine Learning Research 2.128

Bejing, China, 2014, pp. 1026–1034.129

[4] M. Feurer, K. Eggensperger, S. Falkner, M. Lindauer, and F. Hutter. “Auto-Sklearn 2.0:130

Hands-free AutoML via Meta-Learning”. In: arXiv:2007.04074 [cs.LG] (2020).131

[5] P. Gijsbers and J. Vanschoren. “GAMA: A General Automated Machine Learning Assistant”.132

In: Machine Learning and Knowledge Discovery in Databases. Applied Data Science and133

Demo Track. Cham, 2021, pp. 560–564.134

[6] M. Goldstein and A. R. Dengel. “Histogram-based Outlier Score (HBOS): A fast Unsupervised135

Anomaly Detection Algorithm”. In: 2012.136

[7] S. Han, X. Hu, H. Huang, M. Jiang, and Y. Zhao. “ADBench: Anomaly Detection Bench-137

mark”. In: Thirty-sixth Conference on Neural Information Processing Systems Datasets and138

Benchmarks Track. 2022.139

[8] F. Hutter, L. Kotthoff, and J. Vanschoren. “Automated Machine Learning: Methods, Systems,140

Challenges”. In: Automated Machine Learning (2019).141

[9] A. Hyvärinen and E. Oja. “Independent component analysis: algorithms and applications”.142

In: Neural networks : the official journal of the International Neural Network Society 13 4-5143

(2000), pp. 411–30.144

[10] H.-P. Kriegel, M. Schubert, and A. Zimek. “Angle-Based Outlier Detection in High-145

Dimensional Data”. In: Proceedings of the 14th ACM SIGKDD International Conference146

on Knowledge Discovery and Data Mining. 2008, pp. 444–452.147

[11] Y. Li, D. Zha, N. Zou, and X. Hu. “PyODDS: An End-to-end Outlier Detection System with148

Automated Machine Learning”. In: Companion Proceedings of the Web Conference 2020149

(2020).150

[12] F. T. Liu, K. M. Ting, and Z.-H. Zhou. “Isolation Forest”. In: 2008 Eighth IEEE International151

Conference on Data Mining (2008), pp. 413–422.152

[13] T. Pevný. “Loda: Lightweight on-line detector of anomalies”. In: Machine Learning 102153

(2015), pp. 275–304.154

[14] G. Peyré and M. Cuturi. “Computational Optimal Transport”. In: Found. Trends Mach. Learn.155

11 (2019), pp. 355–607.156

[15] H. Rakotoarison, L. Milijaona, A. RASOANAIVO, M. Sebag, and M. Schoenauer. “Learning157

meta-features for AutoML”. In: International Conference on Learning Representations. 2022.158

[16] S. Ramaswamy, R. Rastogi, and K. Shim. “Efficient Algorithms for Mining Outliers from159

Large Data Sets”. In: SIGMOD Rec. 29.2 (2000), pp. 427–438.160

[17] M. Scetbon and M. Cuturi. “Low-rank Optimal Transport: Approximation, Statistics and161

Debiasing”. In: NeurIPS 2022 abs/2205.12365 (2022).162

[18] M. Scetbon, M. Cuturi, and G. Peyré. “Low-Rank Sinkhorn Factorization”. In: Proceedings of163

the 38th International Conference on Machine Learning. Vol. 139. Proceedings of Machine164

Learning Research. 2021, pp. 9344–9354.165

[19] M. Scetbon, G. Peyré, and M. Cuturi. “Linear-Time Gromov Wasserstein Distances using Low166

Rank Couplings and Costs”. In: Proceedings of the 39th International Conference on Machine167

Learning. Vol. 162. Proceedings of Machine Learning Research. 2022, pp. 19347–19365.168

[20] B. Schölkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor, and J. C. Platt. “Support Vector169

Method for Novelty Detection”. In: NIPS. 1999.170

[21] D. Stern, R. Herbrich, T. Graepel, H. Samulowitz, L. Pulina, and A. Tacchella. “Collaborative171

Expert Portfolio Management”. In: Proceedings of the Twenty-Fourth AAAI Conference on172

Artificial Intelligence AAAI-10 (to appear). 2010.173

5



[22] J. Tang, Z. Chen, A. W.-c. Fu, and D. W. Cheung. “Enhancing Effectiveness of Outlier174

Detections for Low Density Patterns”. In: Advances in Knowledge Discovery and Data Mining.175

Berlin, Heidelberg, 2002, pp. 535–548.176

[23] J. Vanschoren. “Meta-Learning: A Survey”. In: ArXiv abs/1810.03548 (2018).177

[24] C. Wang, Q. Wu, M. Weimer, and E. Zhu. “FLAML: A Fast and Lightweight AutoML Library”.178

In: MLSys. 2021.179

[25] Y. Zhao, Z. Nasrullah, and Z. Li. “PyOD: A Python Toolbox for Scalable Outlier Detection”.180

In: J. Mach. Learn. Res. 20 (2019), 96:1–96:7.181

[26] Y. Zhao, R. Rossi, and L. Akoglu. “Automatic Unsupervised Outlier Model Selection”. In:182

Advances in Neural Information Processing Systems. Vol. 34. 2021, pp. 4489–4502.183

Checklist184

1. For all authors...185

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s186

contributions and scope? [Yes]187

(b) Did you describe the limitations of your work? [Yes]188

(c) Did you discuss any potential negative societal impacts of your work? [No]189

(d) Have you read the ethics review guidelines and ensured that your paper conforms to190

them? [Yes]191

2. If you are including theoretical results...192

(a) Did you state the full set of assumptions of all theoretical results? [N/A]193

(b) Did you include complete proofs of all theoretical results? [N/A]194

3. If you ran experiments...195

(a) Did you include the code, data, and instructions needed to reproduce the main experi-196

mental results (either in the supplemental material or as a URL)? [No]197

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they198

were chosen)? [Yes] They are in the code199

(c) Did you report error bars (e.g., with respect to the random seed after running experi-200

ments multiple times)? [No] No, there was no random seed, though the metadata will201

be changed after running any other automl system on it202

(d) Did you include the total amount of compute and the type of resources used (e.g., type203

of GPUs, internal cluster, or cloud provider)? [No] These experiments can be ran on204

CPU cluster in parallel for meta-data but for main approach of the paper a single cpu is205

enough206

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...207

(a) If your work uses existing assets, did you cite the creators? [Yes] ADBench, OTTJAX208

(b) Did you mention the license of the assets? [No]209

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]210

All asset links are in URL211

(d) Did you discuss whether and how consent was obtained from people whose data you’re212

using/curating? [N/A]213

(e) Did you discuss whether the data you are using/curating contains personally identifiable214

information or offensive content? [N/A]215

5. If you used crowdsourcing or conducted research with human subjects...216

(a) Did you include the full text of instructions given to participants and screenshots, if217

applicable? [N/A]218

(b) Did you describe any potential participant risks, with links to Institutional Review219

Board (IRB) approvals, if applicable? [N/A]220

(c) Did you include the estimated hourly wage paid to participants and the total amount221

spent on participant compensation? [N/A]222

6



Dataset LOTUS MetaOD
19_landsat 0.7902 0.5931
25_musk 0.9895 0.9655
24_mnist 1.0000 1.0000
32_shuttle 0.9216 0.9163

23_mammography 0.6434 0.6477
42_WBC 0.8521 0.8655

15_Hepatitis 0.9353 0.9353
43_WDBC 0.8548 0.9671

12_fault 0.9246 0.9043
10_cover 0.9463 0.9436
34_smtp 0.2744 0.5212

11_donors 0.8064 0.8049
29_Pima 0.8804 0.7197

37_Stamps 0.9275 0.9339
44_Wilt 0.7765 0.5327

40_vowels 0.8491 0.9355
8_celeba 0.9908 0.9906
1_ALOI 0.8954 0.8957

30_satellite 0.8913 0.7890
26_optdigits 0.9996 0.9997
2_annthyroid 0.8472 0.8445
41_Waveform 0.9758 0.9413
28_pendigits 0.8597 0.9265

4_breastw 0.7466 0.7438
21_Lymphography 0.9441 0.9861

20_letter 0.9701 0.9891
39_vertebral 0.7634 0.8424

47_yeast 0.9089 0.9097
3_backdoor 1.0000 1.0000

13_fraud 0.9646 0.8904
45_wine 0.9841 0.9481

22_magic.gamma 0.9322 0.8122
9_census 0.9819 1.0000

7_Cardiotocography 0.9392 0.9378
35_SpamBase 0.9446 0.9015

46_WPBC 0.7811 0.8088
36_speech 1.0000 0.4344
6_cardio 0.9794 0.9793

31_satimage-2 0.9552 0.8100
18_Ionosphere 0.8072 0.8338
27_PageBlocks 0.7164 0.7668

5_campaign 0.9922 0.9996

Table 2: AUC scores of MetaOD vs LOTUS on ADBench

A Appendix223

A.1 Performances224

Table 2 contains the performances of LOTUS and MetaOD on 42 datasets, We had to eliminate 4225

datasets from this experiment because MetaOD returned invalid models for these datasets(i.e. models226

with invalid values). Scores are in bold where AUC of LOTUS > MetaOD or differ by less than a %.227

The dataset names are as they were in ADBench [7].228

229

Table 3 reports the auc scores over datasets from ADBench. The bold number shows scores where230

LOTUS is better than all other estimators in PyOD.231

7



Dataset IForest ABOD OCSVM LODA KNN HBOS COF LOTUS
44_Wilt 0.471963 0.568222 0.301310 0.408280 0.472095 0.281412 0.544269 0.7765
6_cardio 0.943738 0.498576 0.939676 0.892753 0.741544 0.865343 0.544550 0.9794

43_WDBC 0.987241 0.987241 0.989655 0.987586 0.960345 0.998966 0.771034 0.8548
4_breastw 0.976321 0.976321 0.778694 0.981964 0.947386 0.969329 0.381366 0.7466
42_WBC 0.993567 0.993567 0.994103 0.995980 0.911954 0.991691 0.754757 0.8521
47_yeast 0.431011 0.417114 0.448353 0.492504 0.413668 0.410032 0.428639 0.9089
45_wine 0.735205 0.735205 0.681612 0.923158 0.471241 0.891757 0.412289 0.9841

5_campaign 0.692549 0.642977 0.645556 0.566477 0.696817 0.771387 0.564588 0.9922
46_WPBC 0.522489 0.522489 0.475911 0.562133 0.419170 0.555259 0.495170 0.7811

7_Cardiotocography 0.752439 0.539423 0.810433 0.785916 0.582569 0.623355 0.572511 0.9392
8_celeba 0.757810 0.757810 0.761861 0.718291 0.632204 0.805965 0.393545 0.9908
9_census 0.598140 0.598140 0.523211 0.325589 0.650628 0.633393 0.413254 0.9819

39_vertebral 0.377788 0.377788 0.427308 0.284423 0.417163 0.282356 0.321923 0.7634
41_Waveform 0.669757 0.698172 0.474443 0.611266 0.782120 0.639714 0.804121 0.9758

38_thyroid 0.979620 0.979620 0.867786 0.699534 0.951152 0.952834 0.871991 0.7910
40_vowels 0.708373 0.956714 0.532701 0.655924 0.971722 0.646130 0.849763 0.8491
3_backdoor 0.734361 0.734361 0.802264 0.708914 0.738679 0.665487 0.728995 1.0000
32_shuttle 0.996250 0.618768 0.987461 0.951075 0.678578 0.994925 0.557606 0.9216

31_satimage-2 0.996844 0.762625 0.983527 0.987126 0.909884 0.985936 0.451384 0.9552
26_optdigits 0.771433 0.525541 0.527237 0.623480 0.398194 0.852822 0.423611 0.9996

1_ALOI 0.501898 0.609567 0.532848 0.549594 0.555634 0.478001 0.635583 0.8954
35_SpamBase 0.657074 0.390792 0.520510 0.273952 0.515358 0.651507 0.416468 0.9446

36_speech 0.469975 0.729473 0.462061 0.448529 0.473192 0.476358 0.553156 1.0000
34_smtp 0.696899 0.670223 0.018006 0.372124 0.744582 0.878626 0.890630 0.2744

22_magic.gamma 0.704407 0.799144 0.594241 0.635940 0.823228 0.681717 0.663549 0.9322
23_mammography 0.859409 0.859409 0.854704 0.814810 0.859614 0.871755 0.792004 0.6434

24_mnist 0.794443 0.750330 0.834765 0.743575 0.828259 0.619057 0.733384 1.0000
20_letter 0.581556 0.880889 0.485185 0.627407 0.867111 0.540593 0.829704 0.9701

30_satellite 0.707795 0.538013 0.605468 0.609243 0.646056 0.768130 0.556999 0.8913
19_landsat 0.495534 0.500057 0.374050 0.382382 0.577134 0.556768 0.542057 0.7902
37_Stamps 0.909527 0.909527 0.878255 0.944582 0.746473 0.928582 0.636364 0.9275

18_Ionosphere 0.867847 0.867847 0.765359 0.858325 0.862297 0.667416 0.850478 0.8072
21_Lymphography 0.997003 0.997003 0.993506 0.667582 0.512862 0.995005 0.934316 0.9441

25_musk 0.999923 0.085936 0.818675 0.959047 0.701124 1.000000 0.400387 0.9895
17_InternetAds 0.700473 0.673305 0.710028 0.580881 0.712320 0.704318 0.693902 1.0000

16_http 1.000000 1.000000 0.995308 0.000000 0.001340 0.994638 0.583110 0.7106
15_Hepatitis 0.742736 0.742736 0.722262 0.772817 0.467871 0.813292 0.425388 0.9353

14_glass 0.818496 0.818496 0.459264 0.632274 0.740799 0.791758 0.882668 0.8374
13_fraud 0.934023 0.941569 0.914391 0.751185 0.916394 0.941169 0.914591 0.9646

11_donors 0.794215 0.794215 0.723436 0.260784 0.829936 0.763981 0.720262 0.8064
12_fault 0.571477 0.676490 0.494426 0.436072 0.713079 0.479224 0.612146 0.9246

2_annthyroid 0.824922 0.824922 0.606069 0.305845 0.730291 0.691522 0.704828 0.8472
27_PageBlocks 0.889696 0.684494 0.892650 0.753280 0.769997 0.788657 0.673234 0.7164

28_pendigits 0.949714 0.673023 0.938642 0.951140 0.705836 0.921169 0.475639 0.8597
29_Pima 0.660016 0.660016 0.580166 0.606169 0.685681 0.713573 0.566752 0.8804
10_cover 0.914310 0.767605 0.886407 0.866889 0.899776 0.795243 0.870260 0.9463

Table 3: AUC Scores: LOTUS vs PyOD estimators with default configuration

8



(a) LOTUS vs ABOD (b) LOTUS vs HBOS (c) LOTUS vs COF

(d) LOTUS vs IForest (e) LOTUS vs LODA (f) LOTUS vs KNN

(g) LOTUS vs OCSVM

Figure 3: ROPE test result of LOTUS vs (a) ABOD (b) HBOS (c) COF (d) IForest (e) LODA (f)
KNN (g) OCSVM

Figure 4: Comparison of average rank (lower is better) of methods w.r.t. performance across datasets
in ADBench.

A.2 Baselines232

The 8 baslines estimators and frameworks are listed below with brief description from PyOD’s [25]233

documentation for reference here:234

1. MetaOD: MetaOD is the first automated tool for outlier detection. MetaOD use collaborative235

filtering, landmark and model based meta-features to recommend the model for given task.236

2. IForest: IsolationForest ‘isolates’ observations by randomly selecting a feature and then237

randomly selecting a split value between the maximum and minimum values of the selected238

feature.239

3. LOF:The anomaly score of each sample is called Local Outlier Factor. It measures the240

local deviation of density of a given sample with respect to its neighbors. It is local in that241

the anomaly score depends on how isolated the object is with respect to the surrounding242

neighborhood. More precisely, locality is given by k-nearest neighbors, whose distance is243

used to estimate the local density. By comparing the local density of a sample to the local244

9



densities of its neighbors, one can identify samples that have a substantially lower density245

than their neighbors. These are considered outliers.246

4. ABOD:For an observation, the variance of its weighted cosine scores to all neighbors could247

be viewed as the outlying score.248

5. HBOS: Histogram- based outlier detection assumes the feature independence and calculates249

the degree of outlier by building histograms.250

6. KNN: kNN class for outlier detection. For an observation, its distance to its kth nearest251

neighbor could be viewed as the outlying score.252

7. COF: Connectivity-Based Outlier Factor uses the ratio of average chaining distance of data253

point and the average of average chaining distance of k nearest neighbor of the data point,254

as the outlier score for observations.255

8. LDOA: Lightweight on-line detector of anomalies detects anomalies in a dataset by com-256

puting the likelihood of data points using an ensemble of one-dimensional histograms.257

9. OCSVM: One class support vector machines unsupervised outlier Detection. Estimate the258

support of a high-dimensional distribution.259

A.3 LOTUS+GAMAOD search space and MetaOD reproducibility260

We implement the same searchspace as MetaOD’s github repository for a fair comparison 3, MetaOD261

also uses all the existing datasets from ADbench. We believe that we have fairly evaluated MetaOD262

against out baseline. We believe that our Benchmark setting was more challenging than the one263

evaluated in [26] where it take child and parent datasets. 4264

A.4 Architecture265

An overview of LOTUS system can be found in Figure 5. An overview of GAMAOD system can be

Figure 5: An overview of LOTUS

266

found in Figure 6.267

3https://github.com/yzhao062/MetaOD/blob/master/metaod/models/base_detectors.py
4https://github.com/yzhao062/MetaOD/blob/2a8ed2761468d2f8ee2cd8194ce36b0f817576d1/

metaod/models/train_metaod.py#L44

10

https://github.com/yzhao062/MetaOD/blob/master/metaod/models/base_detectors.py
https://github.com/yzhao062/MetaOD/blob/2a8ed2761468d2f8ee2cd8194ce36b0f817576d1/metaod/models/train_metaod.py#L44
https://github.com/yzhao062/MetaOD/blob/2a8ed2761468d2f8ee2cd8194ce36b0f817576d1/metaod/models/train_metaod.py#L44


A.5 Experimental Implementation
Implementation details: We use Independent Component Analysis(ICA) from scikit-learn as our

transformation function ϕ. We use OTT-JAX library to implement Low Rank Gromov Wassersstein
distance. For this experiment, we set the rank parameter of Low Rank Gromov Wasserstein to 6. The
model selection phase of LOTUS in our experiments is as follows: First the datasets are transformed

via ICA and then converted into JAX pointclouds geometry objects a and then we turn these
distributions into a quadratic regularized optimal transport problem. We input this quadratic problem

to our Gromov Wasserstein Low Rank solver which returns us the distance(cost) between two
datasets. When a new dataset is given to LOTUS, the pipeline corresponding to the dataset with the

lowest distance(except the new dataset itself) is chosen from the optimal pipeline database.

Figure 6: An overview of GAMAOD

ahttps://ott-jax.readthedocs.io/en/latest/_autosummary/ott.geometry.pointcloud.
PointCloud.html

11

https://ott-jax.readthedocs.io/en/latest/_autosummary/ott.geometry.pointcloud.PointCloud.html
https://ott-jax.readthedocs.io/en/latest/_autosummary/ott.geometry.pointcloud.PointCloud.html

	Introduction
	Background
	Methodology
	Experiments on ADBench
	Results and Discussion
	LOTUS vs MetaOD
	LOTUS vs individual methods
	Limitations

	Conclusion and Future Work
	Appendix
	Performances
	Baselines
	LOTUS+GAMAOD search space and MetaOD reproducibility
	Architecture
	Experimental Implementation


